1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the TCP module.
8 *
9 * Version: @(#)tcp.h 1.0.5 05/23/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 */
14 #ifndef _TCP_H
15 #define _TCP_H
16
17 #define FASTRETRANS_DEBUG 1
18
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48
49 extern struct inet_hashinfo tcp_hashinfo;
50
51 extern struct percpu_counter tcp_orphan_count;
52 void tcp_time_wait(struct sock *sk, int state, int timeo);
53
54 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 #define TCP_MIN_SND_MSS 48
57 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
58
59 /*
60 * Never offer a window over 32767 without using window scaling. Some
61 * poor stacks do signed 16bit maths!
62 */
63 #define MAX_TCP_WINDOW 32767U
64
65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
66 #define TCP_MIN_MSS 88U
67
68 /* The initial MTU to use for probing */
69 #define TCP_BASE_MSS 1024
70
71 /* probing interval, default to 10 minutes as per RFC4821 */
72 #define TCP_PROBE_INTERVAL 600
73
74 /* Specify interval when tcp mtu probing will stop */
75 #define TCP_PROBE_THRESHOLD 8
76
77 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
78 #define TCP_FASTRETRANS_THRESH 3
79
80 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
81 #define TCP_MAX_QUICKACKS 16U
82
83 /* Maximal number of window scale according to RFC1323 */
84 #define TCP_MAX_WSCALE 14U
85
86 /* urg_data states */
87 #define TCP_URG_VALID 0x0100
88 #define TCP_URG_NOTYET 0x0200
89 #define TCP_URG_READ 0x0400
90
91 #define TCP_RETR1 3 /*
92 * This is how many retries it does before it
93 * tries to figure out if the gateway is
94 * down. Minimal RFC value is 3; it corresponds
95 * to ~3sec-8min depending on RTO.
96 */
97
98 #define TCP_RETR2 15 /*
99 * This should take at least
100 * 90 minutes to time out.
101 * RFC1122 says that the limit is 100 sec.
102 * 15 is ~13-30min depending on RTO.
103 */
104
105 #define TCP_SYN_RETRIES 6 /* This is how many retries are done
106 * when active opening a connection.
107 * RFC1122 says the minimum retry MUST
108 * be at least 180secs. Nevertheless
109 * this value is corresponding to
110 * 63secs of retransmission with the
111 * current initial RTO.
112 */
113
114 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
115 * when passive opening a connection.
116 * This is corresponding to 31secs of
117 * retransmission with the current
118 * initial RTO.
119 */
120
121 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
122 * state, about 60 seconds */
123 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
124 /* BSD style FIN_WAIT2 deadlock breaker.
125 * It used to be 3min, new value is 60sec,
126 * to combine FIN-WAIT-2 timeout with
127 * TIME-WAIT timer.
128 */
129 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
130
131 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
132 #if HZ >= 100
133 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
134 #define TCP_ATO_MIN ((unsigned)(HZ/25))
135 #else
136 #define TCP_DELACK_MIN 4U
137 #define TCP_ATO_MIN 4U
138 #endif
139 #define TCP_RTO_MAX ((unsigned)(120*HZ))
140 #define TCP_RTO_MIN ((unsigned)(HZ/5))
141 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
142 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
143 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
144 * used as a fallback RTO for the
145 * initial data transmission if no
146 * valid RTT sample has been acquired,
147 * most likely due to retrans in 3WHS.
148 */
149
150 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
151 * for local resources.
152 */
153 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
154 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
155 #define TCP_KEEPALIVE_INTVL (75*HZ)
156
157 #define MAX_TCP_KEEPIDLE 32767
158 #define MAX_TCP_KEEPINTVL 32767
159 #define MAX_TCP_KEEPCNT 127
160 #define MAX_TCP_SYNCNT 127
161
162 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
163
164 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
165 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
166 * after this time. It should be equal
167 * (or greater than) TCP_TIMEWAIT_LEN
168 * to provide reliability equal to one
169 * provided by timewait state.
170 */
171 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
172 * timestamps. It must be less than
173 * minimal timewait lifetime.
174 */
175 /*
176 * TCP option
177 */
178
179 #define TCPOPT_NOP 1 /* Padding */
180 #define TCPOPT_EOL 0 /* End of options */
181 #define TCPOPT_MSS 2 /* Segment size negotiating */
182 #define TCPOPT_WINDOW 3 /* Window scaling */
183 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
184 #define TCPOPT_SACK 5 /* SACK Block */
185 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
186 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
187 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */
188 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
189 #define TCPOPT_EXP 254 /* Experimental */
190 /* Magic number to be after the option value for sharing TCP
191 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
192 */
193 #define TCPOPT_FASTOPEN_MAGIC 0xF989
194 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9
195
196 /*
197 * TCP option lengths
198 */
199
200 #define TCPOLEN_MSS 4
201 #define TCPOLEN_WINDOW 3
202 #define TCPOLEN_SACK_PERM 2
203 #define TCPOLEN_TIMESTAMP 10
204 #define TCPOLEN_MD5SIG 18
205 #define TCPOLEN_FASTOPEN_BASE 2
206 #define TCPOLEN_EXP_FASTOPEN_BASE 4
207 #define TCPOLEN_EXP_SMC_BASE 6
208
209 /* But this is what stacks really send out. */
210 #define TCPOLEN_TSTAMP_ALIGNED 12
211 #define TCPOLEN_WSCALE_ALIGNED 4
212 #define TCPOLEN_SACKPERM_ALIGNED 4
213 #define TCPOLEN_SACK_BASE 2
214 #define TCPOLEN_SACK_BASE_ALIGNED 4
215 #define TCPOLEN_SACK_PERBLOCK 8
216 #define TCPOLEN_MD5SIG_ALIGNED 20
217 #define TCPOLEN_MSS_ALIGNED 4
218 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8
219
220 /* Flags in tp->nonagle */
221 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
222 #define TCP_NAGLE_CORK 2 /* Socket is corked */
223 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
224
225 /* TCP thin-stream limits */
226 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
227
228 /* TCP initial congestion window as per rfc6928 */
229 #define TCP_INIT_CWND 10
230
231 /* Bit Flags for sysctl_tcp_fastopen */
232 #define TFO_CLIENT_ENABLE 1
233 #define TFO_SERVER_ENABLE 2
234 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
235
236 /* Accept SYN data w/o any cookie option */
237 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
238
239 /* Force enable TFO on all listeners, i.e., not requiring the
240 * TCP_FASTOPEN socket option.
241 */
242 #define TFO_SERVER_WO_SOCKOPT1 0x400
243
244
245 /* sysctl variables for tcp */
246 extern int sysctl_tcp_max_orphans;
247 extern long sysctl_tcp_mem[3];
248
249 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
250 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */
251 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */
252
253 extern atomic_long_t tcp_memory_allocated;
254 extern struct percpu_counter tcp_sockets_allocated;
255 extern unsigned long tcp_memory_pressure;
256
257 /* optimized version of sk_under_memory_pressure() for TCP sockets */
tcp_under_memory_pressure(const struct sock * sk)258 static inline bool tcp_under_memory_pressure(const struct sock *sk)
259 {
260 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
261 mem_cgroup_under_socket_pressure(sk->sk_memcg))
262 return true;
263
264 return READ_ONCE(tcp_memory_pressure);
265 }
266 /*
267 * The next routines deal with comparing 32 bit unsigned ints
268 * and worry about wraparound (automatic with unsigned arithmetic).
269 */
270
before(__u32 seq1,__u32 seq2)271 static inline bool before(__u32 seq1, __u32 seq2)
272 {
273 return (__s32)(seq1-seq2) < 0;
274 }
275 #define after(seq2, seq1) before(seq1, seq2)
276
277 /* is s2<=s1<=s3 ? */
between(__u32 seq1,__u32 seq2,__u32 seq3)278 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
279 {
280 return seq3 - seq2 >= seq1 - seq2;
281 }
282
tcp_out_of_memory(struct sock * sk)283 static inline bool tcp_out_of_memory(struct sock *sk)
284 {
285 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
286 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
287 return true;
288 return false;
289 }
290
291 void sk_forced_mem_schedule(struct sock *sk, int size);
292
tcp_too_many_orphans(struct sock * sk,int shift)293 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
294 {
295 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
296 int orphans = percpu_counter_read_positive(ocp);
297
298 if (orphans << shift > sysctl_tcp_max_orphans) {
299 orphans = percpu_counter_sum_positive(ocp);
300 if (orphans << shift > sysctl_tcp_max_orphans)
301 return true;
302 }
303 return false;
304 }
305
306 bool tcp_check_oom(struct sock *sk, int shift);
307
308
309 extern struct proto tcp_prot;
310
311 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
314 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
315
316 void tcp_tasklet_init(void);
317
318 int tcp_v4_err(struct sk_buff *skb, u32);
319
320 void tcp_shutdown(struct sock *sk, int how);
321
322 int tcp_v4_early_demux(struct sk_buff *skb);
323 int tcp_v4_rcv(struct sk_buff *skb);
324
325 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
326 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
327 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
328 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
329 int flags);
330 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
331 size_t size, int flags);
332 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
333 size_t size, int flags);
334 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
335 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
336 int size_goal);
337 void tcp_release_cb(struct sock *sk);
338 void tcp_wfree(struct sk_buff *skb);
339 void tcp_write_timer_handler(struct sock *sk);
340 void tcp_delack_timer_handler(struct sock *sk);
341 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
342 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
343 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
344 void tcp_rcv_space_adjust(struct sock *sk);
345 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
346 void tcp_twsk_destructor(struct sock *sk);
347 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
348 struct pipe_inode_info *pipe, size_t len,
349 unsigned int flags);
350
351 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
tcp_dec_quickack_mode(struct sock * sk,const unsigned int pkts)352 static inline void tcp_dec_quickack_mode(struct sock *sk,
353 const unsigned int pkts)
354 {
355 struct inet_connection_sock *icsk = inet_csk(sk);
356
357 if (icsk->icsk_ack.quick) {
358 if (pkts >= icsk->icsk_ack.quick) {
359 icsk->icsk_ack.quick = 0;
360 /* Leaving quickack mode we deflate ATO. */
361 icsk->icsk_ack.ato = TCP_ATO_MIN;
362 } else
363 icsk->icsk_ack.quick -= pkts;
364 }
365 }
366
367 #define TCP_ECN_OK 1
368 #define TCP_ECN_QUEUE_CWR 2
369 #define TCP_ECN_DEMAND_CWR 4
370 #define TCP_ECN_SEEN 8
371
372 enum tcp_tw_status {
373 TCP_TW_SUCCESS = 0,
374 TCP_TW_RST = 1,
375 TCP_TW_ACK = 2,
376 TCP_TW_SYN = 3
377 };
378
379
380 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
381 struct sk_buff *skb,
382 const struct tcphdr *th);
383 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
384 struct request_sock *req, bool fastopen,
385 bool *lost_race);
386 int tcp_child_process(struct sock *parent, struct sock *child,
387 struct sk_buff *skb);
388 void tcp_enter_loss(struct sock *sk);
389 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
390 void tcp_clear_retrans(struct tcp_sock *tp);
391 void tcp_update_metrics(struct sock *sk);
392 void tcp_init_metrics(struct sock *sk);
393 void tcp_metrics_init(void);
394 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
395 void tcp_close(struct sock *sk, long timeout);
396 void tcp_init_sock(struct sock *sk);
397 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
398 __poll_t tcp_poll(struct file *file, struct socket *sock,
399 struct poll_table_struct *wait);
400 int tcp_getsockopt(struct sock *sk, int level, int optname,
401 char __user *optval, int __user *optlen);
402 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
403 unsigned int optlen);
404 void tcp_set_keepalive(struct sock *sk, int val);
405 void tcp_syn_ack_timeout(const struct request_sock *req);
406 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
407 int flags, int *addr_len);
408 int tcp_set_rcvlowat(struct sock *sk, int val);
409 void tcp_data_ready(struct sock *sk);
410 #ifdef CONFIG_MMU
411 int tcp_mmap(struct file *file, struct socket *sock,
412 struct vm_area_struct *vma);
413 #endif
414 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
415 struct tcp_options_received *opt_rx,
416 int estab, struct tcp_fastopen_cookie *foc);
417 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
418
419 /*
420 * BPF SKB-less helpers
421 */
422 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
423 struct tcphdr *th, u32 *cookie);
424 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
425 struct tcphdr *th, u32 *cookie);
426 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
427 const struct tcp_request_sock_ops *af_ops,
428 struct sock *sk, struct tcphdr *th);
429 /*
430 * TCP v4 functions exported for the inet6 API
431 */
432
433 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
434 void tcp_v4_mtu_reduced(struct sock *sk);
435 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
436 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
437 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
438 struct sock *tcp_create_openreq_child(const struct sock *sk,
439 struct request_sock *req,
440 struct sk_buff *skb);
441 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
442 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
443 struct request_sock *req,
444 struct dst_entry *dst,
445 struct request_sock *req_unhash,
446 bool *own_req);
447 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
448 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
449 int tcp_connect(struct sock *sk);
450 enum tcp_synack_type {
451 TCP_SYNACK_NORMAL,
452 TCP_SYNACK_FASTOPEN,
453 TCP_SYNACK_COOKIE,
454 };
455 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
456 struct request_sock *req,
457 struct tcp_fastopen_cookie *foc,
458 enum tcp_synack_type synack_type,
459 struct sk_buff *syn_skb);
460 int tcp_disconnect(struct sock *sk, int flags);
461
462 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
463 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
464 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
465
466 /* From syncookies.c */
467 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
468 struct request_sock *req,
469 struct dst_entry *dst, u32 tsoff);
470 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
471 u32 cookie);
472 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
473 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
474 struct sock *sk, struct sk_buff *skb);
475 #ifdef CONFIG_SYN_COOKIES
476
477 /* Syncookies use a monotonic timer which increments every 60 seconds.
478 * This counter is used both as a hash input and partially encoded into
479 * the cookie value. A cookie is only validated further if the delta
480 * between the current counter value and the encoded one is less than this,
481 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
482 * the counter advances immediately after a cookie is generated).
483 */
484 #define MAX_SYNCOOKIE_AGE 2
485 #define TCP_SYNCOOKIE_PERIOD (60 * HZ)
486 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
487
488 /* syncookies: remember time of last synqueue overflow
489 * But do not dirty this field too often (once per second is enough)
490 * It is racy as we do not hold a lock, but race is very minor.
491 */
tcp_synq_overflow(const struct sock * sk)492 static inline void tcp_synq_overflow(const struct sock *sk)
493 {
494 unsigned int last_overflow;
495 unsigned int now = jiffies;
496
497 if (sk->sk_reuseport) {
498 struct sock_reuseport *reuse;
499
500 reuse = rcu_dereference(sk->sk_reuseport_cb);
501 if (likely(reuse)) {
502 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
503 if (!time_between32(now, last_overflow,
504 last_overflow + HZ))
505 WRITE_ONCE(reuse->synq_overflow_ts, now);
506 return;
507 }
508 }
509
510 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
511 if (!time_between32(now, last_overflow, last_overflow + HZ))
512 WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
513 }
514
515 /* syncookies: no recent synqueue overflow on this listening socket? */
tcp_synq_no_recent_overflow(const struct sock * sk)516 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
517 {
518 unsigned int last_overflow;
519 unsigned int now = jiffies;
520
521 if (sk->sk_reuseport) {
522 struct sock_reuseport *reuse;
523
524 reuse = rcu_dereference(sk->sk_reuseport_cb);
525 if (likely(reuse)) {
526 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
527 return !time_between32(now, last_overflow - HZ,
528 last_overflow +
529 TCP_SYNCOOKIE_VALID);
530 }
531 }
532
533 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
534
535 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
536 * then we're under synflood. However, we have to use
537 * 'last_overflow - HZ' as lower bound. That's because a concurrent
538 * tcp_synq_overflow() could update .ts_recent_stamp after we read
539 * jiffies but before we store .ts_recent_stamp into last_overflow,
540 * which could lead to rejecting a valid syncookie.
541 */
542 return !time_between32(now, last_overflow - HZ,
543 last_overflow + TCP_SYNCOOKIE_VALID);
544 }
545
tcp_cookie_time(void)546 static inline u32 tcp_cookie_time(void)
547 {
548 u64 val = get_jiffies_64();
549
550 do_div(val, TCP_SYNCOOKIE_PERIOD);
551 return val;
552 }
553
554 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
555 u16 *mssp);
556 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
557 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
558 bool cookie_timestamp_decode(const struct net *net,
559 struct tcp_options_received *opt);
560 bool cookie_ecn_ok(const struct tcp_options_received *opt,
561 const struct net *net, const struct dst_entry *dst);
562
563 /* From net/ipv6/syncookies.c */
564 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
565 u32 cookie);
566 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
567
568 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
569 const struct tcphdr *th, u16 *mssp);
570 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
571 #endif
572 /* tcp_output.c */
573
574 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
575 int nonagle);
576 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
577 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
578 void tcp_retransmit_timer(struct sock *sk);
579 void tcp_xmit_retransmit_queue(struct sock *);
580 void tcp_simple_retransmit(struct sock *);
581 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
582 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
583 enum tcp_queue {
584 TCP_FRAG_IN_WRITE_QUEUE,
585 TCP_FRAG_IN_RTX_QUEUE,
586 };
587 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
588 struct sk_buff *skb, u32 len,
589 unsigned int mss_now, gfp_t gfp);
590
591 void tcp_send_probe0(struct sock *);
592 void tcp_send_partial(struct sock *);
593 int tcp_write_wakeup(struct sock *, int mib);
594 void tcp_send_fin(struct sock *sk);
595 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
596 int tcp_send_synack(struct sock *);
597 void tcp_push_one(struct sock *, unsigned int mss_now);
598 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
599 void tcp_send_ack(struct sock *sk);
600 void tcp_send_delayed_ack(struct sock *sk);
601 void tcp_send_loss_probe(struct sock *sk);
602 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
603 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
604 const struct sk_buff *next_skb);
605
606 /* tcp_input.c */
607 void tcp_rearm_rto(struct sock *sk);
608 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
609 void tcp_reset(struct sock *sk);
610 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
611 void tcp_fin(struct sock *sk);
612
613 /* tcp_timer.c */
614 void tcp_init_xmit_timers(struct sock *);
tcp_clear_xmit_timers(struct sock * sk)615 static inline void tcp_clear_xmit_timers(struct sock *sk)
616 {
617 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
618 __sock_put(sk);
619
620 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
621 __sock_put(sk);
622
623 inet_csk_clear_xmit_timers(sk);
624 }
625
626 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
627 unsigned int tcp_current_mss(struct sock *sk);
628 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
629
630 /* Bound MSS / TSO packet size with the half of the window */
tcp_bound_to_half_wnd(struct tcp_sock * tp,int pktsize)631 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
632 {
633 int cutoff;
634
635 /* When peer uses tiny windows, there is no use in packetizing
636 * to sub-MSS pieces for the sake of SWS or making sure there
637 * are enough packets in the pipe for fast recovery.
638 *
639 * On the other hand, for extremely large MSS devices, handling
640 * smaller than MSS windows in this way does make sense.
641 */
642 if (tp->max_window > TCP_MSS_DEFAULT)
643 cutoff = (tp->max_window >> 1);
644 else
645 cutoff = tp->max_window;
646
647 if (cutoff && pktsize > cutoff)
648 return max_t(int, cutoff, 68U - tp->tcp_header_len);
649 else
650 return pktsize;
651 }
652
653 /* tcp.c */
654 void tcp_get_info(struct sock *, struct tcp_info *);
655
656 /* Read 'sendfile()'-style from a TCP socket */
657 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
658 sk_read_actor_t recv_actor);
659
660 void tcp_initialize_rcv_mss(struct sock *sk);
661
662 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
663 int tcp_mss_to_mtu(struct sock *sk, int mss);
664 void tcp_mtup_init(struct sock *sk);
665
tcp_bound_rto(const struct sock * sk)666 static inline void tcp_bound_rto(const struct sock *sk)
667 {
668 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
669 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
670 }
671
__tcp_set_rto(const struct tcp_sock * tp)672 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
673 {
674 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
675 }
676
__tcp_fast_path_on(struct tcp_sock * tp,u32 snd_wnd)677 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
678 {
679 /* mptcp hooks are only on the slow path */
680 if (sk_is_mptcp((struct sock *)tp))
681 return;
682
683 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
684 ntohl(TCP_FLAG_ACK) |
685 snd_wnd);
686 }
687
tcp_fast_path_on(struct tcp_sock * tp)688 static inline void tcp_fast_path_on(struct tcp_sock *tp)
689 {
690 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
691 }
692
tcp_fast_path_check(struct sock * sk)693 static inline void tcp_fast_path_check(struct sock *sk)
694 {
695 struct tcp_sock *tp = tcp_sk(sk);
696
697 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
698 tp->rcv_wnd &&
699 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
700 !tp->urg_data)
701 tcp_fast_path_on(tp);
702 }
703
704 /* Compute the actual rto_min value */
tcp_rto_min(struct sock * sk)705 static inline u32 tcp_rto_min(struct sock *sk)
706 {
707 const struct dst_entry *dst = __sk_dst_get(sk);
708 u32 rto_min = inet_csk(sk)->icsk_rto_min;
709
710 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
711 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
712 return rto_min;
713 }
714
tcp_rto_min_us(struct sock * sk)715 static inline u32 tcp_rto_min_us(struct sock *sk)
716 {
717 return jiffies_to_usecs(tcp_rto_min(sk));
718 }
719
tcp_ca_dst_locked(const struct dst_entry * dst)720 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
721 {
722 return dst_metric_locked(dst, RTAX_CC_ALGO);
723 }
724
725 /* Minimum RTT in usec. ~0 means not available. */
tcp_min_rtt(const struct tcp_sock * tp)726 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
727 {
728 return minmax_get(&tp->rtt_min);
729 }
730
731 /* Compute the actual receive window we are currently advertising.
732 * Rcv_nxt can be after the window if our peer push more data
733 * than the offered window.
734 */
tcp_receive_window(const struct tcp_sock * tp)735 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
736 {
737 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
738
739 if (win < 0)
740 win = 0;
741 return (u32) win;
742 }
743
744 /* Choose a new window, without checks for shrinking, and without
745 * scaling applied to the result. The caller does these things
746 * if necessary. This is a "raw" window selection.
747 */
748 u32 __tcp_select_window(struct sock *sk);
749
750 void tcp_send_window_probe(struct sock *sk);
751
752 /* TCP uses 32bit jiffies to save some space.
753 * Note that this is different from tcp_time_stamp, which
754 * historically has been the same until linux-4.13.
755 */
756 #define tcp_jiffies32 ((u32)jiffies)
757
758 /*
759 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
760 * It is no longer tied to jiffies, but to 1 ms clock.
761 * Note: double check if you want to use tcp_jiffies32 instead of this.
762 */
763 #define TCP_TS_HZ 1000
764
tcp_clock_ns(void)765 static inline u64 tcp_clock_ns(void)
766 {
767 return ktime_get_ns();
768 }
769
tcp_clock_us(void)770 static inline u64 tcp_clock_us(void)
771 {
772 return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
773 }
774
775 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
tcp_time_stamp(const struct tcp_sock * tp)776 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
777 {
778 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
779 }
780
781 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
tcp_ns_to_ts(u64 ns)782 static inline u32 tcp_ns_to_ts(u64 ns)
783 {
784 return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
785 }
786
787 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
tcp_time_stamp_raw(void)788 static inline u32 tcp_time_stamp_raw(void)
789 {
790 return tcp_ns_to_ts(tcp_clock_ns());
791 }
792
793 void tcp_mstamp_refresh(struct tcp_sock *tp);
794
tcp_stamp_us_delta(u64 t1,u64 t0)795 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
796 {
797 return max_t(s64, t1 - t0, 0);
798 }
799
tcp_skb_timestamp(const struct sk_buff * skb)800 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
801 {
802 return tcp_ns_to_ts(skb->skb_mstamp_ns);
803 }
804
805 /* provide the departure time in us unit */
tcp_skb_timestamp_us(const struct sk_buff * skb)806 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
807 {
808 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
809 }
810
811
812 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
813
814 #define TCPHDR_FIN 0x01
815 #define TCPHDR_SYN 0x02
816 #define TCPHDR_RST 0x04
817 #define TCPHDR_PSH 0x08
818 #define TCPHDR_ACK 0x10
819 #define TCPHDR_URG 0x20
820 #define TCPHDR_ECE 0x40
821 #define TCPHDR_CWR 0x80
822
823 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
824
825 /* This is what the send packet queuing engine uses to pass
826 * TCP per-packet control information to the transmission code.
827 * We also store the host-order sequence numbers in here too.
828 * This is 44 bytes if IPV6 is enabled.
829 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
830 */
831 struct tcp_skb_cb {
832 __u32 seq; /* Starting sequence number */
833 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
834 union {
835 /* Note : tcp_tw_isn is used in input path only
836 * (isn chosen by tcp_timewait_state_process())
837 *
838 * tcp_gso_segs/size are used in write queue only,
839 * cf tcp_skb_pcount()/tcp_skb_mss()
840 */
841 __u32 tcp_tw_isn;
842 struct {
843 u16 tcp_gso_segs;
844 u16 tcp_gso_size;
845 };
846 };
847 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
848
849 __u8 sacked; /* State flags for SACK. */
850 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
851 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
852 #define TCPCB_LOST 0x04 /* SKB is lost */
853 #define TCPCB_TAGBITS 0x07 /* All tag bits */
854 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */
855 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
856 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
857 TCPCB_REPAIRED)
858
859 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
860 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */
861 eor:1, /* Is skb MSG_EOR marked? */
862 has_rxtstamp:1, /* SKB has a RX timestamp */
863 unused:5;
864 __u32 ack_seq; /* Sequence number ACK'd */
865 union {
866 struct {
867 /* There is space for up to 24 bytes */
868 __u32 in_flight:30,/* Bytes in flight at transmit */
869 is_app_limited:1, /* cwnd not fully used? */
870 unused:1;
871 /* pkts S/ACKed so far upon tx of skb, incl retrans: */
872 __u32 delivered;
873 /* start of send pipeline phase */
874 u64 first_tx_mstamp;
875 /* when we reached the "delivered" count */
876 u64 delivered_mstamp;
877 } tx; /* only used for outgoing skbs */
878 union {
879 struct inet_skb_parm h4;
880 #if IS_ENABLED(CONFIG_IPV6)
881 struct inet6_skb_parm h6;
882 #endif
883 } header; /* For incoming skbs */
884 struct {
885 __u32 flags;
886 struct sock *sk_redir;
887 void *data_end;
888 } bpf;
889 };
890 };
891
892 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
893
bpf_compute_data_end_sk_skb(struct sk_buff * skb)894 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
895 {
896 TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
897 }
898
tcp_skb_bpf_ingress(const struct sk_buff * skb)899 static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
900 {
901 return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
902 }
903
tcp_skb_bpf_redirect_fetch(struct sk_buff * skb)904 static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
905 {
906 return TCP_SKB_CB(skb)->bpf.sk_redir;
907 }
908
tcp_skb_bpf_redirect_clear(struct sk_buff * skb)909 static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
910 {
911 TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
912 }
913
914 extern const struct inet_connection_sock_af_ops ipv4_specific;
915
916 #if IS_ENABLED(CONFIG_IPV6)
917 /* This is the variant of inet6_iif() that must be used by TCP,
918 * as TCP moves IP6CB into a different location in skb->cb[]
919 */
tcp_v6_iif(const struct sk_buff * skb)920 static inline int tcp_v6_iif(const struct sk_buff *skb)
921 {
922 return TCP_SKB_CB(skb)->header.h6.iif;
923 }
924
tcp_v6_iif_l3_slave(const struct sk_buff * skb)925 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
926 {
927 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
928
929 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
930 }
931
932 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v6_sdif(const struct sk_buff * skb)933 static inline int tcp_v6_sdif(const struct sk_buff *skb)
934 {
935 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
936 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
937 return TCP_SKB_CB(skb)->header.h6.iif;
938 #endif
939 return 0;
940 }
941
942 extern const struct inet_connection_sock_af_ops ipv6_specific;
943
944 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
945 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
946 INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb));
947
948 #endif
949
950 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v4_sdif(struct sk_buff * skb)951 static inline int tcp_v4_sdif(struct sk_buff *skb)
952 {
953 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
954 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
955 return TCP_SKB_CB(skb)->header.h4.iif;
956 #endif
957 return 0;
958 }
959
960 /* Due to TSO, an SKB can be composed of multiple actual
961 * packets. To keep these tracked properly, we use this.
962 */
tcp_skb_pcount(const struct sk_buff * skb)963 static inline int tcp_skb_pcount(const struct sk_buff *skb)
964 {
965 return TCP_SKB_CB(skb)->tcp_gso_segs;
966 }
967
tcp_skb_pcount_set(struct sk_buff * skb,int segs)968 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
969 {
970 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
971 }
972
tcp_skb_pcount_add(struct sk_buff * skb,int segs)973 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
974 {
975 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
976 }
977
978 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
tcp_skb_mss(const struct sk_buff * skb)979 static inline int tcp_skb_mss(const struct sk_buff *skb)
980 {
981 return TCP_SKB_CB(skb)->tcp_gso_size;
982 }
983
tcp_skb_can_collapse_to(const struct sk_buff * skb)984 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
985 {
986 return likely(!TCP_SKB_CB(skb)->eor);
987 }
988
tcp_skb_can_collapse(const struct sk_buff * to,const struct sk_buff * from)989 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
990 const struct sk_buff *from)
991 {
992 return likely(tcp_skb_can_collapse_to(to) &&
993 mptcp_skb_can_collapse(to, from));
994 }
995
996 /* Events passed to congestion control interface */
997 enum tcp_ca_event {
998 CA_EVENT_TX_START, /* first transmit when no packets in flight */
999 CA_EVENT_CWND_RESTART, /* congestion window restart */
1000 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
1001 CA_EVENT_LOSS, /* loss timeout */
1002 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
1003 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
1004 };
1005
1006 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1007 enum tcp_ca_ack_event_flags {
1008 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
1009 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
1010 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
1011 };
1012
1013 /*
1014 * Interface for adding new TCP congestion control handlers
1015 */
1016 #define TCP_CA_NAME_MAX 16
1017 #define TCP_CA_MAX 128
1018 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
1019
1020 #define TCP_CA_UNSPEC 0
1021
1022 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1023 #define TCP_CONG_NON_RESTRICTED 0x1
1024 /* Requires ECN/ECT set on all packets */
1025 #define TCP_CONG_NEEDS_ECN 0x2
1026 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1027
1028 union tcp_cc_info;
1029
1030 struct ack_sample {
1031 u32 pkts_acked;
1032 s32 rtt_us;
1033 u32 in_flight;
1034 };
1035
1036 /* A rate sample measures the number of (original/retransmitted) data
1037 * packets delivered "delivered" over an interval of time "interval_us".
1038 * The tcp_rate.c code fills in the rate sample, and congestion
1039 * control modules that define a cong_control function to run at the end
1040 * of ACK processing can optionally chose to consult this sample when
1041 * setting cwnd and pacing rate.
1042 * A sample is invalid if "delivered" or "interval_us" is negative.
1043 */
1044 struct rate_sample {
1045 u64 prior_mstamp; /* starting timestamp for interval */
1046 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
1047 s32 delivered; /* number of packets delivered over interval */
1048 long interval_us; /* time for tp->delivered to incr "delivered" */
1049 u32 snd_interval_us; /* snd interval for delivered packets */
1050 u32 rcv_interval_us; /* rcv interval for delivered packets */
1051 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
1052 int losses; /* number of packets marked lost upon ACK */
1053 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
1054 u32 prior_in_flight; /* in flight before this ACK */
1055 bool is_app_limited; /* is sample from packet with bubble in pipe? */
1056 bool is_retrans; /* is sample from retransmission? */
1057 bool is_ack_delayed; /* is this (likely) a delayed ACK? */
1058 };
1059
1060 struct tcp_congestion_ops {
1061 struct list_head list;
1062 u32 key;
1063 u32 flags;
1064
1065 /* initialize private data (optional) */
1066 void (*init)(struct sock *sk);
1067 /* cleanup private data (optional) */
1068 void (*release)(struct sock *sk);
1069
1070 /* return slow start threshold (required) */
1071 u32 (*ssthresh)(struct sock *sk);
1072 /* do new cwnd calculation (required) */
1073 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1074 /* call before changing ca_state (optional) */
1075 void (*set_state)(struct sock *sk, u8 new_state);
1076 /* call when cwnd event occurs (optional) */
1077 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1078 /* call when ack arrives (optional) */
1079 void (*in_ack_event)(struct sock *sk, u32 flags);
1080 /* new value of cwnd after loss (required) */
1081 u32 (*undo_cwnd)(struct sock *sk);
1082 /* hook for packet ack accounting (optional) */
1083 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1084 /* override sysctl_tcp_min_tso_segs */
1085 u32 (*min_tso_segs)(struct sock *sk);
1086 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1087 u32 (*sndbuf_expand)(struct sock *sk);
1088 /* call when packets are delivered to update cwnd and pacing rate,
1089 * after all the ca_state processing. (optional)
1090 */
1091 void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1092 /* get info for inet_diag (optional) */
1093 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1094 union tcp_cc_info *info);
1095
1096 char name[TCP_CA_NAME_MAX];
1097 struct module *owner;
1098 };
1099
1100 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1101 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1102
1103 void tcp_assign_congestion_control(struct sock *sk);
1104 void tcp_init_congestion_control(struct sock *sk);
1105 void tcp_cleanup_congestion_control(struct sock *sk);
1106 int tcp_set_default_congestion_control(struct net *net, const char *name);
1107 void tcp_get_default_congestion_control(struct net *net, char *name);
1108 void tcp_get_available_congestion_control(char *buf, size_t len);
1109 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1110 int tcp_set_allowed_congestion_control(char *allowed);
1111 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1112 bool cap_net_admin);
1113 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1114 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1115
1116 u32 tcp_reno_ssthresh(struct sock *sk);
1117 u32 tcp_reno_undo_cwnd(struct sock *sk);
1118 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1119 extern struct tcp_congestion_ops tcp_reno;
1120
1121 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1122 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1123 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1124 #ifdef CONFIG_INET
1125 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1126 #else
tcp_ca_get_name_by_key(u32 key,char * buffer)1127 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1128 {
1129 return NULL;
1130 }
1131 #endif
1132
tcp_ca_needs_ecn(const struct sock * sk)1133 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1134 {
1135 const struct inet_connection_sock *icsk = inet_csk(sk);
1136
1137 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1138 }
1139
tcp_set_ca_state(struct sock * sk,const u8 ca_state)1140 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1141 {
1142 struct inet_connection_sock *icsk = inet_csk(sk);
1143
1144 if (icsk->icsk_ca_ops->set_state)
1145 icsk->icsk_ca_ops->set_state(sk, ca_state);
1146 icsk->icsk_ca_state = ca_state;
1147 }
1148
tcp_ca_event(struct sock * sk,const enum tcp_ca_event event)1149 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1150 {
1151 const struct inet_connection_sock *icsk = inet_csk(sk);
1152
1153 if (icsk->icsk_ca_ops->cwnd_event)
1154 icsk->icsk_ca_ops->cwnd_event(sk, event);
1155 }
1156
1157 /* From tcp_rate.c */
1158 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1159 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1160 struct rate_sample *rs);
1161 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1162 bool is_sack_reneg, struct rate_sample *rs);
1163 void tcp_rate_check_app_limited(struct sock *sk);
1164
1165 /* These functions determine how the current flow behaves in respect of SACK
1166 * handling. SACK is negotiated with the peer, and therefore it can vary
1167 * between different flows.
1168 *
1169 * tcp_is_sack - SACK enabled
1170 * tcp_is_reno - No SACK
1171 */
tcp_is_sack(const struct tcp_sock * tp)1172 static inline int tcp_is_sack(const struct tcp_sock *tp)
1173 {
1174 return likely(tp->rx_opt.sack_ok);
1175 }
1176
tcp_is_reno(const struct tcp_sock * tp)1177 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1178 {
1179 return !tcp_is_sack(tp);
1180 }
1181
tcp_left_out(const struct tcp_sock * tp)1182 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1183 {
1184 return tp->sacked_out + tp->lost_out;
1185 }
1186
1187 /* This determines how many packets are "in the network" to the best
1188 * of our knowledge. In many cases it is conservative, but where
1189 * detailed information is available from the receiver (via SACK
1190 * blocks etc.) we can make more aggressive calculations.
1191 *
1192 * Use this for decisions involving congestion control, use just
1193 * tp->packets_out to determine if the send queue is empty or not.
1194 *
1195 * Read this equation as:
1196 *
1197 * "Packets sent once on transmission queue" MINUS
1198 * "Packets left network, but not honestly ACKed yet" PLUS
1199 * "Packets fast retransmitted"
1200 */
tcp_packets_in_flight(const struct tcp_sock * tp)1201 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1202 {
1203 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1204 }
1205
1206 #define TCP_INFINITE_SSTHRESH 0x7fffffff
1207
tcp_in_slow_start(const struct tcp_sock * tp)1208 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1209 {
1210 return tp->snd_cwnd < tp->snd_ssthresh;
1211 }
1212
tcp_in_initial_slowstart(const struct tcp_sock * tp)1213 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1214 {
1215 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1216 }
1217
tcp_in_cwnd_reduction(const struct sock * sk)1218 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1219 {
1220 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1221 (1 << inet_csk(sk)->icsk_ca_state);
1222 }
1223
1224 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1225 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1226 * ssthresh.
1227 */
tcp_current_ssthresh(const struct sock * sk)1228 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1229 {
1230 const struct tcp_sock *tp = tcp_sk(sk);
1231
1232 if (tcp_in_cwnd_reduction(sk))
1233 return tp->snd_ssthresh;
1234 else
1235 return max(tp->snd_ssthresh,
1236 ((tp->snd_cwnd >> 1) +
1237 (tp->snd_cwnd >> 2)));
1238 }
1239
1240 /* Use define here intentionally to get WARN_ON location shown at the caller */
1241 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1242
1243 void tcp_enter_cwr(struct sock *sk);
1244 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1245
1246 /* The maximum number of MSS of available cwnd for which TSO defers
1247 * sending if not using sysctl_tcp_tso_win_divisor.
1248 */
tcp_max_tso_deferred_mss(const struct tcp_sock * tp)1249 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1250 {
1251 return 3;
1252 }
1253
1254 /* Returns end sequence number of the receiver's advertised window */
tcp_wnd_end(const struct tcp_sock * tp)1255 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1256 {
1257 return tp->snd_una + tp->snd_wnd;
1258 }
1259
1260 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1261 * flexible approach. The RFC suggests cwnd should not be raised unless
1262 * it was fully used previously. And that's exactly what we do in
1263 * congestion avoidance mode. But in slow start we allow cwnd to grow
1264 * as long as the application has used half the cwnd.
1265 * Example :
1266 * cwnd is 10 (IW10), but application sends 9 frames.
1267 * We allow cwnd to reach 18 when all frames are ACKed.
1268 * This check is safe because it's as aggressive as slow start which already
1269 * risks 100% overshoot. The advantage is that we discourage application to
1270 * either send more filler packets or data to artificially blow up the cwnd
1271 * usage, and allow application-limited process to probe bw more aggressively.
1272 */
tcp_is_cwnd_limited(const struct sock * sk)1273 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1274 {
1275 const struct tcp_sock *tp = tcp_sk(sk);
1276
1277 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1278 if (tcp_in_slow_start(tp))
1279 return tp->snd_cwnd < 2 * tp->max_packets_out;
1280
1281 return tp->is_cwnd_limited;
1282 }
1283
1284 /* BBR congestion control needs pacing.
1285 * Same remark for SO_MAX_PACING_RATE.
1286 * sch_fq packet scheduler is efficiently handling pacing,
1287 * but is not always installed/used.
1288 * Return true if TCP stack should pace packets itself.
1289 */
tcp_needs_internal_pacing(const struct sock * sk)1290 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1291 {
1292 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1293 }
1294
1295 /* Estimates in how many jiffies next packet for this flow can be sent.
1296 * Scheduling a retransmit timer too early would be silly.
1297 */
tcp_pacing_delay(const struct sock * sk)1298 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1299 {
1300 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1301
1302 return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1303 }
1304
tcp_reset_xmit_timer(struct sock * sk,const int what,unsigned long when,const unsigned long max_when)1305 static inline void tcp_reset_xmit_timer(struct sock *sk,
1306 const int what,
1307 unsigned long when,
1308 const unsigned long max_when)
1309 {
1310 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1311 max_when);
1312 }
1313
1314 /* Something is really bad, we could not queue an additional packet,
1315 * because qdisc is full or receiver sent a 0 window, or we are paced.
1316 * We do not want to add fuel to the fire, or abort too early,
1317 * so make sure the timer we arm now is at least 200ms in the future,
1318 * regardless of current icsk_rto value (as it could be ~2ms)
1319 */
tcp_probe0_base(const struct sock * sk)1320 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1321 {
1322 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1323 }
1324
1325 /* Variant of inet_csk_rto_backoff() used for zero window probes */
tcp_probe0_when(const struct sock * sk,unsigned long max_when)1326 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1327 unsigned long max_when)
1328 {
1329 u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1330
1331 return (unsigned long)min_t(u64, when, max_when);
1332 }
1333
tcp_check_probe_timer(struct sock * sk)1334 static inline void tcp_check_probe_timer(struct sock *sk)
1335 {
1336 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1337 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1338 tcp_probe0_base(sk), TCP_RTO_MAX);
1339 }
1340
tcp_init_wl(struct tcp_sock * tp,u32 seq)1341 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1342 {
1343 tp->snd_wl1 = seq;
1344 }
1345
tcp_update_wl(struct tcp_sock * tp,u32 seq)1346 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1347 {
1348 tp->snd_wl1 = seq;
1349 }
1350
1351 /*
1352 * Calculate(/check) TCP checksum
1353 */
tcp_v4_check(int len,__be32 saddr,__be32 daddr,__wsum base)1354 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1355 __be32 daddr, __wsum base)
1356 {
1357 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1358 }
1359
tcp_checksum_complete(struct sk_buff * skb)1360 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1361 {
1362 return !skb_csum_unnecessary(skb) &&
1363 __skb_checksum_complete(skb);
1364 }
1365
1366 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1367 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1368 void tcp_set_state(struct sock *sk, int state);
1369 void tcp_done(struct sock *sk);
1370 int tcp_abort(struct sock *sk, int err);
1371
tcp_sack_reset(struct tcp_options_received * rx_opt)1372 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1373 {
1374 rx_opt->dsack = 0;
1375 rx_opt->num_sacks = 0;
1376 }
1377
1378 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1379
tcp_slow_start_after_idle_check(struct sock * sk)1380 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1381 {
1382 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1383 struct tcp_sock *tp = tcp_sk(sk);
1384 s32 delta;
1385
1386 if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1387 ca_ops->cong_control)
1388 return;
1389 delta = tcp_jiffies32 - tp->lsndtime;
1390 if (delta > inet_csk(sk)->icsk_rto)
1391 tcp_cwnd_restart(sk, delta);
1392 }
1393
1394 /* Determine a window scaling and initial window to offer. */
1395 void tcp_select_initial_window(const struct sock *sk, int __space,
1396 __u32 mss, __u32 *rcv_wnd,
1397 __u32 *window_clamp, int wscale_ok,
1398 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1399
tcp_win_from_space(const struct sock * sk,int space)1400 static inline int tcp_win_from_space(const struct sock *sk, int space)
1401 {
1402 int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1403
1404 return tcp_adv_win_scale <= 0 ?
1405 (space>>(-tcp_adv_win_scale)) :
1406 space - (space>>tcp_adv_win_scale);
1407 }
1408
1409 /* Note: caller must be prepared to deal with negative returns */
tcp_space(const struct sock * sk)1410 static inline int tcp_space(const struct sock *sk)
1411 {
1412 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1413 READ_ONCE(sk->sk_backlog.len) -
1414 atomic_read(&sk->sk_rmem_alloc));
1415 }
1416
tcp_full_space(const struct sock * sk)1417 static inline int tcp_full_space(const struct sock *sk)
1418 {
1419 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1420 }
1421
1422 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1423
1424 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1425 * If 87.5 % (7/8) of the space has been consumed, we want to override
1426 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1427 * len/truesize ratio.
1428 */
tcp_rmem_pressure(const struct sock * sk)1429 static inline bool tcp_rmem_pressure(const struct sock *sk)
1430 {
1431 int rcvbuf, threshold;
1432
1433 if (tcp_under_memory_pressure(sk))
1434 return true;
1435
1436 rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1437 threshold = rcvbuf - (rcvbuf >> 3);
1438
1439 return atomic_read(&sk->sk_rmem_alloc) > threshold;
1440 }
1441
1442 extern void tcp_openreq_init_rwin(struct request_sock *req,
1443 const struct sock *sk_listener,
1444 const struct dst_entry *dst);
1445
1446 void tcp_enter_memory_pressure(struct sock *sk);
1447 void tcp_leave_memory_pressure(struct sock *sk);
1448
keepalive_intvl_when(const struct tcp_sock * tp)1449 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1450 {
1451 struct net *net = sock_net((struct sock *)tp);
1452
1453 return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1454 }
1455
keepalive_time_when(const struct tcp_sock * tp)1456 static inline int keepalive_time_when(const struct tcp_sock *tp)
1457 {
1458 struct net *net = sock_net((struct sock *)tp);
1459
1460 return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1461 }
1462
keepalive_probes(const struct tcp_sock * tp)1463 static inline int keepalive_probes(const struct tcp_sock *tp)
1464 {
1465 struct net *net = sock_net((struct sock *)tp);
1466
1467 return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1468 }
1469
keepalive_time_elapsed(const struct tcp_sock * tp)1470 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1471 {
1472 const struct inet_connection_sock *icsk = &tp->inet_conn;
1473
1474 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1475 tcp_jiffies32 - tp->rcv_tstamp);
1476 }
1477
tcp_fin_time(const struct sock * sk)1478 static inline int tcp_fin_time(const struct sock *sk)
1479 {
1480 int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1481 const int rto = inet_csk(sk)->icsk_rto;
1482
1483 if (fin_timeout < (rto << 2) - (rto >> 1))
1484 fin_timeout = (rto << 2) - (rto >> 1);
1485
1486 return fin_timeout;
1487 }
1488
tcp_paws_check(const struct tcp_options_received * rx_opt,int paws_win)1489 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1490 int paws_win)
1491 {
1492 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1493 return true;
1494 if (unlikely(!time_before32(ktime_get_seconds(),
1495 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1496 return true;
1497 /*
1498 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1499 * then following tcp messages have valid values. Ignore 0 value,
1500 * or else 'negative' tsval might forbid us to accept their packets.
1501 */
1502 if (!rx_opt->ts_recent)
1503 return true;
1504 return false;
1505 }
1506
tcp_paws_reject(const struct tcp_options_received * rx_opt,int rst)1507 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1508 int rst)
1509 {
1510 if (tcp_paws_check(rx_opt, 0))
1511 return false;
1512
1513 /* RST segments are not recommended to carry timestamp,
1514 and, if they do, it is recommended to ignore PAWS because
1515 "their cleanup function should take precedence over timestamps."
1516 Certainly, it is mistake. It is necessary to understand the reasons
1517 of this constraint to relax it: if peer reboots, clock may go
1518 out-of-sync and half-open connections will not be reset.
1519 Actually, the problem would be not existing if all
1520 the implementations followed draft about maintaining clock
1521 via reboots. Linux-2.2 DOES NOT!
1522
1523 However, we can relax time bounds for RST segments to MSL.
1524 */
1525 if (rst && !time_before32(ktime_get_seconds(),
1526 rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1527 return false;
1528 return true;
1529 }
1530
1531 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1532 int mib_idx, u32 *last_oow_ack_time);
1533
tcp_mib_init(struct net * net)1534 static inline void tcp_mib_init(struct net *net)
1535 {
1536 /* See RFC 2012 */
1537 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1538 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1539 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1540 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1541 }
1542
1543 /* from STCP */
tcp_clear_retrans_hints_partial(struct tcp_sock * tp)1544 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1545 {
1546 tp->lost_skb_hint = NULL;
1547 }
1548
tcp_clear_all_retrans_hints(struct tcp_sock * tp)1549 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1550 {
1551 tcp_clear_retrans_hints_partial(tp);
1552 tp->retransmit_skb_hint = NULL;
1553 }
1554
1555 union tcp_md5_addr {
1556 struct in_addr a4;
1557 #if IS_ENABLED(CONFIG_IPV6)
1558 struct in6_addr a6;
1559 #endif
1560 };
1561
1562 /* - key database */
1563 struct tcp_md5sig_key {
1564 struct hlist_node node;
1565 u8 keylen;
1566 u8 family; /* AF_INET or AF_INET6 */
1567 u8 prefixlen;
1568 union tcp_md5_addr addr;
1569 int l3index; /* set if key added with L3 scope */
1570 u8 key[TCP_MD5SIG_MAXKEYLEN];
1571 struct rcu_head rcu;
1572 };
1573
1574 /* - sock block */
1575 struct tcp_md5sig_info {
1576 struct hlist_head head;
1577 struct rcu_head rcu;
1578 };
1579
1580 /* - pseudo header */
1581 struct tcp4_pseudohdr {
1582 __be32 saddr;
1583 __be32 daddr;
1584 __u8 pad;
1585 __u8 protocol;
1586 __be16 len;
1587 };
1588
1589 struct tcp6_pseudohdr {
1590 struct in6_addr saddr;
1591 struct in6_addr daddr;
1592 __be32 len;
1593 __be32 protocol; /* including padding */
1594 };
1595
1596 union tcp_md5sum_block {
1597 struct tcp4_pseudohdr ip4;
1598 #if IS_ENABLED(CONFIG_IPV6)
1599 struct tcp6_pseudohdr ip6;
1600 #endif
1601 };
1602
1603 /* - pool: digest algorithm, hash description and scratch buffer */
1604 struct tcp_md5sig_pool {
1605 struct ahash_request *md5_req;
1606 void *scratch;
1607 };
1608
1609 /* - functions */
1610 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1611 const struct sock *sk, const struct sk_buff *skb);
1612 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1613 int family, u8 prefixlen, int l3index,
1614 const u8 *newkey, u8 newkeylen, gfp_t gfp);
1615 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1616 int family, u8 prefixlen, int l3index);
1617 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1618 const struct sock *addr_sk);
1619
1620 #ifdef CONFIG_TCP_MD5SIG
1621 #include <linux/jump_label.h>
1622 extern struct static_key_false tcp_md5_needed;
1623 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1624 const union tcp_md5_addr *addr,
1625 int family);
1626 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1627 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1628 const union tcp_md5_addr *addr, int family)
1629 {
1630 if (!static_branch_unlikely(&tcp_md5_needed))
1631 return NULL;
1632 return __tcp_md5_do_lookup(sk, l3index, addr, family);
1633 }
1634
1635 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1636 #else
1637 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1638 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1639 const union tcp_md5_addr *addr, int family)
1640 {
1641 return NULL;
1642 }
1643 #define tcp_twsk_md5_key(twsk) NULL
1644 #endif
1645
1646 bool tcp_alloc_md5sig_pool(void);
1647
1648 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
tcp_put_md5sig_pool(void)1649 static inline void tcp_put_md5sig_pool(void)
1650 {
1651 local_bh_enable();
1652 }
1653
1654 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1655 unsigned int header_len);
1656 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1657 const struct tcp_md5sig_key *key);
1658
1659 /* From tcp_fastopen.c */
1660 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1661 struct tcp_fastopen_cookie *cookie);
1662 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1663 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1664 u16 try_exp);
1665 struct tcp_fastopen_request {
1666 /* Fast Open cookie. Size 0 means a cookie request */
1667 struct tcp_fastopen_cookie cookie;
1668 struct msghdr *data; /* data in MSG_FASTOPEN */
1669 size_t size;
1670 int copied; /* queued in tcp_connect() */
1671 struct ubuf_info *uarg;
1672 };
1673 void tcp_free_fastopen_req(struct tcp_sock *tp);
1674 void tcp_fastopen_destroy_cipher(struct sock *sk);
1675 void tcp_fastopen_ctx_destroy(struct net *net);
1676 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1677 void *primary_key, void *backup_key);
1678 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1679 u64 *key);
1680 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1681 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1682 struct request_sock *req,
1683 struct tcp_fastopen_cookie *foc,
1684 const struct dst_entry *dst);
1685 void tcp_fastopen_init_key_once(struct net *net);
1686 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1687 struct tcp_fastopen_cookie *cookie);
1688 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1689 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1690 #define TCP_FASTOPEN_KEY_MAX 2
1691 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1692 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1693
1694 /* Fastopen key context */
1695 struct tcp_fastopen_context {
1696 siphash_key_t key[TCP_FASTOPEN_KEY_MAX];
1697 int num;
1698 struct rcu_head rcu;
1699 };
1700
1701 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1702 void tcp_fastopen_active_disable(struct sock *sk);
1703 bool tcp_fastopen_active_should_disable(struct sock *sk);
1704 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1705 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1706
1707 /* Caller needs to wrap with rcu_read_(un)lock() */
1708 static inline
tcp_fastopen_get_ctx(const struct sock * sk)1709 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1710 {
1711 struct tcp_fastopen_context *ctx;
1712
1713 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1714 if (!ctx)
1715 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1716 return ctx;
1717 }
1718
1719 static inline
tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie * foc,const struct tcp_fastopen_cookie * orig)1720 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1721 const struct tcp_fastopen_cookie *orig)
1722 {
1723 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1724 orig->len == foc->len &&
1725 !memcmp(orig->val, foc->val, foc->len))
1726 return true;
1727 return false;
1728 }
1729
1730 static inline
tcp_fastopen_context_len(const struct tcp_fastopen_context * ctx)1731 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1732 {
1733 return ctx->num;
1734 }
1735
1736 /* Latencies incurred by various limits for a sender. They are
1737 * chronograph-like stats that are mutually exclusive.
1738 */
1739 enum tcp_chrono {
1740 TCP_CHRONO_UNSPEC,
1741 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1742 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1743 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1744 __TCP_CHRONO_MAX,
1745 };
1746
1747 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1748 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1749
1750 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1751 * the same memory storage than skb->destructor/_skb_refdst
1752 */
tcp_skb_tsorted_anchor_cleanup(struct sk_buff * skb)1753 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1754 {
1755 skb->destructor = NULL;
1756 skb->_skb_refdst = 0UL;
1757 }
1758
1759 #define tcp_skb_tsorted_save(skb) { \
1760 unsigned long _save = skb->_skb_refdst; \
1761 skb->_skb_refdst = 0UL;
1762
1763 #define tcp_skb_tsorted_restore(skb) \
1764 skb->_skb_refdst = _save; \
1765 }
1766
1767 void tcp_write_queue_purge(struct sock *sk);
1768
tcp_rtx_queue_head(const struct sock * sk)1769 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1770 {
1771 return skb_rb_first(&sk->tcp_rtx_queue);
1772 }
1773
tcp_rtx_queue_tail(const struct sock * sk)1774 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1775 {
1776 return skb_rb_last(&sk->tcp_rtx_queue);
1777 }
1778
tcp_write_queue_head(const struct sock * sk)1779 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1780 {
1781 return skb_peek(&sk->sk_write_queue);
1782 }
1783
tcp_write_queue_tail(const struct sock * sk)1784 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1785 {
1786 return skb_peek_tail(&sk->sk_write_queue);
1787 }
1788
1789 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1790 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1791
tcp_send_head(const struct sock * sk)1792 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1793 {
1794 return skb_peek(&sk->sk_write_queue);
1795 }
1796
tcp_skb_is_last(const struct sock * sk,const struct sk_buff * skb)1797 static inline bool tcp_skb_is_last(const struct sock *sk,
1798 const struct sk_buff *skb)
1799 {
1800 return skb_queue_is_last(&sk->sk_write_queue, skb);
1801 }
1802
1803 /**
1804 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1805 * @sk: socket
1806 *
1807 * Since the write queue can have a temporary empty skb in it,
1808 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1809 */
tcp_write_queue_empty(const struct sock * sk)1810 static inline bool tcp_write_queue_empty(const struct sock *sk)
1811 {
1812 const struct tcp_sock *tp = tcp_sk(sk);
1813
1814 return tp->write_seq == tp->snd_nxt;
1815 }
1816
tcp_rtx_queue_empty(const struct sock * sk)1817 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1818 {
1819 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1820 }
1821
tcp_rtx_and_write_queues_empty(const struct sock * sk)1822 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1823 {
1824 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1825 }
1826
tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)1827 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1828 {
1829 __skb_queue_tail(&sk->sk_write_queue, skb);
1830
1831 /* Queue it, remembering where we must start sending. */
1832 if (sk->sk_write_queue.next == skb)
1833 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1834 }
1835
1836 /* Insert new before skb on the write queue of sk. */
tcp_insert_write_queue_before(struct sk_buff * new,struct sk_buff * skb,struct sock * sk)1837 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1838 struct sk_buff *skb,
1839 struct sock *sk)
1840 {
1841 __skb_queue_before(&sk->sk_write_queue, skb, new);
1842 }
1843
tcp_unlink_write_queue(struct sk_buff * skb,struct sock * sk)1844 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1845 {
1846 tcp_skb_tsorted_anchor_cleanup(skb);
1847 __skb_unlink(skb, &sk->sk_write_queue);
1848 }
1849
1850 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1851
tcp_rtx_queue_unlink(struct sk_buff * skb,struct sock * sk)1852 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1853 {
1854 tcp_skb_tsorted_anchor_cleanup(skb);
1855 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1856 }
1857
tcp_rtx_queue_unlink_and_free(struct sk_buff * skb,struct sock * sk)1858 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1859 {
1860 list_del(&skb->tcp_tsorted_anchor);
1861 tcp_rtx_queue_unlink(skb, sk);
1862 sk_wmem_free_skb(sk, skb);
1863 }
1864
tcp_push_pending_frames(struct sock * sk)1865 static inline void tcp_push_pending_frames(struct sock *sk)
1866 {
1867 if (tcp_send_head(sk)) {
1868 struct tcp_sock *tp = tcp_sk(sk);
1869
1870 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1871 }
1872 }
1873
1874 /* Start sequence of the skb just after the highest skb with SACKed
1875 * bit, valid only if sacked_out > 0 or when the caller has ensured
1876 * validity by itself.
1877 */
tcp_highest_sack_seq(struct tcp_sock * tp)1878 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1879 {
1880 if (!tp->sacked_out)
1881 return tp->snd_una;
1882
1883 if (tp->highest_sack == NULL)
1884 return tp->snd_nxt;
1885
1886 return TCP_SKB_CB(tp->highest_sack)->seq;
1887 }
1888
tcp_advance_highest_sack(struct sock * sk,struct sk_buff * skb)1889 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1890 {
1891 tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1892 }
1893
tcp_highest_sack(struct sock * sk)1894 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1895 {
1896 return tcp_sk(sk)->highest_sack;
1897 }
1898
tcp_highest_sack_reset(struct sock * sk)1899 static inline void tcp_highest_sack_reset(struct sock *sk)
1900 {
1901 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1902 }
1903
1904 /* Called when old skb is about to be deleted and replaced by new skb */
tcp_highest_sack_replace(struct sock * sk,struct sk_buff * old,struct sk_buff * new)1905 static inline void tcp_highest_sack_replace(struct sock *sk,
1906 struct sk_buff *old,
1907 struct sk_buff *new)
1908 {
1909 if (old == tcp_highest_sack(sk))
1910 tcp_sk(sk)->highest_sack = new;
1911 }
1912
1913 /* This helper checks if socket has IP_TRANSPARENT set */
inet_sk_transparent(const struct sock * sk)1914 static inline bool inet_sk_transparent(const struct sock *sk)
1915 {
1916 switch (sk->sk_state) {
1917 case TCP_TIME_WAIT:
1918 return inet_twsk(sk)->tw_transparent;
1919 case TCP_NEW_SYN_RECV:
1920 return inet_rsk(inet_reqsk(sk))->no_srccheck;
1921 }
1922 return inet_sk(sk)->transparent;
1923 }
1924
1925 /* Determines whether this is a thin stream (which may suffer from
1926 * increased latency). Used to trigger latency-reducing mechanisms.
1927 */
tcp_stream_is_thin(struct tcp_sock * tp)1928 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1929 {
1930 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1931 }
1932
1933 /* /proc */
1934 enum tcp_seq_states {
1935 TCP_SEQ_STATE_LISTENING,
1936 TCP_SEQ_STATE_ESTABLISHED,
1937 };
1938
1939 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1940 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1941 void tcp_seq_stop(struct seq_file *seq, void *v);
1942
1943 struct tcp_seq_afinfo {
1944 sa_family_t family;
1945 };
1946
1947 struct tcp_iter_state {
1948 struct seq_net_private p;
1949 enum tcp_seq_states state;
1950 struct sock *syn_wait_sk;
1951 struct tcp_seq_afinfo *bpf_seq_afinfo;
1952 int bucket, offset, sbucket, num;
1953 loff_t last_pos;
1954 };
1955
1956 extern struct request_sock_ops tcp_request_sock_ops;
1957 extern struct request_sock_ops tcp6_request_sock_ops;
1958
1959 void tcp_v4_destroy_sock(struct sock *sk);
1960
1961 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1962 netdev_features_t features);
1963 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1964 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1965 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1966 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1967 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
1968 int tcp_gro_complete(struct sk_buff *skb);
1969
1970 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1971
tcp_notsent_lowat(const struct tcp_sock * tp)1972 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1973 {
1974 struct net *net = sock_net((struct sock *)tp);
1975 return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1976 }
1977
1978 /* @wake is one when sk_stream_write_space() calls us.
1979 * This sends EPOLLOUT only if notsent_bytes is half the limit.
1980 * This mimics the strategy used in sock_def_write_space().
1981 */
tcp_stream_memory_free(const struct sock * sk,int wake)1982 static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1983 {
1984 const struct tcp_sock *tp = tcp_sk(sk);
1985 u32 notsent_bytes = READ_ONCE(tp->write_seq) -
1986 READ_ONCE(tp->snd_nxt);
1987
1988 return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1989 }
1990
1991 #ifdef CONFIG_PROC_FS
1992 int tcp4_proc_init(void);
1993 void tcp4_proc_exit(void);
1994 #endif
1995
1996 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1997 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1998 const struct tcp_request_sock_ops *af_ops,
1999 struct sock *sk, struct sk_buff *skb);
2000
2001 /* TCP af-specific functions */
2002 struct tcp_sock_af_ops {
2003 #ifdef CONFIG_TCP_MD5SIG
2004 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
2005 const struct sock *addr_sk);
2006 int (*calc_md5_hash)(char *location,
2007 const struct tcp_md5sig_key *md5,
2008 const struct sock *sk,
2009 const struct sk_buff *skb);
2010 int (*md5_parse)(struct sock *sk,
2011 int optname,
2012 sockptr_t optval,
2013 int optlen);
2014 #endif
2015 };
2016
2017 struct tcp_request_sock_ops {
2018 u16 mss_clamp;
2019 #ifdef CONFIG_TCP_MD5SIG
2020 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2021 const struct sock *addr_sk);
2022 int (*calc_md5_hash) (char *location,
2023 const struct tcp_md5sig_key *md5,
2024 const struct sock *sk,
2025 const struct sk_buff *skb);
2026 #endif
2027 void (*init_req)(struct request_sock *req,
2028 const struct sock *sk_listener,
2029 struct sk_buff *skb);
2030 #ifdef CONFIG_SYN_COOKIES
2031 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
2032 __u16 *mss);
2033 #endif
2034 struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
2035 const struct request_sock *req);
2036 u32 (*init_seq)(const struct sk_buff *skb);
2037 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2038 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2039 struct flowi *fl, struct request_sock *req,
2040 struct tcp_fastopen_cookie *foc,
2041 enum tcp_synack_type synack_type,
2042 struct sk_buff *syn_skb);
2043 };
2044
2045 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2046 #if IS_ENABLED(CONFIG_IPV6)
2047 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2048 #endif
2049
2050 #ifdef CONFIG_SYN_COOKIES
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2051 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2052 const struct sock *sk, struct sk_buff *skb,
2053 __u16 *mss)
2054 {
2055 tcp_synq_overflow(sk);
2056 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2057 return ops->cookie_init_seq(skb, mss);
2058 }
2059 #else
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2060 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2061 const struct sock *sk, struct sk_buff *skb,
2062 __u16 *mss)
2063 {
2064 return 0;
2065 }
2066 #endif
2067
2068 int tcpv4_offload_init(void);
2069
2070 void tcp_v4_init(void);
2071 void tcp_init(void);
2072
2073 /* tcp_recovery.c */
2074 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2075 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2076 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2077 u32 reo_wnd);
2078 extern bool tcp_rack_mark_lost(struct sock *sk);
2079 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2080 u64 xmit_time);
2081 extern void tcp_rack_reo_timeout(struct sock *sk);
2082 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2083
2084 /* At how many usecs into the future should the RTO fire? */
tcp_rto_delta_us(const struct sock * sk)2085 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2086 {
2087 const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2088 u32 rto = inet_csk(sk)->icsk_rto;
2089 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2090
2091 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2092 }
2093
2094 /*
2095 * Save and compile IPv4 options, return a pointer to it
2096 */
tcp_v4_save_options(struct net * net,struct sk_buff * skb)2097 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2098 struct sk_buff *skb)
2099 {
2100 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2101 struct ip_options_rcu *dopt = NULL;
2102
2103 if (opt->optlen) {
2104 int opt_size = sizeof(*dopt) + opt->optlen;
2105
2106 dopt = kmalloc(opt_size, GFP_ATOMIC);
2107 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2108 kfree(dopt);
2109 dopt = NULL;
2110 }
2111 }
2112 return dopt;
2113 }
2114
2115 /* locally generated TCP pure ACKs have skb->truesize == 2
2116 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2117 * This is much faster than dissecting the packet to find out.
2118 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2119 */
skb_is_tcp_pure_ack(const struct sk_buff * skb)2120 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2121 {
2122 return skb->truesize == 2;
2123 }
2124
skb_set_tcp_pure_ack(struct sk_buff * skb)2125 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2126 {
2127 skb->truesize = 2;
2128 }
2129
tcp_inq(struct sock * sk)2130 static inline int tcp_inq(struct sock *sk)
2131 {
2132 struct tcp_sock *tp = tcp_sk(sk);
2133 int answ;
2134
2135 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2136 answ = 0;
2137 } else if (sock_flag(sk, SOCK_URGINLINE) ||
2138 !tp->urg_data ||
2139 before(tp->urg_seq, tp->copied_seq) ||
2140 !before(tp->urg_seq, tp->rcv_nxt)) {
2141
2142 answ = tp->rcv_nxt - tp->copied_seq;
2143
2144 /* Subtract 1, if FIN was received */
2145 if (answ && sock_flag(sk, SOCK_DONE))
2146 answ--;
2147 } else {
2148 answ = tp->urg_seq - tp->copied_seq;
2149 }
2150
2151 return answ;
2152 }
2153
2154 int tcp_peek_len(struct socket *sock);
2155
tcp_segs_in(struct tcp_sock * tp,const struct sk_buff * skb)2156 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2157 {
2158 u16 segs_in;
2159
2160 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2161 tp->segs_in += segs_in;
2162 if (skb->len > tcp_hdrlen(skb))
2163 tp->data_segs_in += segs_in;
2164 }
2165
2166 /*
2167 * TCP listen path runs lockless.
2168 * We forced "struct sock" to be const qualified to make sure
2169 * we don't modify one of its field by mistake.
2170 * Here, we increment sk_drops which is an atomic_t, so we can safely
2171 * make sock writable again.
2172 */
tcp_listendrop(const struct sock * sk)2173 static inline void tcp_listendrop(const struct sock *sk)
2174 {
2175 atomic_inc(&((struct sock *)sk)->sk_drops);
2176 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2177 }
2178
2179 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2180
2181 /*
2182 * Interface for adding Upper Level Protocols over TCP
2183 */
2184
2185 #define TCP_ULP_NAME_MAX 16
2186 #define TCP_ULP_MAX 128
2187 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2188
2189 struct tcp_ulp_ops {
2190 struct list_head list;
2191
2192 /* initialize ulp */
2193 int (*init)(struct sock *sk);
2194 /* update ulp */
2195 void (*update)(struct sock *sk, struct proto *p,
2196 void (*write_space)(struct sock *sk));
2197 /* cleanup ulp */
2198 void (*release)(struct sock *sk);
2199 /* diagnostic */
2200 int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2201 size_t (*get_info_size)(const struct sock *sk);
2202 /* clone ulp */
2203 void (*clone)(const struct request_sock *req, struct sock *newsk,
2204 const gfp_t priority);
2205
2206 char name[TCP_ULP_NAME_MAX];
2207 struct module *owner;
2208 };
2209 int tcp_register_ulp(struct tcp_ulp_ops *type);
2210 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2211 int tcp_set_ulp(struct sock *sk, const char *name);
2212 void tcp_get_available_ulp(char *buf, size_t len);
2213 void tcp_cleanup_ulp(struct sock *sk);
2214 void tcp_update_ulp(struct sock *sk, struct proto *p,
2215 void (*write_space)(struct sock *sk));
2216
2217 #define MODULE_ALIAS_TCP_ULP(name) \
2218 __MODULE_INFO(alias, alias_userspace, name); \
2219 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2220
2221 struct sk_msg;
2222 struct sk_psock;
2223
2224 #ifdef CONFIG_BPF_STREAM_PARSER
2225 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2226 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2227 #else
tcp_bpf_clone(const struct sock * sk,struct sock * newsk)2228 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2229 {
2230 }
2231 #endif /* CONFIG_BPF_STREAM_PARSER */
2232
2233 #ifdef CONFIG_NET_SOCK_MSG
2234 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2235 int flags);
2236 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2237 struct msghdr *msg, int len, int flags);
2238 #endif /* CONFIG_NET_SOCK_MSG */
2239
2240 #ifdef CONFIG_CGROUP_BPF
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2241 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2242 struct sk_buff *skb,
2243 unsigned int end_offset)
2244 {
2245 skops->skb = skb;
2246 skops->skb_data_end = skb->data + end_offset;
2247 }
2248 #else
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2249 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2250 struct sk_buff *skb,
2251 unsigned int end_offset)
2252 {
2253 }
2254 #endif
2255
2256 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2257 * is < 0, then the BPF op failed (for example if the loaded BPF
2258 * program does not support the chosen operation or there is no BPF
2259 * program loaded).
2260 */
2261 #ifdef CONFIG_BPF
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2262 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2263 {
2264 struct bpf_sock_ops_kern sock_ops;
2265 int ret;
2266
2267 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2268 if (sk_fullsock(sk)) {
2269 sock_ops.is_fullsock = 1;
2270 sock_owned_by_me(sk);
2271 }
2272
2273 sock_ops.sk = sk;
2274 sock_ops.op = op;
2275 if (nargs > 0)
2276 memcpy(sock_ops.args, args, nargs * sizeof(*args));
2277
2278 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2279 if (ret == 0)
2280 ret = sock_ops.reply;
2281 else
2282 ret = -1;
2283 return ret;
2284 }
2285
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2286 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2287 {
2288 u32 args[2] = {arg1, arg2};
2289
2290 return tcp_call_bpf(sk, op, 2, args);
2291 }
2292
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2293 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2294 u32 arg3)
2295 {
2296 u32 args[3] = {arg1, arg2, arg3};
2297
2298 return tcp_call_bpf(sk, op, 3, args);
2299 }
2300
2301 #else
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2302 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2303 {
2304 return -EPERM;
2305 }
2306
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2307 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2308 {
2309 return -EPERM;
2310 }
2311
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2312 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2313 u32 arg3)
2314 {
2315 return -EPERM;
2316 }
2317
2318 #endif
2319
tcp_timeout_init(struct sock * sk)2320 static inline u32 tcp_timeout_init(struct sock *sk)
2321 {
2322 int timeout;
2323
2324 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2325
2326 if (timeout <= 0)
2327 timeout = TCP_TIMEOUT_INIT;
2328 return timeout;
2329 }
2330
tcp_rwnd_init_bpf(struct sock * sk)2331 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2332 {
2333 int rwnd;
2334
2335 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2336
2337 if (rwnd < 0)
2338 rwnd = 0;
2339 return rwnd;
2340 }
2341
tcp_bpf_ca_needs_ecn(struct sock * sk)2342 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2343 {
2344 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2345 }
2346
tcp_bpf_rtt(struct sock * sk)2347 static inline void tcp_bpf_rtt(struct sock *sk)
2348 {
2349 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2350 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2351 }
2352
2353 #if IS_ENABLED(CONFIG_SMC)
2354 extern struct static_key_false tcp_have_smc;
2355 #endif
2356
2357 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2358 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2359 void (*cad)(struct sock *sk, u32 ack_seq));
2360 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2361 void clean_acked_data_flush(void);
2362 #endif
2363
2364 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
tcp_add_tx_delay(struct sk_buff * skb,const struct tcp_sock * tp)2365 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2366 const struct tcp_sock *tp)
2367 {
2368 if (static_branch_unlikely(&tcp_tx_delay_enabled))
2369 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2370 }
2371
2372 /* Compute Earliest Departure Time for some control packets
2373 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2374 */
tcp_transmit_time(const struct sock * sk)2375 static inline u64 tcp_transmit_time(const struct sock *sk)
2376 {
2377 if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2378 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2379 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2380
2381 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2382 }
2383 return 0;
2384 }
2385
2386 #endif /* _TCP_H */
2387