1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 /*
61 * migrate_prep() needs to be called before we start compiling a list of pages
62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63 * undesirable, use migrate_prep_local()
64 */
migrate_prep(void)65 int migrate_prep(void)
66 {
67 /*
68 * Clear the LRU lists so pages can be isolated.
69 * Note that pages may be moved off the LRU after we have
70 * drained them. Those pages will fail to migrate like other
71 * pages that may be busy.
72 */
73 lru_add_drain_all();
74
75 return 0;
76 }
77
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
migrate_prep_local(void)79 int migrate_prep_local(void)
80 {
81 lru_add_drain();
82
83 return 0;
84 }
85
isolate_movable_page(struct page * page,isolate_mode_t mode)86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
87 {
88 struct address_space *mapping;
89
90 /*
91 * Avoid burning cycles with pages that are yet under __free_pages(),
92 * or just got freed under us.
93 *
94 * In case we 'win' a race for a movable page being freed under us and
95 * raise its refcount preventing __free_pages() from doing its job
96 * the put_page() at the end of this block will take care of
97 * release this page, thus avoiding a nasty leakage.
98 */
99 if (unlikely(!get_page_unless_zero(page)))
100 goto out;
101
102 /*
103 * Check PageMovable before holding a PG_lock because page's owner
104 * assumes anybody doesn't touch PG_lock of newly allocated page
105 * so unconditionally grabbing the lock ruins page's owner side.
106 */
107 if (unlikely(!__PageMovable(page)))
108 goto out_putpage;
109 /*
110 * As movable pages are not isolated from LRU lists, concurrent
111 * compaction threads can race against page migration functions
112 * as well as race against the releasing a page.
113 *
114 * In order to avoid having an already isolated movable page
115 * being (wrongly) re-isolated while it is under migration,
116 * or to avoid attempting to isolate pages being released,
117 * lets be sure we have the page lock
118 * before proceeding with the movable page isolation steps.
119 */
120 if (unlikely(!trylock_page(page)))
121 goto out_putpage;
122
123 if (!PageMovable(page) || PageIsolated(page))
124 goto out_no_isolated;
125
126 mapping = page_mapping(page);
127 VM_BUG_ON_PAGE(!mapping, page);
128
129 if (!mapping->a_ops->isolate_page(page, mode))
130 goto out_no_isolated;
131
132 /* Driver shouldn't use PG_isolated bit of page->flags */
133 WARN_ON_ONCE(PageIsolated(page));
134 __SetPageIsolated(page);
135 unlock_page(page);
136
137 return 0;
138
139 out_no_isolated:
140 unlock_page(page);
141 out_putpage:
142 put_page(page);
143 out:
144 return -EBUSY;
145 }
146
147 /* It should be called on page which is PG_movable */
putback_movable_page(struct page * page)148 void putback_movable_page(struct page *page)
149 {
150 struct address_space *mapping;
151
152 VM_BUG_ON_PAGE(!PageLocked(page), page);
153 VM_BUG_ON_PAGE(!PageMovable(page), page);
154 VM_BUG_ON_PAGE(!PageIsolated(page), page);
155
156 mapping = page_mapping(page);
157 mapping->a_ops->putback_page(page);
158 __ClearPageIsolated(page);
159 }
160
161 /*
162 * Put previously isolated pages back onto the appropriate lists
163 * from where they were once taken off for compaction/migration.
164 *
165 * This function shall be used whenever the isolated pageset has been
166 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167 * and isolate_huge_page().
168 */
putback_movable_pages(struct list_head * l)169 void putback_movable_pages(struct list_head *l)
170 {
171 struct page *page;
172 struct page *page2;
173
174 list_for_each_entry_safe(page, page2, l, lru) {
175 if (unlikely(PageHuge(page))) {
176 putback_active_hugepage(page);
177 continue;
178 }
179 list_del(&page->lru);
180 /*
181 * We isolated non-lru movable page so here we can use
182 * __PageMovable because LRU page's mapping cannot have
183 * PAGE_MAPPING_MOVABLE.
184 */
185 if (unlikely(__PageMovable(page))) {
186 VM_BUG_ON_PAGE(!PageIsolated(page), page);
187 lock_page(page);
188 if (PageMovable(page))
189 putback_movable_page(page);
190 else
191 __ClearPageIsolated(page);
192 unlock_page(page);
193 put_page(page);
194 } else {
195 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196 page_is_file_lru(page), -thp_nr_pages(page));
197 putback_lru_page(page);
198 }
199 }
200 }
201
202 /*
203 * Restore a potential migration pte to a working pte entry
204 */
remove_migration_pte(struct page * page,struct vm_area_struct * vma,unsigned long addr,void * old)205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206 unsigned long addr, void *old)
207 {
208 struct page_vma_mapped_walk pvmw = {
209 .page = old,
210 .vma = vma,
211 .address = addr,
212 .flags = PVMW_SYNC | PVMW_MIGRATION,
213 };
214 struct page *new;
215 pte_t pte;
216 swp_entry_t entry;
217
218 VM_BUG_ON_PAGE(PageTail(page), page);
219 while (page_vma_mapped_walk(&pvmw)) {
220 if (PageKsm(page))
221 new = page;
222 else
223 new = page - pvmw.page->index +
224 linear_page_index(vma, pvmw.address);
225
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227 /* PMD-mapped THP migration entry */
228 if (!pvmw.pte) {
229 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230 remove_migration_pmd(&pvmw, new);
231 continue;
232 }
233 #endif
234
235 get_page(new);
236 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237 if (pte_swp_soft_dirty(*pvmw.pte))
238 pte = pte_mksoft_dirty(pte);
239
240 /*
241 * Recheck VMA as permissions can change since migration started
242 */
243 entry = pte_to_swp_entry(*pvmw.pte);
244 if (is_write_migration_entry(entry))
245 pte = maybe_mkwrite(pte, vma);
246 else if (pte_swp_uffd_wp(*pvmw.pte))
247 pte = pte_mkuffd_wp(pte);
248
249 if (unlikely(is_device_private_page(new))) {
250 entry = make_device_private_entry(new, pte_write(pte));
251 pte = swp_entry_to_pte(entry);
252 if (pte_swp_soft_dirty(*pvmw.pte))
253 pte = pte_swp_mksoft_dirty(pte);
254 if (pte_swp_uffd_wp(*pvmw.pte))
255 pte = pte_swp_mkuffd_wp(pte);
256 }
257
258 #ifdef CONFIG_HUGETLB_PAGE
259 if (PageHuge(new)) {
260 pte = pte_mkhuge(pte);
261 pte = arch_make_huge_pte(pte, vma, new, 0);
262 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
263 if (PageAnon(new))
264 hugepage_add_anon_rmap(new, vma, pvmw.address);
265 else
266 page_dup_rmap(new, true);
267 } else
268 #endif
269 {
270 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
271
272 if (PageAnon(new))
273 page_add_anon_rmap(new, vma, pvmw.address, false);
274 else
275 page_add_file_rmap(new, false);
276 }
277 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278 mlock_vma_page(new);
279
280 if (PageTransHuge(page) && PageMlocked(page))
281 clear_page_mlock(page);
282
283 /* No need to invalidate - it was non-present before */
284 update_mmu_cache(vma, pvmw.address, pvmw.pte);
285 }
286
287 return true;
288 }
289
290 /*
291 * Get rid of all migration entries and replace them by
292 * references to the indicated page.
293 */
remove_migration_ptes(struct page * old,struct page * new,bool locked)294 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
295 {
296 struct rmap_walk_control rwc = {
297 .rmap_one = remove_migration_pte,
298 .arg = old,
299 };
300
301 if (locked)
302 rmap_walk_locked(new, &rwc);
303 else
304 rmap_walk(new, &rwc);
305 }
306
307 /*
308 * Something used the pte of a page under migration. We need to
309 * get to the page and wait until migration is finished.
310 * When we return from this function the fault will be retried.
311 */
__migration_entry_wait(struct mm_struct * mm,pte_t * ptep,spinlock_t * ptl)312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
313 spinlock_t *ptl)
314 {
315 pte_t pte;
316 swp_entry_t entry;
317 struct page *page;
318
319 spin_lock(ptl);
320 pte = *ptep;
321 if (!is_swap_pte(pte))
322 goto out;
323
324 entry = pte_to_swp_entry(pte);
325 if (!is_migration_entry(entry))
326 goto out;
327
328 page = migration_entry_to_page(entry);
329 page = compound_head(page);
330
331 /*
332 * Once page cache replacement of page migration started, page_count
333 * is zero; but we must not call put_and_wait_on_page_locked() without
334 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
335 */
336 if (!get_page_unless_zero(page))
337 goto out;
338 pte_unmap_unlock(ptep, ptl);
339 put_and_wait_on_page_locked(page);
340 return;
341 out:
342 pte_unmap_unlock(ptep, ptl);
343 }
344
migration_entry_wait(struct mm_struct * mm,pmd_t * pmd,unsigned long address)345 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
346 unsigned long address)
347 {
348 spinlock_t *ptl = pte_lockptr(mm, pmd);
349 pte_t *ptep = pte_offset_map(pmd, address);
350 __migration_entry_wait(mm, ptep, ptl);
351 }
352
migration_entry_wait_huge(struct vm_area_struct * vma,struct mm_struct * mm,pte_t * pte)353 void migration_entry_wait_huge(struct vm_area_struct *vma,
354 struct mm_struct *mm, pte_t *pte)
355 {
356 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
357 __migration_entry_wait(mm, pte, ptl);
358 }
359
360 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_migration_entry_wait(struct mm_struct * mm,pmd_t * pmd)361 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
362 {
363 spinlock_t *ptl;
364 struct page *page;
365
366 ptl = pmd_lock(mm, pmd);
367 if (!is_pmd_migration_entry(*pmd))
368 goto unlock;
369 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
370 if (!get_page_unless_zero(page))
371 goto unlock;
372 spin_unlock(ptl);
373 put_and_wait_on_page_locked(page);
374 return;
375 unlock:
376 spin_unlock(ptl);
377 }
378 #endif
379
expected_page_refs(struct address_space * mapping,struct page * page)380 static int expected_page_refs(struct address_space *mapping, struct page *page)
381 {
382 int expected_count = 1;
383
384 /*
385 * Device private pages have an extra refcount as they are
386 * ZONE_DEVICE pages.
387 */
388 expected_count += is_device_private_page(page);
389 if (mapping)
390 expected_count += thp_nr_pages(page) + page_has_private(page);
391
392 return expected_count;
393 }
394
395 /*
396 * Replace the page in the mapping.
397 *
398 * The number of remaining references must be:
399 * 1 for anonymous pages without a mapping
400 * 2 for pages with a mapping
401 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
402 */
migrate_page_move_mapping(struct address_space * mapping,struct page * newpage,struct page * page,int extra_count)403 int migrate_page_move_mapping(struct address_space *mapping,
404 struct page *newpage, struct page *page, int extra_count)
405 {
406 XA_STATE(xas, &mapping->i_pages, page_index(page));
407 struct zone *oldzone, *newzone;
408 int dirty;
409 int expected_count = expected_page_refs(mapping, page) + extra_count;
410 int nr = thp_nr_pages(page);
411
412 if (!mapping) {
413 /* Anonymous page without mapping */
414 if (page_count(page) != expected_count)
415 return -EAGAIN;
416
417 /* No turning back from here */
418 newpage->index = page->index;
419 newpage->mapping = page->mapping;
420 if (PageSwapBacked(page))
421 __SetPageSwapBacked(newpage);
422
423 return MIGRATEPAGE_SUCCESS;
424 }
425
426 oldzone = page_zone(page);
427 newzone = page_zone(newpage);
428
429 xas_lock_irq(&xas);
430 if (page_count(page) != expected_count || xas_load(&xas) != page) {
431 xas_unlock_irq(&xas);
432 return -EAGAIN;
433 }
434
435 if (!page_ref_freeze(page, expected_count)) {
436 xas_unlock_irq(&xas);
437 return -EAGAIN;
438 }
439
440 /*
441 * Now we know that no one else is looking at the page:
442 * no turning back from here.
443 */
444 newpage->index = page->index;
445 newpage->mapping = page->mapping;
446 page_ref_add(newpage, nr); /* add cache reference */
447 if (PageSwapBacked(page)) {
448 __SetPageSwapBacked(newpage);
449 if (PageSwapCache(page)) {
450 SetPageSwapCache(newpage);
451 set_page_private(newpage, page_private(page));
452 }
453 } else {
454 VM_BUG_ON_PAGE(PageSwapCache(page), page);
455 }
456
457 /* Move dirty while page refs frozen and newpage not yet exposed */
458 dirty = PageDirty(page);
459 if (dirty) {
460 ClearPageDirty(page);
461 SetPageDirty(newpage);
462 }
463
464 xas_store(&xas, newpage);
465 if (PageTransHuge(page)) {
466 int i;
467
468 for (i = 1; i < nr; i++) {
469 xas_next(&xas);
470 xas_store(&xas, newpage);
471 }
472 }
473
474 /*
475 * Drop cache reference from old page by unfreezing
476 * to one less reference.
477 * We know this isn't the last reference.
478 */
479 page_ref_unfreeze(page, expected_count - nr);
480
481 xas_unlock(&xas);
482 /* Leave irq disabled to prevent preemption while updating stats */
483
484 /*
485 * If moved to a different zone then also account
486 * the page for that zone. Other VM counters will be
487 * taken care of when we establish references to the
488 * new page and drop references to the old page.
489 *
490 * Note that anonymous pages are accounted for
491 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
492 * are mapped to swap space.
493 */
494 if (newzone != oldzone) {
495 struct lruvec *old_lruvec, *new_lruvec;
496 struct mem_cgroup *memcg;
497
498 memcg = page_memcg(page);
499 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
500 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
501
502 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
503 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
504 if (PageSwapBacked(page) && !PageSwapCache(page)) {
505 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
506 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
507 }
508 if (dirty && mapping_can_writeback(mapping)) {
509 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
510 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
511 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
512 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
513 }
514 }
515 local_irq_enable();
516
517 return MIGRATEPAGE_SUCCESS;
518 }
519 EXPORT_SYMBOL(migrate_page_move_mapping);
520
521 /*
522 * The expected number of remaining references is the same as that
523 * of migrate_page_move_mapping().
524 */
migrate_huge_page_move_mapping(struct address_space * mapping,struct page * newpage,struct page * page)525 int migrate_huge_page_move_mapping(struct address_space *mapping,
526 struct page *newpage, struct page *page)
527 {
528 XA_STATE(xas, &mapping->i_pages, page_index(page));
529 int expected_count;
530
531 xas_lock_irq(&xas);
532 expected_count = 2 + page_has_private(page);
533 if (page_count(page) != expected_count || xas_load(&xas) != page) {
534 xas_unlock_irq(&xas);
535 return -EAGAIN;
536 }
537
538 if (!page_ref_freeze(page, expected_count)) {
539 xas_unlock_irq(&xas);
540 return -EAGAIN;
541 }
542
543 newpage->index = page->index;
544 newpage->mapping = page->mapping;
545
546 get_page(newpage);
547
548 xas_store(&xas, newpage);
549
550 page_ref_unfreeze(page, expected_count - 1);
551
552 xas_unlock_irq(&xas);
553
554 return MIGRATEPAGE_SUCCESS;
555 }
556
557 /*
558 * Gigantic pages are so large that we do not guarantee that page++ pointer
559 * arithmetic will work across the entire page. We need something more
560 * specialized.
561 */
__copy_gigantic_page(struct page * dst,struct page * src,int nr_pages)562 static void __copy_gigantic_page(struct page *dst, struct page *src,
563 int nr_pages)
564 {
565 int i;
566 struct page *dst_base = dst;
567 struct page *src_base = src;
568
569 for (i = 0; i < nr_pages; ) {
570 cond_resched();
571 copy_highpage(dst, src);
572
573 i++;
574 dst = mem_map_next(dst, dst_base, i);
575 src = mem_map_next(src, src_base, i);
576 }
577 }
578
copy_huge_page(struct page * dst,struct page * src)579 static void copy_huge_page(struct page *dst, struct page *src)
580 {
581 int i;
582 int nr_pages;
583
584 if (PageHuge(src)) {
585 /* hugetlbfs page */
586 struct hstate *h = page_hstate(src);
587 nr_pages = pages_per_huge_page(h);
588
589 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
590 __copy_gigantic_page(dst, src, nr_pages);
591 return;
592 }
593 } else {
594 /* thp page */
595 BUG_ON(!PageTransHuge(src));
596 nr_pages = thp_nr_pages(src);
597 }
598
599 for (i = 0; i < nr_pages; i++) {
600 cond_resched();
601 copy_highpage(dst + i, src + i);
602 }
603 }
604
605 /*
606 * Copy the page to its new location
607 */
migrate_page_states(struct page * newpage,struct page * page)608 void migrate_page_states(struct page *newpage, struct page *page)
609 {
610 int cpupid;
611
612 if (PageError(page))
613 SetPageError(newpage);
614 if (PageReferenced(page))
615 SetPageReferenced(newpage);
616 if (PageUptodate(page))
617 SetPageUptodate(newpage);
618 if (TestClearPageActive(page)) {
619 VM_BUG_ON_PAGE(PageUnevictable(page), page);
620 SetPageActive(newpage);
621 } else if (TestClearPageUnevictable(page))
622 SetPageUnevictable(newpage);
623 if (PageWorkingset(page))
624 SetPageWorkingset(newpage);
625 if (PageChecked(page))
626 SetPageChecked(newpage);
627 if (PageMappedToDisk(page))
628 SetPageMappedToDisk(newpage);
629
630 /* Move dirty on pages not done by migrate_page_move_mapping() */
631 if (PageDirty(page))
632 SetPageDirty(newpage);
633
634 if (page_is_young(page))
635 set_page_young(newpage);
636 if (page_is_idle(page))
637 set_page_idle(newpage);
638
639 /*
640 * Copy NUMA information to the new page, to prevent over-eager
641 * future migrations of this same page.
642 */
643 cpupid = page_cpupid_xchg_last(page, -1);
644 page_cpupid_xchg_last(newpage, cpupid);
645
646 ksm_migrate_page(newpage, page);
647 /*
648 * Please do not reorder this without considering how mm/ksm.c's
649 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
650 */
651 if (PageSwapCache(page))
652 ClearPageSwapCache(page);
653 ClearPagePrivate(page);
654 set_page_private(page, 0);
655
656 /*
657 * If any waiters have accumulated on the new page then
658 * wake them up.
659 */
660 if (PageWriteback(newpage))
661 end_page_writeback(newpage);
662
663 /*
664 * PG_readahead shares the same bit with PG_reclaim. The above
665 * end_page_writeback() may clear PG_readahead mistakenly, so set the
666 * bit after that.
667 */
668 if (PageReadahead(page))
669 SetPageReadahead(newpage);
670
671 copy_page_owner(page, newpage);
672
673 if (!PageHuge(page))
674 mem_cgroup_migrate(page, newpage);
675 }
676 EXPORT_SYMBOL(migrate_page_states);
677
migrate_page_copy(struct page * newpage,struct page * page)678 void migrate_page_copy(struct page *newpage, struct page *page)
679 {
680 if (PageHuge(page) || PageTransHuge(page))
681 copy_huge_page(newpage, page);
682 else
683 copy_highpage(newpage, page);
684
685 migrate_page_states(newpage, page);
686 }
687 EXPORT_SYMBOL(migrate_page_copy);
688
689 /************************************************************
690 * Migration functions
691 ***********************************************************/
692
migrate_page_extra(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode,int extra_count)693 int migrate_page_extra(struct address_space *mapping,
694 struct page *newpage, struct page *page,
695 enum migrate_mode mode, int extra_count)
696 {
697 int rc;
698
699 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
700
701 rc = migrate_page_move_mapping(mapping, newpage, page, extra_count);
702
703 if (rc != MIGRATEPAGE_SUCCESS)
704 return rc;
705
706 if (mode != MIGRATE_SYNC_NO_COPY)
707 migrate_page_copy(newpage, page);
708 else
709 migrate_page_states(newpage, page);
710 return MIGRATEPAGE_SUCCESS;
711 }
712
713 /*
714 * Common logic to directly migrate a single LRU page suitable for
715 * pages that do not use PagePrivate/PagePrivate2.
716 *
717 * Pages are locked upon entry and exit.
718 */
migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)719 int migrate_page(struct address_space *mapping,
720 struct page *newpage, struct page *page,
721 enum migrate_mode mode)
722 {
723 return migrate_page_extra(mapping, newpage, page, mode, 0);
724 }
725 EXPORT_SYMBOL(migrate_page);
726
727 #ifdef CONFIG_BLOCK
728 /* Returns true if all buffers are successfully locked */
buffer_migrate_lock_buffers(struct buffer_head * head,enum migrate_mode mode)729 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
730 enum migrate_mode mode)
731 {
732 struct buffer_head *bh = head;
733
734 /* Simple case, sync compaction */
735 if (mode != MIGRATE_ASYNC) {
736 do {
737 lock_buffer(bh);
738 bh = bh->b_this_page;
739
740 } while (bh != head);
741
742 return true;
743 }
744
745 /* async case, we cannot block on lock_buffer so use trylock_buffer */
746 do {
747 if (!trylock_buffer(bh)) {
748 /*
749 * We failed to lock the buffer and cannot stall in
750 * async migration. Release the taken locks
751 */
752 struct buffer_head *failed_bh = bh;
753 bh = head;
754 while (bh != failed_bh) {
755 unlock_buffer(bh);
756 bh = bh->b_this_page;
757 }
758 return false;
759 }
760
761 bh = bh->b_this_page;
762 } while (bh != head);
763 return true;
764 }
765
__buffer_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode,bool check_refs)766 static int __buffer_migrate_page(struct address_space *mapping,
767 struct page *newpage, struct page *page, enum migrate_mode mode,
768 bool check_refs)
769 {
770 struct buffer_head *bh, *head;
771 int rc;
772 int expected_count;
773
774 if (!page_has_buffers(page))
775 return migrate_page(mapping, newpage, page, mode);
776
777 /* Check whether page does not have extra refs before we do more work */
778 expected_count = expected_page_refs(mapping, page);
779 if (page_count(page) != expected_count)
780 return -EAGAIN;
781
782 head = page_buffers(page);
783 if (!buffer_migrate_lock_buffers(head, mode))
784 return -EAGAIN;
785
786 if (check_refs) {
787 bool busy;
788 bool invalidated = false;
789
790 recheck_buffers:
791 busy = false;
792 spin_lock(&mapping->private_lock);
793 bh = head;
794 do {
795 if (atomic_read(&bh->b_count)) {
796 busy = true;
797 break;
798 }
799 bh = bh->b_this_page;
800 } while (bh != head);
801 if (busy) {
802 if (invalidated) {
803 rc = -EAGAIN;
804 goto unlock_buffers;
805 }
806 spin_unlock(&mapping->private_lock);
807 invalidate_bh_lrus();
808 invalidated = true;
809 goto recheck_buffers;
810 }
811 }
812
813 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
814 if (rc != MIGRATEPAGE_SUCCESS)
815 goto unlock_buffers;
816
817 attach_page_private(newpage, detach_page_private(page));
818
819 bh = head;
820 do {
821 set_bh_page(bh, newpage, bh_offset(bh));
822 bh = bh->b_this_page;
823
824 } while (bh != head);
825
826 if (mode != MIGRATE_SYNC_NO_COPY)
827 migrate_page_copy(newpage, page);
828 else
829 migrate_page_states(newpage, page);
830
831 rc = MIGRATEPAGE_SUCCESS;
832 unlock_buffers:
833 if (check_refs)
834 spin_unlock(&mapping->private_lock);
835 bh = head;
836 do {
837 unlock_buffer(bh);
838 bh = bh->b_this_page;
839
840 } while (bh != head);
841
842 return rc;
843 }
844
845 /*
846 * Migration function for pages with buffers. This function can only be used
847 * if the underlying filesystem guarantees that no other references to "page"
848 * exist. For example attached buffer heads are accessed only under page lock.
849 */
buffer_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)850 int buffer_migrate_page(struct address_space *mapping,
851 struct page *newpage, struct page *page, enum migrate_mode mode)
852 {
853 return __buffer_migrate_page(mapping, newpage, page, mode, false);
854 }
855 EXPORT_SYMBOL(buffer_migrate_page);
856
857 /*
858 * Same as above except that this variant is more careful and checks that there
859 * are also no buffer head references. This function is the right one for
860 * mappings where buffer heads are directly looked up and referenced (such as
861 * block device mappings).
862 */
buffer_migrate_page_norefs(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)863 int buffer_migrate_page_norefs(struct address_space *mapping,
864 struct page *newpage, struct page *page, enum migrate_mode mode)
865 {
866 return __buffer_migrate_page(mapping, newpage, page, mode, true);
867 }
868 #endif
869
870 /*
871 * Writeback a page to clean the dirty state
872 */
writeout(struct address_space * mapping,struct page * page)873 static int writeout(struct address_space *mapping, struct page *page)
874 {
875 struct writeback_control wbc = {
876 .sync_mode = WB_SYNC_NONE,
877 .nr_to_write = 1,
878 .range_start = 0,
879 .range_end = LLONG_MAX,
880 .for_reclaim = 1
881 };
882 int rc;
883
884 if (!mapping->a_ops->writepage)
885 /* No write method for the address space */
886 return -EINVAL;
887
888 if (!clear_page_dirty_for_io(page))
889 /* Someone else already triggered a write */
890 return -EAGAIN;
891
892 /*
893 * A dirty page may imply that the underlying filesystem has
894 * the page on some queue. So the page must be clean for
895 * migration. Writeout may mean we loose the lock and the
896 * page state is no longer what we checked for earlier.
897 * At this point we know that the migration attempt cannot
898 * be successful.
899 */
900 remove_migration_ptes(page, page, false);
901
902 rc = mapping->a_ops->writepage(page, &wbc);
903
904 if (rc != AOP_WRITEPAGE_ACTIVATE)
905 /* unlocked. Relock */
906 lock_page(page);
907
908 return (rc < 0) ? -EIO : -EAGAIN;
909 }
910
911 /*
912 * Default handling if a filesystem does not provide a migration function.
913 */
fallback_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)914 static int fallback_migrate_page(struct address_space *mapping,
915 struct page *newpage, struct page *page, enum migrate_mode mode)
916 {
917 if (PageDirty(page)) {
918 /* Only writeback pages in full synchronous migration */
919 switch (mode) {
920 case MIGRATE_SYNC:
921 case MIGRATE_SYNC_NO_COPY:
922 break;
923 default:
924 return -EBUSY;
925 }
926 return writeout(mapping, page);
927 }
928
929 /*
930 * Buffers may be managed in a filesystem specific way.
931 * We must have no buffers or drop them.
932 */
933 if (page_has_private(page) &&
934 !try_to_release_page(page, GFP_KERNEL))
935 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
936
937 return migrate_page(mapping, newpage, page, mode);
938 }
939
940 /*
941 * Move a page to a newly allocated page
942 * The page is locked and all ptes have been successfully removed.
943 *
944 * The new page will have replaced the old page if this function
945 * is successful.
946 *
947 * Return value:
948 * < 0 - error code
949 * MIGRATEPAGE_SUCCESS - success
950 */
move_to_new_page(struct page * newpage,struct page * page,enum migrate_mode mode)951 static int move_to_new_page(struct page *newpage, struct page *page,
952 enum migrate_mode mode)
953 {
954 struct address_space *mapping;
955 int rc = -EAGAIN;
956 bool is_lru = !__PageMovable(page);
957
958 VM_BUG_ON_PAGE(!PageLocked(page), page);
959 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
960
961 mapping = page_mapping(page);
962
963 if (likely(is_lru)) {
964 if (!mapping)
965 rc = migrate_page(mapping, newpage, page, mode);
966 else if (mapping->a_ops->migratepage)
967 /*
968 * Most pages have a mapping and most filesystems
969 * provide a migratepage callback. Anonymous pages
970 * are part of swap space which also has its own
971 * migratepage callback. This is the most common path
972 * for page migration.
973 */
974 rc = mapping->a_ops->migratepage(mapping, newpage,
975 page, mode);
976 else
977 rc = fallback_migrate_page(mapping, newpage,
978 page, mode);
979 } else {
980 /*
981 * In case of non-lru page, it could be released after
982 * isolation step. In that case, we shouldn't try migration.
983 */
984 VM_BUG_ON_PAGE(!PageIsolated(page), page);
985 if (!PageMovable(page)) {
986 rc = MIGRATEPAGE_SUCCESS;
987 __ClearPageIsolated(page);
988 goto out;
989 }
990
991 rc = mapping->a_ops->migratepage(mapping, newpage,
992 page, mode);
993 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
994 !PageIsolated(page));
995 }
996
997 /*
998 * When successful, old pagecache page->mapping must be cleared before
999 * page is freed; but stats require that PageAnon be left as PageAnon.
1000 */
1001 if (rc == MIGRATEPAGE_SUCCESS) {
1002 if (__PageMovable(page)) {
1003 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1004
1005 /*
1006 * We clear PG_movable under page_lock so any compactor
1007 * cannot try to migrate this page.
1008 */
1009 __ClearPageIsolated(page);
1010 }
1011
1012 /*
1013 * Anonymous and movable page->mapping will be cleared by
1014 * free_pages_prepare so don't reset it here for keeping
1015 * the type to work PageAnon, for example.
1016 */
1017 if (!PageMappingFlags(page))
1018 page->mapping = NULL;
1019
1020 if (likely(!is_zone_device_page(newpage)))
1021 flush_dcache_page(newpage);
1022
1023 }
1024 out:
1025 return rc;
1026 }
1027
__unmap_and_move(struct page * page,struct page * newpage,int force,enum migrate_mode mode)1028 static int __unmap_and_move(struct page *page, struct page *newpage,
1029 int force, enum migrate_mode mode)
1030 {
1031 int rc = -EAGAIN;
1032 int page_was_mapped = 0;
1033 struct anon_vma *anon_vma = NULL;
1034 bool is_lru = !__PageMovable(page);
1035
1036 if (!trylock_page(page)) {
1037 if (!force || mode == MIGRATE_ASYNC)
1038 goto out;
1039
1040 /*
1041 * It's not safe for direct compaction to call lock_page.
1042 * For example, during page readahead pages are added locked
1043 * to the LRU. Later, when the IO completes the pages are
1044 * marked uptodate and unlocked. However, the queueing
1045 * could be merging multiple pages for one bio (e.g.
1046 * mpage_readahead). If an allocation happens for the
1047 * second or third page, the process can end up locking
1048 * the same page twice and deadlocking. Rather than
1049 * trying to be clever about what pages can be locked,
1050 * avoid the use of lock_page for direct compaction
1051 * altogether.
1052 */
1053 if (current->flags & PF_MEMALLOC)
1054 goto out;
1055
1056 lock_page(page);
1057 }
1058
1059 if (PageWriteback(page)) {
1060 /*
1061 * Only in the case of a full synchronous migration is it
1062 * necessary to wait for PageWriteback. In the async case,
1063 * the retry loop is too short and in the sync-light case,
1064 * the overhead of stalling is too much
1065 */
1066 switch (mode) {
1067 case MIGRATE_SYNC:
1068 case MIGRATE_SYNC_NO_COPY:
1069 break;
1070 default:
1071 rc = -EBUSY;
1072 goto out_unlock;
1073 }
1074 if (!force)
1075 goto out_unlock;
1076 wait_on_page_writeback(page);
1077 }
1078
1079 /*
1080 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1081 * we cannot notice that anon_vma is freed while we migrates a page.
1082 * This get_anon_vma() delays freeing anon_vma pointer until the end
1083 * of migration. File cache pages are no problem because of page_lock()
1084 * File Caches may use write_page() or lock_page() in migration, then,
1085 * just care Anon page here.
1086 *
1087 * Only page_get_anon_vma() understands the subtleties of
1088 * getting a hold on an anon_vma from outside one of its mms.
1089 * But if we cannot get anon_vma, then we won't need it anyway,
1090 * because that implies that the anon page is no longer mapped
1091 * (and cannot be remapped so long as we hold the page lock).
1092 */
1093 if (PageAnon(page) && !PageKsm(page))
1094 anon_vma = page_get_anon_vma(page);
1095
1096 /*
1097 * Block others from accessing the new page when we get around to
1098 * establishing additional references. We are usually the only one
1099 * holding a reference to newpage at this point. We used to have a BUG
1100 * here if trylock_page(newpage) fails, but would like to allow for
1101 * cases where there might be a race with the previous use of newpage.
1102 * This is much like races on refcount of oldpage: just don't BUG().
1103 */
1104 if (unlikely(!trylock_page(newpage)))
1105 goto out_unlock;
1106
1107 if (unlikely(!is_lru)) {
1108 rc = move_to_new_page(newpage, page, mode);
1109 goto out_unlock_both;
1110 }
1111
1112 /*
1113 * Corner case handling:
1114 * 1. When a new swap-cache page is read into, it is added to the LRU
1115 * and treated as swapcache but it has no rmap yet.
1116 * Calling try_to_unmap() against a page->mapping==NULL page will
1117 * trigger a BUG. So handle it here.
1118 * 2. An orphaned page (see truncate_complete_page) might have
1119 * fs-private metadata. The page can be picked up due to memory
1120 * offlining. Everywhere else except page reclaim, the page is
1121 * invisible to the vm, so the page can not be migrated. So try to
1122 * free the metadata, so the page can be freed.
1123 */
1124 if (!page->mapping) {
1125 VM_BUG_ON_PAGE(PageAnon(page), page);
1126 if (page_has_private(page)) {
1127 try_to_free_buffers(page);
1128 goto out_unlock_both;
1129 }
1130 } else if (page_mapped(page)) {
1131 /* Establish migration ptes */
1132 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1133 page);
1134 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1135 page_was_mapped = 1;
1136 }
1137
1138 if (!page_mapped(page))
1139 rc = move_to_new_page(newpage, page, mode);
1140
1141 if (page_was_mapped)
1142 remove_migration_ptes(page,
1143 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1144
1145 out_unlock_both:
1146 unlock_page(newpage);
1147 out_unlock:
1148 /* Drop an anon_vma reference if we took one */
1149 if (anon_vma)
1150 put_anon_vma(anon_vma);
1151 unlock_page(page);
1152 out:
1153 /*
1154 * If migration is successful, decrease refcount of the newpage
1155 * which will not free the page because new page owner increased
1156 * refcounter. As well, if it is LRU page, add the page to LRU
1157 * list in here. Use the old state of the isolated source page to
1158 * determine if we migrated a LRU page. newpage was already unlocked
1159 * and possibly modified by its owner - don't rely on the page
1160 * state.
1161 */
1162 if (rc == MIGRATEPAGE_SUCCESS) {
1163 if (unlikely(!is_lru))
1164 put_page(newpage);
1165 else
1166 putback_lru_page(newpage);
1167 }
1168
1169 return rc;
1170 }
1171
1172 /*
1173 * Obtain the lock on page, remove all ptes and migrate the page
1174 * to the newly allocated page in newpage.
1175 */
unmap_and_move(new_page_t get_new_page,free_page_t put_new_page,unsigned long private,struct page * page,int force,enum migrate_mode mode,enum migrate_reason reason)1176 static int unmap_and_move(new_page_t get_new_page,
1177 free_page_t put_new_page,
1178 unsigned long private, struct page *page,
1179 int force, enum migrate_mode mode,
1180 enum migrate_reason reason)
1181 {
1182 int rc = MIGRATEPAGE_SUCCESS;
1183 struct page *newpage = NULL;
1184
1185 if (!thp_migration_supported() && PageTransHuge(page))
1186 return -ENOMEM;
1187
1188 if (page_count(page) == 1) {
1189 /* page was freed from under us. So we are done. */
1190 ClearPageActive(page);
1191 ClearPageUnevictable(page);
1192 if (unlikely(__PageMovable(page))) {
1193 lock_page(page);
1194 if (!PageMovable(page))
1195 __ClearPageIsolated(page);
1196 unlock_page(page);
1197 }
1198 goto out;
1199 }
1200
1201 newpage = get_new_page(page, private);
1202 if (!newpage)
1203 return -ENOMEM;
1204
1205 rc = __unmap_and_move(page, newpage, force, mode);
1206 if (rc == MIGRATEPAGE_SUCCESS)
1207 set_page_owner_migrate_reason(newpage, reason);
1208
1209 out:
1210 if (rc != -EAGAIN) {
1211 /*
1212 * A page that has been migrated has all references
1213 * removed and will be freed. A page that has not been
1214 * migrated will have kept its references and be restored.
1215 */
1216 list_del(&page->lru);
1217
1218 /*
1219 * Compaction can migrate also non-LRU pages which are
1220 * not accounted to NR_ISOLATED_*. They can be recognized
1221 * as __PageMovable
1222 */
1223 if (likely(!__PageMovable(page)))
1224 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1225 page_is_file_lru(page), -thp_nr_pages(page));
1226 }
1227
1228 /*
1229 * If migration is successful, releases reference grabbed during
1230 * isolation. Otherwise, restore the page to right list unless
1231 * we want to retry.
1232 */
1233 if (rc == MIGRATEPAGE_SUCCESS) {
1234 if (reason != MR_MEMORY_FAILURE)
1235 /*
1236 * We release the page in page_handle_poison.
1237 */
1238 put_page(page);
1239 } else {
1240 if (rc != -EAGAIN) {
1241 if (likely(!__PageMovable(page))) {
1242 putback_lru_page(page);
1243 goto put_new;
1244 }
1245
1246 lock_page(page);
1247 if (PageMovable(page))
1248 putback_movable_page(page);
1249 else
1250 __ClearPageIsolated(page);
1251 unlock_page(page);
1252 put_page(page);
1253 }
1254 put_new:
1255 if (put_new_page)
1256 put_new_page(newpage, private);
1257 else
1258 put_page(newpage);
1259 }
1260
1261 return rc;
1262 }
1263
1264 /*
1265 * Counterpart of unmap_and_move_page() for hugepage migration.
1266 *
1267 * This function doesn't wait the completion of hugepage I/O
1268 * because there is no race between I/O and migration for hugepage.
1269 * Note that currently hugepage I/O occurs only in direct I/O
1270 * where no lock is held and PG_writeback is irrelevant,
1271 * and writeback status of all subpages are counted in the reference
1272 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1273 * under direct I/O, the reference of the head page is 512 and a bit more.)
1274 * This means that when we try to migrate hugepage whose subpages are
1275 * doing direct I/O, some references remain after try_to_unmap() and
1276 * hugepage migration fails without data corruption.
1277 *
1278 * There is also no race when direct I/O is issued on the page under migration,
1279 * because then pte is replaced with migration swap entry and direct I/O code
1280 * will wait in the page fault for migration to complete.
1281 */
unmap_and_move_huge_page(new_page_t get_new_page,free_page_t put_new_page,unsigned long private,struct page * hpage,int force,enum migrate_mode mode,int reason)1282 static int unmap_and_move_huge_page(new_page_t get_new_page,
1283 free_page_t put_new_page, unsigned long private,
1284 struct page *hpage, int force,
1285 enum migrate_mode mode, int reason)
1286 {
1287 int rc = -EAGAIN;
1288 int page_was_mapped = 0;
1289 struct page *new_hpage;
1290 struct anon_vma *anon_vma = NULL;
1291 struct address_space *mapping = NULL;
1292
1293 /*
1294 * Migratability of hugepages depends on architectures and their size.
1295 * This check is necessary because some callers of hugepage migration
1296 * like soft offline and memory hotremove don't walk through page
1297 * tables or check whether the hugepage is pmd-based or not before
1298 * kicking migration.
1299 */
1300 if (!hugepage_migration_supported(page_hstate(hpage))) {
1301 putback_active_hugepage(hpage);
1302 return -ENOSYS;
1303 }
1304
1305 new_hpage = get_new_page(hpage, private);
1306 if (!new_hpage)
1307 return -ENOMEM;
1308
1309 if (!trylock_page(hpage)) {
1310 if (!force)
1311 goto out;
1312 switch (mode) {
1313 case MIGRATE_SYNC:
1314 case MIGRATE_SYNC_NO_COPY:
1315 break;
1316 default:
1317 goto out;
1318 }
1319 lock_page(hpage);
1320 }
1321
1322 /*
1323 * Check for pages which are in the process of being freed. Without
1324 * page_mapping() set, hugetlbfs specific move page routine will not
1325 * be called and we could leak usage counts for subpools.
1326 */
1327 if (page_private(hpage) && !page_mapping(hpage)) {
1328 rc = -EBUSY;
1329 goto out_unlock;
1330 }
1331
1332 if (PageAnon(hpage))
1333 anon_vma = page_get_anon_vma(hpage);
1334
1335 if (unlikely(!trylock_page(new_hpage)))
1336 goto put_anon;
1337
1338 if (page_mapped(hpage)) {
1339 bool mapping_locked = false;
1340 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1341
1342 if (!PageAnon(hpage)) {
1343 /*
1344 * In shared mappings, try_to_unmap could potentially
1345 * call huge_pmd_unshare. Because of this, take
1346 * semaphore in write mode here and set TTU_RMAP_LOCKED
1347 * to let lower levels know we have taken the lock.
1348 */
1349 mapping = hugetlb_page_mapping_lock_write(hpage);
1350 if (unlikely(!mapping))
1351 goto unlock_put_anon;
1352
1353 mapping_locked = true;
1354 ttu |= TTU_RMAP_LOCKED;
1355 }
1356
1357 try_to_unmap(hpage, ttu);
1358 page_was_mapped = 1;
1359
1360 if (mapping_locked)
1361 i_mmap_unlock_write(mapping);
1362 }
1363
1364 if (!page_mapped(hpage))
1365 rc = move_to_new_page(new_hpage, hpage, mode);
1366
1367 if (page_was_mapped)
1368 remove_migration_ptes(hpage,
1369 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1370
1371 unlock_put_anon:
1372 unlock_page(new_hpage);
1373
1374 put_anon:
1375 if (anon_vma)
1376 put_anon_vma(anon_vma);
1377
1378 if (rc == MIGRATEPAGE_SUCCESS) {
1379 move_hugetlb_state(hpage, new_hpage, reason);
1380 put_new_page = NULL;
1381 }
1382
1383 out_unlock:
1384 unlock_page(hpage);
1385 out:
1386 if (rc != -EAGAIN)
1387 putback_active_hugepage(hpage);
1388
1389 /*
1390 * If migration was not successful and there's a freeing callback, use
1391 * it. Otherwise, put_page() will drop the reference grabbed during
1392 * isolation.
1393 */
1394 if (put_new_page)
1395 put_new_page(new_hpage, private);
1396 else
1397 putback_active_hugepage(new_hpage);
1398
1399 return rc;
1400 }
1401
1402 /*
1403 * migrate_pages - migrate the pages specified in a list, to the free pages
1404 * supplied as the target for the page migration
1405 *
1406 * @from: The list of pages to be migrated.
1407 * @get_new_page: The function used to allocate free pages to be used
1408 * as the target of the page migration.
1409 * @put_new_page: The function used to free target pages if migration
1410 * fails, or NULL if no special handling is necessary.
1411 * @private: Private data to be passed on to get_new_page()
1412 * @mode: The migration mode that specifies the constraints for
1413 * page migration, if any.
1414 * @reason: The reason for page migration.
1415 *
1416 * The function returns after 10 attempts or if no pages are movable any more
1417 * because the list has become empty or no retryable pages exist any more.
1418 * The caller should call putback_movable_pages() to return pages to the LRU
1419 * or free list only if ret != 0.
1420 *
1421 * Returns the number of pages that were not migrated, or an error code.
1422 */
migrate_pages(struct list_head * from,new_page_t get_new_page,free_page_t put_new_page,unsigned long private,enum migrate_mode mode,int reason)1423 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1424 free_page_t put_new_page, unsigned long private,
1425 enum migrate_mode mode, int reason)
1426 {
1427 int retry = 1;
1428 int thp_retry = 1;
1429 int nr_failed = 0;
1430 int nr_succeeded = 0;
1431 int nr_thp_succeeded = 0;
1432 int nr_thp_failed = 0;
1433 int nr_thp_split = 0;
1434 int pass = 0;
1435 bool is_thp = false;
1436 struct page *page;
1437 struct page *page2;
1438 int swapwrite = current->flags & PF_SWAPWRITE;
1439 int rc, nr_subpages;
1440
1441 if (!swapwrite)
1442 current->flags |= PF_SWAPWRITE;
1443
1444 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1445 retry = 0;
1446 thp_retry = 0;
1447
1448 list_for_each_entry_safe(page, page2, from, lru) {
1449 retry:
1450 /*
1451 * THP statistics is based on the source huge page.
1452 * Capture required information that might get lost
1453 * during migration.
1454 */
1455 is_thp = PageTransHuge(page) && !PageHuge(page);
1456 nr_subpages = thp_nr_pages(page);
1457 cond_resched();
1458
1459 if (PageHuge(page))
1460 rc = unmap_and_move_huge_page(get_new_page,
1461 put_new_page, private, page,
1462 pass > 2, mode, reason);
1463 else
1464 rc = unmap_and_move(get_new_page, put_new_page,
1465 private, page, pass > 2, mode,
1466 reason);
1467
1468 switch(rc) {
1469 case -ENOMEM:
1470 /*
1471 * THP migration might be unsupported or the
1472 * allocation could've failed so we should
1473 * retry on the same page with the THP split
1474 * to base pages.
1475 *
1476 * Head page is retried immediately and tail
1477 * pages are added to the tail of the list so
1478 * we encounter them after the rest of the list
1479 * is processed.
1480 */
1481 if (is_thp) {
1482 lock_page(page);
1483 rc = split_huge_page_to_list(page, from);
1484 unlock_page(page);
1485 if (!rc) {
1486 list_safe_reset_next(page, page2, lru);
1487 nr_thp_split++;
1488 goto retry;
1489 }
1490
1491 nr_thp_failed++;
1492 nr_failed += nr_subpages;
1493 goto out;
1494 }
1495 nr_failed++;
1496 goto out;
1497 case -EAGAIN:
1498 if (is_thp) {
1499 thp_retry++;
1500 break;
1501 }
1502 retry++;
1503 break;
1504 case MIGRATEPAGE_SUCCESS:
1505 if (is_thp) {
1506 nr_thp_succeeded++;
1507 nr_succeeded += nr_subpages;
1508 break;
1509 }
1510 nr_succeeded++;
1511 break;
1512 default:
1513 /*
1514 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1515 * unlike -EAGAIN case, the failed page is
1516 * removed from migration page list and not
1517 * retried in the next outer loop.
1518 */
1519 if (is_thp) {
1520 nr_thp_failed++;
1521 nr_failed += nr_subpages;
1522 break;
1523 }
1524 nr_failed++;
1525 break;
1526 }
1527 }
1528 }
1529 nr_failed += retry + thp_retry;
1530 nr_thp_failed += thp_retry;
1531 rc = nr_failed;
1532 out:
1533 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1534 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1535 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1536 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1537 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1538 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1539 nr_thp_failed, nr_thp_split, mode, reason);
1540
1541 if (!swapwrite)
1542 current->flags &= ~PF_SWAPWRITE;
1543
1544 return rc;
1545 }
1546
alloc_migration_target(struct page * page,unsigned long private)1547 struct page *alloc_migration_target(struct page *page, unsigned long private)
1548 {
1549 struct migration_target_control *mtc;
1550 gfp_t gfp_mask;
1551 unsigned int order = 0;
1552 struct page *new_page = NULL;
1553 int nid;
1554 int zidx;
1555
1556 mtc = (struct migration_target_control *)private;
1557 gfp_mask = mtc->gfp_mask;
1558 nid = mtc->nid;
1559 if (nid == NUMA_NO_NODE)
1560 nid = page_to_nid(page);
1561
1562 if (PageHuge(page)) {
1563 struct hstate *h = page_hstate(compound_head(page));
1564
1565 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1566 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1567 }
1568
1569 if (PageTransHuge(page)) {
1570 /*
1571 * clear __GFP_RECLAIM to make the migration callback
1572 * consistent with regular THP allocations.
1573 */
1574 gfp_mask &= ~__GFP_RECLAIM;
1575 gfp_mask |= GFP_TRANSHUGE;
1576 order = HPAGE_PMD_ORDER;
1577 }
1578 zidx = zone_idx(page_zone(page));
1579 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1580 gfp_mask |= __GFP_HIGHMEM;
1581
1582 new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1583
1584 if (new_page && PageTransHuge(new_page))
1585 prep_transhuge_page(new_page);
1586
1587 return new_page;
1588 }
1589
1590 #ifdef CONFIG_NUMA
1591
store_status(int __user * status,int start,int value,int nr)1592 static int store_status(int __user *status, int start, int value, int nr)
1593 {
1594 while (nr-- > 0) {
1595 if (put_user(value, status + start))
1596 return -EFAULT;
1597 start++;
1598 }
1599
1600 return 0;
1601 }
1602
do_move_pages_to_node(struct mm_struct * mm,struct list_head * pagelist,int node)1603 static int do_move_pages_to_node(struct mm_struct *mm,
1604 struct list_head *pagelist, int node)
1605 {
1606 int err;
1607 struct migration_target_control mtc = {
1608 .nid = node,
1609 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1610 };
1611
1612 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1613 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1614 if (err)
1615 putback_movable_pages(pagelist);
1616 return err;
1617 }
1618
1619 /*
1620 * Resolves the given address to a struct page, isolates it from the LRU and
1621 * puts it to the given pagelist.
1622 * Returns:
1623 * errno - if the page cannot be found/isolated
1624 * 0 - when it doesn't have to be migrated because it is already on the
1625 * target node
1626 * 1 - when it has been queued
1627 */
add_page_for_migration(struct mm_struct * mm,unsigned long addr,int node,struct list_head * pagelist,bool migrate_all)1628 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1629 int node, struct list_head *pagelist, bool migrate_all)
1630 {
1631 struct vm_area_struct *vma;
1632 struct page *page;
1633 unsigned int follflags;
1634 int err;
1635
1636 mmap_read_lock(mm);
1637 err = -EFAULT;
1638 vma = find_vma(mm, addr);
1639 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1640 goto out;
1641
1642 /* FOLL_DUMP to ignore special (like zero) pages */
1643 follflags = FOLL_GET | FOLL_DUMP;
1644 page = follow_page(vma, addr, follflags);
1645
1646 err = PTR_ERR(page);
1647 if (IS_ERR(page))
1648 goto out;
1649
1650 err = -ENOENT;
1651 if (!page)
1652 goto out;
1653
1654 err = 0;
1655 if (page_to_nid(page) == node)
1656 goto out_putpage;
1657
1658 err = -EACCES;
1659 if (page_mapcount(page) > 1 && !migrate_all)
1660 goto out_putpage;
1661
1662 if (PageHuge(page)) {
1663 if (PageHead(page)) {
1664 isolate_huge_page(page, pagelist);
1665 err = 1;
1666 }
1667 } else {
1668 struct page *head;
1669
1670 head = compound_head(page);
1671 err = isolate_lru_page(head);
1672 if (err)
1673 goto out_putpage;
1674
1675 err = 1;
1676 list_add_tail(&head->lru, pagelist);
1677 mod_node_page_state(page_pgdat(head),
1678 NR_ISOLATED_ANON + page_is_file_lru(head),
1679 thp_nr_pages(head));
1680 }
1681 out_putpage:
1682 /*
1683 * Either remove the duplicate refcount from
1684 * isolate_lru_page() or drop the page ref if it was
1685 * not isolated.
1686 */
1687 put_page(page);
1688 out:
1689 mmap_read_unlock(mm);
1690 return err;
1691 }
1692
move_pages_and_store_status(struct mm_struct * mm,int node,struct list_head * pagelist,int __user * status,int start,int i,unsigned long nr_pages)1693 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1694 struct list_head *pagelist, int __user *status,
1695 int start, int i, unsigned long nr_pages)
1696 {
1697 int err;
1698
1699 if (list_empty(pagelist))
1700 return 0;
1701
1702 err = do_move_pages_to_node(mm, pagelist, node);
1703 if (err) {
1704 /*
1705 * Positive err means the number of failed
1706 * pages to migrate. Since we are going to
1707 * abort and return the number of non-migrated
1708 * pages, so need to incude the rest of the
1709 * nr_pages that have not been attempted as
1710 * well.
1711 */
1712 if (err > 0)
1713 err += nr_pages - i - 1;
1714 return err;
1715 }
1716 return store_status(status, start, node, i - start);
1717 }
1718
1719 /*
1720 * Migrate an array of page address onto an array of nodes and fill
1721 * the corresponding array of status.
1722 */
do_pages_move(struct mm_struct * mm,nodemask_t task_nodes,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)1723 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1724 unsigned long nr_pages,
1725 const void __user * __user *pages,
1726 const int __user *nodes,
1727 int __user *status, int flags)
1728 {
1729 int current_node = NUMA_NO_NODE;
1730 LIST_HEAD(pagelist);
1731 int start, i;
1732 int err = 0, err1;
1733
1734 migrate_prep();
1735
1736 for (i = start = 0; i < nr_pages; i++) {
1737 const void __user *p;
1738 unsigned long addr;
1739 int node;
1740
1741 err = -EFAULT;
1742 if (get_user(p, pages + i))
1743 goto out_flush;
1744 if (get_user(node, nodes + i))
1745 goto out_flush;
1746 addr = (unsigned long)untagged_addr(p);
1747
1748 err = -ENODEV;
1749 if (node < 0 || node >= MAX_NUMNODES)
1750 goto out_flush;
1751 if (!node_state(node, N_MEMORY))
1752 goto out_flush;
1753
1754 err = -EACCES;
1755 if (!node_isset(node, task_nodes))
1756 goto out_flush;
1757
1758 if (current_node == NUMA_NO_NODE) {
1759 current_node = node;
1760 start = i;
1761 } else if (node != current_node) {
1762 err = move_pages_and_store_status(mm, current_node,
1763 &pagelist, status, start, i, nr_pages);
1764 if (err)
1765 goto out;
1766 start = i;
1767 current_node = node;
1768 }
1769
1770 /*
1771 * Errors in the page lookup or isolation are not fatal and we simply
1772 * report them via status
1773 */
1774 err = add_page_for_migration(mm, addr, current_node,
1775 &pagelist, flags & MPOL_MF_MOVE_ALL);
1776
1777 if (err > 0) {
1778 /* The page is successfully queued for migration */
1779 continue;
1780 }
1781
1782 /*
1783 * If the page is already on the target node (!err), store the
1784 * node, otherwise, store the err.
1785 */
1786 err = store_status(status, i, err ? : current_node, 1);
1787 if (err)
1788 goto out_flush;
1789
1790 err = move_pages_and_store_status(mm, current_node, &pagelist,
1791 status, start, i, nr_pages);
1792 if (err)
1793 goto out;
1794 current_node = NUMA_NO_NODE;
1795 }
1796 out_flush:
1797 /* Make sure we do not overwrite the existing error */
1798 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1799 status, start, i, nr_pages);
1800 if (err >= 0)
1801 err = err1;
1802 out:
1803 return err;
1804 }
1805
1806 /*
1807 * Determine the nodes of an array of pages and store it in an array of status.
1808 */
do_pages_stat_array(struct mm_struct * mm,unsigned long nr_pages,const void __user ** pages,int * status)1809 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1810 const void __user **pages, int *status)
1811 {
1812 unsigned long i;
1813
1814 mmap_read_lock(mm);
1815
1816 for (i = 0; i < nr_pages; i++) {
1817 unsigned long addr = (unsigned long)(*pages);
1818 struct vm_area_struct *vma;
1819 struct page *page;
1820 int err = -EFAULT;
1821
1822 vma = find_vma(mm, addr);
1823 if (!vma || addr < vma->vm_start)
1824 goto set_status;
1825
1826 /* FOLL_DUMP to ignore special (like zero) pages */
1827 page = follow_page(vma, addr, FOLL_DUMP);
1828
1829 err = PTR_ERR(page);
1830 if (IS_ERR(page))
1831 goto set_status;
1832
1833 err = page ? page_to_nid(page) : -ENOENT;
1834 set_status:
1835 *status = err;
1836
1837 pages++;
1838 status++;
1839 }
1840
1841 mmap_read_unlock(mm);
1842 }
1843
1844 /*
1845 * Determine the nodes of a user array of pages and store it in
1846 * a user array of status.
1847 */
do_pages_stat(struct mm_struct * mm,unsigned long nr_pages,const void __user * __user * pages,int __user * status)1848 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1849 const void __user * __user *pages,
1850 int __user *status)
1851 {
1852 #define DO_PAGES_STAT_CHUNK_NR 16
1853 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1854 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1855
1856 while (nr_pages) {
1857 unsigned long chunk_nr;
1858
1859 chunk_nr = nr_pages;
1860 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1861 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1862
1863 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1864 break;
1865
1866 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1867
1868 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1869 break;
1870
1871 pages += chunk_nr;
1872 status += chunk_nr;
1873 nr_pages -= chunk_nr;
1874 }
1875 return nr_pages ? -EFAULT : 0;
1876 }
1877
find_mm_struct(pid_t pid,nodemask_t * mem_nodes)1878 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1879 {
1880 struct task_struct *task;
1881 struct mm_struct *mm;
1882
1883 /*
1884 * There is no need to check if current process has the right to modify
1885 * the specified process when they are same.
1886 */
1887 if (!pid) {
1888 mmget(current->mm);
1889 *mem_nodes = cpuset_mems_allowed(current);
1890 return current->mm;
1891 }
1892
1893 /* Find the mm_struct */
1894 rcu_read_lock();
1895 task = find_task_by_vpid(pid);
1896 if (!task) {
1897 rcu_read_unlock();
1898 return ERR_PTR(-ESRCH);
1899 }
1900 get_task_struct(task);
1901
1902 /*
1903 * Check if this process has the right to modify the specified
1904 * process. Use the regular "ptrace_may_access()" checks.
1905 */
1906 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1907 rcu_read_unlock();
1908 mm = ERR_PTR(-EPERM);
1909 goto out;
1910 }
1911 rcu_read_unlock();
1912
1913 mm = ERR_PTR(security_task_movememory(task));
1914 if (IS_ERR(mm))
1915 goto out;
1916 *mem_nodes = cpuset_mems_allowed(task);
1917 mm = get_task_mm(task);
1918 out:
1919 put_task_struct(task);
1920 if (!mm)
1921 mm = ERR_PTR(-EINVAL);
1922 return mm;
1923 }
1924
1925 /*
1926 * Move a list of pages in the address space of the currently executing
1927 * process.
1928 */
kernel_move_pages(pid_t pid,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)1929 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1930 const void __user * __user *pages,
1931 const int __user *nodes,
1932 int __user *status, int flags)
1933 {
1934 struct mm_struct *mm;
1935 int err;
1936 nodemask_t task_nodes;
1937
1938 /* Check flags */
1939 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1940 return -EINVAL;
1941
1942 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1943 return -EPERM;
1944
1945 mm = find_mm_struct(pid, &task_nodes);
1946 if (IS_ERR(mm))
1947 return PTR_ERR(mm);
1948
1949 if (nodes)
1950 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1951 nodes, status, flags);
1952 else
1953 err = do_pages_stat(mm, nr_pages, pages, status);
1954
1955 mmput(mm);
1956 return err;
1957 }
1958
SYSCALL_DEFINE6(move_pages,pid_t,pid,unsigned long,nr_pages,const void __user * __user *,pages,const int __user *,nodes,int __user *,status,int,flags)1959 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1960 const void __user * __user *, pages,
1961 const int __user *, nodes,
1962 int __user *, status, int, flags)
1963 {
1964 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1965 }
1966
1967 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE6(move_pages,pid_t,pid,compat_ulong_t,nr_pages,compat_uptr_t __user *,pages32,const int __user *,nodes,int __user *,status,int,flags)1968 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1969 compat_uptr_t __user *, pages32,
1970 const int __user *, nodes,
1971 int __user *, status,
1972 int, flags)
1973 {
1974 const void __user * __user *pages;
1975 int i;
1976
1977 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1978 for (i = 0; i < nr_pages; i++) {
1979 compat_uptr_t p;
1980
1981 if (get_user(p, pages32 + i) ||
1982 put_user(compat_ptr(p), pages + i))
1983 return -EFAULT;
1984 }
1985 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1986 }
1987 #endif /* CONFIG_COMPAT */
1988
1989 #ifdef CONFIG_NUMA_BALANCING
1990 /*
1991 * Returns true if this is a safe migration target node for misplaced NUMA
1992 * pages. Currently it only checks the watermarks which crude
1993 */
migrate_balanced_pgdat(struct pglist_data * pgdat,unsigned long nr_migrate_pages)1994 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1995 unsigned long nr_migrate_pages)
1996 {
1997 int z;
1998
1999 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2000 struct zone *zone = pgdat->node_zones + z;
2001
2002 if (!populated_zone(zone))
2003 continue;
2004
2005 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2006 if (!zone_watermark_ok(zone, 0,
2007 high_wmark_pages(zone) +
2008 nr_migrate_pages,
2009 ZONE_MOVABLE, 0))
2010 continue;
2011 return true;
2012 }
2013 return false;
2014 }
2015
alloc_misplaced_dst_page(struct page * page,unsigned long data)2016 static struct page *alloc_misplaced_dst_page(struct page *page,
2017 unsigned long data)
2018 {
2019 int nid = (int) data;
2020 struct page *newpage;
2021
2022 newpage = __alloc_pages_node(nid,
2023 (GFP_HIGHUSER_MOVABLE |
2024 __GFP_THISNODE | __GFP_NOMEMALLOC |
2025 __GFP_NORETRY | __GFP_NOWARN) &
2026 ~__GFP_RECLAIM, 0);
2027
2028 return newpage;
2029 }
2030
numamigrate_isolate_page(pg_data_t * pgdat,struct page * page)2031 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2032 {
2033 int page_lru;
2034
2035 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2036
2037 /* Avoid migrating to a node that is nearly full */
2038 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2039 return 0;
2040
2041 if (isolate_lru_page(page))
2042 return 0;
2043
2044 /*
2045 * migrate_misplaced_transhuge_page() skips page migration's usual
2046 * check on page_count(), so we must do it here, now that the page
2047 * has been isolated: a GUP pin, or any other pin, prevents migration.
2048 * The expected page count is 3: 1 for page's mapcount and 1 for the
2049 * caller's pin and 1 for the reference taken by isolate_lru_page().
2050 */
2051 if (PageTransHuge(page) && page_count(page) != 3) {
2052 putback_lru_page(page);
2053 return 0;
2054 }
2055
2056 page_lru = page_is_file_lru(page);
2057 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2058 thp_nr_pages(page));
2059
2060 /*
2061 * Isolating the page has taken another reference, so the
2062 * caller's reference can be safely dropped without the page
2063 * disappearing underneath us during migration.
2064 */
2065 put_page(page);
2066 return 1;
2067 }
2068
pmd_trans_migrating(pmd_t pmd)2069 bool pmd_trans_migrating(pmd_t pmd)
2070 {
2071 struct page *page = pmd_page(pmd);
2072 return PageLocked(page);
2073 }
2074
2075 /*
2076 * Attempt to migrate a misplaced page to the specified destination
2077 * node. Caller is expected to have an elevated reference count on
2078 * the page that will be dropped by this function before returning.
2079 */
migrate_misplaced_page(struct page * page,struct vm_area_struct * vma,int node)2080 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2081 int node)
2082 {
2083 pg_data_t *pgdat = NODE_DATA(node);
2084 int isolated;
2085 int nr_remaining;
2086 LIST_HEAD(migratepages);
2087
2088 /*
2089 * Don't migrate file pages that are mapped in multiple processes
2090 * with execute permissions as they are probably shared libraries.
2091 */
2092 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2093 (vma->vm_flags & VM_EXEC))
2094 goto out;
2095
2096 /*
2097 * Also do not migrate dirty pages as not all filesystems can move
2098 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2099 */
2100 if (page_is_file_lru(page) && PageDirty(page))
2101 goto out;
2102
2103 isolated = numamigrate_isolate_page(pgdat, page);
2104 if (!isolated)
2105 goto out;
2106
2107 list_add(&page->lru, &migratepages);
2108 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2109 NULL, node, MIGRATE_ASYNC,
2110 MR_NUMA_MISPLACED);
2111 if (nr_remaining) {
2112 if (!list_empty(&migratepages)) {
2113 list_del(&page->lru);
2114 dec_node_page_state(page, NR_ISOLATED_ANON +
2115 page_is_file_lru(page));
2116 putback_lru_page(page);
2117 }
2118 isolated = 0;
2119 } else
2120 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2121 BUG_ON(!list_empty(&migratepages));
2122 return isolated;
2123
2124 out:
2125 put_page(page);
2126 return 0;
2127 }
2128 #endif /* CONFIG_NUMA_BALANCING */
2129
2130 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2131 /*
2132 * Migrates a THP to a given target node. page must be locked and is unlocked
2133 * before returning.
2134 */
migrate_misplaced_transhuge_page(struct mm_struct * mm,struct vm_area_struct * vma,pmd_t * pmd,pmd_t entry,unsigned long address,struct page * page,int node)2135 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2136 struct vm_area_struct *vma,
2137 pmd_t *pmd, pmd_t entry,
2138 unsigned long address,
2139 struct page *page, int node)
2140 {
2141 spinlock_t *ptl;
2142 pg_data_t *pgdat = NODE_DATA(node);
2143 int isolated = 0;
2144 struct page *new_page = NULL;
2145 int page_lru = page_is_file_lru(page);
2146 unsigned long start = address & HPAGE_PMD_MASK;
2147
2148 new_page = alloc_pages_node(node,
2149 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2150 HPAGE_PMD_ORDER);
2151 if (!new_page)
2152 goto out_fail;
2153 prep_transhuge_page(new_page);
2154
2155 isolated = numamigrate_isolate_page(pgdat, page);
2156 if (!isolated) {
2157 put_page(new_page);
2158 goto out_fail;
2159 }
2160
2161 /* Prepare a page as a migration target */
2162 __SetPageLocked(new_page);
2163 if (PageSwapBacked(page))
2164 __SetPageSwapBacked(new_page);
2165
2166 /* anon mapping, we can simply copy page->mapping to the new page: */
2167 new_page->mapping = page->mapping;
2168 new_page->index = page->index;
2169 /* flush the cache before copying using the kernel virtual address */
2170 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2171 migrate_page_copy(new_page, page);
2172 WARN_ON(PageLRU(new_page));
2173
2174 /* Recheck the target PMD */
2175 ptl = pmd_lock(mm, pmd);
2176 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2177 spin_unlock(ptl);
2178
2179 /* Reverse changes made by migrate_page_copy() */
2180 if (TestClearPageActive(new_page))
2181 SetPageActive(page);
2182 if (TestClearPageUnevictable(new_page))
2183 SetPageUnevictable(page);
2184
2185 unlock_page(new_page);
2186 put_page(new_page); /* Free it */
2187
2188 /* Retake the callers reference and putback on LRU */
2189 get_page(page);
2190 putback_lru_page(page);
2191 mod_node_page_state(page_pgdat(page),
2192 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2193
2194 goto out_unlock;
2195 }
2196
2197 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2198 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2199
2200 /*
2201 * Overwrite the old entry under pagetable lock and establish
2202 * the new PTE. Any parallel GUP will either observe the old
2203 * page blocking on the page lock, block on the page table
2204 * lock or observe the new page. The SetPageUptodate on the
2205 * new page and page_add_new_anon_rmap guarantee the copy is
2206 * visible before the pagetable update.
2207 */
2208 page_add_anon_rmap(new_page, vma, start, true);
2209 /*
2210 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2211 * has already been flushed globally. So no TLB can be currently
2212 * caching this non present pmd mapping. There's no need to clear the
2213 * pmd before doing set_pmd_at(), nor to flush the TLB after
2214 * set_pmd_at(). Clearing the pmd here would introduce a race
2215 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2216 * mmap_lock for reading. If the pmd is set to NULL at any given time,
2217 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2218 * pmd.
2219 */
2220 set_pmd_at(mm, start, pmd, entry);
2221 update_mmu_cache_pmd(vma, address, &entry);
2222
2223 page_ref_unfreeze(page, 2);
2224 mlock_migrate_page(new_page, page);
2225 page_remove_rmap(page, true);
2226 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2227
2228 spin_unlock(ptl);
2229
2230 /* Take an "isolate" reference and put new page on the LRU. */
2231 get_page(new_page);
2232 putback_lru_page(new_page);
2233
2234 unlock_page(new_page);
2235 unlock_page(page);
2236 put_page(page); /* Drop the rmap reference */
2237 put_page(page); /* Drop the LRU isolation reference */
2238
2239 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2240 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2241
2242 mod_node_page_state(page_pgdat(page),
2243 NR_ISOLATED_ANON + page_lru,
2244 -HPAGE_PMD_NR);
2245 return isolated;
2246
2247 out_fail:
2248 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2249 ptl = pmd_lock(mm, pmd);
2250 if (pmd_same(*pmd, entry)) {
2251 entry = pmd_modify(entry, vma->vm_page_prot);
2252 set_pmd_at(mm, start, pmd, entry);
2253 update_mmu_cache_pmd(vma, address, &entry);
2254 }
2255 spin_unlock(ptl);
2256
2257 out_unlock:
2258 unlock_page(page);
2259 put_page(page);
2260 return 0;
2261 }
2262 #endif /* CONFIG_NUMA_BALANCING */
2263
2264 #endif /* CONFIG_NUMA */
2265
2266 #ifdef CONFIG_DEVICE_PRIVATE
migrate_vma_collect_hole(unsigned long start,unsigned long end,__always_unused int depth,struct mm_walk * walk)2267 static int migrate_vma_collect_hole(unsigned long start,
2268 unsigned long end,
2269 __always_unused int depth,
2270 struct mm_walk *walk)
2271 {
2272 struct migrate_vma *migrate = walk->private;
2273 unsigned long addr;
2274
2275 /* Only allow populating anonymous memory. */
2276 if (!vma_is_anonymous(walk->vma)) {
2277 for (addr = start; addr < end; addr += PAGE_SIZE) {
2278 migrate->src[migrate->npages] = 0;
2279 migrate->dst[migrate->npages] = 0;
2280 migrate->npages++;
2281 }
2282 return 0;
2283 }
2284
2285 for (addr = start; addr < end; addr += PAGE_SIZE) {
2286 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2287 migrate->dst[migrate->npages] = 0;
2288 migrate->npages++;
2289 migrate->cpages++;
2290 }
2291
2292 return 0;
2293 }
2294
migrate_vma_collect_skip(unsigned long start,unsigned long end,struct mm_walk * walk)2295 static int migrate_vma_collect_skip(unsigned long start,
2296 unsigned long end,
2297 struct mm_walk *walk)
2298 {
2299 struct migrate_vma *migrate = walk->private;
2300 unsigned long addr;
2301
2302 for (addr = start; addr < end; addr += PAGE_SIZE) {
2303 migrate->dst[migrate->npages] = 0;
2304 migrate->src[migrate->npages++] = 0;
2305 }
2306
2307 return 0;
2308 }
2309
migrate_vma_collect_pmd(pmd_t * pmdp,unsigned long start,unsigned long end,struct mm_walk * walk)2310 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2311 unsigned long start,
2312 unsigned long end,
2313 struct mm_walk *walk)
2314 {
2315 struct migrate_vma *migrate = walk->private;
2316 struct vm_area_struct *vma = walk->vma;
2317 struct mm_struct *mm = vma->vm_mm;
2318 unsigned long addr = start, unmapped = 0;
2319 spinlock_t *ptl;
2320 pte_t *ptep;
2321
2322 again:
2323 if (pmd_none(*pmdp))
2324 return migrate_vma_collect_hole(start, end, -1, walk);
2325
2326 if (pmd_trans_huge(*pmdp)) {
2327 struct page *page;
2328
2329 ptl = pmd_lock(mm, pmdp);
2330 if (unlikely(!pmd_trans_huge(*pmdp))) {
2331 spin_unlock(ptl);
2332 goto again;
2333 }
2334
2335 page = pmd_page(*pmdp);
2336 if (is_huge_zero_page(page)) {
2337 spin_unlock(ptl);
2338 split_huge_pmd(vma, pmdp, addr);
2339 if (pmd_trans_unstable(pmdp))
2340 return migrate_vma_collect_skip(start, end,
2341 walk);
2342 } else {
2343 int ret;
2344
2345 get_page(page);
2346 spin_unlock(ptl);
2347 if (unlikely(!trylock_page(page)))
2348 return migrate_vma_collect_skip(start, end,
2349 walk);
2350 ret = split_huge_page(page);
2351 unlock_page(page);
2352 put_page(page);
2353 if (ret)
2354 return migrate_vma_collect_skip(start, end,
2355 walk);
2356 if (pmd_none(*pmdp))
2357 return migrate_vma_collect_hole(start, end, -1,
2358 walk);
2359 }
2360 }
2361
2362 if (unlikely(pmd_bad(*pmdp)))
2363 return migrate_vma_collect_skip(start, end, walk);
2364
2365 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2366 arch_enter_lazy_mmu_mode();
2367
2368 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2369 unsigned long mpfn = 0, pfn;
2370 struct page *page;
2371 swp_entry_t entry;
2372 pte_t pte;
2373
2374 pte = *ptep;
2375
2376 if (pte_none(pte)) {
2377 if (vma_is_anonymous(vma)) {
2378 mpfn = MIGRATE_PFN_MIGRATE;
2379 migrate->cpages++;
2380 }
2381 goto next;
2382 }
2383
2384 if (!pte_present(pte)) {
2385 /*
2386 * Only care about unaddressable device page special
2387 * page table entry. Other special swap entries are not
2388 * migratable, and we ignore regular swapped page.
2389 */
2390 entry = pte_to_swp_entry(pte);
2391 if (!is_device_private_entry(entry))
2392 goto next;
2393
2394 page = device_private_entry_to_page(entry);
2395 if (!(migrate->flags &
2396 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2397 page->pgmap->owner != migrate->pgmap_owner)
2398 goto next;
2399
2400 mpfn = migrate_pfn(page_to_pfn(page)) |
2401 MIGRATE_PFN_MIGRATE;
2402 if (is_write_device_private_entry(entry))
2403 mpfn |= MIGRATE_PFN_WRITE;
2404 } else {
2405 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2406 goto next;
2407 pfn = pte_pfn(pte);
2408 if (is_zero_pfn(pfn)) {
2409 mpfn = MIGRATE_PFN_MIGRATE;
2410 migrate->cpages++;
2411 goto next;
2412 }
2413 page = vm_normal_page(migrate->vma, addr, pte);
2414 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2415 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2416 }
2417
2418 /* FIXME support THP */
2419 if (!page || !page->mapping || PageTransCompound(page)) {
2420 mpfn = 0;
2421 goto next;
2422 }
2423
2424 /*
2425 * By getting a reference on the page we pin it and that blocks
2426 * any kind of migration. Side effect is that it "freezes" the
2427 * pte.
2428 *
2429 * We drop this reference after isolating the page from the lru
2430 * for non device page (device page are not on the lru and thus
2431 * can't be dropped from it).
2432 */
2433 get_page(page);
2434 migrate->cpages++;
2435
2436 /*
2437 * Optimize for the common case where page is only mapped once
2438 * in one process. If we can lock the page, then we can safely
2439 * set up a special migration page table entry now.
2440 */
2441 if (trylock_page(page)) {
2442 pte_t swp_pte;
2443
2444 mpfn |= MIGRATE_PFN_LOCKED;
2445 ptep_get_and_clear(mm, addr, ptep);
2446
2447 /* Setup special migration page table entry */
2448 entry = make_migration_entry(page, mpfn &
2449 MIGRATE_PFN_WRITE);
2450 swp_pte = swp_entry_to_pte(entry);
2451 if (pte_present(pte)) {
2452 if (pte_soft_dirty(pte))
2453 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2454 if (pte_uffd_wp(pte))
2455 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2456 } else {
2457 if (pte_swp_soft_dirty(pte))
2458 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2459 if (pte_swp_uffd_wp(pte))
2460 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2461 }
2462 set_pte_at(mm, addr, ptep, swp_pte);
2463
2464 /*
2465 * This is like regular unmap: we remove the rmap and
2466 * drop page refcount. Page won't be freed, as we took
2467 * a reference just above.
2468 */
2469 page_remove_rmap(page, false);
2470 put_page(page);
2471
2472 if (pte_present(pte))
2473 unmapped++;
2474 }
2475
2476 next:
2477 migrate->dst[migrate->npages] = 0;
2478 migrate->src[migrate->npages++] = mpfn;
2479 }
2480 arch_leave_lazy_mmu_mode();
2481 pte_unmap_unlock(ptep - 1, ptl);
2482
2483 /* Only flush the TLB if we actually modified any entries */
2484 if (unmapped)
2485 flush_tlb_range(walk->vma, start, end);
2486
2487 return 0;
2488 }
2489
2490 static const struct mm_walk_ops migrate_vma_walk_ops = {
2491 .pmd_entry = migrate_vma_collect_pmd,
2492 .pte_hole = migrate_vma_collect_hole,
2493 };
2494
2495 /*
2496 * migrate_vma_collect() - collect pages over a range of virtual addresses
2497 * @migrate: migrate struct containing all migration information
2498 *
2499 * This will walk the CPU page table. For each virtual address backed by a
2500 * valid page, it updates the src array and takes a reference on the page, in
2501 * order to pin the page until we lock it and unmap it.
2502 */
migrate_vma_collect(struct migrate_vma * migrate)2503 static void migrate_vma_collect(struct migrate_vma *migrate)
2504 {
2505 struct mmu_notifier_range range;
2506
2507 /*
2508 * Note that the pgmap_owner is passed to the mmu notifier callback so
2509 * that the registered device driver can skip invalidating device
2510 * private page mappings that won't be migrated.
2511 */
2512 mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2513 migrate->vma->vm_mm, migrate->start, migrate->end,
2514 migrate->pgmap_owner);
2515 mmu_notifier_invalidate_range_start(&range);
2516
2517 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2518 &migrate_vma_walk_ops, migrate);
2519
2520 mmu_notifier_invalidate_range_end(&range);
2521 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2522 }
2523
2524 /*
2525 * migrate_vma_check_page() - check if page is pinned or not
2526 * @page: struct page to check
2527 *
2528 * Pinned pages cannot be migrated. This is the same test as in
2529 * migrate_page_move_mapping(), except that here we allow migration of a
2530 * ZONE_DEVICE page.
2531 */
migrate_vma_check_page(struct page * page,struct page * fault_page)2532 static bool migrate_vma_check_page(struct page *page, struct page *fault_page)
2533 {
2534 /*
2535 * One extra ref because caller holds an extra reference, either from
2536 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2537 * a device page.
2538 */
2539 int extra = 1 + (page == fault_page);
2540
2541 /*
2542 * FIXME support THP (transparent huge page), it is bit more complex to
2543 * check them than regular pages, because they can be mapped with a pmd
2544 * or with a pte (split pte mapping).
2545 */
2546 if (PageCompound(page))
2547 return false;
2548
2549 /* Page from ZONE_DEVICE have one extra reference */
2550 if (is_zone_device_page(page)) {
2551 /*
2552 * Private page can never be pin as they have no valid pte and
2553 * GUP will fail for those. Yet if there is a pending migration
2554 * a thread might try to wait on the pte migration entry and
2555 * will bump the page reference count. Sadly there is no way to
2556 * differentiate a regular pin from migration wait. Hence to
2557 * avoid 2 racing thread trying to migrate back to CPU to enter
2558 * infinite loop (one stoping migration because the other is
2559 * waiting on pte migration entry). We always return true here.
2560 *
2561 * FIXME proper solution is to rework migration_entry_wait() so
2562 * it does not need to take a reference on page.
2563 */
2564 return is_device_private_page(page);
2565 }
2566
2567 /* For file back page */
2568 if (page_mapping(page))
2569 extra += 1 + page_has_private(page);
2570
2571 if ((page_count(page) - extra) > page_mapcount(page))
2572 return false;
2573
2574 return true;
2575 }
2576
2577 /*
2578 * migrate_vma_prepare() - lock pages and isolate them from the lru
2579 * @migrate: migrate struct containing all migration information
2580 *
2581 * This locks pages that have been collected by migrate_vma_collect(). Once each
2582 * page is locked it is isolated from the lru (for non-device pages). Finally,
2583 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2584 * migrated by concurrent kernel threads.
2585 */
migrate_vma_prepare(struct migrate_vma * migrate)2586 static void migrate_vma_prepare(struct migrate_vma *migrate)
2587 {
2588 const unsigned long npages = migrate->npages;
2589 const unsigned long start = migrate->start;
2590 unsigned long addr, i, restore = 0;
2591 bool allow_drain = true;
2592
2593 lru_add_drain();
2594
2595 for (i = 0; (i < npages) && migrate->cpages; i++) {
2596 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2597 bool remap = true;
2598
2599 if (!page)
2600 continue;
2601
2602 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2603 /*
2604 * Because we are migrating several pages there can be
2605 * a deadlock between 2 concurrent migration where each
2606 * are waiting on each other page lock.
2607 *
2608 * Make migrate_vma() a best effort thing and backoff
2609 * for any page we can not lock right away.
2610 */
2611 if (!trylock_page(page)) {
2612 migrate->src[i] = 0;
2613 migrate->cpages--;
2614 put_page(page);
2615 continue;
2616 }
2617 remap = false;
2618 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2619 }
2620
2621 /* ZONE_DEVICE pages are not on LRU */
2622 if (!is_zone_device_page(page)) {
2623 if (!PageLRU(page) && allow_drain) {
2624 /* Drain CPU's pagevec */
2625 lru_add_drain_all();
2626 allow_drain = false;
2627 }
2628
2629 if (isolate_lru_page(page)) {
2630 if (remap) {
2631 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2632 migrate->cpages--;
2633 restore++;
2634 } else {
2635 migrate->src[i] = 0;
2636 unlock_page(page);
2637 migrate->cpages--;
2638 put_page(page);
2639 }
2640 continue;
2641 }
2642
2643 /* Drop the reference we took in collect */
2644 put_page(page);
2645 }
2646
2647 if (!migrate_vma_check_page(page, migrate->fault_page)) {
2648 if (remap) {
2649 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2650 migrate->cpages--;
2651 restore++;
2652
2653 if (!is_zone_device_page(page)) {
2654 get_page(page);
2655 putback_lru_page(page);
2656 }
2657 } else {
2658 migrate->src[i] = 0;
2659 unlock_page(page);
2660 migrate->cpages--;
2661
2662 if (!is_zone_device_page(page))
2663 putback_lru_page(page);
2664 else
2665 put_page(page);
2666 }
2667 }
2668 }
2669
2670 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2671 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2672
2673 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2674 continue;
2675
2676 remove_migration_pte(page, migrate->vma, addr, page);
2677
2678 migrate->src[i] = 0;
2679 unlock_page(page);
2680 put_page(page);
2681 restore--;
2682 }
2683 }
2684
2685 /*
2686 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2687 * @migrate: migrate struct containing all migration information
2688 *
2689 * Replace page mapping (CPU page table pte) with a special migration pte entry
2690 * and check again if it has been pinned. Pinned pages are restored because we
2691 * cannot migrate them.
2692 *
2693 * This is the last step before we call the device driver callback to allocate
2694 * destination memory and copy contents of original page over to new page.
2695 */
migrate_vma_unmap(struct migrate_vma * migrate)2696 static void migrate_vma_unmap(struct migrate_vma *migrate)
2697 {
2698 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2699 const unsigned long npages = migrate->npages;
2700 const unsigned long start = migrate->start;
2701 unsigned long addr, i, restore = 0;
2702
2703 for (i = 0; i < npages; i++) {
2704 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2705
2706 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2707 continue;
2708
2709 if (page_mapped(page)) {
2710 try_to_unmap(page, flags);
2711 if (page_mapped(page))
2712 goto restore;
2713 }
2714
2715 if (migrate_vma_check_page(page, migrate->fault_page))
2716 continue;
2717
2718 restore:
2719 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2720 migrate->cpages--;
2721 restore++;
2722 }
2723
2724 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2725 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2726
2727 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2728 continue;
2729
2730 remove_migration_ptes(page, page, false);
2731
2732 migrate->src[i] = 0;
2733 unlock_page(page);
2734 restore--;
2735
2736 if (is_zone_device_page(page))
2737 put_page(page);
2738 else
2739 putback_lru_page(page);
2740 }
2741 }
2742
2743 /**
2744 * migrate_vma_setup() - prepare to migrate a range of memory
2745 * @args: contains the vma, start, and pfns arrays for the migration
2746 *
2747 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2748 * without an error.
2749 *
2750 * Prepare to migrate a range of memory virtual address range by collecting all
2751 * the pages backing each virtual address in the range, saving them inside the
2752 * src array. Then lock those pages and unmap them. Once the pages are locked
2753 * and unmapped, check whether each page is pinned or not. Pages that aren't
2754 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2755 * corresponding src array entry. Then restores any pages that are pinned, by
2756 * remapping and unlocking those pages.
2757 *
2758 * The caller should then allocate destination memory and copy source memory to
2759 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2760 * flag set). Once these are allocated and copied, the caller must update each
2761 * corresponding entry in the dst array with the pfn value of the destination
2762 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2763 * (destination pages must have their struct pages locked, via lock_page()).
2764 *
2765 * Note that the caller does not have to migrate all the pages that are marked
2766 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2767 * device memory to system memory. If the caller cannot migrate a device page
2768 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2769 * consequences for the userspace process, so it must be avoided if at all
2770 * possible.
2771 *
2772 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2773 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2774 * allowing the caller to allocate device memory for those unback virtual
2775 * address. For this the caller simply has to allocate device memory and
2776 * properly set the destination entry like for regular migration. Note that
2777 * this can still fails and thus inside the device driver must check if the
2778 * migration was successful for those entries after calling migrate_vma_pages()
2779 * just like for regular migration.
2780 *
2781 * After that, the callers must call migrate_vma_pages() to go over each entry
2782 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2783 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2784 * then migrate_vma_pages() to migrate struct page information from the source
2785 * struct page to the destination struct page. If it fails to migrate the
2786 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2787 * src array.
2788 *
2789 * At this point all successfully migrated pages have an entry in the src
2790 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2791 * array entry with MIGRATE_PFN_VALID flag set.
2792 *
2793 * Once migrate_vma_pages() returns the caller may inspect which pages were
2794 * successfully migrated, and which were not. Successfully migrated pages will
2795 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2796 *
2797 * It is safe to update device page table after migrate_vma_pages() because
2798 * both destination and source page are still locked, and the mmap_lock is held
2799 * in read mode (hence no one can unmap the range being migrated).
2800 *
2801 * Once the caller is done cleaning up things and updating its page table (if it
2802 * chose to do so, this is not an obligation) it finally calls
2803 * migrate_vma_finalize() to update the CPU page table to point to new pages
2804 * for successfully migrated pages or otherwise restore the CPU page table to
2805 * point to the original source pages.
2806 */
migrate_vma_setup(struct migrate_vma * args)2807 int migrate_vma_setup(struct migrate_vma *args)
2808 {
2809 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2810
2811 args->start &= PAGE_MASK;
2812 args->end &= PAGE_MASK;
2813 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2814 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2815 return -EINVAL;
2816 if (nr_pages <= 0)
2817 return -EINVAL;
2818 if (args->start < args->vma->vm_start ||
2819 args->start >= args->vma->vm_end)
2820 return -EINVAL;
2821 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2822 return -EINVAL;
2823 if (!args->src || !args->dst)
2824 return -EINVAL;
2825 if (args->fault_page && !is_device_private_page(args->fault_page))
2826 return -EINVAL;
2827
2828 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2829 args->cpages = 0;
2830 args->npages = 0;
2831
2832 migrate_vma_collect(args);
2833
2834 if (args->cpages)
2835 migrate_vma_prepare(args);
2836 if (args->cpages)
2837 migrate_vma_unmap(args);
2838
2839 /*
2840 * At this point pages are locked and unmapped, and thus they have
2841 * stable content and can safely be copied to destination memory that
2842 * is allocated by the drivers.
2843 */
2844 return 0;
2845
2846 }
2847 EXPORT_SYMBOL(migrate_vma_setup);
2848
2849 /*
2850 * This code closely matches the code in:
2851 * __handle_mm_fault()
2852 * handle_pte_fault()
2853 * do_anonymous_page()
2854 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2855 * private page.
2856 */
migrate_vma_insert_page(struct migrate_vma * migrate,unsigned long addr,struct page * page,unsigned long * src,unsigned long * dst)2857 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2858 unsigned long addr,
2859 struct page *page,
2860 unsigned long *src,
2861 unsigned long *dst)
2862 {
2863 struct vm_area_struct *vma = migrate->vma;
2864 struct mm_struct *mm = vma->vm_mm;
2865 bool flush = false;
2866 spinlock_t *ptl;
2867 pte_t entry;
2868 pgd_t *pgdp;
2869 p4d_t *p4dp;
2870 pud_t *pudp;
2871 pmd_t *pmdp;
2872 pte_t *ptep;
2873
2874 /* Only allow populating anonymous memory */
2875 if (!vma_is_anonymous(vma))
2876 goto abort;
2877
2878 pgdp = pgd_offset(mm, addr);
2879 p4dp = p4d_alloc(mm, pgdp, addr);
2880 if (!p4dp)
2881 goto abort;
2882 pudp = pud_alloc(mm, p4dp, addr);
2883 if (!pudp)
2884 goto abort;
2885 pmdp = pmd_alloc(mm, pudp, addr);
2886 if (!pmdp)
2887 goto abort;
2888
2889 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2890 goto abort;
2891
2892 /*
2893 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2894 * pte_offset_map() on pmds where a huge pmd might be created
2895 * from a different thread.
2896 *
2897 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2898 * parallel threads are excluded by other means.
2899 *
2900 * Here we only have mmap_read_lock(mm).
2901 */
2902 if (pte_alloc(mm, pmdp))
2903 goto abort;
2904
2905 /* See the comment in pte_alloc_one_map() */
2906 if (unlikely(pmd_trans_unstable(pmdp)))
2907 goto abort;
2908
2909 if (unlikely(anon_vma_prepare(vma)))
2910 goto abort;
2911 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2912 goto abort;
2913
2914 /*
2915 * The memory barrier inside __SetPageUptodate makes sure that
2916 * preceding stores to the page contents become visible before
2917 * the set_pte_at() write.
2918 */
2919 __SetPageUptodate(page);
2920
2921 if (is_zone_device_page(page)) {
2922 if (is_device_private_page(page)) {
2923 swp_entry_t swp_entry;
2924
2925 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2926 entry = swp_entry_to_pte(swp_entry);
2927 } else {
2928 /*
2929 * For now we only support migrating to un-addressable
2930 * device memory.
2931 */
2932 pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2933 goto abort;
2934 }
2935 } else {
2936 entry = mk_pte(page, vma->vm_page_prot);
2937 if (vma->vm_flags & VM_WRITE)
2938 entry = pte_mkwrite(pte_mkdirty(entry));
2939 }
2940
2941 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2942
2943 if (check_stable_address_space(mm))
2944 goto unlock_abort;
2945
2946 if (pte_present(*ptep)) {
2947 unsigned long pfn = pte_pfn(*ptep);
2948
2949 if (!is_zero_pfn(pfn))
2950 goto unlock_abort;
2951 flush = true;
2952 } else if (!pte_none(*ptep))
2953 goto unlock_abort;
2954
2955 /*
2956 * Check for userfaultfd but do not deliver the fault. Instead,
2957 * just back off.
2958 */
2959 if (userfaultfd_missing(vma))
2960 goto unlock_abort;
2961
2962 inc_mm_counter(mm, MM_ANONPAGES);
2963 page_add_new_anon_rmap(page, vma, addr, false);
2964 if (!is_zone_device_page(page))
2965 lru_cache_add_inactive_or_unevictable(page, vma);
2966 get_page(page);
2967
2968 if (flush) {
2969 flush_cache_page(vma, addr, pte_pfn(*ptep));
2970 ptep_clear_flush_notify(vma, addr, ptep);
2971 set_pte_at_notify(mm, addr, ptep, entry);
2972 update_mmu_cache(vma, addr, ptep);
2973 } else {
2974 /* No need to invalidate - it was non-present before */
2975 set_pte_at(mm, addr, ptep, entry);
2976 update_mmu_cache(vma, addr, ptep);
2977 }
2978
2979 pte_unmap_unlock(ptep, ptl);
2980 *src = MIGRATE_PFN_MIGRATE;
2981 return;
2982
2983 unlock_abort:
2984 pte_unmap_unlock(ptep, ptl);
2985 abort:
2986 *src &= ~MIGRATE_PFN_MIGRATE;
2987 }
2988
2989 /**
2990 * migrate_vma_pages() - migrate meta-data from src page to dst page
2991 * @migrate: migrate struct containing all migration information
2992 *
2993 * This migrates struct page meta-data from source struct page to destination
2994 * struct page. This effectively finishes the migration from source page to the
2995 * destination page.
2996 */
migrate_vma_pages(struct migrate_vma * migrate)2997 void migrate_vma_pages(struct migrate_vma *migrate)
2998 {
2999 const unsigned long npages = migrate->npages;
3000 const unsigned long start = migrate->start;
3001 struct mmu_notifier_range range;
3002 unsigned long addr, i;
3003 bool notified = false;
3004
3005 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3006 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3007 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3008 struct address_space *mapping;
3009 int r;
3010
3011 if (!newpage) {
3012 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3013 continue;
3014 }
3015
3016 if (!page) {
3017 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3018 continue;
3019 if (!notified) {
3020 notified = true;
3021
3022 mmu_notifier_range_init(&range,
3023 MMU_NOTIFY_CLEAR, 0,
3024 NULL,
3025 migrate->vma->vm_mm,
3026 addr, migrate->end);
3027 mmu_notifier_invalidate_range_start(&range);
3028 }
3029 migrate_vma_insert_page(migrate, addr, newpage,
3030 &migrate->src[i],
3031 &migrate->dst[i]);
3032 continue;
3033 }
3034
3035 mapping = page_mapping(page);
3036
3037 if (is_zone_device_page(newpage)) {
3038 if (is_device_private_page(newpage)) {
3039 /*
3040 * For now only support private anonymous when
3041 * migrating to un-addressable device memory.
3042 */
3043 if (mapping) {
3044 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3045 continue;
3046 }
3047 } else {
3048 /*
3049 * Other types of ZONE_DEVICE page are not
3050 * supported.
3051 */
3052 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3053 continue;
3054 }
3055 }
3056
3057 if (migrate->fault_page == page)
3058 r = migrate_page_extra(mapping, newpage, page,
3059 MIGRATE_SYNC_NO_COPY, 1);
3060 else
3061 r = migrate_page(mapping, newpage, page,
3062 MIGRATE_SYNC_NO_COPY);
3063 if (r != MIGRATEPAGE_SUCCESS)
3064 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3065 }
3066
3067 /*
3068 * No need to double call mmu_notifier->invalidate_range() callback as
3069 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3070 * did already call it.
3071 */
3072 if (notified)
3073 mmu_notifier_invalidate_range_only_end(&range);
3074 }
3075 EXPORT_SYMBOL(migrate_vma_pages);
3076
3077 /**
3078 * migrate_vma_finalize() - restore CPU page table entry
3079 * @migrate: migrate struct containing all migration information
3080 *
3081 * This replaces the special migration pte entry with either a mapping to the
3082 * new page if migration was successful for that page, or to the original page
3083 * otherwise.
3084 *
3085 * This also unlocks the pages and puts them back on the lru, or drops the extra
3086 * refcount, for device pages.
3087 */
migrate_vma_finalize(struct migrate_vma * migrate)3088 void migrate_vma_finalize(struct migrate_vma *migrate)
3089 {
3090 const unsigned long npages = migrate->npages;
3091 unsigned long i;
3092
3093 for (i = 0; i < npages; i++) {
3094 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3095 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3096
3097 if (!page) {
3098 if (newpage) {
3099 unlock_page(newpage);
3100 put_page(newpage);
3101 }
3102 continue;
3103 }
3104
3105 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3106 if (newpage) {
3107 unlock_page(newpage);
3108 put_page(newpage);
3109 }
3110 newpage = page;
3111 }
3112
3113 remove_migration_ptes(page, newpage, false);
3114 unlock_page(page);
3115
3116 if (is_zone_device_page(page))
3117 put_page(page);
3118 else
3119 putback_lru_page(page);
3120
3121 if (newpage != page) {
3122 unlock_page(newpage);
3123 if (is_zone_device_page(newpage))
3124 put_page(newpage);
3125 else
3126 putback_lru_page(newpage);
3127 }
3128 }
3129 }
3130 EXPORT_SYMBOL(migrate_vma_finalize);
3131 #endif /* CONFIG_DEVICE_PRIVATE */
3132