• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52 
53 #include <asm/tlbflush.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 /*
61  * migrate_prep() needs to be called before we start compiling a list of pages
62  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63  * undesirable, use migrate_prep_local()
64  */
migrate_prep(void)65 int migrate_prep(void)
66 {
67 	/*
68 	 * Clear the LRU lists so pages can be isolated.
69 	 * Note that pages may be moved off the LRU after we have
70 	 * drained them. Those pages will fail to migrate like other
71 	 * pages that may be busy.
72 	 */
73 	lru_add_drain_all();
74 
75 	return 0;
76 }
77 
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
migrate_prep_local(void)79 int migrate_prep_local(void)
80 {
81 	lru_add_drain();
82 
83 	return 0;
84 }
85 
isolate_movable_page(struct page * page,isolate_mode_t mode)86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
87 {
88 	struct address_space *mapping;
89 
90 	/*
91 	 * Avoid burning cycles with pages that are yet under __free_pages(),
92 	 * or just got freed under us.
93 	 *
94 	 * In case we 'win' a race for a movable page being freed under us and
95 	 * raise its refcount preventing __free_pages() from doing its job
96 	 * the put_page() at the end of this block will take care of
97 	 * release this page, thus avoiding a nasty leakage.
98 	 */
99 	if (unlikely(!get_page_unless_zero(page)))
100 		goto out;
101 
102 	/*
103 	 * Check PageMovable before holding a PG_lock because page's owner
104 	 * assumes anybody doesn't touch PG_lock of newly allocated page
105 	 * so unconditionally grabbing the lock ruins page's owner side.
106 	 */
107 	if (unlikely(!__PageMovable(page)))
108 		goto out_putpage;
109 	/*
110 	 * As movable pages are not isolated from LRU lists, concurrent
111 	 * compaction threads can race against page migration functions
112 	 * as well as race against the releasing a page.
113 	 *
114 	 * In order to avoid having an already isolated movable page
115 	 * being (wrongly) re-isolated while it is under migration,
116 	 * or to avoid attempting to isolate pages being released,
117 	 * lets be sure we have the page lock
118 	 * before proceeding with the movable page isolation steps.
119 	 */
120 	if (unlikely(!trylock_page(page)))
121 		goto out_putpage;
122 
123 	if (!PageMovable(page) || PageIsolated(page))
124 		goto out_no_isolated;
125 
126 	mapping = page_mapping(page);
127 	VM_BUG_ON_PAGE(!mapping, page);
128 
129 	if (!mapping->a_ops->isolate_page(page, mode))
130 		goto out_no_isolated;
131 
132 	/* Driver shouldn't use PG_isolated bit of page->flags */
133 	WARN_ON_ONCE(PageIsolated(page));
134 	__SetPageIsolated(page);
135 	unlock_page(page);
136 
137 	return 0;
138 
139 out_no_isolated:
140 	unlock_page(page);
141 out_putpage:
142 	put_page(page);
143 out:
144 	return -EBUSY;
145 }
146 
147 /* It should be called on page which is PG_movable */
putback_movable_page(struct page * page)148 void putback_movable_page(struct page *page)
149 {
150 	struct address_space *mapping;
151 
152 	VM_BUG_ON_PAGE(!PageLocked(page), page);
153 	VM_BUG_ON_PAGE(!PageMovable(page), page);
154 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
155 
156 	mapping = page_mapping(page);
157 	mapping->a_ops->putback_page(page);
158 	__ClearPageIsolated(page);
159 }
160 
161 /*
162  * Put previously isolated pages back onto the appropriate lists
163  * from where they were once taken off for compaction/migration.
164  *
165  * This function shall be used whenever the isolated pageset has been
166  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167  * and isolate_huge_page().
168  */
putback_movable_pages(struct list_head * l)169 void putback_movable_pages(struct list_head *l)
170 {
171 	struct page *page;
172 	struct page *page2;
173 
174 	list_for_each_entry_safe(page, page2, l, lru) {
175 		if (unlikely(PageHuge(page))) {
176 			putback_active_hugepage(page);
177 			continue;
178 		}
179 		list_del(&page->lru);
180 		/*
181 		 * We isolated non-lru movable page so here we can use
182 		 * __PageMovable because LRU page's mapping cannot have
183 		 * PAGE_MAPPING_MOVABLE.
184 		 */
185 		if (unlikely(__PageMovable(page))) {
186 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
187 			lock_page(page);
188 			if (PageMovable(page))
189 				putback_movable_page(page);
190 			else
191 				__ClearPageIsolated(page);
192 			unlock_page(page);
193 			put_page(page);
194 		} else {
195 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196 					page_is_file_lru(page), -thp_nr_pages(page));
197 			putback_lru_page(page);
198 		}
199 	}
200 }
201 
202 /*
203  * Restore a potential migration pte to a working pte entry
204  */
remove_migration_pte(struct page * page,struct vm_area_struct * vma,unsigned long addr,void * old)205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206 				 unsigned long addr, void *old)
207 {
208 	struct page_vma_mapped_walk pvmw = {
209 		.page = old,
210 		.vma = vma,
211 		.address = addr,
212 		.flags = PVMW_SYNC | PVMW_MIGRATION,
213 	};
214 	struct page *new;
215 	pte_t pte;
216 	swp_entry_t entry;
217 
218 	VM_BUG_ON_PAGE(PageTail(page), page);
219 	while (page_vma_mapped_walk(&pvmw)) {
220 		if (PageKsm(page))
221 			new = page;
222 		else
223 			new = page - pvmw.page->index +
224 				linear_page_index(vma, pvmw.address);
225 
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227 		/* PMD-mapped THP migration entry */
228 		if (!pvmw.pte) {
229 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230 			remove_migration_pmd(&pvmw, new);
231 			continue;
232 		}
233 #endif
234 
235 		get_page(new);
236 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237 		if (pte_swp_soft_dirty(*pvmw.pte))
238 			pte = pte_mksoft_dirty(pte);
239 
240 		/*
241 		 * Recheck VMA as permissions can change since migration started
242 		 */
243 		entry = pte_to_swp_entry(*pvmw.pte);
244 		if (is_write_migration_entry(entry))
245 			pte = maybe_mkwrite(pte, vma);
246 		else if (pte_swp_uffd_wp(*pvmw.pte))
247 			pte = pte_mkuffd_wp(pte);
248 
249 		if (unlikely(is_device_private_page(new))) {
250 			entry = make_device_private_entry(new, pte_write(pte));
251 			pte = swp_entry_to_pte(entry);
252 			if (pte_swp_soft_dirty(*pvmw.pte))
253 				pte = pte_swp_mksoft_dirty(pte);
254 			if (pte_swp_uffd_wp(*pvmw.pte))
255 				pte = pte_swp_mkuffd_wp(pte);
256 		}
257 
258 #ifdef CONFIG_HUGETLB_PAGE
259 		if (PageHuge(new)) {
260 			pte = pte_mkhuge(pte);
261 			pte = arch_make_huge_pte(pte, vma, new, 0);
262 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
263 			if (PageAnon(new))
264 				hugepage_add_anon_rmap(new, vma, pvmw.address);
265 			else
266 				page_dup_rmap(new, true);
267 		} else
268 #endif
269 		{
270 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
271 
272 			if (PageAnon(new))
273 				page_add_anon_rmap(new, vma, pvmw.address, false);
274 			else
275 				page_add_file_rmap(new, false);
276 		}
277 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278 			mlock_vma_page(new);
279 
280 		if (PageTransHuge(page) && PageMlocked(page))
281 			clear_page_mlock(page);
282 
283 		/* No need to invalidate - it was non-present before */
284 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
285 	}
286 
287 	return true;
288 }
289 
290 /*
291  * Get rid of all migration entries and replace them by
292  * references to the indicated page.
293  */
remove_migration_ptes(struct page * old,struct page * new,bool locked)294 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
295 {
296 	struct rmap_walk_control rwc = {
297 		.rmap_one = remove_migration_pte,
298 		.arg = old,
299 	};
300 
301 	if (locked)
302 		rmap_walk_locked(new, &rwc);
303 	else
304 		rmap_walk(new, &rwc);
305 }
306 
307 /*
308  * Something used the pte of a page under migration. We need to
309  * get to the page and wait until migration is finished.
310  * When we return from this function the fault will be retried.
311  */
__migration_entry_wait(struct mm_struct * mm,pte_t * ptep,spinlock_t * ptl)312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
313 				spinlock_t *ptl)
314 {
315 	pte_t pte;
316 	swp_entry_t entry;
317 	struct page *page;
318 
319 	spin_lock(ptl);
320 	pte = *ptep;
321 	if (!is_swap_pte(pte))
322 		goto out;
323 
324 	entry = pte_to_swp_entry(pte);
325 	if (!is_migration_entry(entry))
326 		goto out;
327 
328 	page = migration_entry_to_page(entry);
329 	page = compound_head(page);
330 
331 	/*
332 	 * Once page cache replacement of page migration started, page_count
333 	 * is zero; but we must not call put_and_wait_on_page_locked() without
334 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
335 	 */
336 	if (!get_page_unless_zero(page))
337 		goto out;
338 	pte_unmap_unlock(ptep, ptl);
339 	put_and_wait_on_page_locked(page);
340 	return;
341 out:
342 	pte_unmap_unlock(ptep, ptl);
343 }
344 
migration_entry_wait(struct mm_struct * mm,pmd_t * pmd,unsigned long address)345 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
346 				unsigned long address)
347 {
348 	spinlock_t *ptl = pte_lockptr(mm, pmd);
349 	pte_t *ptep = pte_offset_map(pmd, address);
350 	__migration_entry_wait(mm, ptep, ptl);
351 }
352 
migration_entry_wait_huge(struct vm_area_struct * vma,struct mm_struct * mm,pte_t * pte)353 void migration_entry_wait_huge(struct vm_area_struct *vma,
354 		struct mm_struct *mm, pte_t *pte)
355 {
356 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
357 	__migration_entry_wait(mm, pte, ptl);
358 }
359 
360 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_migration_entry_wait(struct mm_struct * mm,pmd_t * pmd)361 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
362 {
363 	spinlock_t *ptl;
364 	struct page *page;
365 
366 	ptl = pmd_lock(mm, pmd);
367 	if (!is_pmd_migration_entry(*pmd))
368 		goto unlock;
369 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
370 	if (!get_page_unless_zero(page))
371 		goto unlock;
372 	spin_unlock(ptl);
373 	put_and_wait_on_page_locked(page);
374 	return;
375 unlock:
376 	spin_unlock(ptl);
377 }
378 #endif
379 
expected_page_refs(struct address_space * mapping,struct page * page)380 static int expected_page_refs(struct address_space *mapping, struct page *page)
381 {
382 	int expected_count = 1;
383 
384 	/*
385 	 * Device private pages have an extra refcount as they are
386 	 * ZONE_DEVICE pages.
387 	 */
388 	expected_count += is_device_private_page(page);
389 	if (mapping)
390 		expected_count += thp_nr_pages(page) + page_has_private(page);
391 
392 	return expected_count;
393 }
394 
395 /*
396  * Replace the page in the mapping.
397  *
398  * The number of remaining references must be:
399  * 1 for anonymous pages without a mapping
400  * 2 for pages with a mapping
401  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
402  */
migrate_page_move_mapping(struct address_space * mapping,struct page * newpage,struct page * page,int extra_count)403 int migrate_page_move_mapping(struct address_space *mapping,
404 		struct page *newpage, struct page *page, int extra_count)
405 {
406 	XA_STATE(xas, &mapping->i_pages, page_index(page));
407 	struct zone *oldzone, *newzone;
408 	int dirty;
409 	int expected_count = expected_page_refs(mapping, page) + extra_count;
410 	int nr = thp_nr_pages(page);
411 
412 	if (!mapping) {
413 		/* Anonymous page without mapping */
414 		if (page_count(page) != expected_count)
415 			return -EAGAIN;
416 
417 		/* No turning back from here */
418 		newpage->index = page->index;
419 		newpage->mapping = page->mapping;
420 		if (PageSwapBacked(page))
421 			__SetPageSwapBacked(newpage);
422 
423 		return MIGRATEPAGE_SUCCESS;
424 	}
425 
426 	oldzone = page_zone(page);
427 	newzone = page_zone(newpage);
428 
429 	xas_lock_irq(&xas);
430 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
431 		xas_unlock_irq(&xas);
432 		return -EAGAIN;
433 	}
434 
435 	if (!page_ref_freeze(page, expected_count)) {
436 		xas_unlock_irq(&xas);
437 		return -EAGAIN;
438 	}
439 
440 	/*
441 	 * Now we know that no one else is looking at the page:
442 	 * no turning back from here.
443 	 */
444 	newpage->index = page->index;
445 	newpage->mapping = page->mapping;
446 	page_ref_add(newpage, nr); /* add cache reference */
447 	if (PageSwapBacked(page)) {
448 		__SetPageSwapBacked(newpage);
449 		if (PageSwapCache(page)) {
450 			SetPageSwapCache(newpage);
451 			set_page_private(newpage, page_private(page));
452 		}
453 	} else {
454 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
455 	}
456 
457 	/* Move dirty while page refs frozen and newpage not yet exposed */
458 	dirty = PageDirty(page);
459 	if (dirty) {
460 		ClearPageDirty(page);
461 		SetPageDirty(newpage);
462 	}
463 
464 	xas_store(&xas, newpage);
465 	if (PageTransHuge(page)) {
466 		int i;
467 
468 		for (i = 1; i < nr; i++) {
469 			xas_next(&xas);
470 			xas_store(&xas, newpage);
471 		}
472 	}
473 
474 	/*
475 	 * Drop cache reference from old page by unfreezing
476 	 * to one less reference.
477 	 * We know this isn't the last reference.
478 	 */
479 	page_ref_unfreeze(page, expected_count - nr);
480 
481 	xas_unlock(&xas);
482 	/* Leave irq disabled to prevent preemption while updating stats */
483 
484 	/*
485 	 * If moved to a different zone then also account
486 	 * the page for that zone. Other VM counters will be
487 	 * taken care of when we establish references to the
488 	 * new page and drop references to the old page.
489 	 *
490 	 * Note that anonymous pages are accounted for
491 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
492 	 * are mapped to swap space.
493 	 */
494 	if (newzone != oldzone) {
495 		struct lruvec *old_lruvec, *new_lruvec;
496 		struct mem_cgroup *memcg;
497 
498 		memcg = page_memcg(page);
499 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
500 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
501 
502 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
503 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
504 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
505 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
506 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
507 		}
508 		if (dirty && mapping_can_writeback(mapping)) {
509 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
510 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
511 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
512 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
513 		}
514 	}
515 	local_irq_enable();
516 
517 	return MIGRATEPAGE_SUCCESS;
518 }
519 EXPORT_SYMBOL(migrate_page_move_mapping);
520 
521 /*
522  * The expected number of remaining references is the same as that
523  * of migrate_page_move_mapping().
524  */
migrate_huge_page_move_mapping(struct address_space * mapping,struct page * newpage,struct page * page)525 int migrate_huge_page_move_mapping(struct address_space *mapping,
526 				   struct page *newpage, struct page *page)
527 {
528 	XA_STATE(xas, &mapping->i_pages, page_index(page));
529 	int expected_count;
530 
531 	xas_lock_irq(&xas);
532 	expected_count = 2 + page_has_private(page);
533 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
534 		xas_unlock_irq(&xas);
535 		return -EAGAIN;
536 	}
537 
538 	if (!page_ref_freeze(page, expected_count)) {
539 		xas_unlock_irq(&xas);
540 		return -EAGAIN;
541 	}
542 
543 	newpage->index = page->index;
544 	newpage->mapping = page->mapping;
545 
546 	get_page(newpage);
547 
548 	xas_store(&xas, newpage);
549 
550 	page_ref_unfreeze(page, expected_count - 1);
551 
552 	xas_unlock_irq(&xas);
553 
554 	return MIGRATEPAGE_SUCCESS;
555 }
556 
557 /*
558  * Gigantic pages are so large that we do not guarantee that page++ pointer
559  * arithmetic will work across the entire page.  We need something more
560  * specialized.
561  */
__copy_gigantic_page(struct page * dst,struct page * src,int nr_pages)562 static void __copy_gigantic_page(struct page *dst, struct page *src,
563 				int nr_pages)
564 {
565 	int i;
566 	struct page *dst_base = dst;
567 	struct page *src_base = src;
568 
569 	for (i = 0; i < nr_pages; ) {
570 		cond_resched();
571 		copy_highpage(dst, src);
572 
573 		i++;
574 		dst = mem_map_next(dst, dst_base, i);
575 		src = mem_map_next(src, src_base, i);
576 	}
577 }
578 
copy_huge_page(struct page * dst,struct page * src)579 static void copy_huge_page(struct page *dst, struct page *src)
580 {
581 	int i;
582 	int nr_pages;
583 
584 	if (PageHuge(src)) {
585 		/* hugetlbfs page */
586 		struct hstate *h = page_hstate(src);
587 		nr_pages = pages_per_huge_page(h);
588 
589 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
590 			__copy_gigantic_page(dst, src, nr_pages);
591 			return;
592 		}
593 	} else {
594 		/* thp page */
595 		BUG_ON(!PageTransHuge(src));
596 		nr_pages = thp_nr_pages(src);
597 	}
598 
599 	for (i = 0; i < nr_pages; i++) {
600 		cond_resched();
601 		copy_highpage(dst + i, src + i);
602 	}
603 }
604 
605 /*
606  * Copy the page to its new location
607  */
migrate_page_states(struct page * newpage,struct page * page)608 void migrate_page_states(struct page *newpage, struct page *page)
609 {
610 	int cpupid;
611 
612 	if (PageError(page))
613 		SetPageError(newpage);
614 	if (PageReferenced(page))
615 		SetPageReferenced(newpage);
616 	if (PageUptodate(page))
617 		SetPageUptodate(newpage);
618 	if (TestClearPageActive(page)) {
619 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
620 		SetPageActive(newpage);
621 	} else if (TestClearPageUnevictable(page))
622 		SetPageUnevictable(newpage);
623 	if (PageWorkingset(page))
624 		SetPageWorkingset(newpage);
625 	if (PageChecked(page))
626 		SetPageChecked(newpage);
627 	if (PageMappedToDisk(page))
628 		SetPageMappedToDisk(newpage);
629 
630 	/* Move dirty on pages not done by migrate_page_move_mapping() */
631 	if (PageDirty(page))
632 		SetPageDirty(newpage);
633 
634 	if (page_is_young(page))
635 		set_page_young(newpage);
636 	if (page_is_idle(page))
637 		set_page_idle(newpage);
638 
639 	/*
640 	 * Copy NUMA information to the new page, to prevent over-eager
641 	 * future migrations of this same page.
642 	 */
643 	cpupid = page_cpupid_xchg_last(page, -1);
644 	page_cpupid_xchg_last(newpage, cpupid);
645 
646 	ksm_migrate_page(newpage, page);
647 	/*
648 	 * Please do not reorder this without considering how mm/ksm.c's
649 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
650 	 */
651 	if (PageSwapCache(page))
652 		ClearPageSwapCache(page);
653 	ClearPagePrivate(page);
654 	set_page_private(page, 0);
655 
656 	/*
657 	 * If any waiters have accumulated on the new page then
658 	 * wake them up.
659 	 */
660 	if (PageWriteback(newpage))
661 		end_page_writeback(newpage);
662 
663 	/*
664 	 * PG_readahead shares the same bit with PG_reclaim.  The above
665 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
666 	 * bit after that.
667 	 */
668 	if (PageReadahead(page))
669 		SetPageReadahead(newpage);
670 
671 	copy_page_owner(page, newpage);
672 
673 	if (!PageHuge(page))
674 		mem_cgroup_migrate(page, newpage);
675 }
676 EXPORT_SYMBOL(migrate_page_states);
677 
migrate_page_copy(struct page * newpage,struct page * page)678 void migrate_page_copy(struct page *newpage, struct page *page)
679 {
680 	if (PageHuge(page) || PageTransHuge(page))
681 		copy_huge_page(newpage, page);
682 	else
683 		copy_highpage(newpage, page);
684 
685 	migrate_page_states(newpage, page);
686 }
687 EXPORT_SYMBOL(migrate_page_copy);
688 
689 /************************************************************
690  *                    Migration functions
691  ***********************************************************/
692 
migrate_page_extra(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode,int extra_count)693 int migrate_page_extra(struct address_space *mapping,
694 		struct page *newpage, struct page *page,
695 		enum migrate_mode mode, int extra_count)
696 {
697 	int rc;
698 
699 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
700 
701 	rc = migrate_page_move_mapping(mapping, newpage, page, extra_count);
702 
703 	if (rc != MIGRATEPAGE_SUCCESS)
704 		return rc;
705 
706 	if (mode != MIGRATE_SYNC_NO_COPY)
707 		migrate_page_copy(newpage, page);
708 	else
709 		migrate_page_states(newpage, page);
710 	return MIGRATEPAGE_SUCCESS;
711 }
712 
713 /*
714  * Common logic to directly migrate a single LRU page suitable for
715  * pages that do not use PagePrivate/PagePrivate2.
716  *
717  * Pages are locked upon entry and exit.
718  */
migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)719 int migrate_page(struct address_space *mapping,
720 		struct page *newpage, struct page *page,
721 		enum migrate_mode mode)
722 {
723 	return migrate_page_extra(mapping, newpage, page, mode, 0);
724 }
725 EXPORT_SYMBOL(migrate_page);
726 
727 #ifdef CONFIG_BLOCK
728 /* Returns true if all buffers are successfully locked */
buffer_migrate_lock_buffers(struct buffer_head * head,enum migrate_mode mode)729 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
730 							enum migrate_mode mode)
731 {
732 	struct buffer_head *bh = head;
733 
734 	/* Simple case, sync compaction */
735 	if (mode != MIGRATE_ASYNC) {
736 		do {
737 			lock_buffer(bh);
738 			bh = bh->b_this_page;
739 
740 		} while (bh != head);
741 
742 		return true;
743 	}
744 
745 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
746 	do {
747 		if (!trylock_buffer(bh)) {
748 			/*
749 			 * We failed to lock the buffer and cannot stall in
750 			 * async migration. Release the taken locks
751 			 */
752 			struct buffer_head *failed_bh = bh;
753 			bh = head;
754 			while (bh != failed_bh) {
755 				unlock_buffer(bh);
756 				bh = bh->b_this_page;
757 			}
758 			return false;
759 		}
760 
761 		bh = bh->b_this_page;
762 	} while (bh != head);
763 	return true;
764 }
765 
__buffer_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode,bool check_refs)766 static int __buffer_migrate_page(struct address_space *mapping,
767 		struct page *newpage, struct page *page, enum migrate_mode mode,
768 		bool check_refs)
769 {
770 	struct buffer_head *bh, *head;
771 	int rc;
772 	int expected_count;
773 
774 	if (!page_has_buffers(page))
775 		return migrate_page(mapping, newpage, page, mode);
776 
777 	/* Check whether page does not have extra refs before we do more work */
778 	expected_count = expected_page_refs(mapping, page);
779 	if (page_count(page) != expected_count)
780 		return -EAGAIN;
781 
782 	head = page_buffers(page);
783 	if (!buffer_migrate_lock_buffers(head, mode))
784 		return -EAGAIN;
785 
786 	if (check_refs) {
787 		bool busy;
788 		bool invalidated = false;
789 
790 recheck_buffers:
791 		busy = false;
792 		spin_lock(&mapping->private_lock);
793 		bh = head;
794 		do {
795 			if (atomic_read(&bh->b_count)) {
796 				busy = true;
797 				break;
798 			}
799 			bh = bh->b_this_page;
800 		} while (bh != head);
801 		if (busy) {
802 			if (invalidated) {
803 				rc = -EAGAIN;
804 				goto unlock_buffers;
805 			}
806 			spin_unlock(&mapping->private_lock);
807 			invalidate_bh_lrus();
808 			invalidated = true;
809 			goto recheck_buffers;
810 		}
811 	}
812 
813 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
814 	if (rc != MIGRATEPAGE_SUCCESS)
815 		goto unlock_buffers;
816 
817 	attach_page_private(newpage, detach_page_private(page));
818 
819 	bh = head;
820 	do {
821 		set_bh_page(bh, newpage, bh_offset(bh));
822 		bh = bh->b_this_page;
823 
824 	} while (bh != head);
825 
826 	if (mode != MIGRATE_SYNC_NO_COPY)
827 		migrate_page_copy(newpage, page);
828 	else
829 		migrate_page_states(newpage, page);
830 
831 	rc = MIGRATEPAGE_SUCCESS;
832 unlock_buffers:
833 	if (check_refs)
834 		spin_unlock(&mapping->private_lock);
835 	bh = head;
836 	do {
837 		unlock_buffer(bh);
838 		bh = bh->b_this_page;
839 
840 	} while (bh != head);
841 
842 	return rc;
843 }
844 
845 /*
846  * Migration function for pages with buffers. This function can only be used
847  * if the underlying filesystem guarantees that no other references to "page"
848  * exist. For example attached buffer heads are accessed only under page lock.
849  */
buffer_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)850 int buffer_migrate_page(struct address_space *mapping,
851 		struct page *newpage, struct page *page, enum migrate_mode mode)
852 {
853 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
854 }
855 EXPORT_SYMBOL(buffer_migrate_page);
856 
857 /*
858  * Same as above except that this variant is more careful and checks that there
859  * are also no buffer head references. This function is the right one for
860  * mappings where buffer heads are directly looked up and referenced (such as
861  * block device mappings).
862  */
buffer_migrate_page_norefs(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)863 int buffer_migrate_page_norefs(struct address_space *mapping,
864 		struct page *newpage, struct page *page, enum migrate_mode mode)
865 {
866 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
867 }
868 #endif
869 
870 /*
871  * Writeback a page to clean the dirty state
872  */
writeout(struct address_space * mapping,struct page * page)873 static int writeout(struct address_space *mapping, struct page *page)
874 {
875 	struct writeback_control wbc = {
876 		.sync_mode = WB_SYNC_NONE,
877 		.nr_to_write = 1,
878 		.range_start = 0,
879 		.range_end = LLONG_MAX,
880 		.for_reclaim = 1
881 	};
882 	int rc;
883 
884 	if (!mapping->a_ops->writepage)
885 		/* No write method for the address space */
886 		return -EINVAL;
887 
888 	if (!clear_page_dirty_for_io(page))
889 		/* Someone else already triggered a write */
890 		return -EAGAIN;
891 
892 	/*
893 	 * A dirty page may imply that the underlying filesystem has
894 	 * the page on some queue. So the page must be clean for
895 	 * migration. Writeout may mean we loose the lock and the
896 	 * page state is no longer what we checked for earlier.
897 	 * At this point we know that the migration attempt cannot
898 	 * be successful.
899 	 */
900 	remove_migration_ptes(page, page, false);
901 
902 	rc = mapping->a_ops->writepage(page, &wbc);
903 
904 	if (rc != AOP_WRITEPAGE_ACTIVATE)
905 		/* unlocked. Relock */
906 		lock_page(page);
907 
908 	return (rc < 0) ? -EIO : -EAGAIN;
909 }
910 
911 /*
912  * Default handling if a filesystem does not provide a migration function.
913  */
fallback_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)914 static int fallback_migrate_page(struct address_space *mapping,
915 	struct page *newpage, struct page *page, enum migrate_mode mode)
916 {
917 	if (PageDirty(page)) {
918 		/* Only writeback pages in full synchronous migration */
919 		switch (mode) {
920 		case MIGRATE_SYNC:
921 		case MIGRATE_SYNC_NO_COPY:
922 			break;
923 		default:
924 			return -EBUSY;
925 		}
926 		return writeout(mapping, page);
927 	}
928 
929 	/*
930 	 * Buffers may be managed in a filesystem specific way.
931 	 * We must have no buffers or drop them.
932 	 */
933 	if (page_has_private(page) &&
934 	    !try_to_release_page(page, GFP_KERNEL))
935 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
936 
937 	return migrate_page(mapping, newpage, page, mode);
938 }
939 
940 /*
941  * Move a page to a newly allocated page
942  * The page is locked and all ptes have been successfully removed.
943  *
944  * The new page will have replaced the old page if this function
945  * is successful.
946  *
947  * Return value:
948  *   < 0 - error code
949  *  MIGRATEPAGE_SUCCESS - success
950  */
move_to_new_page(struct page * newpage,struct page * page,enum migrate_mode mode)951 static int move_to_new_page(struct page *newpage, struct page *page,
952 				enum migrate_mode mode)
953 {
954 	struct address_space *mapping;
955 	int rc = -EAGAIN;
956 	bool is_lru = !__PageMovable(page);
957 
958 	VM_BUG_ON_PAGE(!PageLocked(page), page);
959 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
960 
961 	mapping = page_mapping(page);
962 
963 	if (likely(is_lru)) {
964 		if (!mapping)
965 			rc = migrate_page(mapping, newpage, page, mode);
966 		else if (mapping->a_ops->migratepage)
967 			/*
968 			 * Most pages have a mapping and most filesystems
969 			 * provide a migratepage callback. Anonymous pages
970 			 * are part of swap space which also has its own
971 			 * migratepage callback. This is the most common path
972 			 * for page migration.
973 			 */
974 			rc = mapping->a_ops->migratepage(mapping, newpage,
975 							page, mode);
976 		else
977 			rc = fallback_migrate_page(mapping, newpage,
978 							page, mode);
979 	} else {
980 		/*
981 		 * In case of non-lru page, it could be released after
982 		 * isolation step. In that case, we shouldn't try migration.
983 		 */
984 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
985 		if (!PageMovable(page)) {
986 			rc = MIGRATEPAGE_SUCCESS;
987 			__ClearPageIsolated(page);
988 			goto out;
989 		}
990 
991 		rc = mapping->a_ops->migratepage(mapping, newpage,
992 						page, mode);
993 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
994 			!PageIsolated(page));
995 	}
996 
997 	/*
998 	 * When successful, old pagecache page->mapping must be cleared before
999 	 * page is freed; but stats require that PageAnon be left as PageAnon.
1000 	 */
1001 	if (rc == MIGRATEPAGE_SUCCESS) {
1002 		if (__PageMovable(page)) {
1003 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
1004 
1005 			/*
1006 			 * We clear PG_movable under page_lock so any compactor
1007 			 * cannot try to migrate this page.
1008 			 */
1009 			__ClearPageIsolated(page);
1010 		}
1011 
1012 		/*
1013 		 * Anonymous and movable page->mapping will be cleared by
1014 		 * free_pages_prepare so don't reset it here for keeping
1015 		 * the type to work PageAnon, for example.
1016 		 */
1017 		if (!PageMappingFlags(page))
1018 			page->mapping = NULL;
1019 
1020 		if (likely(!is_zone_device_page(newpage)))
1021 			flush_dcache_page(newpage);
1022 
1023 	}
1024 out:
1025 	return rc;
1026 }
1027 
__unmap_and_move(struct page * page,struct page * newpage,int force,enum migrate_mode mode)1028 static int __unmap_and_move(struct page *page, struct page *newpage,
1029 				int force, enum migrate_mode mode)
1030 {
1031 	int rc = -EAGAIN;
1032 	int page_was_mapped = 0;
1033 	struct anon_vma *anon_vma = NULL;
1034 	bool is_lru = !__PageMovable(page);
1035 
1036 	if (!trylock_page(page)) {
1037 		if (!force || mode == MIGRATE_ASYNC)
1038 			goto out;
1039 
1040 		/*
1041 		 * It's not safe for direct compaction to call lock_page.
1042 		 * For example, during page readahead pages are added locked
1043 		 * to the LRU. Later, when the IO completes the pages are
1044 		 * marked uptodate and unlocked. However, the queueing
1045 		 * could be merging multiple pages for one bio (e.g.
1046 		 * mpage_readahead). If an allocation happens for the
1047 		 * second or third page, the process can end up locking
1048 		 * the same page twice and deadlocking. Rather than
1049 		 * trying to be clever about what pages can be locked,
1050 		 * avoid the use of lock_page for direct compaction
1051 		 * altogether.
1052 		 */
1053 		if (current->flags & PF_MEMALLOC)
1054 			goto out;
1055 
1056 		lock_page(page);
1057 	}
1058 
1059 	if (PageWriteback(page)) {
1060 		/*
1061 		 * Only in the case of a full synchronous migration is it
1062 		 * necessary to wait for PageWriteback. In the async case,
1063 		 * the retry loop is too short and in the sync-light case,
1064 		 * the overhead of stalling is too much
1065 		 */
1066 		switch (mode) {
1067 		case MIGRATE_SYNC:
1068 		case MIGRATE_SYNC_NO_COPY:
1069 			break;
1070 		default:
1071 			rc = -EBUSY;
1072 			goto out_unlock;
1073 		}
1074 		if (!force)
1075 			goto out_unlock;
1076 		wait_on_page_writeback(page);
1077 	}
1078 
1079 	/*
1080 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1081 	 * we cannot notice that anon_vma is freed while we migrates a page.
1082 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1083 	 * of migration. File cache pages are no problem because of page_lock()
1084 	 * File Caches may use write_page() or lock_page() in migration, then,
1085 	 * just care Anon page here.
1086 	 *
1087 	 * Only page_get_anon_vma() understands the subtleties of
1088 	 * getting a hold on an anon_vma from outside one of its mms.
1089 	 * But if we cannot get anon_vma, then we won't need it anyway,
1090 	 * because that implies that the anon page is no longer mapped
1091 	 * (and cannot be remapped so long as we hold the page lock).
1092 	 */
1093 	if (PageAnon(page) && !PageKsm(page))
1094 		anon_vma = page_get_anon_vma(page);
1095 
1096 	/*
1097 	 * Block others from accessing the new page when we get around to
1098 	 * establishing additional references. We are usually the only one
1099 	 * holding a reference to newpage at this point. We used to have a BUG
1100 	 * here if trylock_page(newpage) fails, but would like to allow for
1101 	 * cases where there might be a race with the previous use of newpage.
1102 	 * This is much like races on refcount of oldpage: just don't BUG().
1103 	 */
1104 	if (unlikely(!trylock_page(newpage)))
1105 		goto out_unlock;
1106 
1107 	if (unlikely(!is_lru)) {
1108 		rc = move_to_new_page(newpage, page, mode);
1109 		goto out_unlock_both;
1110 	}
1111 
1112 	/*
1113 	 * Corner case handling:
1114 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1115 	 * and treated as swapcache but it has no rmap yet.
1116 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1117 	 * trigger a BUG.  So handle it here.
1118 	 * 2. An orphaned page (see truncate_complete_page) might have
1119 	 * fs-private metadata. The page can be picked up due to memory
1120 	 * offlining.  Everywhere else except page reclaim, the page is
1121 	 * invisible to the vm, so the page can not be migrated.  So try to
1122 	 * free the metadata, so the page can be freed.
1123 	 */
1124 	if (!page->mapping) {
1125 		VM_BUG_ON_PAGE(PageAnon(page), page);
1126 		if (page_has_private(page)) {
1127 			try_to_free_buffers(page);
1128 			goto out_unlock_both;
1129 		}
1130 	} else if (page_mapped(page)) {
1131 		/* Establish migration ptes */
1132 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1133 				page);
1134 		try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1135 		page_was_mapped = 1;
1136 	}
1137 
1138 	if (!page_mapped(page))
1139 		rc = move_to_new_page(newpage, page, mode);
1140 
1141 	if (page_was_mapped)
1142 		remove_migration_ptes(page,
1143 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1144 
1145 out_unlock_both:
1146 	unlock_page(newpage);
1147 out_unlock:
1148 	/* Drop an anon_vma reference if we took one */
1149 	if (anon_vma)
1150 		put_anon_vma(anon_vma);
1151 	unlock_page(page);
1152 out:
1153 	/*
1154 	 * If migration is successful, decrease refcount of the newpage
1155 	 * which will not free the page because new page owner increased
1156 	 * refcounter. As well, if it is LRU page, add the page to LRU
1157 	 * list in here. Use the old state of the isolated source page to
1158 	 * determine if we migrated a LRU page. newpage was already unlocked
1159 	 * and possibly modified by its owner - don't rely on the page
1160 	 * state.
1161 	 */
1162 	if (rc == MIGRATEPAGE_SUCCESS) {
1163 		if (unlikely(!is_lru))
1164 			put_page(newpage);
1165 		else
1166 			putback_lru_page(newpage);
1167 	}
1168 
1169 	return rc;
1170 }
1171 
1172 /*
1173  * Obtain the lock on page, remove all ptes and migrate the page
1174  * to the newly allocated page in newpage.
1175  */
unmap_and_move(new_page_t get_new_page,free_page_t put_new_page,unsigned long private,struct page * page,int force,enum migrate_mode mode,enum migrate_reason reason)1176 static int unmap_and_move(new_page_t get_new_page,
1177 				   free_page_t put_new_page,
1178 				   unsigned long private, struct page *page,
1179 				   int force, enum migrate_mode mode,
1180 				   enum migrate_reason reason)
1181 {
1182 	int rc = MIGRATEPAGE_SUCCESS;
1183 	struct page *newpage = NULL;
1184 
1185 	if (!thp_migration_supported() && PageTransHuge(page))
1186 		return -ENOMEM;
1187 
1188 	if (page_count(page) == 1) {
1189 		/* page was freed from under us. So we are done. */
1190 		ClearPageActive(page);
1191 		ClearPageUnevictable(page);
1192 		if (unlikely(__PageMovable(page))) {
1193 			lock_page(page);
1194 			if (!PageMovable(page))
1195 				__ClearPageIsolated(page);
1196 			unlock_page(page);
1197 		}
1198 		goto out;
1199 	}
1200 
1201 	newpage = get_new_page(page, private);
1202 	if (!newpage)
1203 		return -ENOMEM;
1204 
1205 	rc = __unmap_and_move(page, newpage, force, mode);
1206 	if (rc == MIGRATEPAGE_SUCCESS)
1207 		set_page_owner_migrate_reason(newpage, reason);
1208 
1209 out:
1210 	if (rc != -EAGAIN) {
1211 		/*
1212 		 * A page that has been migrated has all references
1213 		 * removed and will be freed. A page that has not been
1214 		 * migrated will have kept its references and be restored.
1215 		 */
1216 		list_del(&page->lru);
1217 
1218 		/*
1219 		 * Compaction can migrate also non-LRU pages which are
1220 		 * not accounted to NR_ISOLATED_*. They can be recognized
1221 		 * as __PageMovable
1222 		 */
1223 		if (likely(!__PageMovable(page)))
1224 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1225 					page_is_file_lru(page), -thp_nr_pages(page));
1226 	}
1227 
1228 	/*
1229 	 * If migration is successful, releases reference grabbed during
1230 	 * isolation. Otherwise, restore the page to right list unless
1231 	 * we want to retry.
1232 	 */
1233 	if (rc == MIGRATEPAGE_SUCCESS) {
1234 		if (reason != MR_MEMORY_FAILURE)
1235 			/*
1236 			 * We release the page in page_handle_poison.
1237 			 */
1238 			put_page(page);
1239 	} else {
1240 		if (rc != -EAGAIN) {
1241 			if (likely(!__PageMovable(page))) {
1242 				putback_lru_page(page);
1243 				goto put_new;
1244 			}
1245 
1246 			lock_page(page);
1247 			if (PageMovable(page))
1248 				putback_movable_page(page);
1249 			else
1250 				__ClearPageIsolated(page);
1251 			unlock_page(page);
1252 			put_page(page);
1253 		}
1254 put_new:
1255 		if (put_new_page)
1256 			put_new_page(newpage, private);
1257 		else
1258 			put_page(newpage);
1259 	}
1260 
1261 	return rc;
1262 }
1263 
1264 /*
1265  * Counterpart of unmap_and_move_page() for hugepage migration.
1266  *
1267  * This function doesn't wait the completion of hugepage I/O
1268  * because there is no race between I/O and migration for hugepage.
1269  * Note that currently hugepage I/O occurs only in direct I/O
1270  * where no lock is held and PG_writeback is irrelevant,
1271  * and writeback status of all subpages are counted in the reference
1272  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1273  * under direct I/O, the reference of the head page is 512 and a bit more.)
1274  * This means that when we try to migrate hugepage whose subpages are
1275  * doing direct I/O, some references remain after try_to_unmap() and
1276  * hugepage migration fails without data corruption.
1277  *
1278  * There is also no race when direct I/O is issued on the page under migration,
1279  * because then pte is replaced with migration swap entry and direct I/O code
1280  * will wait in the page fault for migration to complete.
1281  */
unmap_and_move_huge_page(new_page_t get_new_page,free_page_t put_new_page,unsigned long private,struct page * hpage,int force,enum migrate_mode mode,int reason)1282 static int unmap_and_move_huge_page(new_page_t get_new_page,
1283 				free_page_t put_new_page, unsigned long private,
1284 				struct page *hpage, int force,
1285 				enum migrate_mode mode, int reason)
1286 {
1287 	int rc = -EAGAIN;
1288 	int page_was_mapped = 0;
1289 	struct page *new_hpage;
1290 	struct anon_vma *anon_vma = NULL;
1291 	struct address_space *mapping = NULL;
1292 
1293 	/*
1294 	 * Migratability of hugepages depends on architectures and their size.
1295 	 * This check is necessary because some callers of hugepage migration
1296 	 * like soft offline and memory hotremove don't walk through page
1297 	 * tables or check whether the hugepage is pmd-based or not before
1298 	 * kicking migration.
1299 	 */
1300 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1301 		putback_active_hugepage(hpage);
1302 		return -ENOSYS;
1303 	}
1304 
1305 	new_hpage = get_new_page(hpage, private);
1306 	if (!new_hpage)
1307 		return -ENOMEM;
1308 
1309 	if (!trylock_page(hpage)) {
1310 		if (!force)
1311 			goto out;
1312 		switch (mode) {
1313 		case MIGRATE_SYNC:
1314 		case MIGRATE_SYNC_NO_COPY:
1315 			break;
1316 		default:
1317 			goto out;
1318 		}
1319 		lock_page(hpage);
1320 	}
1321 
1322 	/*
1323 	 * Check for pages which are in the process of being freed.  Without
1324 	 * page_mapping() set, hugetlbfs specific move page routine will not
1325 	 * be called and we could leak usage counts for subpools.
1326 	 */
1327 	if (page_private(hpage) && !page_mapping(hpage)) {
1328 		rc = -EBUSY;
1329 		goto out_unlock;
1330 	}
1331 
1332 	if (PageAnon(hpage))
1333 		anon_vma = page_get_anon_vma(hpage);
1334 
1335 	if (unlikely(!trylock_page(new_hpage)))
1336 		goto put_anon;
1337 
1338 	if (page_mapped(hpage)) {
1339 		bool mapping_locked = false;
1340 		enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1341 
1342 		if (!PageAnon(hpage)) {
1343 			/*
1344 			 * In shared mappings, try_to_unmap could potentially
1345 			 * call huge_pmd_unshare.  Because of this, take
1346 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1347 			 * to let lower levels know we have taken the lock.
1348 			 */
1349 			mapping = hugetlb_page_mapping_lock_write(hpage);
1350 			if (unlikely(!mapping))
1351 				goto unlock_put_anon;
1352 
1353 			mapping_locked = true;
1354 			ttu |= TTU_RMAP_LOCKED;
1355 		}
1356 
1357 		try_to_unmap(hpage, ttu);
1358 		page_was_mapped = 1;
1359 
1360 		if (mapping_locked)
1361 			i_mmap_unlock_write(mapping);
1362 	}
1363 
1364 	if (!page_mapped(hpage))
1365 		rc = move_to_new_page(new_hpage, hpage, mode);
1366 
1367 	if (page_was_mapped)
1368 		remove_migration_ptes(hpage,
1369 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1370 
1371 unlock_put_anon:
1372 	unlock_page(new_hpage);
1373 
1374 put_anon:
1375 	if (anon_vma)
1376 		put_anon_vma(anon_vma);
1377 
1378 	if (rc == MIGRATEPAGE_SUCCESS) {
1379 		move_hugetlb_state(hpage, new_hpage, reason);
1380 		put_new_page = NULL;
1381 	}
1382 
1383 out_unlock:
1384 	unlock_page(hpage);
1385 out:
1386 	if (rc != -EAGAIN)
1387 		putback_active_hugepage(hpage);
1388 
1389 	/*
1390 	 * If migration was not successful and there's a freeing callback, use
1391 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1392 	 * isolation.
1393 	 */
1394 	if (put_new_page)
1395 		put_new_page(new_hpage, private);
1396 	else
1397 		putback_active_hugepage(new_hpage);
1398 
1399 	return rc;
1400 }
1401 
1402 /*
1403  * migrate_pages - migrate the pages specified in a list, to the free pages
1404  *		   supplied as the target for the page migration
1405  *
1406  * @from:		The list of pages to be migrated.
1407  * @get_new_page:	The function used to allocate free pages to be used
1408  *			as the target of the page migration.
1409  * @put_new_page:	The function used to free target pages if migration
1410  *			fails, or NULL if no special handling is necessary.
1411  * @private:		Private data to be passed on to get_new_page()
1412  * @mode:		The migration mode that specifies the constraints for
1413  *			page migration, if any.
1414  * @reason:		The reason for page migration.
1415  *
1416  * The function returns after 10 attempts or if no pages are movable any more
1417  * because the list has become empty or no retryable pages exist any more.
1418  * The caller should call putback_movable_pages() to return pages to the LRU
1419  * or free list only if ret != 0.
1420  *
1421  * Returns the number of pages that were not migrated, or an error code.
1422  */
migrate_pages(struct list_head * from,new_page_t get_new_page,free_page_t put_new_page,unsigned long private,enum migrate_mode mode,int reason)1423 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1424 		free_page_t put_new_page, unsigned long private,
1425 		enum migrate_mode mode, int reason)
1426 {
1427 	int retry = 1;
1428 	int thp_retry = 1;
1429 	int nr_failed = 0;
1430 	int nr_succeeded = 0;
1431 	int nr_thp_succeeded = 0;
1432 	int nr_thp_failed = 0;
1433 	int nr_thp_split = 0;
1434 	int pass = 0;
1435 	bool is_thp = false;
1436 	struct page *page;
1437 	struct page *page2;
1438 	int swapwrite = current->flags & PF_SWAPWRITE;
1439 	int rc, nr_subpages;
1440 
1441 	if (!swapwrite)
1442 		current->flags |= PF_SWAPWRITE;
1443 
1444 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1445 		retry = 0;
1446 		thp_retry = 0;
1447 
1448 		list_for_each_entry_safe(page, page2, from, lru) {
1449 retry:
1450 			/*
1451 			 * THP statistics is based on the source huge page.
1452 			 * Capture required information that might get lost
1453 			 * during migration.
1454 			 */
1455 			is_thp = PageTransHuge(page) && !PageHuge(page);
1456 			nr_subpages = thp_nr_pages(page);
1457 			cond_resched();
1458 
1459 			if (PageHuge(page))
1460 				rc = unmap_and_move_huge_page(get_new_page,
1461 						put_new_page, private, page,
1462 						pass > 2, mode, reason);
1463 			else
1464 				rc = unmap_and_move(get_new_page, put_new_page,
1465 						private, page, pass > 2, mode,
1466 						reason);
1467 
1468 			switch(rc) {
1469 			case -ENOMEM:
1470 				/*
1471 				 * THP migration might be unsupported or the
1472 				 * allocation could've failed so we should
1473 				 * retry on the same page with the THP split
1474 				 * to base pages.
1475 				 *
1476 				 * Head page is retried immediately and tail
1477 				 * pages are added to the tail of the list so
1478 				 * we encounter them after the rest of the list
1479 				 * is processed.
1480 				 */
1481 				if (is_thp) {
1482 					lock_page(page);
1483 					rc = split_huge_page_to_list(page, from);
1484 					unlock_page(page);
1485 					if (!rc) {
1486 						list_safe_reset_next(page, page2, lru);
1487 						nr_thp_split++;
1488 						goto retry;
1489 					}
1490 
1491 					nr_thp_failed++;
1492 					nr_failed += nr_subpages;
1493 					goto out;
1494 				}
1495 				nr_failed++;
1496 				goto out;
1497 			case -EAGAIN:
1498 				if (is_thp) {
1499 					thp_retry++;
1500 					break;
1501 				}
1502 				retry++;
1503 				break;
1504 			case MIGRATEPAGE_SUCCESS:
1505 				if (is_thp) {
1506 					nr_thp_succeeded++;
1507 					nr_succeeded += nr_subpages;
1508 					break;
1509 				}
1510 				nr_succeeded++;
1511 				break;
1512 			default:
1513 				/*
1514 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1515 				 * unlike -EAGAIN case, the failed page is
1516 				 * removed from migration page list and not
1517 				 * retried in the next outer loop.
1518 				 */
1519 				if (is_thp) {
1520 					nr_thp_failed++;
1521 					nr_failed += nr_subpages;
1522 					break;
1523 				}
1524 				nr_failed++;
1525 				break;
1526 			}
1527 		}
1528 	}
1529 	nr_failed += retry + thp_retry;
1530 	nr_thp_failed += thp_retry;
1531 	rc = nr_failed;
1532 out:
1533 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1534 	count_vm_events(PGMIGRATE_FAIL, nr_failed);
1535 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1536 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1537 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1538 	trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1539 			       nr_thp_failed, nr_thp_split, mode, reason);
1540 
1541 	if (!swapwrite)
1542 		current->flags &= ~PF_SWAPWRITE;
1543 
1544 	return rc;
1545 }
1546 
alloc_migration_target(struct page * page,unsigned long private)1547 struct page *alloc_migration_target(struct page *page, unsigned long private)
1548 {
1549 	struct migration_target_control *mtc;
1550 	gfp_t gfp_mask;
1551 	unsigned int order = 0;
1552 	struct page *new_page = NULL;
1553 	int nid;
1554 	int zidx;
1555 
1556 	mtc = (struct migration_target_control *)private;
1557 	gfp_mask = mtc->gfp_mask;
1558 	nid = mtc->nid;
1559 	if (nid == NUMA_NO_NODE)
1560 		nid = page_to_nid(page);
1561 
1562 	if (PageHuge(page)) {
1563 		struct hstate *h = page_hstate(compound_head(page));
1564 
1565 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1566 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1567 	}
1568 
1569 	if (PageTransHuge(page)) {
1570 		/*
1571 		 * clear __GFP_RECLAIM to make the migration callback
1572 		 * consistent with regular THP allocations.
1573 		 */
1574 		gfp_mask &= ~__GFP_RECLAIM;
1575 		gfp_mask |= GFP_TRANSHUGE;
1576 		order = HPAGE_PMD_ORDER;
1577 	}
1578 	zidx = zone_idx(page_zone(page));
1579 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1580 		gfp_mask |= __GFP_HIGHMEM;
1581 
1582 	new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1583 
1584 	if (new_page && PageTransHuge(new_page))
1585 		prep_transhuge_page(new_page);
1586 
1587 	return new_page;
1588 }
1589 
1590 #ifdef CONFIG_NUMA
1591 
store_status(int __user * status,int start,int value,int nr)1592 static int store_status(int __user *status, int start, int value, int nr)
1593 {
1594 	while (nr-- > 0) {
1595 		if (put_user(value, status + start))
1596 			return -EFAULT;
1597 		start++;
1598 	}
1599 
1600 	return 0;
1601 }
1602 
do_move_pages_to_node(struct mm_struct * mm,struct list_head * pagelist,int node)1603 static int do_move_pages_to_node(struct mm_struct *mm,
1604 		struct list_head *pagelist, int node)
1605 {
1606 	int err;
1607 	struct migration_target_control mtc = {
1608 		.nid = node,
1609 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1610 	};
1611 
1612 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1613 			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1614 	if (err)
1615 		putback_movable_pages(pagelist);
1616 	return err;
1617 }
1618 
1619 /*
1620  * Resolves the given address to a struct page, isolates it from the LRU and
1621  * puts it to the given pagelist.
1622  * Returns:
1623  *     errno - if the page cannot be found/isolated
1624  *     0 - when it doesn't have to be migrated because it is already on the
1625  *         target node
1626  *     1 - when it has been queued
1627  */
add_page_for_migration(struct mm_struct * mm,unsigned long addr,int node,struct list_head * pagelist,bool migrate_all)1628 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1629 		int node, struct list_head *pagelist, bool migrate_all)
1630 {
1631 	struct vm_area_struct *vma;
1632 	struct page *page;
1633 	unsigned int follflags;
1634 	int err;
1635 
1636 	mmap_read_lock(mm);
1637 	err = -EFAULT;
1638 	vma = find_vma(mm, addr);
1639 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1640 		goto out;
1641 
1642 	/* FOLL_DUMP to ignore special (like zero) pages */
1643 	follflags = FOLL_GET | FOLL_DUMP;
1644 	page = follow_page(vma, addr, follflags);
1645 
1646 	err = PTR_ERR(page);
1647 	if (IS_ERR(page))
1648 		goto out;
1649 
1650 	err = -ENOENT;
1651 	if (!page)
1652 		goto out;
1653 
1654 	err = 0;
1655 	if (page_to_nid(page) == node)
1656 		goto out_putpage;
1657 
1658 	err = -EACCES;
1659 	if (page_mapcount(page) > 1 && !migrate_all)
1660 		goto out_putpage;
1661 
1662 	if (PageHuge(page)) {
1663 		if (PageHead(page)) {
1664 			isolate_huge_page(page, pagelist);
1665 			err = 1;
1666 		}
1667 	} else {
1668 		struct page *head;
1669 
1670 		head = compound_head(page);
1671 		err = isolate_lru_page(head);
1672 		if (err)
1673 			goto out_putpage;
1674 
1675 		err = 1;
1676 		list_add_tail(&head->lru, pagelist);
1677 		mod_node_page_state(page_pgdat(head),
1678 			NR_ISOLATED_ANON + page_is_file_lru(head),
1679 			thp_nr_pages(head));
1680 	}
1681 out_putpage:
1682 	/*
1683 	 * Either remove the duplicate refcount from
1684 	 * isolate_lru_page() or drop the page ref if it was
1685 	 * not isolated.
1686 	 */
1687 	put_page(page);
1688 out:
1689 	mmap_read_unlock(mm);
1690 	return err;
1691 }
1692 
move_pages_and_store_status(struct mm_struct * mm,int node,struct list_head * pagelist,int __user * status,int start,int i,unsigned long nr_pages)1693 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1694 		struct list_head *pagelist, int __user *status,
1695 		int start, int i, unsigned long nr_pages)
1696 {
1697 	int err;
1698 
1699 	if (list_empty(pagelist))
1700 		return 0;
1701 
1702 	err = do_move_pages_to_node(mm, pagelist, node);
1703 	if (err) {
1704 		/*
1705 		 * Positive err means the number of failed
1706 		 * pages to migrate.  Since we are going to
1707 		 * abort and return the number of non-migrated
1708 		 * pages, so need to incude the rest of the
1709 		 * nr_pages that have not been attempted as
1710 		 * well.
1711 		 */
1712 		if (err > 0)
1713 			err += nr_pages - i - 1;
1714 		return err;
1715 	}
1716 	return store_status(status, start, node, i - start);
1717 }
1718 
1719 /*
1720  * Migrate an array of page address onto an array of nodes and fill
1721  * the corresponding array of status.
1722  */
do_pages_move(struct mm_struct * mm,nodemask_t task_nodes,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)1723 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1724 			 unsigned long nr_pages,
1725 			 const void __user * __user *pages,
1726 			 const int __user *nodes,
1727 			 int __user *status, int flags)
1728 {
1729 	int current_node = NUMA_NO_NODE;
1730 	LIST_HEAD(pagelist);
1731 	int start, i;
1732 	int err = 0, err1;
1733 
1734 	migrate_prep();
1735 
1736 	for (i = start = 0; i < nr_pages; i++) {
1737 		const void __user *p;
1738 		unsigned long addr;
1739 		int node;
1740 
1741 		err = -EFAULT;
1742 		if (get_user(p, pages + i))
1743 			goto out_flush;
1744 		if (get_user(node, nodes + i))
1745 			goto out_flush;
1746 		addr = (unsigned long)untagged_addr(p);
1747 
1748 		err = -ENODEV;
1749 		if (node < 0 || node >= MAX_NUMNODES)
1750 			goto out_flush;
1751 		if (!node_state(node, N_MEMORY))
1752 			goto out_flush;
1753 
1754 		err = -EACCES;
1755 		if (!node_isset(node, task_nodes))
1756 			goto out_flush;
1757 
1758 		if (current_node == NUMA_NO_NODE) {
1759 			current_node = node;
1760 			start = i;
1761 		} else if (node != current_node) {
1762 			err = move_pages_and_store_status(mm, current_node,
1763 					&pagelist, status, start, i, nr_pages);
1764 			if (err)
1765 				goto out;
1766 			start = i;
1767 			current_node = node;
1768 		}
1769 
1770 		/*
1771 		 * Errors in the page lookup or isolation are not fatal and we simply
1772 		 * report them via status
1773 		 */
1774 		err = add_page_for_migration(mm, addr, current_node,
1775 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1776 
1777 		if (err > 0) {
1778 			/* The page is successfully queued for migration */
1779 			continue;
1780 		}
1781 
1782 		/*
1783 		 * If the page is already on the target node (!err), store the
1784 		 * node, otherwise, store the err.
1785 		 */
1786 		err = store_status(status, i, err ? : current_node, 1);
1787 		if (err)
1788 			goto out_flush;
1789 
1790 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1791 				status, start, i, nr_pages);
1792 		if (err)
1793 			goto out;
1794 		current_node = NUMA_NO_NODE;
1795 	}
1796 out_flush:
1797 	/* Make sure we do not overwrite the existing error */
1798 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1799 				status, start, i, nr_pages);
1800 	if (err >= 0)
1801 		err = err1;
1802 out:
1803 	return err;
1804 }
1805 
1806 /*
1807  * Determine the nodes of an array of pages and store it in an array of status.
1808  */
do_pages_stat_array(struct mm_struct * mm,unsigned long nr_pages,const void __user ** pages,int * status)1809 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1810 				const void __user **pages, int *status)
1811 {
1812 	unsigned long i;
1813 
1814 	mmap_read_lock(mm);
1815 
1816 	for (i = 0; i < nr_pages; i++) {
1817 		unsigned long addr = (unsigned long)(*pages);
1818 		struct vm_area_struct *vma;
1819 		struct page *page;
1820 		int err = -EFAULT;
1821 
1822 		vma = find_vma(mm, addr);
1823 		if (!vma || addr < vma->vm_start)
1824 			goto set_status;
1825 
1826 		/* FOLL_DUMP to ignore special (like zero) pages */
1827 		page = follow_page(vma, addr, FOLL_DUMP);
1828 
1829 		err = PTR_ERR(page);
1830 		if (IS_ERR(page))
1831 			goto set_status;
1832 
1833 		err = page ? page_to_nid(page) : -ENOENT;
1834 set_status:
1835 		*status = err;
1836 
1837 		pages++;
1838 		status++;
1839 	}
1840 
1841 	mmap_read_unlock(mm);
1842 }
1843 
1844 /*
1845  * Determine the nodes of a user array of pages and store it in
1846  * a user array of status.
1847  */
do_pages_stat(struct mm_struct * mm,unsigned long nr_pages,const void __user * __user * pages,int __user * status)1848 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1849 			 const void __user * __user *pages,
1850 			 int __user *status)
1851 {
1852 #define DO_PAGES_STAT_CHUNK_NR 16
1853 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1854 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1855 
1856 	while (nr_pages) {
1857 		unsigned long chunk_nr;
1858 
1859 		chunk_nr = nr_pages;
1860 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1861 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1862 
1863 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1864 			break;
1865 
1866 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1867 
1868 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1869 			break;
1870 
1871 		pages += chunk_nr;
1872 		status += chunk_nr;
1873 		nr_pages -= chunk_nr;
1874 	}
1875 	return nr_pages ? -EFAULT : 0;
1876 }
1877 
find_mm_struct(pid_t pid,nodemask_t * mem_nodes)1878 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1879 {
1880 	struct task_struct *task;
1881 	struct mm_struct *mm;
1882 
1883 	/*
1884 	 * There is no need to check if current process has the right to modify
1885 	 * the specified process when they are same.
1886 	 */
1887 	if (!pid) {
1888 		mmget(current->mm);
1889 		*mem_nodes = cpuset_mems_allowed(current);
1890 		return current->mm;
1891 	}
1892 
1893 	/* Find the mm_struct */
1894 	rcu_read_lock();
1895 	task = find_task_by_vpid(pid);
1896 	if (!task) {
1897 		rcu_read_unlock();
1898 		return ERR_PTR(-ESRCH);
1899 	}
1900 	get_task_struct(task);
1901 
1902 	/*
1903 	 * Check if this process has the right to modify the specified
1904 	 * process. Use the regular "ptrace_may_access()" checks.
1905 	 */
1906 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1907 		rcu_read_unlock();
1908 		mm = ERR_PTR(-EPERM);
1909 		goto out;
1910 	}
1911 	rcu_read_unlock();
1912 
1913 	mm = ERR_PTR(security_task_movememory(task));
1914 	if (IS_ERR(mm))
1915 		goto out;
1916 	*mem_nodes = cpuset_mems_allowed(task);
1917 	mm = get_task_mm(task);
1918 out:
1919 	put_task_struct(task);
1920 	if (!mm)
1921 		mm = ERR_PTR(-EINVAL);
1922 	return mm;
1923 }
1924 
1925 /*
1926  * Move a list of pages in the address space of the currently executing
1927  * process.
1928  */
kernel_move_pages(pid_t pid,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)1929 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1930 			     const void __user * __user *pages,
1931 			     const int __user *nodes,
1932 			     int __user *status, int flags)
1933 {
1934 	struct mm_struct *mm;
1935 	int err;
1936 	nodemask_t task_nodes;
1937 
1938 	/* Check flags */
1939 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1940 		return -EINVAL;
1941 
1942 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1943 		return -EPERM;
1944 
1945 	mm = find_mm_struct(pid, &task_nodes);
1946 	if (IS_ERR(mm))
1947 		return PTR_ERR(mm);
1948 
1949 	if (nodes)
1950 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1951 				    nodes, status, flags);
1952 	else
1953 		err = do_pages_stat(mm, nr_pages, pages, status);
1954 
1955 	mmput(mm);
1956 	return err;
1957 }
1958 
SYSCALL_DEFINE6(move_pages,pid_t,pid,unsigned long,nr_pages,const void __user * __user *,pages,const int __user *,nodes,int __user *,status,int,flags)1959 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1960 		const void __user * __user *, pages,
1961 		const int __user *, nodes,
1962 		int __user *, status, int, flags)
1963 {
1964 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1965 }
1966 
1967 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE6(move_pages,pid_t,pid,compat_ulong_t,nr_pages,compat_uptr_t __user *,pages32,const int __user *,nodes,int __user *,status,int,flags)1968 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1969 		       compat_uptr_t __user *, pages32,
1970 		       const int __user *, nodes,
1971 		       int __user *, status,
1972 		       int, flags)
1973 {
1974 	const void __user * __user *pages;
1975 	int i;
1976 
1977 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1978 	for (i = 0; i < nr_pages; i++) {
1979 		compat_uptr_t p;
1980 
1981 		if (get_user(p, pages32 + i) ||
1982 			put_user(compat_ptr(p), pages + i))
1983 			return -EFAULT;
1984 	}
1985 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1986 }
1987 #endif /* CONFIG_COMPAT */
1988 
1989 #ifdef CONFIG_NUMA_BALANCING
1990 /*
1991  * Returns true if this is a safe migration target node for misplaced NUMA
1992  * pages. Currently it only checks the watermarks which crude
1993  */
migrate_balanced_pgdat(struct pglist_data * pgdat,unsigned long nr_migrate_pages)1994 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1995 				   unsigned long nr_migrate_pages)
1996 {
1997 	int z;
1998 
1999 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2000 		struct zone *zone = pgdat->node_zones + z;
2001 
2002 		if (!populated_zone(zone))
2003 			continue;
2004 
2005 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2006 		if (!zone_watermark_ok(zone, 0,
2007 				       high_wmark_pages(zone) +
2008 				       nr_migrate_pages,
2009 				       ZONE_MOVABLE, 0))
2010 			continue;
2011 		return true;
2012 	}
2013 	return false;
2014 }
2015 
alloc_misplaced_dst_page(struct page * page,unsigned long data)2016 static struct page *alloc_misplaced_dst_page(struct page *page,
2017 					   unsigned long data)
2018 {
2019 	int nid = (int) data;
2020 	struct page *newpage;
2021 
2022 	newpage = __alloc_pages_node(nid,
2023 					 (GFP_HIGHUSER_MOVABLE |
2024 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
2025 					  __GFP_NORETRY | __GFP_NOWARN) &
2026 					 ~__GFP_RECLAIM, 0);
2027 
2028 	return newpage;
2029 }
2030 
numamigrate_isolate_page(pg_data_t * pgdat,struct page * page)2031 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2032 {
2033 	int page_lru;
2034 
2035 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2036 
2037 	/* Avoid migrating to a node that is nearly full */
2038 	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2039 		return 0;
2040 
2041 	if (isolate_lru_page(page))
2042 		return 0;
2043 
2044 	/*
2045 	 * migrate_misplaced_transhuge_page() skips page migration's usual
2046 	 * check on page_count(), so we must do it here, now that the page
2047 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
2048 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
2049 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
2050 	 */
2051 	if (PageTransHuge(page) && page_count(page) != 3) {
2052 		putback_lru_page(page);
2053 		return 0;
2054 	}
2055 
2056 	page_lru = page_is_file_lru(page);
2057 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2058 				thp_nr_pages(page));
2059 
2060 	/*
2061 	 * Isolating the page has taken another reference, so the
2062 	 * caller's reference can be safely dropped without the page
2063 	 * disappearing underneath us during migration.
2064 	 */
2065 	put_page(page);
2066 	return 1;
2067 }
2068 
pmd_trans_migrating(pmd_t pmd)2069 bool pmd_trans_migrating(pmd_t pmd)
2070 {
2071 	struct page *page = pmd_page(pmd);
2072 	return PageLocked(page);
2073 }
2074 
2075 /*
2076  * Attempt to migrate a misplaced page to the specified destination
2077  * node. Caller is expected to have an elevated reference count on
2078  * the page that will be dropped by this function before returning.
2079  */
migrate_misplaced_page(struct page * page,struct vm_area_struct * vma,int node)2080 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2081 			   int node)
2082 {
2083 	pg_data_t *pgdat = NODE_DATA(node);
2084 	int isolated;
2085 	int nr_remaining;
2086 	LIST_HEAD(migratepages);
2087 
2088 	/*
2089 	 * Don't migrate file pages that are mapped in multiple processes
2090 	 * with execute permissions as they are probably shared libraries.
2091 	 */
2092 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2093 	    (vma->vm_flags & VM_EXEC))
2094 		goto out;
2095 
2096 	/*
2097 	 * Also do not migrate dirty pages as not all filesystems can move
2098 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2099 	 */
2100 	if (page_is_file_lru(page) && PageDirty(page))
2101 		goto out;
2102 
2103 	isolated = numamigrate_isolate_page(pgdat, page);
2104 	if (!isolated)
2105 		goto out;
2106 
2107 	list_add(&page->lru, &migratepages);
2108 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2109 				     NULL, node, MIGRATE_ASYNC,
2110 				     MR_NUMA_MISPLACED);
2111 	if (nr_remaining) {
2112 		if (!list_empty(&migratepages)) {
2113 			list_del(&page->lru);
2114 			dec_node_page_state(page, NR_ISOLATED_ANON +
2115 					page_is_file_lru(page));
2116 			putback_lru_page(page);
2117 		}
2118 		isolated = 0;
2119 	} else
2120 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
2121 	BUG_ON(!list_empty(&migratepages));
2122 	return isolated;
2123 
2124 out:
2125 	put_page(page);
2126 	return 0;
2127 }
2128 #endif /* CONFIG_NUMA_BALANCING */
2129 
2130 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2131 /*
2132  * Migrates a THP to a given target node. page must be locked and is unlocked
2133  * before returning.
2134  */
migrate_misplaced_transhuge_page(struct mm_struct * mm,struct vm_area_struct * vma,pmd_t * pmd,pmd_t entry,unsigned long address,struct page * page,int node)2135 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2136 				struct vm_area_struct *vma,
2137 				pmd_t *pmd, pmd_t entry,
2138 				unsigned long address,
2139 				struct page *page, int node)
2140 {
2141 	spinlock_t *ptl;
2142 	pg_data_t *pgdat = NODE_DATA(node);
2143 	int isolated = 0;
2144 	struct page *new_page = NULL;
2145 	int page_lru = page_is_file_lru(page);
2146 	unsigned long start = address & HPAGE_PMD_MASK;
2147 
2148 	new_page = alloc_pages_node(node,
2149 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2150 		HPAGE_PMD_ORDER);
2151 	if (!new_page)
2152 		goto out_fail;
2153 	prep_transhuge_page(new_page);
2154 
2155 	isolated = numamigrate_isolate_page(pgdat, page);
2156 	if (!isolated) {
2157 		put_page(new_page);
2158 		goto out_fail;
2159 	}
2160 
2161 	/* Prepare a page as a migration target */
2162 	__SetPageLocked(new_page);
2163 	if (PageSwapBacked(page))
2164 		__SetPageSwapBacked(new_page);
2165 
2166 	/* anon mapping, we can simply copy page->mapping to the new page: */
2167 	new_page->mapping = page->mapping;
2168 	new_page->index = page->index;
2169 	/* flush the cache before copying using the kernel virtual address */
2170 	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2171 	migrate_page_copy(new_page, page);
2172 	WARN_ON(PageLRU(new_page));
2173 
2174 	/* Recheck the target PMD */
2175 	ptl = pmd_lock(mm, pmd);
2176 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2177 		spin_unlock(ptl);
2178 
2179 		/* Reverse changes made by migrate_page_copy() */
2180 		if (TestClearPageActive(new_page))
2181 			SetPageActive(page);
2182 		if (TestClearPageUnevictable(new_page))
2183 			SetPageUnevictable(page);
2184 
2185 		unlock_page(new_page);
2186 		put_page(new_page);		/* Free it */
2187 
2188 		/* Retake the callers reference and putback on LRU */
2189 		get_page(page);
2190 		putback_lru_page(page);
2191 		mod_node_page_state(page_pgdat(page),
2192 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2193 
2194 		goto out_unlock;
2195 	}
2196 
2197 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2198 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2199 
2200 	/*
2201 	 * Overwrite the old entry under pagetable lock and establish
2202 	 * the new PTE. Any parallel GUP will either observe the old
2203 	 * page blocking on the page lock, block on the page table
2204 	 * lock or observe the new page. The SetPageUptodate on the
2205 	 * new page and page_add_new_anon_rmap guarantee the copy is
2206 	 * visible before the pagetable update.
2207 	 */
2208 	page_add_anon_rmap(new_page, vma, start, true);
2209 	/*
2210 	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2211 	 * has already been flushed globally.  So no TLB can be currently
2212 	 * caching this non present pmd mapping.  There's no need to clear the
2213 	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2214 	 * set_pmd_at().  Clearing the pmd here would introduce a race
2215 	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2216 	 * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2217 	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2218 	 * pmd.
2219 	 */
2220 	set_pmd_at(mm, start, pmd, entry);
2221 	update_mmu_cache_pmd(vma, address, &entry);
2222 
2223 	page_ref_unfreeze(page, 2);
2224 	mlock_migrate_page(new_page, page);
2225 	page_remove_rmap(page, true);
2226 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2227 
2228 	spin_unlock(ptl);
2229 
2230 	/* Take an "isolate" reference and put new page on the LRU. */
2231 	get_page(new_page);
2232 	putback_lru_page(new_page);
2233 
2234 	unlock_page(new_page);
2235 	unlock_page(page);
2236 	put_page(page);			/* Drop the rmap reference */
2237 	put_page(page);			/* Drop the LRU isolation reference */
2238 
2239 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2240 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2241 
2242 	mod_node_page_state(page_pgdat(page),
2243 			NR_ISOLATED_ANON + page_lru,
2244 			-HPAGE_PMD_NR);
2245 	return isolated;
2246 
2247 out_fail:
2248 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2249 	ptl = pmd_lock(mm, pmd);
2250 	if (pmd_same(*pmd, entry)) {
2251 		entry = pmd_modify(entry, vma->vm_page_prot);
2252 		set_pmd_at(mm, start, pmd, entry);
2253 		update_mmu_cache_pmd(vma, address, &entry);
2254 	}
2255 	spin_unlock(ptl);
2256 
2257 out_unlock:
2258 	unlock_page(page);
2259 	put_page(page);
2260 	return 0;
2261 }
2262 #endif /* CONFIG_NUMA_BALANCING */
2263 
2264 #endif /* CONFIG_NUMA */
2265 
2266 #ifdef CONFIG_DEVICE_PRIVATE
migrate_vma_collect_hole(unsigned long start,unsigned long end,__always_unused int depth,struct mm_walk * walk)2267 static int migrate_vma_collect_hole(unsigned long start,
2268 				    unsigned long end,
2269 				    __always_unused int depth,
2270 				    struct mm_walk *walk)
2271 {
2272 	struct migrate_vma *migrate = walk->private;
2273 	unsigned long addr;
2274 
2275 	/* Only allow populating anonymous memory. */
2276 	if (!vma_is_anonymous(walk->vma)) {
2277 		for (addr = start; addr < end; addr += PAGE_SIZE) {
2278 			migrate->src[migrate->npages] = 0;
2279 			migrate->dst[migrate->npages] = 0;
2280 			migrate->npages++;
2281 		}
2282 		return 0;
2283 	}
2284 
2285 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2286 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2287 		migrate->dst[migrate->npages] = 0;
2288 		migrate->npages++;
2289 		migrate->cpages++;
2290 	}
2291 
2292 	return 0;
2293 }
2294 
migrate_vma_collect_skip(unsigned long start,unsigned long end,struct mm_walk * walk)2295 static int migrate_vma_collect_skip(unsigned long start,
2296 				    unsigned long end,
2297 				    struct mm_walk *walk)
2298 {
2299 	struct migrate_vma *migrate = walk->private;
2300 	unsigned long addr;
2301 
2302 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2303 		migrate->dst[migrate->npages] = 0;
2304 		migrate->src[migrate->npages++] = 0;
2305 	}
2306 
2307 	return 0;
2308 }
2309 
migrate_vma_collect_pmd(pmd_t * pmdp,unsigned long start,unsigned long end,struct mm_walk * walk)2310 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2311 				   unsigned long start,
2312 				   unsigned long end,
2313 				   struct mm_walk *walk)
2314 {
2315 	struct migrate_vma *migrate = walk->private;
2316 	struct vm_area_struct *vma = walk->vma;
2317 	struct mm_struct *mm = vma->vm_mm;
2318 	unsigned long addr = start, unmapped = 0;
2319 	spinlock_t *ptl;
2320 	pte_t *ptep;
2321 
2322 again:
2323 	if (pmd_none(*pmdp))
2324 		return migrate_vma_collect_hole(start, end, -1, walk);
2325 
2326 	if (pmd_trans_huge(*pmdp)) {
2327 		struct page *page;
2328 
2329 		ptl = pmd_lock(mm, pmdp);
2330 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2331 			spin_unlock(ptl);
2332 			goto again;
2333 		}
2334 
2335 		page = pmd_page(*pmdp);
2336 		if (is_huge_zero_page(page)) {
2337 			spin_unlock(ptl);
2338 			split_huge_pmd(vma, pmdp, addr);
2339 			if (pmd_trans_unstable(pmdp))
2340 				return migrate_vma_collect_skip(start, end,
2341 								walk);
2342 		} else {
2343 			int ret;
2344 
2345 			get_page(page);
2346 			spin_unlock(ptl);
2347 			if (unlikely(!trylock_page(page)))
2348 				return migrate_vma_collect_skip(start, end,
2349 								walk);
2350 			ret = split_huge_page(page);
2351 			unlock_page(page);
2352 			put_page(page);
2353 			if (ret)
2354 				return migrate_vma_collect_skip(start, end,
2355 								walk);
2356 			if (pmd_none(*pmdp))
2357 				return migrate_vma_collect_hole(start, end, -1,
2358 								walk);
2359 		}
2360 	}
2361 
2362 	if (unlikely(pmd_bad(*pmdp)))
2363 		return migrate_vma_collect_skip(start, end, walk);
2364 
2365 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2366 	arch_enter_lazy_mmu_mode();
2367 
2368 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2369 		unsigned long mpfn = 0, pfn;
2370 		struct page *page;
2371 		swp_entry_t entry;
2372 		pte_t pte;
2373 
2374 		pte = *ptep;
2375 
2376 		if (pte_none(pte)) {
2377 			if (vma_is_anonymous(vma)) {
2378 				mpfn = MIGRATE_PFN_MIGRATE;
2379 				migrate->cpages++;
2380 			}
2381 			goto next;
2382 		}
2383 
2384 		if (!pte_present(pte)) {
2385 			/*
2386 			 * Only care about unaddressable device page special
2387 			 * page table entry. Other special swap entries are not
2388 			 * migratable, and we ignore regular swapped page.
2389 			 */
2390 			entry = pte_to_swp_entry(pte);
2391 			if (!is_device_private_entry(entry))
2392 				goto next;
2393 
2394 			page = device_private_entry_to_page(entry);
2395 			if (!(migrate->flags &
2396 				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2397 			    page->pgmap->owner != migrate->pgmap_owner)
2398 				goto next;
2399 
2400 			mpfn = migrate_pfn(page_to_pfn(page)) |
2401 					MIGRATE_PFN_MIGRATE;
2402 			if (is_write_device_private_entry(entry))
2403 				mpfn |= MIGRATE_PFN_WRITE;
2404 		} else {
2405 			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2406 				goto next;
2407 			pfn = pte_pfn(pte);
2408 			if (is_zero_pfn(pfn)) {
2409 				mpfn = MIGRATE_PFN_MIGRATE;
2410 				migrate->cpages++;
2411 				goto next;
2412 			}
2413 			page = vm_normal_page(migrate->vma, addr, pte);
2414 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2415 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2416 		}
2417 
2418 		/* FIXME support THP */
2419 		if (!page || !page->mapping || PageTransCompound(page)) {
2420 			mpfn = 0;
2421 			goto next;
2422 		}
2423 
2424 		/*
2425 		 * By getting a reference on the page we pin it and that blocks
2426 		 * any kind of migration. Side effect is that it "freezes" the
2427 		 * pte.
2428 		 *
2429 		 * We drop this reference after isolating the page from the lru
2430 		 * for non device page (device page are not on the lru and thus
2431 		 * can't be dropped from it).
2432 		 */
2433 		get_page(page);
2434 		migrate->cpages++;
2435 
2436 		/*
2437 		 * Optimize for the common case where page is only mapped once
2438 		 * in one process. If we can lock the page, then we can safely
2439 		 * set up a special migration page table entry now.
2440 		 */
2441 		if (trylock_page(page)) {
2442 			pte_t swp_pte;
2443 
2444 			mpfn |= MIGRATE_PFN_LOCKED;
2445 			ptep_get_and_clear(mm, addr, ptep);
2446 
2447 			/* Setup special migration page table entry */
2448 			entry = make_migration_entry(page, mpfn &
2449 						     MIGRATE_PFN_WRITE);
2450 			swp_pte = swp_entry_to_pte(entry);
2451 			if (pte_present(pte)) {
2452 				if (pte_soft_dirty(pte))
2453 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2454 				if (pte_uffd_wp(pte))
2455 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2456 			} else {
2457 				if (pte_swp_soft_dirty(pte))
2458 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2459 				if (pte_swp_uffd_wp(pte))
2460 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2461 			}
2462 			set_pte_at(mm, addr, ptep, swp_pte);
2463 
2464 			/*
2465 			 * This is like regular unmap: we remove the rmap and
2466 			 * drop page refcount. Page won't be freed, as we took
2467 			 * a reference just above.
2468 			 */
2469 			page_remove_rmap(page, false);
2470 			put_page(page);
2471 
2472 			if (pte_present(pte))
2473 				unmapped++;
2474 		}
2475 
2476 next:
2477 		migrate->dst[migrate->npages] = 0;
2478 		migrate->src[migrate->npages++] = mpfn;
2479 	}
2480 	arch_leave_lazy_mmu_mode();
2481 	pte_unmap_unlock(ptep - 1, ptl);
2482 
2483 	/* Only flush the TLB if we actually modified any entries */
2484 	if (unmapped)
2485 		flush_tlb_range(walk->vma, start, end);
2486 
2487 	return 0;
2488 }
2489 
2490 static const struct mm_walk_ops migrate_vma_walk_ops = {
2491 	.pmd_entry		= migrate_vma_collect_pmd,
2492 	.pte_hole		= migrate_vma_collect_hole,
2493 };
2494 
2495 /*
2496  * migrate_vma_collect() - collect pages over a range of virtual addresses
2497  * @migrate: migrate struct containing all migration information
2498  *
2499  * This will walk the CPU page table. For each virtual address backed by a
2500  * valid page, it updates the src array and takes a reference on the page, in
2501  * order to pin the page until we lock it and unmap it.
2502  */
migrate_vma_collect(struct migrate_vma * migrate)2503 static void migrate_vma_collect(struct migrate_vma *migrate)
2504 {
2505 	struct mmu_notifier_range range;
2506 
2507 	/*
2508 	 * Note that the pgmap_owner is passed to the mmu notifier callback so
2509 	 * that the registered device driver can skip invalidating device
2510 	 * private page mappings that won't be migrated.
2511 	 */
2512 	mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2513 		migrate->vma->vm_mm, migrate->start, migrate->end,
2514 		migrate->pgmap_owner);
2515 	mmu_notifier_invalidate_range_start(&range);
2516 
2517 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2518 			&migrate_vma_walk_ops, migrate);
2519 
2520 	mmu_notifier_invalidate_range_end(&range);
2521 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2522 }
2523 
2524 /*
2525  * migrate_vma_check_page() - check if page is pinned or not
2526  * @page: struct page to check
2527  *
2528  * Pinned pages cannot be migrated. This is the same test as in
2529  * migrate_page_move_mapping(), except that here we allow migration of a
2530  * ZONE_DEVICE page.
2531  */
migrate_vma_check_page(struct page * page,struct page * fault_page)2532 static bool migrate_vma_check_page(struct page *page, struct page *fault_page)
2533 {
2534 	/*
2535 	 * One extra ref because caller holds an extra reference, either from
2536 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2537 	 * a device page.
2538 	 */
2539 	int extra = 1 + (page == fault_page);
2540 
2541 	/*
2542 	 * FIXME support THP (transparent huge page), it is bit more complex to
2543 	 * check them than regular pages, because they can be mapped with a pmd
2544 	 * or with a pte (split pte mapping).
2545 	 */
2546 	if (PageCompound(page))
2547 		return false;
2548 
2549 	/* Page from ZONE_DEVICE have one extra reference */
2550 	if (is_zone_device_page(page)) {
2551 		/*
2552 		 * Private page can never be pin as they have no valid pte and
2553 		 * GUP will fail for those. Yet if there is a pending migration
2554 		 * a thread might try to wait on the pte migration entry and
2555 		 * will bump the page reference count. Sadly there is no way to
2556 		 * differentiate a regular pin from migration wait. Hence to
2557 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2558 		 * infinite loop (one stoping migration because the other is
2559 		 * waiting on pte migration entry). We always return true here.
2560 		 *
2561 		 * FIXME proper solution is to rework migration_entry_wait() so
2562 		 * it does not need to take a reference on page.
2563 		 */
2564 		return is_device_private_page(page);
2565 	}
2566 
2567 	/* For file back page */
2568 	if (page_mapping(page))
2569 		extra += 1 + page_has_private(page);
2570 
2571 	if ((page_count(page) - extra) > page_mapcount(page))
2572 		return false;
2573 
2574 	return true;
2575 }
2576 
2577 /*
2578  * migrate_vma_prepare() - lock pages and isolate them from the lru
2579  * @migrate: migrate struct containing all migration information
2580  *
2581  * This locks pages that have been collected by migrate_vma_collect(). Once each
2582  * page is locked it is isolated from the lru (for non-device pages). Finally,
2583  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2584  * migrated by concurrent kernel threads.
2585  */
migrate_vma_prepare(struct migrate_vma * migrate)2586 static void migrate_vma_prepare(struct migrate_vma *migrate)
2587 {
2588 	const unsigned long npages = migrate->npages;
2589 	const unsigned long start = migrate->start;
2590 	unsigned long addr, i, restore = 0;
2591 	bool allow_drain = true;
2592 
2593 	lru_add_drain();
2594 
2595 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2596 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2597 		bool remap = true;
2598 
2599 		if (!page)
2600 			continue;
2601 
2602 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2603 			/*
2604 			 * Because we are migrating several pages there can be
2605 			 * a deadlock between 2 concurrent migration where each
2606 			 * are waiting on each other page lock.
2607 			 *
2608 			 * Make migrate_vma() a best effort thing and backoff
2609 			 * for any page we can not lock right away.
2610 			 */
2611 			if (!trylock_page(page)) {
2612 				migrate->src[i] = 0;
2613 				migrate->cpages--;
2614 				put_page(page);
2615 				continue;
2616 			}
2617 			remap = false;
2618 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2619 		}
2620 
2621 		/* ZONE_DEVICE pages are not on LRU */
2622 		if (!is_zone_device_page(page)) {
2623 			if (!PageLRU(page) && allow_drain) {
2624 				/* Drain CPU's pagevec */
2625 				lru_add_drain_all();
2626 				allow_drain = false;
2627 			}
2628 
2629 			if (isolate_lru_page(page)) {
2630 				if (remap) {
2631 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2632 					migrate->cpages--;
2633 					restore++;
2634 				} else {
2635 					migrate->src[i] = 0;
2636 					unlock_page(page);
2637 					migrate->cpages--;
2638 					put_page(page);
2639 				}
2640 				continue;
2641 			}
2642 
2643 			/* Drop the reference we took in collect */
2644 			put_page(page);
2645 		}
2646 
2647 		if (!migrate_vma_check_page(page, migrate->fault_page)) {
2648 			if (remap) {
2649 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2650 				migrate->cpages--;
2651 				restore++;
2652 
2653 				if (!is_zone_device_page(page)) {
2654 					get_page(page);
2655 					putback_lru_page(page);
2656 				}
2657 			} else {
2658 				migrate->src[i] = 0;
2659 				unlock_page(page);
2660 				migrate->cpages--;
2661 
2662 				if (!is_zone_device_page(page))
2663 					putback_lru_page(page);
2664 				else
2665 					put_page(page);
2666 			}
2667 		}
2668 	}
2669 
2670 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2671 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2672 
2673 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2674 			continue;
2675 
2676 		remove_migration_pte(page, migrate->vma, addr, page);
2677 
2678 		migrate->src[i] = 0;
2679 		unlock_page(page);
2680 		put_page(page);
2681 		restore--;
2682 	}
2683 }
2684 
2685 /*
2686  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2687  * @migrate: migrate struct containing all migration information
2688  *
2689  * Replace page mapping (CPU page table pte) with a special migration pte entry
2690  * and check again if it has been pinned. Pinned pages are restored because we
2691  * cannot migrate them.
2692  *
2693  * This is the last step before we call the device driver callback to allocate
2694  * destination memory and copy contents of original page over to new page.
2695  */
migrate_vma_unmap(struct migrate_vma * migrate)2696 static void migrate_vma_unmap(struct migrate_vma *migrate)
2697 {
2698 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2699 	const unsigned long npages = migrate->npages;
2700 	const unsigned long start = migrate->start;
2701 	unsigned long addr, i, restore = 0;
2702 
2703 	for (i = 0; i < npages; i++) {
2704 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2705 
2706 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2707 			continue;
2708 
2709 		if (page_mapped(page)) {
2710 			try_to_unmap(page, flags);
2711 			if (page_mapped(page))
2712 				goto restore;
2713 		}
2714 
2715 		if (migrate_vma_check_page(page, migrate->fault_page))
2716 			continue;
2717 
2718 restore:
2719 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2720 		migrate->cpages--;
2721 		restore++;
2722 	}
2723 
2724 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2725 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2726 
2727 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2728 			continue;
2729 
2730 		remove_migration_ptes(page, page, false);
2731 
2732 		migrate->src[i] = 0;
2733 		unlock_page(page);
2734 		restore--;
2735 
2736 		if (is_zone_device_page(page))
2737 			put_page(page);
2738 		else
2739 			putback_lru_page(page);
2740 	}
2741 }
2742 
2743 /**
2744  * migrate_vma_setup() - prepare to migrate a range of memory
2745  * @args: contains the vma, start, and pfns arrays for the migration
2746  *
2747  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2748  * without an error.
2749  *
2750  * Prepare to migrate a range of memory virtual address range by collecting all
2751  * the pages backing each virtual address in the range, saving them inside the
2752  * src array.  Then lock those pages and unmap them. Once the pages are locked
2753  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2754  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2755  * corresponding src array entry.  Then restores any pages that are pinned, by
2756  * remapping and unlocking those pages.
2757  *
2758  * The caller should then allocate destination memory and copy source memory to
2759  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2760  * flag set).  Once these are allocated and copied, the caller must update each
2761  * corresponding entry in the dst array with the pfn value of the destination
2762  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2763  * (destination pages must have their struct pages locked, via lock_page()).
2764  *
2765  * Note that the caller does not have to migrate all the pages that are marked
2766  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2767  * device memory to system memory.  If the caller cannot migrate a device page
2768  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2769  * consequences for the userspace process, so it must be avoided if at all
2770  * possible.
2771  *
2772  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2773  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2774  * allowing the caller to allocate device memory for those unback virtual
2775  * address.  For this the caller simply has to allocate device memory and
2776  * properly set the destination entry like for regular migration.  Note that
2777  * this can still fails and thus inside the device driver must check if the
2778  * migration was successful for those entries after calling migrate_vma_pages()
2779  * just like for regular migration.
2780  *
2781  * After that, the callers must call migrate_vma_pages() to go over each entry
2782  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2783  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2784  * then migrate_vma_pages() to migrate struct page information from the source
2785  * struct page to the destination struct page.  If it fails to migrate the
2786  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2787  * src array.
2788  *
2789  * At this point all successfully migrated pages have an entry in the src
2790  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2791  * array entry with MIGRATE_PFN_VALID flag set.
2792  *
2793  * Once migrate_vma_pages() returns the caller may inspect which pages were
2794  * successfully migrated, and which were not.  Successfully migrated pages will
2795  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2796  *
2797  * It is safe to update device page table after migrate_vma_pages() because
2798  * both destination and source page are still locked, and the mmap_lock is held
2799  * in read mode (hence no one can unmap the range being migrated).
2800  *
2801  * Once the caller is done cleaning up things and updating its page table (if it
2802  * chose to do so, this is not an obligation) it finally calls
2803  * migrate_vma_finalize() to update the CPU page table to point to new pages
2804  * for successfully migrated pages or otherwise restore the CPU page table to
2805  * point to the original source pages.
2806  */
migrate_vma_setup(struct migrate_vma * args)2807 int migrate_vma_setup(struct migrate_vma *args)
2808 {
2809 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2810 
2811 	args->start &= PAGE_MASK;
2812 	args->end &= PAGE_MASK;
2813 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2814 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2815 		return -EINVAL;
2816 	if (nr_pages <= 0)
2817 		return -EINVAL;
2818 	if (args->start < args->vma->vm_start ||
2819 	    args->start >= args->vma->vm_end)
2820 		return -EINVAL;
2821 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2822 		return -EINVAL;
2823 	if (!args->src || !args->dst)
2824 		return -EINVAL;
2825 	if (args->fault_page && !is_device_private_page(args->fault_page))
2826 		return -EINVAL;
2827 
2828 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2829 	args->cpages = 0;
2830 	args->npages = 0;
2831 
2832 	migrate_vma_collect(args);
2833 
2834 	if (args->cpages)
2835 		migrate_vma_prepare(args);
2836 	if (args->cpages)
2837 		migrate_vma_unmap(args);
2838 
2839 	/*
2840 	 * At this point pages are locked and unmapped, and thus they have
2841 	 * stable content and can safely be copied to destination memory that
2842 	 * is allocated by the drivers.
2843 	 */
2844 	return 0;
2845 
2846 }
2847 EXPORT_SYMBOL(migrate_vma_setup);
2848 
2849 /*
2850  * This code closely matches the code in:
2851  *   __handle_mm_fault()
2852  *     handle_pte_fault()
2853  *       do_anonymous_page()
2854  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2855  * private page.
2856  */
migrate_vma_insert_page(struct migrate_vma * migrate,unsigned long addr,struct page * page,unsigned long * src,unsigned long * dst)2857 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2858 				    unsigned long addr,
2859 				    struct page *page,
2860 				    unsigned long *src,
2861 				    unsigned long *dst)
2862 {
2863 	struct vm_area_struct *vma = migrate->vma;
2864 	struct mm_struct *mm = vma->vm_mm;
2865 	bool flush = false;
2866 	spinlock_t *ptl;
2867 	pte_t entry;
2868 	pgd_t *pgdp;
2869 	p4d_t *p4dp;
2870 	pud_t *pudp;
2871 	pmd_t *pmdp;
2872 	pte_t *ptep;
2873 
2874 	/* Only allow populating anonymous memory */
2875 	if (!vma_is_anonymous(vma))
2876 		goto abort;
2877 
2878 	pgdp = pgd_offset(mm, addr);
2879 	p4dp = p4d_alloc(mm, pgdp, addr);
2880 	if (!p4dp)
2881 		goto abort;
2882 	pudp = pud_alloc(mm, p4dp, addr);
2883 	if (!pudp)
2884 		goto abort;
2885 	pmdp = pmd_alloc(mm, pudp, addr);
2886 	if (!pmdp)
2887 		goto abort;
2888 
2889 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2890 		goto abort;
2891 
2892 	/*
2893 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2894 	 * pte_offset_map() on pmds where a huge pmd might be created
2895 	 * from a different thread.
2896 	 *
2897 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2898 	 * parallel threads are excluded by other means.
2899 	 *
2900 	 * Here we only have mmap_read_lock(mm).
2901 	 */
2902 	if (pte_alloc(mm, pmdp))
2903 		goto abort;
2904 
2905 	/* See the comment in pte_alloc_one_map() */
2906 	if (unlikely(pmd_trans_unstable(pmdp)))
2907 		goto abort;
2908 
2909 	if (unlikely(anon_vma_prepare(vma)))
2910 		goto abort;
2911 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2912 		goto abort;
2913 
2914 	/*
2915 	 * The memory barrier inside __SetPageUptodate makes sure that
2916 	 * preceding stores to the page contents become visible before
2917 	 * the set_pte_at() write.
2918 	 */
2919 	__SetPageUptodate(page);
2920 
2921 	if (is_zone_device_page(page)) {
2922 		if (is_device_private_page(page)) {
2923 			swp_entry_t swp_entry;
2924 
2925 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2926 			entry = swp_entry_to_pte(swp_entry);
2927 		} else {
2928 			/*
2929 			 * For now we only support migrating to un-addressable
2930 			 * device memory.
2931 			 */
2932 			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2933 			goto abort;
2934 		}
2935 	} else {
2936 		entry = mk_pte(page, vma->vm_page_prot);
2937 		if (vma->vm_flags & VM_WRITE)
2938 			entry = pte_mkwrite(pte_mkdirty(entry));
2939 	}
2940 
2941 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2942 
2943 	if (check_stable_address_space(mm))
2944 		goto unlock_abort;
2945 
2946 	if (pte_present(*ptep)) {
2947 		unsigned long pfn = pte_pfn(*ptep);
2948 
2949 		if (!is_zero_pfn(pfn))
2950 			goto unlock_abort;
2951 		flush = true;
2952 	} else if (!pte_none(*ptep))
2953 		goto unlock_abort;
2954 
2955 	/*
2956 	 * Check for userfaultfd but do not deliver the fault. Instead,
2957 	 * just back off.
2958 	 */
2959 	if (userfaultfd_missing(vma))
2960 		goto unlock_abort;
2961 
2962 	inc_mm_counter(mm, MM_ANONPAGES);
2963 	page_add_new_anon_rmap(page, vma, addr, false);
2964 	if (!is_zone_device_page(page))
2965 		lru_cache_add_inactive_or_unevictable(page, vma);
2966 	get_page(page);
2967 
2968 	if (flush) {
2969 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2970 		ptep_clear_flush_notify(vma, addr, ptep);
2971 		set_pte_at_notify(mm, addr, ptep, entry);
2972 		update_mmu_cache(vma, addr, ptep);
2973 	} else {
2974 		/* No need to invalidate - it was non-present before */
2975 		set_pte_at(mm, addr, ptep, entry);
2976 		update_mmu_cache(vma, addr, ptep);
2977 	}
2978 
2979 	pte_unmap_unlock(ptep, ptl);
2980 	*src = MIGRATE_PFN_MIGRATE;
2981 	return;
2982 
2983 unlock_abort:
2984 	pte_unmap_unlock(ptep, ptl);
2985 abort:
2986 	*src &= ~MIGRATE_PFN_MIGRATE;
2987 }
2988 
2989 /**
2990  * migrate_vma_pages() - migrate meta-data from src page to dst page
2991  * @migrate: migrate struct containing all migration information
2992  *
2993  * This migrates struct page meta-data from source struct page to destination
2994  * struct page. This effectively finishes the migration from source page to the
2995  * destination page.
2996  */
migrate_vma_pages(struct migrate_vma * migrate)2997 void migrate_vma_pages(struct migrate_vma *migrate)
2998 {
2999 	const unsigned long npages = migrate->npages;
3000 	const unsigned long start = migrate->start;
3001 	struct mmu_notifier_range range;
3002 	unsigned long addr, i;
3003 	bool notified = false;
3004 
3005 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3006 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3007 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
3008 		struct address_space *mapping;
3009 		int r;
3010 
3011 		if (!newpage) {
3012 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3013 			continue;
3014 		}
3015 
3016 		if (!page) {
3017 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3018 				continue;
3019 			if (!notified) {
3020 				notified = true;
3021 
3022 				mmu_notifier_range_init(&range,
3023 							MMU_NOTIFY_CLEAR, 0,
3024 							NULL,
3025 							migrate->vma->vm_mm,
3026 							addr, migrate->end);
3027 				mmu_notifier_invalidate_range_start(&range);
3028 			}
3029 			migrate_vma_insert_page(migrate, addr, newpage,
3030 						&migrate->src[i],
3031 						&migrate->dst[i]);
3032 			continue;
3033 		}
3034 
3035 		mapping = page_mapping(page);
3036 
3037 		if (is_zone_device_page(newpage)) {
3038 			if (is_device_private_page(newpage)) {
3039 				/*
3040 				 * For now only support private anonymous when
3041 				 * migrating to un-addressable device memory.
3042 				 */
3043 				if (mapping) {
3044 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3045 					continue;
3046 				}
3047 			} else {
3048 				/*
3049 				 * Other types of ZONE_DEVICE page are not
3050 				 * supported.
3051 				 */
3052 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3053 				continue;
3054 			}
3055 		}
3056 
3057 		if (migrate->fault_page == page)
3058 			r = migrate_page_extra(mapping, newpage, page,
3059 					       MIGRATE_SYNC_NO_COPY, 1);
3060 		else
3061 			r = migrate_page(mapping, newpage, page,
3062 					 MIGRATE_SYNC_NO_COPY);
3063 		if (r != MIGRATEPAGE_SUCCESS)
3064 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3065 	}
3066 
3067 	/*
3068 	 * No need to double call mmu_notifier->invalidate_range() callback as
3069 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3070 	 * did already call it.
3071 	 */
3072 	if (notified)
3073 		mmu_notifier_invalidate_range_only_end(&range);
3074 }
3075 EXPORT_SYMBOL(migrate_vma_pages);
3076 
3077 /**
3078  * migrate_vma_finalize() - restore CPU page table entry
3079  * @migrate: migrate struct containing all migration information
3080  *
3081  * This replaces the special migration pte entry with either a mapping to the
3082  * new page if migration was successful for that page, or to the original page
3083  * otherwise.
3084  *
3085  * This also unlocks the pages and puts them back on the lru, or drops the extra
3086  * refcount, for device pages.
3087  */
migrate_vma_finalize(struct migrate_vma * migrate)3088 void migrate_vma_finalize(struct migrate_vma *migrate)
3089 {
3090 	const unsigned long npages = migrate->npages;
3091 	unsigned long i;
3092 
3093 	for (i = 0; i < npages; i++) {
3094 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3095 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
3096 
3097 		if (!page) {
3098 			if (newpage) {
3099 				unlock_page(newpage);
3100 				put_page(newpage);
3101 			}
3102 			continue;
3103 		}
3104 
3105 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3106 			if (newpage) {
3107 				unlock_page(newpage);
3108 				put_page(newpage);
3109 			}
3110 			newpage = page;
3111 		}
3112 
3113 		remove_migration_ptes(page, newpage, false);
3114 		unlock_page(page);
3115 
3116 		if (is_zone_device_page(page))
3117 			put_page(page);
3118 		else
3119 			putback_lru_page(page);
3120 
3121 		if (newpage != page) {
3122 			unlock_page(newpage);
3123 			if (is_zone_device_page(newpage))
3124 				put_page(newpage);
3125 			else
3126 				putback_lru_page(newpage);
3127 		}
3128 	}
3129 }
3130 EXPORT_SYMBOL(migrate_vma_finalize);
3131 #endif /* CONFIG_DEVICE_PRIVATE */
3132