• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8 
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/string.h>
22 #include <linux/uio.h>
23 #include <linux/ksm.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/pagewalk.h>
29 #include <linux/swap.h>
30 #include <linux/swapops.h>
31 #include <linux/shmem_fs.h>
32 #include <linux/mmu_notifier.h>
33 
34 #include <asm/tlb.h>
35 
36 #include "internal.h"
37 
38 struct madvise_walk_private {
39 	struct mmu_gather *tlb;
40 	bool pageout;
41 };
42 
43 /*
44  * Any behaviour which results in changes to the vma->vm_flags needs to
45  * take mmap_lock for writing. Others, which simply traverse vmas, need
46  * to only take it for reading.
47  */
madvise_need_mmap_write(int behavior)48 static int madvise_need_mmap_write(int behavior)
49 {
50 	switch (behavior) {
51 	case MADV_REMOVE:
52 	case MADV_WILLNEED:
53 	case MADV_DONTNEED:
54 	case MADV_COLD:
55 	case MADV_PAGEOUT:
56 	case MADV_FREE:
57 		return 0;
58 	default:
59 		/* be safe, default to 1. list exceptions explicitly */
60 		return 1;
61 	}
62 }
63 
64 #ifdef CONFIG_ANON_VMA_NAME
anon_vma_name_alloc(const char * name)65 static struct anon_vma_name *anon_vma_name_alloc(const char *name)
66 {
67 	struct anon_vma_name *anon_name;
68 	size_t count;
69 
70 	/* Add 1 for NUL terminator at the end of the anon_name->name */
71 	count = strlen(name) + 1;
72 	anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
73 	if (anon_name) {
74 		kref_init(&anon_name->kref);
75 		memcpy(anon_name->name, name, count);
76 	}
77 
78 	return anon_name;
79 }
80 
vma_anon_name_free(struct kref * kref)81 static void vma_anon_name_free(struct kref *kref)
82 {
83 	struct anon_vma_name *anon_name =
84 			container_of(kref, struct anon_vma_name, kref);
85 	kfree(anon_name);
86 }
87 
has_vma_anon_name(struct vm_area_struct * vma)88 static inline bool has_vma_anon_name(struct vm_area_struct *vma)
89 {
90 	return !vma->vm_file && vma->anon_name;
91 }
92 
vma_anon_name(struct vm_area_struct * vma)93 const char *vma_anon_name(struct vm_area_struct *vma)
94 {
95 	if (!has_vma_anon_name(vma))
96 		return NULL;
97 
98 	mmap_assert_locked(vma->vm_mm);
99 
100 	return vma->anon_name->name;
101 }
102 
dup_vma_anon_name(struct vm_area_struct * orig_vma,struct vm_area_struct * new_vma)103 void dup_vma_anon_name(struct vm_area_struct *orig_vma,
104 		       struct vm_area_struct *new_vma)
105 {
106 	if (!has_vma_anon_name(orig_vma))
107 		return;
108 
109 	kref_get(&orig_vma->anon_name->kref);
110 	new_vma->anon_name = orig_vma->anon_name;
111 }
112 
free_vma_anon_name(struct vm_area_struct * vma)113 void free_vma_anon_name(struct vm_area_struct *vma)
114 {
115 	struct anon_vma_name *anon_name;
116 
117 	if (!has_vma_anon_name(vma))
118 		return;
119 
120 	anon_name = vma->anon_name;
121 	vma->anon_name = NULL;
122 	kref_put(&anon_name->kref, vma_anon_name_free);
123 }
124 
125 /* mmap_lock should be write-locked */
replace_vma_anon_name(struct vm_area_struct * vma,const char * name)126 static int replace_vma_anon_name(struct vm_area_struct *vma, const char *name)
127 {
128 	const char *anon_name;
129 
130 	if (!name) {
131 		free_vma_anon_name(vma);
132 		return 0;
133 	}
134 
135 	anon_name = vma_anon_name(vma);
136 	if (anon_name) {
137 		/* Same name, nothing to do here */
138 		if (!strcmp(name, anon_name))
139 			return 0;
140 
141 		free_vma_anon_name(vma);
142 	}
143 	vma->anon_name = anon_vma_name_alloc(name);
144 	if (!vma->anon_name)
145 		return -ENOMEM;
146 
147 	return 0;
148 }
149 #else /* CONFIG_ANON_VMA_NAME */
replace_vma_anon_name(struct vm_area_struct * vma,const char * name)150 static int replace_vma_anon_name(struct vm_area_struct *vma, const char *name)
151 {
152 	if (name)
153 		return -EINVAL;
154 
155 	return 0;
156 }
157 #endif /* CONFIG_ANON_VMA_NAME */
158 /*
159  * Update the vm_flags on region of a vma, splitting it or merging it as
160  * necessary.  Must be called with mmap_sem held for writing;
161  */
madvise_update_vma(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long new_flags,const char * name)162 static int madvise_update_vma(struct vm_area_struct *vma,
163 			      struct vm_area_struct **prev, unsigned long start,
164 			      unsigned long end, unsigned long new_flags,
165 			      const char *name)
166 {
167 	struct mm_struct *mm = vma->vm_mm;
168 	int error;
169 	pgoff_t pgoff;
170 
171 	if (new_flags == vma->vm_flags && is_same_vma_anon_name(vma, name)) {
172 		*prev = vma;
173 		return 0;
174 	}
175 
176 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
177 	*prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
178 			  vma->vm_file, pgoff, vma_policy(vma),
179 			  vma->vm_userfaultfd_ctx, name);
180 	if (*prev) {
181 		vma = *prev;
182 		goto success;
183 	}
184 
185 	*prev = vma;
186 
187 	if (start != vma->vm_start) {
188 		if (unlikely(mm->map_count >= sysctl_max_map_count))
189 			return -ENOMEM;
190 		error = __split_vma(mm, vma, start, 1);
191 		if (error)
192 			return error;
193 	}
194 
195 	if (end != vma->vm_end) {
196 		if (unlikely(mm->map_count >= sysctl_max_map_count))
197 			return -ENOMEM;
198 		error = __split_vma(mm, vma, end, 0);
199 		if (error)
200 			return error;
201 	}
202 
203 success:
204 	/*
205 	 * vm_flags is protected by the mmap_lock held in write mode.
206 	 */
207 	vma->vm_flags = new_flags;
208 	if (!vma->vm_file) {
209 		error = replace_vma_anon_name(vma, name);
210 		if (error)
211 			return error;
212 	}
213 
214 	return 0;
215 }
216 
217 #ifdef CONFIG_SWAP
swapin_walk_pmd_entry(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * walk)218 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
219 	unsigned long end, struct mm_walk *walk)
220 {
221 	pte_t *orig_pte;
222 	struct vm_area_struct *vma = walk->private;
223 	unsigned long index;
224 
225 	if (pmd_none_or_trans_huge_or_clear_bad(pmd))
226 		return 0;
227 
228 	for (index = start; index != end; index += PAGE_SIZE) {
229 		pte_t pte;
230 		swp_entry_t entry;
231 		struct page *page;
232 		spinlock_t *ptl;
233 
234 		orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
235 		pte = *(orig_pte + ((index - start) / PAGE_SIZE));
236 		pte_unmap_unlock(orig_pte, ptl);
237 
238 		if (pte_present(pte) || pte_none(pte))
239 			continue;
240 		entry = pte_to_swp_entry(pte);
241 		if (unlikely(non_swap_entry(entry)))
242 			continue;
243 
244 		page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
245 							vma, index, false);
246 		if (page)
247 			put_page(page);
248 	}
249 
250 	return 0;
251 }
252 
253 static const struct mm_walk_ops swapin_walk_ops = {
254 	.pmd_entry		= swapin_walk_pmd_entry,
255 };
256 
force_shm_swapin_readahead(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct address_space * mapping)257 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
258 		unsigned long start, unsigned long end,
259 		struct address_space *mapping)
260 {
261 	XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
262 	pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1);
263 	struct page *page;
264 
265 	rcu_read_lock();
266 	xas_for_each(&xas, page, end_index) {
267 		swp_entry_t swap;
268 
269 		if (!xa_is_value(page))
270 			continue;
271 		xas_pause(&xas);
272 		rcu_read_unlock();
273 
274 		swap = radix_to_swp_entry(page);
275 		page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
276 							NULL, 0, false);
277 		if (page)
278 			put_page(page);
279 
280 		rcu_read_lock();
281 	}
282 	rcu_read_unlock();
283 
284 	lru_add_drain();	/* Push any new pages onto the LRU now */
285 }
286 #endif		/* CONFIG_SWAP */
287 
288 /*
289  * Schedule all required I/O operations.  Do not wait for completion.
290  */
madvise_willneed(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)291 static long madvise_willneed(struct vm_area_struct *vma,
292 			     struct vm_area_struct **prev,
293 			     unsigned long start, unsigned long end)
294 {
295 	struct mm_struct *mm = vma->vm_mm;
296 	struct file *file = vma->vm_file;
297 	loff_t offset;
298 
299 	*prev = vma;
300 #ifdef CONFIG_SWAP
301 	if (!file) {
302 		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
303 		lru_add_drain(); /* Push any new pages onto the LRU now */
304 		return 0;
305 	}
306 
307 	if (shmem_mapping(file->f_mapping)) {
308 		force_shm_swapin_readahead(vma, start, end,
309 					file->f_mapping);
310 		return 0;
311 	}
312 #else
313 	if (!file)
314 		return -EBADF;
315 #endif
316 
317 	if (IS_DAX(file_inode(file))) {
318 		/* no bad return value, but ignore advice */
319 		return 0;
320 	}
321 
322 	/*
323 	 * Filesystem's fadvise may need to take various locks.  We need to
324 	 * explicitly grab a reference because the vma (and hence the
325 	 * vma's reference to the file) can go away as soon as we drop
326 	 * mmap_lock.
327 	 */
328 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
329 	get_file(file);
330 	offset = (loff_t)(start - vma->vm_start)
331 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
332 	mmap_read_unlock(mm);
333 	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
334 	fput(file);
335 	mmap_read_lock(mm);
336 	return 0;
337 }
338 
madvise_cold_or_pageout_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)339 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
340 				unsigned long addr, unsigned long end,
341 				struct mm_walk *walk)
342 {
343 	struct madvise_walk_private *private = walk->private;
344 	struct mmu_gather *tlb = private->tlb;
345 	bool pageout = private->pageout;
346 	struct mm_struct *mm = tlb->mm;
347 	struct vm_area_struct *vma = walk->vma;
348 	pte_t *orig_pte, *pte, ptent;
349 	spinlock_t *ptl;
350 	struct page *page = NULL;
351 	LIST_HEAD(page_list);
352 
353 	if (fatal_signal_pending(current))
354 		return -EINTR;
355 
356 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
357 	if (pmd_trans_huge(*pmd)) {
358 		pmd_t orig_pmd;
359 		unsigned long next = pmd_addr_end(addr, end);
360 
361 		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
362 		ptl = pmd_trans_huge_lock(pmd, vma);
363 		if (!ptl)
364 			return 0;
365 
366 		orig_pmd = *pmd;
367 		if (is_huge_zero_pmd(orig_pmd))
368 			goto huge_unlock;
369 
370 		if (unlikely(!pmd_present(orig_pmd))) {
371 			VM_BUG_ON(thp_migration_supported() &&
372 					!is_pmd_migration_entry(orig_pmd));
373 			goto huge_unlock;
374 		}
375 
376 		page = pmd_page(orig_pmd);
377 
378 		/* Do not interfere with other mappings of this page */
379 		if (page_mapcount(page) != 1)
380 			goto huge_unlock;
381 
382 		if (next - addr != HPAGE_PMD_SIZE) {
383 			int err;
384 
385 			get_page(page);
386 			spin_unlock(ptl);
387 			lock_page(page);
388 			err = split_huge_page(page);
389 			unlock_page(page);
390 			put_page(page);
391 			if (!err)
392 				goto regular_page;
393 			return 0;
394 		}
395 
396 		if (pmd_young(orig_pmd)) {
397 			pmdp_invalidate(vma, addr, pmd);
398 			orig_pmd = pmd_mkold(orig_pmd);
399 
400 			set_pmd_at(mm, addr, pmd, orig_pmd);
401 			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
402 		}
403 
404 		ClearPageReferenced(page);
405 		test_and_clear_page_young(page);
406 		if (pageout) {
407 			if (!isolate_lru_page(page)) {
408 				if (PageUnevictable(page))
409 					putback_lru_page(page);
410 				else
411 					list_add(&page->lru, &page_list);
412 			}
413 		} else
414 			deactivate_page(page);
415 huge_unlock:
416 		spin_unlock(ptl);
417 		if (pageout)
418 			reclaim_pages(&page_list);
419 		return 0;
420 	}
421 
422 regular_page:
423 	if (pmd_trans_unstable(pmd))
424 		return 0;
425 #endif
426 	tlb_change_page_size(tlb, PAGE_SIZE);
427 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
428 	flush_tlb_batched_pending(mm);
429 	arch_enter_lazy_mmu_mode();
430 	for (; addr < end; pte++, addr += PAGE_SIZE) {
431 		ptent = *pte;
432 
433 		if (pte_none(ptent))
434 			continue;
435 
436 		if (!pte_present(ptent))
437 			continue;
438 
439 		page = vm_normal_page(vma, addr, ptent);
440 		if (!page)
441 			continue;
442 
443 		/*
444 		 * Creating a THP page is expensive so split it only if we
445 		 * are sure it's worth. Split it if we are only owner.
446 		 */
447 		if (PageTransCompound(page)) {
448 			if (page_mapcount(page) != 1)
449 				break;
450 			get_page(page);
451 			if (!trylock_page(page)) {
452 				put_page(page);
453 				break;
454 			}
455 			pte_unmap_unlock(orig_pte, ptl);
456 			if (split_huge_page(page)) {
457 				unlock_page(page);
458 				put_page(page);
459 				pte_offset_map_lock(mm, pmd, addr, &ptl);
460 				break;
461 			}
462 			unlock_page(page);
463 			put_page(page);
464 			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
465 			pte--;
466 			addr -= PAGE_SIZE;
467 			continue;
468 		}
469 
470 		/* Do not interfere with other mappings of this page */
471 		if (page_mapcount(page) != 1)
472 			continue;
473 
474 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
475 
476 		if (pte_young(ptent)) {
477 			ptent = ptep_get_and_clear_full(mm, addr, pte,
478 							tlb->fullmm);
479 			ptent = pte_mkold(ptent);
480 			set_pte_at(mm, addr, pte, ptent);
481 			tlb_remove_tlb_entry(tlb, pte, addr);
482 		}
483 
484 		/*
485 		 * We are deactivating a page for accelerating reclaiming.
486 		 * VM couldn't reclaim the page unless we clear PG_young.
487 		 * As a side effect, it makes confuse idle-page tracking
488 		 * because they will miss recent referenced history.
489 		 */
490 		ClearPageReferenced(page);
491 		test_and_clear_page_young(page);
492 		if (pageout) {
493 			if (!isolate_lru_page(page)) {
494 				if (PageUnevictable(page))
495 					putback_lru_page(page);
496 				else
497 					list_add(&page->lru, &page_list);
498 			}
499 		} else
500 			deactivate_page(page);
501 	}
502 
503 	arch_leave_lazy_mmu_mode();
504 	pte_unmap_unlock(orig_pte, ptl);
505 	if (pageout)
506 		reclaim_pages(&page_list);
507 	cond_resched();
508 
509 	return 0;
510 }
511 
512 static const struct mm_walk_ops cold_walk_ops = {
513 	.pmd_entry = madvise_cold_or_pageout_pte_range,
514 };
515 
madvise_cold_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end)516 static void madvise_cold_page_range(struct mmu_gather *tlb,
517 			     struct vm_area_struct *vma,
518 			     unsigned long addr, unsigned long end)
519 {
520 	struct madvise_walk_private walk_private = {
521 		.pageout = false,
522 		.tlb = tlb,
523 	};
524 
525 	tlb_start_vma(tlb, vma);
526 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
527 	tlb_end_vma(tlb, vma);
528 }
529 
madvise_cold(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start_addr,unsigned long end_addr)530 static long madvise_cold(struct vm_area_struct *vma,
531 			struct vm_area_struct **prev,
532 			unsigned long start_addr, unsigned long end_addr)
533 {
534 	struct mm_struct *mm = vma->vm_mm;
535 	struct mmu_gather tlb;
536 
537 	*prev = vma;
538 	if (!can_madv_lru_vma(vma))
539 		return -EINVAL;
540 
541 	lru_add_drain();
542 	tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
543 	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
544 	tlb_finish_mmu(&tlb, start_addr, end_addr);
545 
546 	return 0;
547 }
548 
madvise_pageout_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end)549 static void madvise_pageout_page_range(struct mmu_gather *tlb,
550 			     struct vm_area_struct *vma,
551 			     unsigned long addr, unsigned long end)
552 {
553 	struct madvise_walk_private walk_private = {
554 		.pageout = true,
555 		.tlb = tlb,
556 	};
557 
558 	tlb_start_vma(tlb, vma);
559 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
560 	tlb_end_vma(tlb, vma);
561 }
562 
can_do_pageout(struct vm_area_struct * vma)563 static inline bool can_do_pageout(struct vm_area_struct *vma)
564 {
565 	if (vma_is_anonymous(vma))
566 		return true;
567 	if (!vma->vm_file)
568 		return false;
569 	/*
570 	 * paging out pagecache only for non-anonymous mappings that correspond
571 	 * to the files the calling process could (if tried) open for writing;
572 	 * otherwise we'd be including shared non-exclusive mappings, which
573 	 * opens a side channel.
574 	 */
575 	return inode_owner_or_capable(file_inode(vma->vm_file)) ||
576 		inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0;
577 }
578 
madvise_pageout(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start_addr,unsigned long end_addr)579 static long madvise_pageout(struct vm_area_struct *vma,
580 			struct vm_area_struct **prev,
581 			unsigned long start_addr, unsigned long end_addr)
582 {
583 	struct mm_struct *mm = vma->vm_mm;
584 	struct mmu_gather tlb;
585 
586 	*prev = vma;
587 	if (!can_madv_lru_vma(vma))
588 		return -EINVAL;
589 
590 	if (!can_do_pageout(vma))
591 		return 0;
592 
593 	lru_add_drain();
594 	tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
595 	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
596 	tlb_finish_mmu(&tlb, start_addr, end_addr);
597 
598 	return 0;
599 }
600 
madvise_free_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)601 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
602 				unsigned long end, struct mm_walk *walk)
603 
604 {
605 	struct mmu_gather *tlb = walk->private;
606 	struct mm_struct *mm = tlb->mm;
607 	struct vm_area_struct *vma = walk->vma;
608 	spinlock_t *ptl;
609 	pte_t *orig_pte, *pte, ptent;
610 	struct page *page;
611 	int nr_swap = 0;
612 	unsigned long next;
613 
614 	next = pmd_addr_end(addr, end);
615 	if (pmd_trans_huge(*pmd))
616 		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
617 			goto next;
618 
619 	if (pmd_trans_unstable(pmd))
620 		return 0;
621 
622 	tlb_change_page_size(tlb, PAGE_SIZE);
623 	orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
624 	flush_tlb_batched_pending(mm);
625 	arch_enter_lazy_mmu_mode();
626 	for (; addr != end; pte++, addr += PAGE_SIZE) {
627 		ptent = *pte;
628 
629 		if (pte_none(ptent))
630 			continue;
631 		/*
632 		 * If the pte has swp_entry, just clear page table to
633 		 * prevent swap-in which is more expensive rather than
634 		 * (page allocation + zeroing).
635 		 */
636 		if (!pte_present(ptent)) {
637 			swp_entry_t entry;
638 
639 			entry = pte_to_swp_entry(ptent);
640 			if (non_swap_entry(entry))
641 				continue;
642 			nr_swap--;
643 			free_swap_and_cache(entry);
644 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
645 			continue;
646 		}
647 
648 		page = vm_normal_page(vma, addr, ptent);
649 		if (!page)
650 			continue;
651 
652 		/*
653 		 * If pmd isn't transhuge but the page is THP and
654 		 * is owned by only this process, split it and
655 		 * deactivate all pages.
656 		 */
657 		if (PageTransCompound(page)) {
658 			if (page_mapcount(page) != 1)
659 				goto out;
660 			get_page(page);
661 			if (!trylock_page(page)) {
662 				put_page(page);
663 				goto out;
664 			}
665 			pte_unmap_unlock(orig_pte, ptl);
666 			if (split_huge_page(page)) {
667 				unlock_page(page);
668 				put_page(page);
669 				pte_offset_map_lock(mm, pmd, addr, &ptl);
670 				goto out;
671 			}
672 			unlock_page(page);
673 			put_page(page);
674 			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
675 			pte--;
676 			addr -= PAGE_SIZE;
677 			continue;
678 		}
679 
680 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
681 
682 		if (PageSwapCache(page) || PageDirty(page)) {
683 			if (!trylock_page(page))
684 				continue;
685 			/*
686 			 * If page is shared with others, we couldn't clear
687 			 * PG_dirty of the page.
688 			 */
689 			if (page_mapcount(page) != 1) {
690 				unlock_page(page);
691 				continue;
692 			}
693 
694 			if (PageSwapCache(page) && !try_to_free_swap(page)) {
695 				unlock_page(page);
696 				continue;
697 			}
698 
699 			ClearPageDirty(page);
700 			unlock_page(page);
701 		}
702 
703 		if (pte_young(ptent) || pte_dirty(ptent)) {
704 			/*
705 			 * Some of architecture(ex, PPC) don't update TLB
706 			 * with set_pte_at and tlb_remove_tlb_entry so for
707 			 * the portability, remap the pte with old|clean
708 			 * after pte clearing.
709 			 */
710 			ptent = ptep_get_and_clear_full(mm, addr, pte,
711 							tlb->fullmm);
712 
713 			ptent = pte_mkold(ptent);
714 			ptent = pte_mkclean(ptent);
715 			set_pte_at(mm, addr, pte, ptent);
716 			tlb_remove_tlb_entry(tlb, pte, addr);
717 		}
718 		mark_page_lazyfree(page);
719 	}
720 out:
721 	if (nr_swap) {
722 		if (current->mm == mm)
723 			sync_mm_rss(mm);
724 
725 		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
726 	}
727 	arch_leave_lazy_mmu_mode();
728 	pte_unmap_unlock(orig_pte, ptl);
729 	cond_resched();
730 next:
731 	return 0;
732 }
733 
734 static const struct mm_walk_ops madvise_free_walk_ops = {
735 	.pmd_entry		= madvise_free_pte_range,
736 };
737 
madvise_free_single_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)738 static int madvise_free_single_vma(struct vm_area_struct *vma,
739 			unsigned long start_addr, unsigned long end_addr)
740 {
741 	struct mm_struct *mm = vma->vm_mm;
742 	struct mmu_notifier_range range;
743 	struct mmu_gather tlb;
744 
745 	/* MADV_FREE works for only anon vma at the moment */
746 	if (!vma_is_anonymous(vma))
747 		return -EINVAL;
748 
749 	range.start = max(vma->vm_start, start_addr);
750 	if (range.start >= vma->vm_end)
751 		return -EINVAL;
752 	range.end = min(vma->vm_end, end_addr);
753 	if (range.end <= vma->vm_start)
754 		return -EINVAL;
755 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
756 				range.start, range.end);
757 
758 	lru_add_drain();
759 	tlb_gather_mmu(&tlb, mm, range.start, range.end);
760 	update_hiwater_rss(mm);
761 
762 	mmu_notifier_invalidate_range_start(&range);
763 	tlb_start_vma(&tlb, vma);
764 	walk_page_range(vma->vm_mm, range.start, range.end,
765 			&madvise_free_walk_ops, &tlb);
766 	tlb_end_vma(&tlb, vma);
767 	mmu_notifier_invalidate_range_end(&range);
768 	tlb_finish_mmu(&tlb, range.start, range.end);
769 
770 	return 0;
771 }
772 
773 /*
774  * Application no longer needs these pages.  If the pages are dirty,
775  * it's OK to just throw them away.  The app will be more careful about
776  * data it wants to keep.  Be sure to free swap resources too.  The
777  * zap_page_range call sets things up for shrink_active_list to actually free
778  * these pages later if no one else has touched them in the meantime,
779  * although we could add these pages to a global reuse list for
780  * shrink_active_list to pick up before reclaiming other pages.
781  *
782  * NB: This interface discards data rather than pushes it out to swap,
783  * as some implementations do.  This has performance implications for
784  * applications like large transactional databases which want to discard
785  * pages in anonymous maps after committing to backing store the data
786  * that was kept in them.  There is no reason to write this data out to
787  * the swap area if the application is discarding it.
788  *
789  * An interface that causes the system to free clean pages and flush
790  * dirty pages is already available as msync(MS_INVALIDATE).
791  */
madvise_dontneed_single_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)792 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
793 					unsigned long start, unsigned long end)
794 {
795 	zap_page_range(vma, start, end - start);
796 	return 0;
797 }
798 
madvise_dontneed_free(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,int behavior)799 static long madvise_dontneed_free(struct vm_area_struct *vma,
800 				  struct vm_area_struct **prev,
801 				  unsigned long start, unsigned long end,
802 				  int behavior)
803 {
804 	struct mm_struct *mm = vma->vm_mm;
805 
806 	*prev = vma;
807 	if (!can_madv_lru_vma(vma))
808 		return -EINVAL;
809 
810 	if (!userfaultfd_remove(vma, start, end)) {
811 		*prev = NULL; /* mmap_lock has been dropped, prev is stale */
812 
813 		mmap_read_lock(mm);
814 		vma = find_vma(mm, start);
815 		if (!vma)
816 			return -ENOMEM;
817 		if (start < vma->vm_start) {
818 			/*
819 			 * This "vma" under revalidation is the one
820 			 * with the lowest vma->vm_start where start
821 			 * is also < vma->vm_end. If start <
822 			 * vma->vm_start it means an hole materialized
823 			 * in the user address space within the
824 			 * virtual range passed to MADV_DONTNEED
825 			 * or MADV_FREE.
826 			 */
827 			return -ENOMEM;
828 		}
829 		if (!can_madv_lru_vma(vma))
830 			return -EINVAL;
831 		if (end > vma->vm_end) {
832 			/*
833 			 * Don't fail if end > vma->vm_end. If the old
834 			 * vma was splitted while the mmap_lock was
835 			 * released the effect of the concurrent
836 			 * operation may not cause madvise() to
837 			 * have an undefined result. There may be an
838 			 * adjacent next vma that we'll walk
839 			 * next. userfaultfd_remove() will generate an
840 			 * UFFD_EVENT_REMOVE repetition on the
841 			 * end-vma->vm_end range, but the manager can
842 			 * handle a repetition fine.
843 			 */
844 			end = vma->vm_end;
845 		}
846 		VM_WARN_ON(start >= end);
847 	}
848 
849 	if (behavior == MADV_DONTNEED)
850 		return madvise_dontneed_single_vma(vma, start, end);
851 	else if (behavior == MADV_FREE)
852 		return madvise_free_single_vma(vma, start, end);
853 	else
854 		return -EINVAL;
855 }
856 
857 /*
858  * Application wants to free up the pages and associated backing store.
859  * This is effectively punching a hole into the middle of a file.
860  */
madvise_remove(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)861 static long madvise_remove(struct vm_area_struct *vma,
862 				struct vm_area_struct **prev,
863 				unsigned long start, unsigned long end)
864 {
865 	loff_t offset;
866 	int error;
867 	struct file *f;
868 	struct mm_struct *mm = vma->vm_mm;
869 
870 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
871 
872 	if (vma->vm_flags & VM_LOCKED)
873 		return -EINVAL;
874 
875 	f = vma->vm_file;
876 
877 	if (!f || !f->f_mapping || !f->f_mapping->host) {
878 			return -EINVAL;
879 	}
880 
881 	if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
882 		return -EACCES;
883 
884 	offset = (loff_t)(start - vma->vm_start)
885 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
886 
887 	/*
888 	 * Filesystem's fallocate may need to take i_mutex.  We need to
889 	 * explicitly grab a reference because the vma (and hence the
890 	 * vma's reference to the file) can go away as soon as we drop
891 	 * mmap_lock.
892 	 */
893 	get_file(f);
894 	if (userfaultfd_remove(vma, start, end)) {
895 		/* mmap_lock was not released by userfaultfd_remove() */
896 		mmap_read_unlock(mm);
897 	}
898 	error = vfs_fallocate(f,
899 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
900 				offset, end - start);
901 	fput(f);
902 	mmap_read_lock(mm);
903 	return error;
904 }
905 
906 /*
907  * Apply an madvise behavior to a region of a vma.  madvise_update_vma
908  * will handle splitting a vm area into separate areas, each area with its own
909  * behavior.
910  */
madvise_vma_behavior(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long behavior)911 static int madvise_vma_behavior(struct vm_area_struct *vma,
912 				struct vm_area_struct **prev,
913 				unsigned long start, unsigned long end,
914 				unsigned long behavior)
915 {
916 	int error;
917 	unsigned long new_flags = vma->vm_flags;
918 
919 	switch (behavior) {
920 	case MADV_REMOVE:
921 		return madvise_remove(vma, prev, start, end);
922 	case MADV_WILLNEED:
923 		return madvise_willneed(vma, prev, start, end);
924 	case MADV_COLD:
925 		return madvise_cold(vma, prev, start, end);
926 	case MADV_PAGEOUT:
927 		return madvise_pageout(vma, prev, start, end);
928 	case MADV_FREE:
929 	case MADV_DONTNEED:
930 		return madvise_dontneed_free(vma, prev, start, end, behavior);
931 	case MADV_NORMAL:
932 		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
933 		break;
934 	case MADV_SEQUENTIAL:
935 		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
936 		break;
937 	case MADV_RANDOM:
938 		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
939 		break;
940 	case MADV_DONTFORK:
941 		new_flags |= VM_DONTCOPY;
942 		break;
943 	case MADV_DOFORK:
944 		if (vma->vm_flags & VM_IO)
945 			return -EINVAL;
946 		new_flags &= ~VM_DONTCOPY;
947 		break;
948 	case MADV_WIPEONFORK:
949 		/* MADV_WIPEONFORK is only supported on anonymous memory. */
950 		if (vma->vm_file || vma->vm_flags & VM_SHARED)
951 			return -EINVAL;
952 		new_flags |= VM_WIPEONFORK;
953 		break;
954 	case MADV_KEEPONFORK:
955 		new_flags &= ~VM_WIPEONFORK;
956 		break;
957 	case MADV_DONTDUMP:
958 		new_flags |= VM_DONTDUMP;
959 		break;
960 	case MADV_DODUMP:
961 		if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL)
962 			return -EINVAL;
963 		new_flags &= ~VM_DONTDUMP;
964 		break;
965 	case MADV_MERGEABLE:
966 	case MADV_UNMERGEABLE:
967 		error = ksm_madvise(vma, start, end, behavior, &new_flags);
968 		if (error)
969 			goto out;
970 		break;
971 	case MADV_HUGEPAGE:
972 	case MADV_NOHUGEPAGE:
973 		error = hugepage_madvise(vma, &new_flags, behavior);
974 		if (error)
975 			goto out;
976 		break;
977 	}
978 
979 	error = madvise_update_vma(vma, prev, start, end, new_flags,
980 				   vma_anon_name(vma));
981 
982 out:
983 	/*
984 	 * madvise() returns EAGAIN if kernel resources, such as
985 	 * slab, are temporarily unavailable.
986 	 */
987 	if (error == -ENOMEM)
988 		error = -EAGAIN;
989 	return error;
990 }
991 
992 #ifdef CONFIG_MEMORY_FAILURE
993 /*
994  * Error injection support for memory error handling.
995  */
madvise_inject_error(int behavior,unsigned long start,unsigned long end)996 static int madvise_inject_error(int behavior,
997 		unsigned long start, unsigned long end)
998 {
999 	struct zone *zone;
1000 	unsigned long size;
1001 
1002 	if (!capable(CAP_SYS_ADMIN))
1003 		return -EPERM;
1004 
1005 
1006 	for (; start < end; start += size) {
1007 		unsigned long pfn;
1008 		struct page *page;
1009 		int ret;
1010 
1011 		ret = get_user_pages_fast(start, 1, 0, &page);
1012 		if (ret != 1)
1013 			return ret;
1014 		pfn = page_to_pfn(page);
1015 
1016 		/*
1017 		 * When soft offlining hugepages, after migrating the page
1018 		 * we dissolve it, therefore in the second loop "page" will
1019 		 * no longer be a compound page.
1020 		 */
1021 		size = page_size(compound_head(page));
1022 
1023 		if (behavior == MADV_SOFT_OFFLINE) {
1024 			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1025 				 pfn, start);
1026 			ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1027 		} else {
1028 			pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1029 				 pfn, start);
1030 			ret = memory_failure(pfn, MF_COUNT_INCREASED);
1031 		}
1032 
1033 		if (ret)
1034 			return ret;
1035 	}
1036 
1037 	/* Ensure that all poisoned pages are removed from per-cpu lists */
1038 	for_each_populated_zone(zone)
1039 		drain_all_pages(zone);
1040 
1041 	return 0;
1042 }
1043 #endif
1044 
1045 static bool
madvise_behavior_valid(int behavior)1046 madvise_behavior_valid(int behavior)
1047 {
1048 	switch (behavior) {
1049 	case MADV_DOFORK:
1050 	case MADV_DONTFORK:
1051 	case MADV_NORMAL:
1052 	case MADV_SEQUENTIAL:
1053 	case MADV_RANDOM:
1054 	case MADV_REMOVE:
1055 	case MADV_WILLNEED:
1056 	case MADV_DONTNEED:
1057 	case MADV_FREE:
1058 	case MADV_COLD:
1059 	case MADV_PAGEOUT:
1060 #ifdef CONFIG_KSM
1061 	case MADV_MERGEABLE:
1062 	case MADV_UNMERGEABLE:
1063 #endif
1064 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1065 	case MADV_HUGEPAGE:
1066 	case MADV_NOHUGEPAGE:
1067 #endif
1068 	case MADV_DONTDUMP:
1069 	case MADV_DODUMP:
1070 	case MADV_WIPEONFORK:
1071 	case MADV_KEEPONFORK:
1072 #ifdef CONFIG_MEMORY_FAILURE
1073 	case MADV_SOFT_OFFLINE:
1074 	case MADV_HWPOISON:
1075 #endif
1076 		return true;
1077 
1078 	default:
1079 		return false;
1080 	}
1081 }
1082 
1083 static bool
process_madvise_behavior_valid(int behavior)1084 process_madvise_behavior_valid(int behavior)
1085 {
1086 	switch (behavior) {
1087 	case MADV_COLD:
1088 	case MADV_PAGEOUT:
1089 		return true;
1090 	default:
1091 		return false;
1092 	}
1093 }
1094 
1095 /*
1096  * Walk the vmas in range [start,end), and call the visit function on each one.
1097  * The visit function will get start and end parameters that cover the overlap
1098  * between the current vma and the original range.  Any unmapped regions in the
1099  * original range will result in this function returning -ENOMEM while still
1100  * calling the visit function on all of the existing vmas in the range.
1101  * Must be called with the mmap_lock held for reading or writing.
1102  */
1103 static
madvise_walk_vmas(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned long arg,int (* visit)(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long arg))1104 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1105 		      unsigned long end, unsigned long arg,
1106 		      int (*visit)(struct vm_area_struct *vma,
1107 				   struct vm_area_struct **prev, unsigned long start,
1108 				   unsigned long end, unsigned long arg))
1109 {
1110 	struct vm_area_struct *vma;
1111 	struct vm_area_struct *prev;
1112 	unsigned long tmp;
1113 	int unmapped_error = 0;
1114 
1115 	/*
1116 	 * If the interval [start,end) covers some unmapped address
1117 	 * ranges, just ignore them, but return -ENOMEM at the end.
1118 	 * - different from the way of handling in mlock etc.
1119 	 */
1120 	vma = find_vma_prev(mm, start, &prev);
1121 	if (vma && start > vma->vm_start)
1122 		prev = vma;
1123 
1124 	for (;;) {
1125 		int error;
1126 
1127 		/* Still start < end. */
1128 		if (!vma)
1129 			return -ENOMEM;
1130 
1131 		/* Here start < (end|vma->vm_end). */
1132 		if (start < vma->vm_start) {
1133 			unmapped_error = -ENOMEM;
1134 			start = vma->vm_start;
1135 			if (start >= end)
1136 				break;
1137 		}
1138 
1139 		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1140 		tmp = vma->vm_end;
1141 		if (end < tmp)
1142 			tmp = end;
1143 
1144 		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1145 		error = visit(vma, &prev, start, tmp, arg);
1146 		if (error)
1147 			return error;
1148 		start = tmp;
1149 		if (prev && start < prev->vm_end)
1150 			start = prev->vm_end;
1151 		if (start >= end)
1152 			break;
1153 		if (prev)
1154 			vma = prev->vm_next;
1155 		else	/* madvise_remove dropped mmap_lock */
1156 			vma = find_vma(mm, start);
1157 	}
1158 
1159 	return unmapped_error;
1160 }
1161 
1162 #ifdef CONFIG_ANON_VMA_NAME
madvise_vma_anon_name(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long name)1163 static int madvise_vma_anon_name(struct vm_area_struct *vma,
1164 				 struct vm_area_struct **prev,
1165 				 unsigned long start, unsigned long end,
1166 				 unsigned long name)
1167 {
1168 	int error;
1169 
1170 	/* Only anonymous mappings can be named */
1171 	if (vma->vm_file)
1172 		return -EBADF;
1173 
1174 	error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1175 				   (const char *)name);
1176 
1177 	/*
1178 	 * madvise() returns EAGAIN if kernel resources, such as
1179 	 * slab, are temporarily unavailable.
1180 	 */
1181 	if (error == -ENOMEM)
1182 		error = -EAGAIN;
1183 	return error;
1184 }
1185 
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,const char * name)1186 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1187 			  unsigned long len_in, const char *name)
1188 {
1189 	unsigned long end;
1190 	unsigned long len;
1191 
1192 	if (start & ~PAGE_MASK)
1193 		return -EINVAL;
1194 	len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1195 
1196 	/* Check to see whether len was rounded up from small -ve to zero */
1197 	if (len_in && !len)
1198 		return -EINVAL;
1199 
1200 	end = start + len;
1201 	if (end < start)
1202 		return -EINVAL;
1203 
1204 	if (end == start)
1205 		return 0;
1206 
1207 	return madvise_walk_vmas(mm, start, end, (unsigned long)name,
1208 				 madvise_vma_anon_name);
1209 }
1210 #endif /* CONFIG_ANON_VMA_NAME */
1211 /*
1212  * The madvise(2) system call.
1213  *
1214  * Applications can use madvise() to advise the kernel how it should
1215  * handle paging I/O in this VM area.  The idea is to help the kernel
1216  * use appropriate read-ahead and caching techniques.  The information
1217  * provided is advisory only, and can be safely disregarded by the
1218  * kernel without affecting the correct operation of the application.
1219  *
1220  * behavior values:
1221  *  MADV_NORMAL - the default behavior is to read clusters.  This
1222  *		results in some read-ahead and read-behind.
1223  *  MADV_RANDOM - the system should read the minimum amount of data
1224  *		on any access, since it is unlikely that the appli-
1225  *		cation will need more than what it asks for.
1226  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1227  *		once, so they can be aggressively read ahead, and
1228  *		can be freed soon after they are accessed.
1229  *  MADV_WILLNEED - the application is notifying the system to read
1230  *		some pages ahead.
1231  *  MADV_DONTNEED - the application is finished with the given range,
1232  *		so the kernel can free resources associated with it.
1233  *  MADV_FREE - the application marks pages in the given range as lazy free,
1234  *		where actual purges are postponed until memory pressure happens.
1235  *  MADV_REMOVE - the application wants to free up the given range of
1236  *		pages and associated backing store.
1237  *  MADV_DONTFORK - omit this area from child's address space when forking:
1238  *		typically, to avoid COWing pages pinned by get_user_pages().
1239  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1240  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1241  *              range after a fork.
1242  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1243  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1244  *		were corrupted by unrecoverable hardware memory failure.
1245  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1246  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1247  *		this area with pages of identical content from other such areas.
1248  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1249  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1250  *		huge pages in the future. Existing pages might be coalesced and
1251  *		new pages might be allocated as THP.
1252  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1253  *		transparent huge pages so the existing pages will not be
1254  *		coalesced into THP and new pages will not be allocated as THP.
1255  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1256  *		from being included in its core dump.
1257  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1258  *  MADV_COLD - the application is not expected to use this memory soon,
1259  *		deactivate pages in this range so that they can be reclaimed
1260  *		easily if memory pressure hanppens.
1261  *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1262  *		page out the pages in this range immediately.
1263  *
1264  * return values:
1265  *  zero    - success
1266  *  -EINVAL - start + len < 0, start is not page-aligned,
1267  *		"behavior" is not a valid value, or application
1268  *		is attempting to release locked or shared pages,
1269  *		or the specified address range includes file, Huge TLB,
1270  *		MAP_SHARED or VMPFNMAP range.
1271  *  -ENOMEM - addresses in the specified range are not currently
1272  *		mapped, or are outside the AS of the process.
1273  *  -EIO    - an I/O error occurred while paging in data.
1274  *  -EBADF  - map exists, but area maps something that isn't a file.
1275  *  -EAGAIN - a kernel resource was temporarily unavailable.
1276  */
do_madvise(struct mm_struct * mm,unsigned long start,size_t len_in,int behavior)1277 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1278 {
1279 	unsigned long end;
1280 	int error;
1281 	int write;
1282 	size_t len;
1283 	struct blk_plug plug;
1284 
1285 	start = untagged_addr(start);
1286 
1287 	if (!madvise_behavior_valid(behavior))
1288 		return -EINVAL;
1289 
1290 	if (!PAGE_ALIGNED(start))
1291 		return -EINVAL;
1292 	len = PAGE_ALIGN(len_in);
1293 
1294 	/* Check to see whether len was rounded up from small -ve to zero */
1295 	if (len_in && !len)
1296 		return -EINVAL;
1297 
1298 	end = start + len;
1299 	if (end < start)
1300 		return -EINVAL;
1301 
1302 	if (end == start)
1303 		return 0;
1304 
1305 #ifdef CONFIG_MEMORY_FAILURE
1306 	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1307 		return madvise_inject_error(behavior, start, start + len_in);
1308 #endif
1309 
1310 	write = madvise_need_mmap_write(behavior);
1311 	if (write) {
1312 		if (mmap_write_lock_killable(mm))
1313 			return -EINTR;
1314 	} else {
1315 		mmap_read_lock(mm);
1316 	}
1317 
1318 	blk_start_plug(&plug);
1319 	error = madvise_walk_vmas(mm, start, end, behavior,
1320 			madvise_vma_behavior);
1321 	blk_finish_plug(&plug);
1322 	if (write)
1323 		mmap_write_unlock(mm);
1324 	else
1325 		mmap_read_unlock(mm);
1326 
1327 	return error;
1328 }
1329 
SYSCALL_DEFINE3(madvise,unsigned long,start,size_t,len_in,int,behavior)1330 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1331 {
1332 	return do_madvise(current->mm, start, len_in, behavior);
1333 }
1334 
SYSCALL_DEFINE5(process_madvise,int,pidfd,const struct iovec __user *,vec,size_t,vlen,int,behavior,unsigned int,flags)1335 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1336 		size_t, vlen, int, behavior, unsigned int, flags)
1337 {
1338 	ssize_t ret;
1339 	struct iovec iovstack[UIO_FASTIOV], iovec;
1340 	struct iovec *iov = iovstack;
1341 	struct iov_iter iter;
1342 	struct pid *pid;
1343 	struct task_struct *task;
1344 	struct mm_struct *mm;
1345 	size_t total_len;
1346 	unsigned int f_flags;
1347 
1348 	if (flags != 0) {
1349 		ret = -EINVAL;
1350 		goto out;
1351 	}
1352 
1353 	ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1354 	if (ret < 0)
1355 		goto out;
1356 
1357 	pid = pidfd_get_pid(pidfd, &f_flags);
1358 	if (IS_ERR(pid)) {
1359 		ret = PTR_ERR(pid);
1360 		goto free_iov;
1361 	}
1362 
1363 	task = get_pid_task(pid, PIDTYPE_PID);
1364 	if (!task) {
1365 		ret = -ESRCH;
1366 		goto put_pid;
1367 	}
1368 
1369 	if (!process_madvise_behavior_valid(behavior)) {
1370 		ret = -EINVAL;
1371 		goto release_task;
1372 	}
1373 
1374 	/* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1375 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1376 	if (IS_ERR_OR_NULL(mm)) {
1377 		ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1378 		goto release_task;
1379 	}
1380 
1381 	/*
1382 	 * Require CAP_SYS_NICE for influencing process performance. Note that
1383 	 * only non-destructive hints are currently supported.
1384 	 */
1385 	if (!capable(CAP_SYS_NICE)) {
1386 		ret = -EPERM;
1387 		goto release_mm;
1388 	}
1389 
1390 	total_len = iov_iter_count(&iter);
1391 
1392 	while (iov_iter_count(&iter)) {
1393 		iovec = iov_iter_iovec(&iter);
1394 		ret = do_madvise(mm, (unsigned long)iovec.iov_base,
1395 					iovec.iov_len, behavior);
1396 		if (ret < 0)
1397 			break;
1398 		iov_iter_advance(&iter, iovec.iov_len);
1399 	}
1400 
1401 	if (ret == 0)
1402 		ret = total_len - iov_iter_count(&iter);
1403 
1404 release_mm:
1405 	mmput(mm);
1406 release_task:
1407 	put_task_struct(task);
1408 put_pid:
1409 	put_pid(pid);
1410 free_iov:
1411 	kfree(iov);
1412 out:
1413 	return ret;
1414 }
1415