• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 
59 #include "internal.h"
60 
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)	(0)
63 #endif
64 
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75 
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 
79 static void unmap_region(struct mm_struct *mm,
80 		struct vm_area_struct *vma, struct vm_area_struct *prev,
81 		unsigned long start, unsigned long end);
82 
83 /* description of effects of mapping type and prot in current implementation.
84  * this is due to the limited x86 page protection hardware.  The expected
85  * behavior is in parens:
86  *
87  * map_type	prot
88  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
89  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
90  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
91  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
92  *
93  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
94  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
95  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
96  */
97 pgprot_t protection_map[16] __ro_after_init = {
98 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100 };
101 
102 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
arch_filter_pgprot(pgprot_t prot)103 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
104 {
105 	return prot;
106 }
107 #endif
108 
vm_get_page_prot(unsigned long vm_flags)109 pgprot_t vm_get_page_prot(unsigned long vm_flags)
110 {
111 	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
112 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
113 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
114 
115 	return arch_filter_pgprot(ret);
116 }
117 EXPORT_SYMBOL(vm_get_page_prot);
118 
vm_pgprot_modify(pgprot_t oldprot,unsigned long vm_flags)119 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
120 {
121 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
122 }
123 
124 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)125 void vma_set_page_prot(struct vm_area_struct *vma)
126 {
127 	unsigned long vm_flags = vma->vm_flags;
128 	pgprot_t vm_page_prot;
129 
130 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
131 	if (vma_wants_writenotify(vma, vm_page_prot)) {
132 		vm_flags &= ~VM_SHARED;
133 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
134 	}
135 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
136 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
137 }
138 
139 /*
140  * Requires inode->i_mapping->i_mmap_rwsem
141  */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)142 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
143 		struct file *file, struct address_space *mapping)
144 {
145 	if (vma->vm_flags & VM_DENYWRITE)
146 		allow_write_access(file);
147 	if (vma->vm_flags & VM_SHARED)
148 		mapping_unmap_writable(mapping);
149 
150 	flush_dcache_mmap_lock(mapping);
151 	vma_interval_tree_remove(vma, &mapping->i_mmap);
152 	flush_dcache_mmap_unlock(mapping);
153 }
154 
155 /*
156  * Unlink a file-based vm structure from its interval tree, to hide
157  * vma from rmap and vmtruncate before freeing its page tables.
158  */
unlink_file_vma(struct vm_area_struct * vma)159 void unlink_file_vma(struct vm_area_struct *vma)
160 {
161 	struct file *file = vma->vm_file;
162 
163 	if (file) {
164 		struct address_space *mapping = file->f_mapping;
165 		i_mmap_lock_write(mapping);
166 		__remove_shared_vm_struct(vma, file, mapping);
167 		i_mmap_unlock_write(mapping);
168 	}
169 }
170 
171 /*
172  * Close a vm structure and free it, returning the next.
173  */
remove_vma(struct vm_area_struct * vma)174 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
175 {
176 	struct vm_area_struct *next = vma->vm_next;
177 
178 	might_sleep();
179 	if (vma->vm_ops && vma->vm_ops->close)
180 		vma->vm_ops->close(vma);
181 	if (vma->vm_file)
182 		fput(vma->vm_file);
183 	mpol_put(vma_policy(vma));
184 	vm_area_free(vma);
185 	return next;
186 }
187 
188 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
189 		struct list_head *uf);
SYSCALL_DEFINE1(brk,unsigned long,brk)190 SYSCALL_DEFINE1(brk, unsigned long, brk)
191 {
192 	unsigned long retval;
193 	unsigned long newbrk, oldbrk, origbrk;
194 	struct mm_struct *mm = current->mm;
195 	struct vm_area_struct *next;
196 	unsigned long min_brk;
197 	bool populate;
198 	bool downgraded = false;
199 	LIST_HEAD(uf);
200 
201 	if (mmap_write_lock_killable(mm))
202 		return -EINTR;
203 
204 	origbrk = mm->brk;
205 
206 #ifdef CONFIG_COMPAT_BRK
207 	/*
208 	 * CONFIG_COMPAT_BRK can still be overridden by setting
209 	 * randomize_va_space to 2, which will still cause mm->start_brk
210 	 * to be arbitrarily shifted
211 	 */
212 	if (current->brk_randomized)
213 		min_brk = mm->start_brk;
214 	else
215 		min_brk = mm->end_data;
216 #else
217 	min_brk = mm->start_brk;
218 #endif
219 	if (brk < min_brk)
220 		goto out;
221 
222 	/*
223 	 * Check against rlimit here. If this check is done later after the test
224 	 * of oldbrk with newbrk then it can escape the test and let the data
225 	 * segment grow beyond its set limit the in case where the limit is
226 	 * not page aligned -Ram Gupta
227 	 */
228 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
229 			      mm->end_data, mm->start_data))
230 		goto out;
231 
232 	newbrk = PAGE_ALIGN(brk);
233 	oldbrk = PAGE_ALIGN(mm->brk);
234 	if (oldbrk == newbrk) {
235 		mm->brk = brk;
236 		goto success;
237 	}
238 
239 	/*
240 	 * Always allow shrinking brk.
241 	 * __do_munmap() may downgrade mmap_lock to read.
242 	 */
243 	if (brk <= mm->brk) {
244 		int ret;
245 
246 		/*
247 		 * mm->brk must to be protected by write mmap_lock so update it
248 		 * before downgrading mmap_lock. When __do_munmap() fails,
249 		 * mm->brk will be restored from origbrk.
250 		 */
251 		mm->brk = brk;
252 		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
253 		if (ret < 0) {
254 			mm->brk = origbrk;
255 			goto out;
256 		} else if (ret == 1) {
257 			downgraded = true;
258 		}
259 		goto success;
260 	}
261 
262 	/* Check against existing mmap mappings. */
263 	next = find_vma(mm, oldbrk);
264 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
265 		goto out;
266 
267 	/* Ok, looks good - let it rip. */
268 	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
269 		goto out;
270 	mm->brk = brk;
271 
272 success:
273 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
274 	if (downgraded)
275 		mmap_read_unlock(mm);
276 	else
277 		mmap_write_unlock(mm);
278 	userfaultfd_unmap_complete(mm, &uf);
279 	if (populate)
280 		mm_populate(oldbrk, newbrk - oldbrk);
281 	return brk;
282 
283 out:
284 	retval = origbrk;
285 	mmap_write_unlock(mm);
286 	return retval;
287 }
288 
vma_compute_gap(struct vm_area_struct * vma)289 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
290 {
291 	unsigned long gap, prev_end;
292 
293 	/*
294 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
295 	 * allow two stack_guard_gaps between them here, and when choosing
296 	 * an unmapped area; whereas when expanding we only require one.
297 	 * That's a little inconsistent, but keeps the code here simpler.
298 	 */
299 	gap = vm_start_gap(vma);
300 	if (vma->vm_prev) {
301 		prev_end = vm_end_gap(vma->vm_prev);
302 		if (gap > prev_end)
303 			gap -= prev_end;
304 		else
305 			gap = 0;
306 	}
307 	return gap;
308 }
309 
310 #ifdef CONFIG_DEBUG_VM_RB
vma_compute_subtree_gap(struct vm_area_struct * vma)311 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
312 {
313 	unsigned long max = vma_compute_gap(vma), subtree_gap;
314 	if (vma->vm_rb.rb_left) {
315 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
316 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
317 		if (subtree_gap > max)
318 			max = subtree_gap;
319 	}
320 	if (vma->vm_rb.rb_right) {
321 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
322 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
323 		if (subtree_gap > max)
324 			max = subtree_gap;
325 	}
326 	return max;
327 }
328 
browse_rb(struct mm_struct * mm)329 static int browse_rb(struct mm_struct *mm)
330 {
331 	struct rb_root *root = &mm->mm_rb;
332 	int i = 0, j, bug = 0;
333 	struct rb_node *nd, *pn = NULL;
334 	unsigned long prev = 0, pend = 0;
335 
336 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
337 		struct vm_area_struct *vma;
338 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
339 		if (vma->vm_start < prev) {
340 			pr_emerg("vm_start %lx < prev %lx\n",
341 				  vma->vm_start, prev);
342 			bug = 1;
343 		}
344 		if (vma->vm_start < pend) {
345 			pr_emerg("vm_start %lx < pend %lx\n",
346 				  vma->vm_start, pend);
347 			bug = 1;
348 		}
349 		if (vma->vm_start > vma->vm_end) {
350 			pr_emerg("vm_start %lx > vm_end %lx\n",
351 				  vma->vm_start, vma->vm_end);
352 			bug = 1;
353 		}
354 		spin_lock(&mm->page_table_lock);
355 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
356 			pr_emerg("free gap %lx, correct %lx\n",
357 			       vma->rb_subtree_gap,
358 			       vma_compute_subtree_gap(vma));
359 			bug = 1;
360 		}
361 		spin_unlock(&mm->page_table_lock);
362 		i++;
363 		pn = nd;
364 		prev = vma->vm_start;
365 		pend = vma->vm_end;
366 	}
367 	j = 0;
368 	for (nd = pn; nd; nd = rb_prev(nd))
369 		j++;
370 	if (i != j) {
371 		pr_emerg("backwards %d, forwards %d\n", j, i);
372 		bug = 1;
373 	}
374 	return bug ? -1 : i;
375 }
376 
validate_mm_rb(struct rb_root * root,struct vm_area_struct * ignore)377 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
378 {
379 	struct rb_node *nd;
380 
381 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
382 		struct vm_area_struct *vma;
383 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
384 		VM_BUG_ON_VMA(vma != ignore &&
385 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
386 			vma);
387 	}
388 }
389 
validate_mm(struct mm_struct * mm)390 static void validate_mm(struct mm_struct *mm)
391 {
392 	int bug = 0;
393 	int i = 0;
394 	unsigned long highest_address = 0;
395 	struct vm_area_struct *vma = mm->mmap;
396 
397 	while (vma) {
398 		struct anon_vma *anon_vma = vma->anon_vma;
399 		struct anon_vma_chain *avc;
400 
401 		if (anon_vma) {
402 			anon_vma_lock_read(anon_vma);
403 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
404 				anon_vma_interval_tree_verify(avc);
405 			anon_vma_unlock_read(anon_vma);
406 		}
407 
408 		highest_address = vm_end_gap(vma);
409 		vma = vma->vm_next;
410 		i++;
411 	}
412 	if (i != mm->map_count) {
413 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
414 		bug = 1;
415 	}
416 	if (highest_address != mm->highest_vm_end) {
417 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
418 			  mm->highest_vm_end, highest_address);
419 		bug = 1;
420 	}
421 	i = browse_rb(mm);
422 	if (i != mm->map_count) {
423 		if (i != -1)
424 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
425 		bug = 1;
426 	}
427 	VM_BUG_ON_MM(bug, mm);
428 }
429 #else
430 #define validate_mm_rb(root, ignore) do { } while (0)
431 #define validate_mm(mm) do { } while (0)
432 #endif
433 
RB_DECLARE_CALLBACKS_MAX(static,vma_gap_callbacks,struct vm_area_struct,vm_rb,unsigned long,rb_subtree_gap,vma_compute_gap)434 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
435 			 struct vm_area_struct, vm_rb,
436 			 unsigned long, rb_subtree_gap, vma_compute_gap)
437 
438 /*
439  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
440  * vma->vm_prev->vm_end values changed, without modifying the vma's position
441  * in the rbtree.
442  */
443 static void vma_gap_update(struct vm_area_struct *vma)
444 {
445 	/*
446 	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
447 	 * a callback function that does exactly what we want.
448 	 */
449 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
450 }
451 
vma_rb_insert(struct vm_area_struct * vma,struct rb_root * root)452 static inline void vma_rb_insert(struct vm_area_struct *vma,
453 				 struct rb_root *root)
454 {
455 	/* All rb_subtree_gap values must be consistent prior to insertion */
456 	validate_mm_rb(root, NULL);
457 
458 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
459 }
460 
__vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)461 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
462 {
463 	/*
464 	 * Note rb_erase_augmented is a fairly large inline function,
465 	 * so make sure we instantiate it only once with our desired
466 	 * augmented rbtree callbacks.
467 	 */
468 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
469 }
470 
vma_rb_erase_ignore(struct vm_area_struct * vma,struct rb_root * root,struct vm_area_struct * ignore)471 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
472 						struct rb_root *root,
473 						struct vm_area_struct *ignore)
474 {
475 	/*
476 	 * All rb_subtree_gap values must be consistent prior to erase,
477 	 * with the possible exception of
478 	 *
479 	 * a. the "next" vma being erased if next->vm_start was reduced in
480 	 *    __vma_adjust() -> __vma_unlink()
481 	 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
482 	 *    vma_rb_erase()
483 	 */
484 	validate_mm_rb(root, ignore);
485 
486 	__vma_rb_erase(vma, root);
487 }
488 
vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)489 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
490 					 struct rb_root *root)
491 {
492 	vma_rb_erase_ignore(vma, root, vma);
493 }
494 
495 /*
496  * vma has some anon_vma assigned, and is already inserted on that
497  * anon_vma's interval trees.
498  *
499  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
500  * vma must be removed from the anon_vma's interval trees using
501  * anon_vma_interval_tree_pre_update_vma().
502  *
503  * After the update, the vma will be reinserted using
504  * anon_vma_interval_tree_post_update_vma().
505  *
506  * The entire update must be protected by exclusive mmap_lock and by
507  * the root anon_vma's mutex.
508  */
509 static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)510 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
511 {
512 	struct anon_vma_chain *avc;
513 
514 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
515 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
516 }
517 
518 static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)519 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
520 {
521 	struct anon_vma_chain *avc;
522 
523 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
524 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
525 }
526 
find_vma_links(struct mm_struct * mm,unsigned long addr,unsigned long end,struct vm_area_struct ** pprev,struct rb_node *** rb_link,struct rb_node ** rb_parent)527 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
528 		unsigned long end, struct vm_area_struct **pprev,
529 		struct rb_node ***rb_link, struct rb_node **rb_parent)
530 {
531 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
532 
533 	__rb_link = &mm->mm_rb.rb_node;
534 	rb_prev = __rb_parent = NULL;
535 
536 	while (*__rb_link) {
537 		struct vm_area_struct *vma_tmp;
538 
539 		__rb_parent = *__rb_link;
540 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
541 
542 		if (vma_tmp->vm_end > addr) {
543 			/* Fail if an existing vma overlaps the area */
544 			if (vma_tmp->vm_start < end)
545 				return -ENOMEM;
546 			__rb_link = &__rb_parent->rb_left;
547 		} else {
548 			rb_prev = __rb_parent;
549 			__rb_link = &__rb_parent->rb_right;
550 		}
551 	}
552 
553 	*pprev = NULL;
554 	if (rb_prev)
555 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
556 	*rb_link = __rb_link;
557 	*rb_parent = __rb_parent;
558 	return 0;
559 }
560 
561 /*
562  * vma_next() - Get the next VMA.
563  * @mm: The mm_struct.
564  * @vma: The current vma.
565  *
566  * If @vma is NULL, return the first vma in the mm.
567  *
568  * Returns: The next VMA after @vma.
569  */
vma_next(struct mm_struct * mm,struct vm_area_struct * vma)570 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
571 					 struct vm_area_struct *vma)
572 {
573 	if (!vma)
574 		return mm->mmap;
575 
576 	return vma->vm_next;
577 }
578 
579 /*
580  * munmap_vma_range() - munmap VMAs that overlap a range.
581  * @mm: The mm struct
582  * @start: The start of the range.
583  * @len: The length of the range.
584  * @pprev: pointer to the pointer that will be set to previous vm_area_struct
585  * @rb_link: the rb_node
586  * @rb_parent: the parent rb_node
587  *
588  * Find all the vm_area_struct that overlap from @start to
589  * @end and munmap them.  Set @pprev to the previous vm_area_struct.
590  *
591  * Returns: -ENOMEM on munmap failure or 0 on success.
592  */
593 static inline int
munmap_vma_range(struct mm_struct * mm,unsigned long start,unsigned long len,struct vm_area_struct ** pprev,struct rb_node *** link,struct rb_node ** parent,struct list_head * uf)594 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
595 		 struct vm_area_struct **pprev, struct rb_node ***link,
596 		 struct rb_node **parent, struct list_head *uf)
597 {
598 
599 	while (find_vma_links(mm, start, start + len, pprev, link, parent))
600 		if (do_munmap(mm, start, len, uf))
601 			return -ENOMEM;
602 
603 	return 0;
604 }
count_vma_pages_range(struct mm_struct * mm,unsigned long addr,unsigned long end)605 static unsigned long count_vma_pages_range(struct mm_struct *mm,
606 		unsigned long addr, unsigned long end)
607 {
608 	unsigned long nr_pages = 0;
609 	struct vm_area_struct *vma;
610 
611 	/* Find first overlaping mapping */
612 	vma = find_vma_intersection(mm, addr, end);
613 	if (!vma)
614 		return 0;
615 
616 	nr_pages = (min(end, vma->vm_end) -
617 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
618 
619 	/* Iterate over the rest of the overlaps */
620 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
621 		unsigned long overlap_len;
622 
623 		if (vma->vm_start > end)
624 			break;
625 
626 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
627 		nr_pages += overlap_len >> PAGE_SHIFT;
628 	}
629 
630 	return nr_pages;
631 }
632 
__vma_link_rb(struct mm_struct * mm,struct vm_area_struct * vma,struct rb_node ** rb_link,struct rb_node * rb_parent)633 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
634 		struct rb_node **rb_link, struct rb_node *rb_parent)
635 {
636 	/* Update tracking information for the gap following the new vma. */
637 	if (vma->vm_next)
638 		vma_gap_update(vma->vm_next);
639 	else
640 		mm->highest_vm_end = vm_end_gap(vma);
641 
642 	/*
643 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
644 	 * correct insertion point for that vma. As a result, we could not
645 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
646 	 * So, we first insert the vma with a zero rb_subtree_gap value
647 	 * (to be consistent with what we did on the way down), and then
648 	 * immediately update the gap to the correct value. Finally we
649 	 * rebalance the rbtree after all augmented values have been set.
650 	 */
651 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
652 	vma->rb_subtree_gap = 0;
653 	vma_gap_update(vma);
654 	vma_rb_insert(vma, &mm->mm_rb);
655 }
656 
__vma_link_file(struct vm_area_struct * vma)657 static void __vma_link_file(struct vm_area_struct *vma)
658 {
659 	struct file *file;
660 
661 	file = vma->vm_file;
662 	if (file) {
663 		struct address_space *mapping = file->f_mapping;
664 
665 		if (vma->vm_flags & VM_DENYWRITE)
666 			put_write_access(file_inode(file));
667 		if (vma->vm_flags & VM_SHARED)
668 			mapping_allow_writable(mapping);
669 
670 		flush_dcache_mmap_lock(mapping);
671 		vma_interval_tree_insert(vma, &mapping->i_mmap);
672 		flush_dcache_mmap_unlock(mapping);
673 	}
674 }
675 
676 static void
__vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)677 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
678 	struct vm_area_struct *prev, struct rb_node **rb_link,
679 	struct rb_node *rb_parent)
680 {
681 	__vma_link_list(mm, vma, prev);
682 	__vma_link_rb(mm, vma, rb_link, rb_parent);
683 }
684 
vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)685 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
686 			struct vm_area_struct *prev, struct rb_node **rb_link,
687 			struct rb_node *rb_parent)
688 {
689 	struct address_space *mapping = NULL;
690 
691 	if (vma->vm_file) {
692 		mapping = vma->vm_file->f_mapping;
693 		i_mmap_lock_write(mapping);
694 	}
695 
696 	__vma_link(mm, vma, prev, rb_link, rb_parent);
697 	__vma_link_file(vma);
698 
699 	if (mapping)
700 		i_mmap_unlock_write(mapping);
701 
702 	mm->map_count++;
703 	validate_mm(mm);
704 }
705 
706 /*
707  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
708  * mm's list and rbtree.  It has already been inserted into the interval tree.
709  */
__insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)710 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
711 {
712 	struct vm_area_struct *prev;
713 	struct rb_node **rb_link, *rb_parent;
714 
715 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
716 			   &prev, &rb_link, &rb_parent))
717 		BUG();
718 	__vma_link(mm, vma, prev, rb_link, rb_parent);
719 	mm->map_count++;
720 }
721 
__vma_unlink(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * ignore)722 static __always_inline void __vma_unlink(struct mm_struct *mm,
723 						struct vm_area_struct *vma,
724 						struct vm_area_struct *ignore)
725 {
726 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
727 	__vma_unlink_list(mm, vma);
728 	/* Kill the cache */
729 	vmacache_invalidate(mm);
730 }
731 
732 /*
733  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
734  * is already present in an i_mmap tree without adjusting the tree.
735  * The following helper function should be used when such adjustments
736  * are necessary.  The "insert" vma (if any) is to be inserted
737  * before we drop the necessary locks.
738  */
__vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert,struct vm_area_struct * expand)739 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
740 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
741 	struct vm_area_struct *expand)
742 {
743 	struct mm_struct *mm = vma->vm_mm;
744 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
745 	struct address_space *mapping = NULL;
746 	struct rb_root_cached *root = NULL;
747 	struct anon_vma *anon_vma = NULL;
748 	struct file *file = vma->vm_file;
749 	bool start_changed = false, end_changed = false;
750 	long adjust_next = 0;
751 	int remove_next = 0;
752 
753 	if (next && !insert) {
754 		struct vm_area_struct *exporter = NULL, *importer = NULL;
755 
756 		if (end >= next->vm_end) {
757 			/*
758 			 * vma expands, overlapping all the next, and
759 			 * perhaps the one after too (mprotect case 6).
760 			 * The only other cases that gets here are
761 			 * case 1, case 7 and case 8.
762 			 */
763 			if (next == expand) {
764 				/*
765 				 * The only case where we don't expand "vma"
766 				 * and we expand "next" instead is case 8.
767 				 */
768 				VM_WARN_ON(end != next->vm_end);
769 				/*
770 				 * remove_next == 3 means we're
771 				 * removing "vma" and that to do so we
772 				 * swapped "vma" and "next".
773 				 */
774 				remove_next = 3;
775 				VM_WARN_ON(file != next->vm_file);
776 				swap(vma, next);
777 			} else {
778 				VM_WARN_ON(expand != vma);
779 				/*
780 				 * case 1, 6, 7, remove_next == 2 is case 6,
781 				 * remove_next == 1 is case 1 or 7.
782 				 */
783 				remove_next = 1 + (end > next->vm_end);
784 				VM_WARN_ON(remove_next == 2 &&
785 					   end != next->vm_next->vm_end);
786 				/* trim end to next, for case 6 first pass */
787 				end = next->vm_end;
788 			}
789 
790 			exporter = next;
791 			importer = vma;
792 
793 			/*
794 			 * If next doesn't have anon_vma, import from vma after
795 			 * next, if the vma overlaps with it.
796 			 */
797 			if (remove_next == 2 && !next->anon_vma)
798 				exporter = next->vm_next;
799 
800 		} else if (end > next->vm_start) {
801 			/*
802 			 * vma expands, overlapping part of the next:
803 			 * mprotect case 5 shifting the boundary up.
804 			 */
805 			adjust_next = (end - next->vm_start);
806 			exporter = next;
807 			importer = vma;
808 			VM_WARN_ON(expand != importer);
809 		} else if (end < vma->vm_end) {
810 			/*
811 			 * vma shrinks, and !insert tells it's not
812 			 * split_vma inserting another: so it must be
813 			 * mprotect case 4 shifting the boundary down.
814 			 */
815 			adjust_next = -(vma->vm_end - end);
816 			exporter = vma;
817 			importer = next;
818 			VM_WARN_ON(expand != importer);
819 		}
820 
821 		/*
822 		 * Easily overlooked: when mprotect shifts the boundary,
823 		 * make sure the expanding vma has anon_vma set if the
824 		 * shrinking vma had, to cover any anon pages imported.
825 		 */
826 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
827 			int error;
828 
829 			importer->anon_vma = exporter->anon_vma;
830 			error = anon_vma_clone(importer, exporter);
831 			if (error)
832 				return error;
833 		}
834 	}
835 again:
836 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
837 
838 	if (file) {
839 		mapping = file->f_mapping;
840 		root = &mapping->i_mmap;
841 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
842 
843 		if (adjust_next)
844 			uprobe_munmap(next, next->vm_start, next->vm_end);
845 
846 		i_mmap_lock_write(mapping);
847 		if (insert) {
848 			/*
849 			 * Put into interval tree now, so instantiated pages
850 			 * are visible to arm/parisc __flush_dcache_page
851 			 * throughout; but we cannot insert into address
852 			 * space until vma start or end is updated.
853 			 */
854 			__vma_link_file(insert);
855 		}
856 	}
857 
858 	anon_vma = vma->anon_vma;
859 	if (!anon_vma && adjust_next)
860 		anon_vma = next->anon_vma;
861 	if (anon_vma) {
862 		VM_WARN_ON(adjust_next && next->anon_vma &&
863 			   anon_vma != next->anon_vma);
864 		anon_vma_lock_write(anon_vma);
865 		anon_vma_interval_tree_pre_update_vma(vma);
866 		if (adjust_next)
867 			anon_vma_interval_tree_pre_update_vma(next);
868 	}
869 
870 	if (file) {
871 		flush_dcache_mmap_lock(mapping);
872 		vma_interval_tree_remove(vma, root);
873 		if (adjust_next)
874 			vma_interval_tree_remove(next, root);
875 	}
876 
877 	if (start != vma->vm_start) {
878 		vma->vm_start = start;
879 		start_changed = true;
880 	}
881 	if (end != vma->vm_end) {
882 		vma->vm_end = end;
883 		end_changed = true;
884 	}
885 	vma->vm_pgoff = pgoff;
886 	if (adjust_next) {
887 		next->vm_start += adjust_next;
888 		next->vm_pgoff += adjust_next >> PAGE_SHIFT;
889 	}
890 
891 	if (file) {
892 		if (adjust_next)
893 			vma_interval_tree_insert(next, root);
894 		vma_interval_tree_insert(vma, root);
895 		flush_dcache_mmap_unlock(mapping);
896 	}
897 
898 	if (remove_next) {
899 		/*
900 		 * vma_merge has merged next into vma, and needs
901 		 * us to remove next before dropping the locks.
902 		 */
903 		if (remove_next != 3)
904 			__vma_unlink(mm, next, next);
905 		else
906 			/*
907 			 * vma is not before next if they've been
908 			 * swapped.
909 			 *
910 			 * pre-swap() next->vm_start was reduced so
911 			 * tell validate_mm_rb to ignore pre-swap()
912 			 * "next" (which is stored in post-swap()
913 			 * "vma").
914 			 */
915 			__vma_unlink(mm, next, vma);
916 		if (file)
917 			__remove_shared_vm_struct(next, file, mapping);
918 	} else if (insert) {
919 		/*
920 		 * split_vma has split insert from vma, and needs
921 		 * us to insert it before dropping the locks
922 		 * (it may either follow vma or precede it).
923 		 */
924 		__insert_vm_struct(mm, insert);
925 	} else {
926 		if (start_changed)
927 			vma_gap_update(vma);
928 		if (end_changed) {
929 			if (!next)
930 				mm->highest_vm_end = vm_end_gap(vma);
931 			else if (!adjust_next)
932 				vma_gap_update(next);
933 		}
934 	}
935 
936 	if (anon_vma) {
937 		anon_vma_interval_tree_post_update_vma(vma);
938 		if (adjust_next)
939 			anon_vma_interval_tree_post_update_vma(next);
940 		anon_vma_unlock_write(anon_vma);
941 	}
942 
943 	if (file) {
944 		i_mmap_unlock_write(mapping);
945 		uprobe_mmap(vma);
946 
947 		if (adjust_next)
948 			uprobe_mmap(next);
949 	}
950 
951 	if (remove_next) {
952 		if (file) {
953 			uprobe_munmap(next, next->vm_start, next->vm_end);
954 			fput(file);
955 		}
956 		if (next->anon_vma)
957 			anon_vma_merge(vma, next);
958 		mm->map_count--;
959 		mpol_put(vma_policy(next));
960 		vm_area_free(next);
961 		/*
962 		 * In mprotect's case 6 (see comments on vma_merge),
963 		 * we must remove another next too. It would clutter
964 		 * up the code too much to do both in one go.
965 		 */
966 		if (remove_next != 3) {
967 			/*
968 			 * If "next" was removed and vma->vm_end was
969 			 * expanded (up) over it, in turn
970 			 * "next->vm_prev->vm_end" changed and the
971 			 * "vma->vm_next" gap must be updated.
972 			 */
973 			next = vma->vm_next;
974 		} else {
975 			/*
976 			 * For the scope of the comment "next" and
977 			 * "vma" considered pre-swap(): if "vma" was
978 			 * removed, next->vm_start was expanded (down)
979 			 * over it and the "next" gap must be updated.
980 			 * Because of the swap() the post-swap() "vma"
981 			 * actually points to pre-swap() "next"
982 			 * (post-swap() "next" as opposed is now a
983 			 * dangling pointer).
984 			 */
985 			next = vma;
986 		}
987 		if (remove_next == 2) {
988 			remove_next = 1;
989 			end = next->vm_end;
990 			goto again;
991 		}
992 		else if (next)
993 			vma_gap_update(next);
994 		else {
995 			/*
996 			 * If remove_next == 2 we obviously can't
997 			 * reach this path.
998 			 *
999 			 * If remove_next == 3 we can't reach this
1000 			 * path because pre-swap() next is always not
1001 			 * NULL. pre-swap() "next" is not being
1002 			 * removed and its next->vm_end is not altered
1003 			 * (and furthermore "end" already matches
1004 			 * next->vm_end in remove_next == 3).
1005 			 *
1006 			 * We reach this only in the remove_next == 1
1007 			 * case if the "next" vma that was removed was
1008 			 * the highest vma of the mm. However in such
1009 			 * case next->vm_end == "end" and the extended
1010 			 * "vma" has vma->vm_end == next->vm_end so
1011 			 * mm->highest_vm_end doesn't need any update
1012 			 * in remove_next == 1 case.
1013 			 */
1014 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1015 		}
1016 	}
1017 	if (insert && file)
1018 		uprobe_mmap(insert);
1019 
1020 	validate_mm(mm);
1021 
1022 	return 0;
1023 }
1024 
1025 /*
1026  * If the vma has a ->close operation then the driver probably needs to release
1027  * per-vma resources, so we don't attempt to merge those.
1028  */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,const char * anon_name)1029 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1030 				struct file *file, unsigned long vm_flags,
1031 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1032 				const char *anon_name)
1033 {
1034 	/*
1035 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1036 	 * match the flags but dirty bit -- the caller should mark
1037 	 * merged VMA as dirty. If dirty bit won't be excluded from
1038 	 * comparison, we increase pressure on the memory system forcing
1039 	 * the kernel to generate new VMAs when old one could be
1040 	 * extended instead.
1041 	 */
1042 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1043 		return 0;
1044 	if (vma->vm_file != file)
1045 		return 0;
1046 	if (vma->vm_ops && vma->vm_ops->close)
1047 		return 0;
1048 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1049 		return 0;
1050 	if (!is_same_vma_anon_name(vma, anon_name))
1051 		return 0;
1052 	return 1;
1053 }
1054 
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)1055 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1056 					struct anon_vma *anon_vma2,
1057 					struct vm_area_struct *vma)
1058 {
1059 	/*
1060 	 * The list_is_singular() test is to avoid merging VMA cloned from
1061 	 * parents. This can improve scalability caused by anon_vma lock.
1062 	 */
1063 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1064 		list_is_singular(&vma->anon_vma_chain)))
1065 		return 1;
1066 	return anon_vma1 == anon_vma2;
1067 }
1068 
1069 /*
1070  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1071  * in front of (at a lower virtual address and file offset than) the vma.
1072  *
1073  * We cannot merge two vmas if they have differently assigned (non-NULL)
1074  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1075  *
1076  * We don't check here for the merged mmap wrapping around the end of pagecache
1077  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1078  * wrap, nor mmaps which cover the final page at index -1UL.
1079  */
1080 static int
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,const char * anon_name)1081 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1082 		     struct anon_vma *anon_vma, struct file *file,
1083 		     pgoff_t vm_pgoff,
1084 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1085 		     const char *anon_name)
1086 {
1087 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1088 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1089 		if (vma->vm_pgoff == vm_pgoff)
1090 			return 1;
1091 	}
1092 	return 0;
1093 }
1094 
1095 /*
1096  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1097  * beyond (at a higher virtual address and file offset than) the vma.
1098  *
1099  * We cannot merge two vmas if they have differently assigned (non-NULL)
1100  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1101  */
1102 static int
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,const char * anon_name)1103 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1104 		    struct anon_vma *anon_vma, struct file *file,
1105 		    pgoff_t vm_pgoff,
1106 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1107 		    const char *anon_name)
1108 {
1109 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1110 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1111 		pgoff_t vm_pglen;
1112 		vm_pglen = vma_pages(vma);
1113 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1114 			return 1;
1115 	}
1116 	return 0;
1117 }
1118 
1119 /*
1120  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1121  * figure out whether that can be merged with its predecessor or its
1122  * successor.  Or both (it neatly fills a hole).
1123  *
1124  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1125  * certain not to be mapped by the time vma_merge is called; but when
1126  * called for mprotect, it is certain to be already mapped (either at
1127  * an offset within prev, or at the start of next), and the flags of
1128  * this area are about to be changed to vm_flags - and the no-change
1129  * case has already been eliminated.
1130  *
1131  * The following mprotect cases have to be considered, where AAAA is
1132  * the area passed down from mprotect_fixup, never extending beyond one
1133  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1134  *
1135  *     AAAA             AAAA                   AAAA
1136  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1137  *    cannot merge    might become       might become
1138  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1139  *    mmap, brk or    case 4 below       case 5 below
1140  *    mremap move:
1141  *                        AAAA               AAAA
1142  *                    PPPP    NNNN       PPPPNNNNXXXX
1143  *                    might become       might become
1144  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1145  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1146  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1147  *
1148  * It is important for case 8 that the vma NNNN overlapping the
1149  * region AAAA is never going to extended over XXXX. Instead XXXX must
1150  * be extended in region AAAA and NNNN must be removed. This way in
1151  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1152  * rmap_locks, the properties of the merged vma will be already
1153  * correct for the whole merged range. Some of those properties like
1154  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1155  * be correct for the whole merged range immediately after the
1156  * rmap_locks are released. Otherwise if XXXX would be removed and
1157  * NNNN would be extended over the XXXX range, remove_migration_ptes
1158  * or other rmap walkers (if working on addresses beyond the "end"
1159  * parameter) may establish ptes with the wrong permissions of NNNN
1160  * instead of the right permissions of XXXX.
1161  */
vma_merge(struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,const char * anon_name)1162 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1163 			struct vm_area_struct *prev, unsigned long addr,
1164 			unsigned long end, unsigned long vm_flags,
1165 			struct anon_vma *anon_vma, struct file *file,
1166 			pgoff_t pgoff, struct mempolicy *policy,
1167 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1168 			const char *anon_name)
1169 {
1170 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1171 	struct vm_area_struct *area, *next;
1172 	int err;
1173 
1174 	/*
1175 	 * We later require that vma->vm_flags == vm_flags,
1176 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1177 	 */
1178 	if (vm_flags & VM_SPECIAL)
1179 		return NULL;
1180 
1181 	next = vma_next(mm, prev);
1182 	area = next;
1183 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1184 		next = next->vm_next;
1185 
1186 	/* verify some invariant that must be enforced by the caller */
1187 	VM_WARN_ON(prev && addr <= prev->vm_start);
1188 	VM_WARN_ON(area && end > area->vm_end);
1189 	VM_WARN_ON(addr >= end);
1190 
1191 	/*
1192 	 * Can it merge with the predecessor?
1193 	 */
1194 	if (prev && prev->vm_end == addr &&
1195 			mpol_equal(vma_policy(prev), policy) &&
1196 			can_vma_merge_after(prev, vm_flags,
1197 					    anon_vma, file, pgoff,
1198 					    vm_userfaultfd_ctx, anon_name)) {
1199 		/*
1200 		 * OK, it can.  Can we now merge in the successor as well?
1201 		 */
1202 		if (next && end == next->vm_start &&
1203 				mpol_equal(policy, vma_policy(next)) &&
1204 				can_vma_merge_before(next, vm_flags,
1205 						     anon_vma, file,
1206 						     pgoff+pglen,
1207 						     vm_userfaultfd_ctx, anon_name) &&
1208 				is_mergeable_anon_vma(prev->anon_vma,
1209 						      next->anon_vma, NULL)) {
1210 							/* cases 1, 6 */
1211 			err = __vma_adjust(prev, prev->vm_start,
1212 					 next->vm_end, prev->vm_pgoff, NULL,
1213 					 prev);
1214 		} else					/* cases 2, 5, 7 */
1215 			err = __vma_adjust(prev, prev->vm_start,
1216 					 end, prev->vm_pgoff, NULL, prev);
1217 		if (err)
1218 			return NULL;
1219 		khugepaged_enter_vma_merge(prev, vm_flags);
1220 		return prev;
1221 	}
1222 
1223 	/*
1224 	 * Can this new request be merged in front of next?
1225 	 */
1226 	if (next && end == next->vm_start &&
1227 			mpol_equal(policy, vma_policy(next)) &&
1228 			can_vma_merge_before(next, vm_flags,
1229 					     anon_vma, file, pgoff+pglen,
1230 					     vm_userfaultfd_ctx, anon_name)) {
1231 		if (prev && addr < prev->vm_end)	/* case 4 */
1232 			err = __vma_adjust(prev, prev->vm_start,
1233 					 addr, prev->vm_pgoff, NULL, next);
1234 		else {					/* cases 3, 8 */
1235 			err = __vma_adjust(area, addr, next->vm_end,
1236 					 next->vm_pgoff - pglen, NULL, next);
1237 			/*
1238 			 * In case 3 area is already equal to next and
1239 			 * this is a noop, but in case 8 "area" has
1240 			 * been removed and next was expanded over it.
1241 			 */
1242 			area = next;
1243 		}
1244 		if (err)
1245 			return NULL;
1246 		khugepaged_enter_vma_merge(area, vm_flags);
1247 		return area;
1248 	}
1249 
1250 	return NULL;
1251 }
1252 
1253 /*
1254  * Rough compatibility check to quickly see if it's even worth looking
1255  * at sharing an anon_vma.
1256  *
1257  * They need to have the same vm_file, and the flags can only differ
1258  * in things that mprotect may change.
1259  *
1260  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1261  * we can merge the two vma's. For example, we refuse to merge a vma if
1262  * there is a vm_ops->close() function, because that indicates that the
1263  * driver is doing some kind of reference counting. But that doesn't
1264  * really matter for the anon_vma sharing case.
1265  */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1266 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1267 {
1268 	return a->vm_end == b->vm_start &&
1269 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1270 		a->vm_file == b->vm_file &&
1271 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1272 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1273 }
1274 
1275 /*
1276  * Do some basic sanity checking to see if we can re-use the anon_vma
1277  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1278  * the same as 'old', the other will be the new one that is trying
1279  * to share the anon_vma.
1280  *
1281  * NOTE! This runs with mm_sem held for reading, so it is possible that
1282  * the anon_vma of 'old' is concurrently in the process of being set up
1283  * by another page fault trying to merge _that_. But that's ok: if it
1284  * is being set up, that automatically means that it will be a singleton
1285  * acceptable for merging, so we can do all of this optimistically. But
1286  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1287  *
1288  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1289  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1290  * is to return an anon_vma that is "complex" due to having gone through
1291  * a fork).
1292  *
1293  * We also make sure that the two vma's are compatible (adjacent,
1294  * and with the same memory policies). That's all stable, even with just
1295  * a read lock on the mm_sem.
1296  */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1297 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1298 {
1299 	if (anon_vma_compatible(a, b)) {
1300 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1301 
1302 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1303 			return anon_vma;
1304 	}
1305 	return NULL;
1306 }
1307 
1308 /*
1309  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1310  * neighbouring vmas for a suitable anon_vma, before it goes off
1311  * to allocate a new anon_vma.  It checks because a repetitive
1312  * sequence of mprotects and faults may otherwise lead to distinct
1313  * anon_vmas being allocated, preventing vma merge in subsequent
1314  * mprotect.
1315  */
find_mergeable_anon_vma(struct vm_area_struct * vma)1316 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1317 {
1318 	struct anon_vma *anon_vma = NULL;
1319 
1320 	/* Try next first. */
1321 	if (vma->vm_next) {
1322 		anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1323 		if (anon_vma)
1324 			return anon_vma;
1325 	}
1326 
1327 	/* Try prev next. */
1328 	if (vma->vm_prev)
1329 		anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1330 
1331 	/*
1332 	 * We might reach here with anon_vma == NULL if we can't find
1333 	 * any reusable anon_vma.
1334 	 * There's no absolute need to look only at touching neighbours:
1335 	 * we could search further afield for "compatible" anon_vmas.
1336 	 * But it would probably just be a waste of time searching,
1337 	 * or lead to too many vmas hanging off the same anon_vma.
1338 	 * We're trying to allow mprotect remerging later on,
1339 	 * not trying to minimize memory used for anon_vmas.
1340 	 */
1341 	return anon_vma;
1342 }
1343 
1344 /*
1345  * If a hint addr is less than mmap_min_addr change hint to be as
1346  * low as possible but still greater than mmap_min_addr
1347  */
round_hint_to_min(unsigned long hint)1348 static inline unsigned long round_hint_to_min(unsigned long hint)
1349 {
1350 	hint &= PAGE_MASK;
1351 	if (((void *)hint != NULL) &&
1352 	    (hint < mmap_min_addr))
1353 		return PAGE_ALIGN(mmap_min_addr);
1354 	return hint;
1355 }
1356 
mlock_future_check(struct mm_struct * mm,unsigned long flags,unsigned long len)1357 static inline int mlock_future_check(struct mm_struct *mm,
1358 				     unsigned long flags,
1359 				     unsigned long len)
1360 {
1361 	unsigned long locked, lock_limit;
1362 
1363 	/*  mlock MCL_FUTURE? */
1364 	if (flags & VM_LOCKED) {
1365 		locked = len >> PAGE_SHIFT;
1366 		locked += mm->locked_vm;
1367 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1368 		lock_limit >>= PAGE_SHIFT;
1369 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1370 			return -EAGAIN;
1371 	}
1372 	return 0;
1373 }
1374 
file_mmap_size_max(struct file * file,struct inode * inode)1375 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1376 {
1377 	if (S_ISREG(inode->i_mode))
1378 		return MAX_LFS_FILESIZE;
1379 
1380 	if (S_ISBLK(inode->i_mode))
1381 		return MAX_LFS_FILESIZE;
1382 
1383 	if (S_ISSOCK(inode->i_mode))
1384 		return MAX_LFS_FILESIZE;
1385 
1386 	/* Special "we do even unsigned file positions" case */
1387 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1388 		return 0;
1389 
1390 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1391 	return ULONG_MAX;
1392 }
1393 
file_mmap_ok(struct file * file,struct inode * inode,unsigned long pgoff,unsigned long len)1394 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1395 				unsigned long pgoff, unsigned long len)
1396 {
1397 	u64 maxsize = file_mmap_size_max(file, inode);
1398 
1399 	if (maxsize && len > maxsize)
1400 		return false;
1401 	maxsize -= len;
1402 	if (pgoff > maxsize >> PAGE_SHIFT)
1403 		return false;
1404 	return true;
1405 }
1406 
1407 /*
1408  * The caller must write-lock current->mm->mmap_lock.
1409  */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1410 unsigned long do_mmap(struct file *file, unsigned long addr,
1411 			unsigned long len, unsigned long prot,
1412 			unsigned long flags, unsigned long pgoff,
1413 			unsigned long *populate, struct list_head *uf)
1414 {
1415 	struct mm_struct *mm = current->mm;
1416 	vm_flags_t vm_flags;
1417 	int pkey = 0;
1418 
1419 	*populate = 0;
1420 
1421 	if (!len)
1422 		return -EINVAL;
1423 
1424 	/*
1425 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1426 	 *
1427 	 * (the exception is when the underlying filesystem is noexec
1428 	 *  mounted, in which case we dont add PROT_EXEC.)
1429 	 */
1430 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1431 		if (!(file && path_noexec(&file->f_path)))
1432 			prot |= PROT_EXEC;
1433 
1434 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1435 	if (flags & MAP_FIXED_NOREPLACE)
1436 		flags |= MAP_FIXED;
1437 
1438 	if (!(flags & MAP_FIXED))
1439 		addr = round_hint_to_min(addr);
1440 
1441 	/* Careful about overflows.. */
1442 	len = PAGE_ALIGN(len);
1443 	if (!len)
1444 		return -ENOMEM;
1445 
1446 	/* offset overflow? */
1447 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1448 		return -EOVERFLOW;
1449 
1450 	/* Too many mappings? */
1451 	if (mm->map_count > sysctl_max_map_count)
1452 		return -ENOMEM;
1453 
1454 	/* Obtain the address to map to. we verify (or select) it and ensure
1455 	 * that it represents a valid section of the address space.
1456 	 */
1457 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1458 	if (IS_ERR_VALUE(addr))
1459 		return addr;
1460 
1461 	if (flags & MAP_FIXED_NOREPLACE) {
1462 		struct vm_area_struct *vma = find_vma(mm, addr);
1463 
1464 		if (vma && vma->vm_start < addr + len)
1465 			return -EEXIST;
1466 	}
1467 
1468 	if (prot == PROT_EXEC) {
1469 		pkey = execute_only_pkey(mm);
1470 		if (pkey < 0)
1471 			pkey = 0;
1472 	}
1473 
1474 	/* Do simple checking here so the lower-level routines won't have
1475 	 * to. we assume access permissions have been handled by the open
1476 	 * of the memory object, so we don't do any here.
1477 	 */
1478 	vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1479 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1480 
1481 	if (flags & MAP_LOCKED)
1482 		if (!can_do_mlock())
1483 			return -EPERM;
1484 
1485 	if (mlock_future_check(mm, vm_flags, len))
1486 		return -EAGAIN;
1487 
1488 	if (file) {
1489 		struct inode *inode = file_inode(file);
1490 		unsigned long flags_mask;
1491 
1492 		if (!file_mmap_ok(file, inode, pgoff, len))
1493 			return -EOVERFLOW;
1494 
1495 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1496 
1497 		switch (flags & MAP_TYPE) {
1498 		case MAP_SHARED:
1499 			/*
1500 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1501 			 * flags. E.g. MAP_SYNC is dangerous to use with
1502 			 * MAP_SHARED as you don't know which consistency model
1503 			 * you will get. We silently ignore unsupported flags
1504 			 * with MAP_SHARED to preserve backward compatibility.
1505 			 */
1506 			flags &= LEGACY_MAP_MASK;
1507 			fallthrough;
1508 		case MAP_SHARED_VALIDATE:
1509 			if (flags & ~flags_mask)
1510 				return -EOPNOTSUPP;
1511 			if (prot & PROT_WRITE) {
1512 				if (!(file->f_mode & FMODE_WRITE))
1513 					return -EACCES;
1514 				if (IS_SWAPFILE(file->f_mapping->host))
1515 					return -ETXTBSY;
1516 			}
1517 
1518 			/*
1519 			 * Make sure we don't allow writing to an append-only
1520 			 * file..
1521 			 */
1522 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1523 				return -EACCES;
1524 
1525 			/*
1526 			 * Make sure there are no mandatory locks on the file.
1527 			 */
1528 			if (locks_verify_locked(file))
1529 				return -EAGAIN;
1530 
1531 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1532 			if (!(file->f_mode & FMODE_WRITE))
1533 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1534 			fallthrough;
1535 		case MAP_PRIVATE:
1536 			if (!(file->f_mode & FMODE_READ))
1537 				return -EACCES;
1538 			if (path_noexec(&file->f_path)) {
1539 				if (vm_flags & VM_EXEC)
1540 					return -EPERM;
1541 				vm_flags &= ~VM_MAYEXEC;
1542 			}
1543 
1544 			if (!file->f_op->mmap)
1545 				return -ENODEV;
1546 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1547 				return -EINVAL;
1548 			break;
1549 
1550 		default:
1551 			return -EINVAL;
1552 		}
1553 	} else {
1554 		switch (flags & MAP_TYPE) {
1555 		case MAP_SHARED:
1556 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1557 				return -EINVAL;
1558 			/*
1559 			 * Ignore pgoff.
1560 			 */
1561 			pgoff = 0;
1562 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1563 			break;
1564 		case MAP_PRIVATE:
1565 			/*
1566 			 * Set pgoff according to addr for anon_vma.
1567 			 */
1568 			pgoff = addr >> PAGE_SHIFT;
1569 			break;
1570 		default:
1571 			return -EINVAL;
1572 		}
1573 	}
1574 
1575 	/*
1576 	 * Set 'VM_NORESERVE' if we should not account for the
1577 	 * memory use of this mapping.
1578 	 */
1579 	if (flags & MAP_NORESERVE) {
1580 		/* We honor MAP_NORESERVE if allowed to overcommit */
1581 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1582 			vm_flags |= VM_NORESERVE;
1583 
1584 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1585 		if (file && is_file_hugepages(file))
1586 			vm_flags |= VM_NORESERVE;
1587 	}
1588 
1589 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1590 	if (!IS_ERR_VALUE(addr) &&
1591 	    ((vm_flags & VM_LOCKED) ||
1592 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1593 		*populate = len;
1594 	return addr;
1595 }
1596 
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1597 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1598 			      unsigned long prot, unsigned long flags,
1599 			      unsigned long fd, unsigned long pgoff)
1600 {
1601 	struct file *file = NULL;
1602 	unsigned long retval;
1603 
1604 	if (!(flags & MAP_ANONYMOUS)) {
1605 		audit_mmap_fd(fd, flags);
1606 		file = fget(fd);
1607 		if (!file)
1608 			return -EBADF;
1609 		if (is_file_hugepages(file)) {
1610 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1611 		} else if (unlikely(flags & MAP_HUGETLB)) {
1612 			retval = -EINVAL;
1613 			goto out_fput;
1614 		}
1615 	} else if (flags & MAP_HUGETLB) {
1616 		struct user_struct *user = NULL;
1617 		struct hstate *hs;
1618 
1619 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1620 		if (!hs)
1621 			return -EINVAL;
1622 
1623 		len = ALIGN(len, huge_page_size(hs));
1624 		/*
1625 		 * VM_NORESERVE is used because the reservations will be
1626 		 * taken when vm_ops->mmap() is called
1627 		 * A dummy user value is used because we are not locking
1628 		 * memory so no accounting is necessary
1629 		 */
1630 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1631 				VM_NORESERVE,
1632 				&user, HUGETLB_ANONHUGE_INODE,
1633 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1634 		if (IS_ERR(file))
1635 			return PTR_ERR(file);
1636 	}
1637 
1638 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1639 
1640 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1641 out_fput:
1642 	if (file)
1643 		fput(file);
1644 	return retval;
1645 }
1646 
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1647 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1648 		unsigned long, prot, unsigned long, flags,
1649 		unsigned long, fd, unsigned long, pgoff)
1650 {
1651 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1652 }
1653 
1654 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1655 struct mmap_arg_struct {
1656 	unsigned long addr;
1657 	unsigned long len;
1658 	unsigned long prot;
1659 	unsigned long flags;
1660 	unsigned long fd;
1661 	unsigned long offset;
1662 };
1663 
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1664 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1665 {
1666 	struct mmap_arg_struct a;
1667 
1668 	if (copy_from_user(&a, arg, sizeof(a)))
1669 		return -EFAULT;
1670 	if (offset_in_page(a.offset))
1671 		return -EINVAL;
1672 
1673 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1674 			       a.offset >> PAGE_SHIFT);
1675 }
1676 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1677 
1678 /*
1679  * Some shared mappings will want the pages marked read-only
1680  * to track write events. If so, we'll downgrade vm_page_prot
1681  * to the private version (using protection_map[] without the
1682  * VM_SHARED bit).
1683  */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)1684 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1685 {
1686 	vm_flags_t vm_flags = vma->vm_flags;
1687 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1688 
1689 	/* If it was private or non-writable, the write bit is already clear */
1690 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1691 		return 0;
1692 
1693 	/* The backer wishes to know when pages are first written to? */
1694 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1695 		return 1;
1696 
1697 	/* The open routine did something to the protections that pgprot_modify
1698 	 * won't preserve? */
1699 	if (pgprot_val(vm_page_prot) !=
1700 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1701 		return 0;
1702 
1703 	/* Do we need to track softdirty? */
1704 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1705 		return 1;
1706 
1707 	/* Specialty mapping? */
1708 	if (vm_flags & VM_PFNMAP)
1709 		return 0;
1710 
1711 	/* Can the mapping track the dirty pages? */
1712 	return vma->vm_file && vma->vm_file->f_mapping &&
1713 		mapping_can_writeback(vma->vm_file->f_mapping);
1714 }
1715 
1716 /*
1717  * We account for memory if it's a private writeable mapping,
1718  * not hugepages and VM_NORESERVE wasn't set.
1719  */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1720 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1721 {
1722 	/*
1723 	 * hugetlb has its own accounting separate from the core VM
1724 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1725 	 */
1726 	if (file && is_file_hugepages(file))
1727 		return 0;
1728 
1729 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1730 }
1731 
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)1732 unsigned long mmap_region(struct file *file, unsigned long addr,
1733 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1734 		struct list_head *uf)
1735 {
1736 	struct mm_struct *mm = current->mm;
1737 	struct vm_area_struct *vma, *prev, *merge;
1738 	int error;
1739 	struct rb_node **rb_link, *rb_parent;
1740 	unsigned long charged = 0;
1741 
1742 	/* Check against address space limit. */
1743 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1744 		unsigned long nr_pages;
1745 
1746 		/*
1747 		 * MAP_FIXED may remove pages of mappings that intersects with
1748 		 * requested mapping. Account for the pages it would unmap.
1749 		 */
1750 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1751 
1752 		if (!may_expand_vm(mm, vm_flags,
1753 					(len >> PAGE_SHIFT) - nr_pages))
1754 			return -ENOMEM;
1755 	}
1756 
1757 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1758 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1759 		return -ENOMEM;
1760 	/*
1761 	 * Private writable mapping: check memory availability
1762 	 */
1763 	if (accountable_mapping(file, vm_flags)) {
1764 		charged = len >> PAGE_SHIFT;
1765 		if (security_vm_enough_memory_mm(mm, charged))
1766 			return -ENOMEM;
1767 		vm_flags |= VM_ACCOUNT;
1768 	}
1769 
1770 	/*
1771 	 * Can we just expand an old mapping?
1772 	 */
1773 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1774 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1775 	if (vma)
1776 		goto out;
1777 
1778 	/*
1779 	 * Determine the object being mapped and call the appropriate
1780 	 * specific mapper. the address has already been validated, but
1781 	 * not unmapped, but the maps are removed from the list.
1782 	 */
1783 	vma = vm_area_alloc(mm);
1784 	if (!vma) {
1785 		error = -ENOMEM;
1786 		goto unacct_error;
1787 	}
1788 
1789 	vma->vm_start = addr;
1790 	vma->vm_end = addr + len;
1791 	vma->vm_flags = vm_flags;
1792 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1793 	vma->vm_pgoff = pgoff;
1794 
1795 	if (file) {
1796 		if (vm_flags & VM_DENYWRITE) {
1797 			error = deny_write_access(file);
1798 			if (error)
1799 				goto free_vma;
1800 		}
1801 		if (vm_flags & VM_SHARED) {
1802 			error = mapping_map_writable(file->f_mapping);
1803 			if (error)
1804 				goto allow_write_and_free_vma;
1805 		}
1806 
1807 		/* ->mmap() can change vma->vm_file, but must guarantee that
1808 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1809 		 * and map writably if VM_SHARED is set. This usually means the
1810 		 * new file must not have been exposed to user-space, yet.
1811 		 */
1812 		vma->vm_file = get_file(file);
1813 		error = call_mmap(file, vma);
1814 		if (error)
1815 			goto unmap_and_free_vma;
1816 
1817 		/* Can addr have changed??
1818 		 *
1819 		 * Answer: Yes, several device drivers can do it in their
1820 		 *         f_op->mmap method. -DaveM
1821 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1822 		 *      be updated for vma_link()
1823 		 */
1824 		WARN_ON_ONCE(addr != vma->vm_start);
1825 
1826 		addr = vma->vm_start;
1827 
1828 		/* If vm_flags changed after call_mmap(), we should try merge vma again
1829 		 * as we may succeed this time.
1830 		 */
1831 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
1832 			merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1833 				NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1834 			if (merge) {
1835 				/* ->mmap() can change vma->vm_file and fput the original file. So
1836 				 * fput the vma->vm_file here or we would add an extra fput for file
1837 				 * and cause general protection fault ultimately.
1838 				 */
1839 				fput(vma->vm_file);
1840 				vm_area_free(vma);
1841 				vma = merge;
1842 				/* Update vm_flags to pick up the change. */
1843 				vm_flags = vma->vm_flags;
1844 				goto unmap_writable;
1845 			}
1846 		}
1847 
1848 		vm_flags = vma->vm_flags;
1849 	} else if (vm_flags & VM_SHARED) {
1850 		error = shmem_zero_setup(vma);
1851 		if (error)
1852 			goto free_vma;
1853 	} else {
1854 		vma_set_anonymous(vma);
1855 	}
1856 
1857 	/* Allow architectures to sanity-check the vm_flags */
1858 	if (!arch_validate_flags(vma->vm_flags)) {
1859 		error = -EINVAL;
1860 		if (file)
1861 			goto unmap_and_free_vma;
1862 		else
1863 			goto free_vma;
1864 	}
1865 
1866 	vma_link(mm, vma, prev, rb_link, rb_parent);
1867 	/* Once vma denies write, undo our temporary denial count */
1868 	if (file) {
1869 unmap_writable:
1870 		if (vm_flags & VM_SHARED)
1871 			mapping_unmap_writable(file->f_mapping);
1872 		if (vm_flags & VM_DENYWRITE)
1873 			allow_write_access(file);
1874 	}
1875 	file = vma->vm_file;
1876 out:
1877 	perf_event_mmap(vma);
1878 
1879 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1880 	if (vm_flags & VM_LOCKED) {
1881 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1882 					is_vm_hugetlb_page(vma) ||
1883 					vma == get_gate_vma(current->mm))
1884 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1885 		else
1886 			mm->locked_vm += (len >> PAGE_SHIFT);
1887 	}
1888 
1889 	if (file)
1890 		uprobe_mmap(vma);
1891 
1892 	/*
1893 	 * New (or expanded) vma always get soft dirty status.
1894 	 * Otherwise user-space soft-dirty page tracker won't
1895 	 * be able to distinguish situation when vma area unmapped,
1896 	 * then new mapped in-place (which must be aimed as
1897 	 * a completely new data area).
1898 	 */
1899 	vma->vm_flags |= VM_SOFTDIRTY;
1900 
1901 	vma_set_page_prot(vma);
1902 
1903 	return addr;
1904 
1905 unmap_and_free_vma:
1906 	vma->vm_file = NULL;
1907 	fput(file);
1908 
1909 	/* Undo any partial mapping done by a device driver. */
1910 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1911 	charged = 0;
1912 	if (vm_flags & VM_SHARED)
1913 		mapping_unmap_writable(file->f_mapping);
1914 allow_write_and_free_vma:
1915 	if (vm_flags & VM_DENYWRITE)
1916 		allow_write_access(file);
1917 free_vma:
1918 	vm_area_free(vma);
1919 unacct_error:
1920 	if (charged)
1921 		vm_unacct_memory(charged);
1922 	return error;
1923 }
1924 
unmapped_area(struct vm_unmapped_area_info * info)1925 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1926 {
1927 	/*
1928 	 * We implement the search by looking for an rbtree node that
1929 	 * immediately follows a suitable gap. That is,
1930 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1931 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1932 	 * - gap_end - gap_start >= length
1933 	 */
1934 
1935 	struct mm_struct *mm = current->mm;
1936 	struct vm_area_struct *vma;
1937 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1938 
1939 	/* Adjust search length to account for worst case alignment overhead */
1940 	length = info->length + info->align_mask;
1941 	if (length < info->length)
1942 		return -ENOMEM;
1943 
1944 	/* Adjust search limits by the desired length */
1945 	if (info->high_limit < length)
1946 		return -ENOMEM;
1947 	high_limit = info->high_limit - length;
1948 
1949 	if (info->low_limit > high_limit)
1950 		return -ENOMEM;
1951 	low_limit = info->low_limit + length;
1952 
1953 	/* Check if rbtree root looks promising */
1954 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1955 		goto check_highest;
1956 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1957 	if (vma->rb_subtree_gap < length)
1958 		goto check_highest;
1959 
1960 	while (true) {
1961 		/* Visit left subtree if it looks promising */
1962 		gap_end = vm_start_gap(vma);
1963 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1964 			struct vm_area_struct *left =
1965 				rb_entry(vma->vm_rb.rb_left,
1966 					 struct vm_area_struct, vm_rb);
1967 			if (left->rb_subtree_gap >= length) {
1968 				vma = left;
1969 				continue;
1970 			}
1971 		}
1972 
1973 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1974 check_current:
1975 		/* Check if current node has a suitable gap */
1976 		if (gap_start > high_limit)
1977 			return -ENOMEM;
1978 		if (gap_end >= low_limit &&
1979 		    gap_end > gap_start && gap_end - gap_start >= length)
1980 			goto found;
1981 
1982 		/* Visit right subtree if it looks promising */
1983 		if (vma->vm_rb.rb_right) {
1984 			struct vm_area_struct *right =
1985 				rb_entry(vma->vm_rb.rb_right,
1986 					 struct vm_area_struct, vm_rb);
1987 			if (right->rb_subtree_gap >= length) {
1988 				vma = right;
1989 				continue;
1990 			}
1991 		}
1992 
1993 		/* Go back up the rbtree to find next candidate node */
1994 		while (true) {
1995 			struct rb_node *prev = &vma->vm_rb;
1996 			if (!rb_parent(prev))
1997 				goto check_highest;
1998 			vma = rb_entry(rb_parent(prev),
1999 				       struct vm_area_struct, vm_rb);
2000 			if (prev == vma->vm_rb.rb_left) {
2001 				gap_start = vm_end_gap(vma->vm_prev);
2002 				gap_end = vm_start_gap(vma);
2003 				goto check_current;
2004 			}
2005 		}
2006 	}
2007 
2008 check_highest:
2009 	/* Check highest gap, which does not precede any rbtree node */
2010 	gap_start = mm->highest_vm_end;
2011 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
2012 	if (gap_start > high_limit)
2013 		return -ENOMEM;
2014 
2015 found:
2016 	/* We found a suitable gap. Clip it with the original low_limit. */
2017 	if (gap_start < info->low_limit)
2018 		gap_start = info->low_limit;
2019 
2020 	/* Adjust gap address to the desired alignment */
2021 	gap_start += (info->align_offset - gap_start) & info->align_mask;
2022 
2023 	VM_BUG_ON(gap_start + info->length > info->high_limit);
2024 	VM_BUG_ON(gap_start + info->length > gap_end);
2025 	return gap_start;
2026 }
2027 
unmapped_area_topdown(struct vm_unmapped_area_info * info)2028 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2029 {
2030 	struct mm_struct *mm = current->mm;
2031 	struct vm_area_struct *vma;
2032 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
2033 
2034 	/* Adjust search length to account for worst case alignment overhead */
2035 	length = info->length + info->align_mask;
2036 	if (length < info->length)
2037 		return -ENOMEM;
2038 
2039 	/*
2040 	 * Adjust search limits by the desired length.
2041 	 * See implementation comment at top of unmapped_area().
2042 	 */
2043 	gap_end = info->high_limit;
2044 	if (gap_end < length)
2045 		return -ENOMEM;
2046 	high_limit = gap_end - length;
2047 
2048 	if (info->low_limit > high_limit)
2049 		return -ENOMEM;
2050 	low_limit = info->low_limit + length;
2051 
2052 	/* Check highest gap, which does not precede any rbtree node */
2053 	gap_start = mm->highest_vm_end;
2054 	if (gap_start <= high_limit)
2055 		goto found_highest;
2056 
2057 	/* Check if rbtree root looks promising */
2058 	if (RB_EMPTY_ROOT(&mm->mm_rb))
2059 		return -ENOMEM;
2060 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2061 	if (vma->rb_subtree_gap < length)
2062 		return -ENOMEM;
2063 
2064 	while (true) {
2065 		/* Visit right subtree if it looks promising */
2066 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2067 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2068 			struct vm_area_struct *right =
2069 				rb_entry(vma->vm_rb.rb_right,
2070 					 struct vm_area_struct, vm_rb);
2071 			if (right->rb_subtree_gap >= length) {
2072 				vma = right;
2073 				continue;
2074 			}
2075 		}
2076 
2077 check_current:
2078 		/* Check if current node has a suitable gap */
2079 		gap_end = vm_start_gap(vma);
2080 		if (gap_end < low_limit)
2081 			return -ENOMEM;
2082 		if (gap_start <= high_limit &&
2083 		    gap_end > gap_start && gap_end - gap_start >= length)
2084 			goto found;
2085 
2086 		/* Visit left subtree if it looks promising */
2087 		if (vma->vm_rb.rb_left) {
2088 			struct vm_area_struct *left =
2089 				rb_entry(vma->vm_rb.rb_left,
2090 					 struct vm_area_struct, vm_rb);
2091 			if (left->rb_subtree_gap >= length) {
2092 				vma = left;
2093 				continue;
2094 			}
2095 		}
2096 
2097 		/* Go back up the rbtree to find next candidate node */
2098 		while (true) {
2099 			struct rb_node *prev = &vma->vm_rb;
2100 			if (!rb_parent(prev))
2101 				return -ENOMEM;
2102 			vma = rb_entry(rb_parent(prev),
2103 				       struct vm_area_struct, vm_rb);
2104 			if (prev == vma->vm_rb.rb_right) {
2105 				gap_start = vma->vm_prev ?
2106 					vm_end_gap(vma->vm_prev) : 0;
2107 				goto check_current;
2108 			}
2109 		}
2110 	}
2111 
2112 found:
2113 	/* We found a suitable gap. Clip it with the original high_limit. */
2114 	if (gap_end > info->high_limit)
2115 		gap_end = info->high_limit;
2116 
2117 found_highest:
2118 	/* Compute highest gap address at the desired alignment */
2119 	gap_end -= info->length;
2120 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2121 
2122 	VM_BUG_ON(gap_end < info->low_limit);
2123 	VM_BUG_ON(gap_end < gap_start);
2124 	return gap_end;
2125 }
2126 
2127 /*
2128  * Search for an unmapped address range.
2129  *
2130  * We are looking for a range that:
2131  * - does not intersect with any VMA;
2132  * - is contained within the [low_limit, high_limit) interval;
2133  * - is at least the desired size.
2134  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2135  */
vm_unmapped_area(struct vm_unmapped_area_info * info)2136 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2137 {
2138 	unsigned long addr;
2139 
2140 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2141 		addr = unmapped_area_topdown(info);
2142 	else
2143 		addr = unmapped_area(info);
2144 
2145 	trace_vm_unmapped_area(addr, info);
2146 	return addr;
2147 }
2148 
2149 #ifndef arch_get_mmap_end
2150 #define arch_get_mmap_end(addr)	(TASK_SIZE)
2151 #endif
2152 
2153 #ifndef arch_get_mmap_base
2154 #define arch_get_mmap_base(addr, base) (base)
2155 #endif
2156 
2157 /* Get an address range which is currently unmapped.
2158  * For shmat() with addr=0.
2159  *
2160  * Ugly calling convention alert:
2161  * Return value with the low bits set means error value,
2162  * ie
2163  *	if (ret & ~PAGE_MASK)
2164  *		error = ret;
2165  *
2166  * This function "knows" that -ENOMEM has the bits set.
2167  */
2168 #ifndef HAVE_ARCH_UNMAPPED_AREA
2169 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2170 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2171 		unsigned long len, unsigned long pgoff, unsigned long flags)
2172 {
2173 	struct mm_struct *mm = current->mm;
2174 	struct vm_area_struct *vma, *prev;
2175 	struct vm_unmapped_area_info info;
2176 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2177 
2178 	if (len > mmap_end - mmap_min_addr)
2179 		return -ENOMEM;
2180 
2181 	if (flags & MAP_FIXED)
2182 		return addr;
2183 
2184 	if (addr) {
2185 		addr = PAGE_ALIGN(addr);
2186 		vma = find_vma_prev(mm, addr, &prev);
2187 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2188 		    (!vma || addr + len <= vm_start_gap(vma)) &&
2189 		    (!prev || addr >= vm_end_gap(prev)))
2190 			return addr;
2191 	}
2192 
2193 	info.flags = 0;
2194 	info.length = len;
2195 	info.low_limit = mm->mmap_base;
2196 	info.high_limit = mmap_end;
2197 	info.align_mask = 0;
2198 	info.align_offset = 0;
2199 	return vm_unmapped_area(&info);
2200 }
2201 #endif
2202 
2203 /*
2204  * This mmap-allocator allocates new areas top-down from below the
2205  * stack's low limit (the base):
2206  */
2207 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2208 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2209 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2210 			  unsigned long len, unsigned long pgoff,
2211 			  unsigned long flags)
2212 {
2213 	struct vm_area_struct *vma, *prev;
2214 	struct mm_struct *mm = current->mm;
2215 	struct vm_unmapped_area_info info;
2216 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2217 
2218 	/* requested length too big for entire address space */
2219 	if (len > mmap_end - mmap_min_addr)
2220 		return -ENOMEM;
2221 
2222 	if (flags & MAP_FIXED)
2223 		return addr;
2224 
2225 	/* requesting a specific address */
2226 	if (addr) {
2227 		addr = PAGE_ALIGN(addr);
2228 		vma = find_vma_prev(mm, addr, &prev);
2229 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2230 				(!vma || addr + len <= vm_start_gap(vma)) &&
2231 				(!prev || addr >= vm_end_gap(prev)))
2232 			return addr;
2233 	}
2234 
2235 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2236 	info.length = len;
2237 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2238 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2239 	info.align_mask = 0;
2240 	info.align_offset = 0;
2241 	addr = vm_unmapped_area(&info);
2242 
2243 	/*
2244 	 * A failed mmap() very likely causes application failure,
2245 	 * so fall back to the bottom-up function here. This scenario
2246 	 * can happen with large stack limits and large mmap()
2247 	 * allocations.
2248 	 */
2249 	if (offset_in_page(addr)) {
2250 		VM_BUG_ON(addr != -ENOMEM);
2251 		info.flags = 0;
2252 		info.low_limit = TASK_UNMAPPED_BASE;
2253 		info.high_limit = mmap_end;
2254 		addr = vm_unmapped_area(&info);
2255 	}
2256 
2257 	return addr;
2258 }
2259 #endif
2260 
2261 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2262 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2263 		unsigned long pgoff, unsigned long flags)
2264 {
2265 	unsigned long (*get_area)(struct file *, unsigned long,
2266 				  unsigned long, unsigned long, unsigned long);
2267 
2268 	unsigned long error = arch_mmap_check(addr, len, flags);
2269 	if (error)
2270 		return error;
2271 
2272 	/* Careful about overflows.. */
2273 	if (len > TASK_SIZE)
2274 		return -ENOMEM;
2275 
2276 	get_area = current->mm->get_unmapped_area;
2277 	if (file) {
2278 		if (file->f_op->get_unmapped_area)
2279 			get_area = file->f_op->get_unmapped_area;
2280 	} else if (flags & MAP_SHARED) {
2281 		/*
2282 		 * mmap_region() will call shmem_zero_setup() to create a file,
2283 		 * so use shmem's get_unmapped_area in case it can be huge.
2284 		 * do_mmap() will clear pgoff, so match alignment.
2285 		 */
2286 		pgoff = 0;
2287 		get_area = shmem_get_unmapped_area;
2288 	}
2289 
2290 	addr = get_area(file, addr, len, pgoff, flags);
2291 	if (IS_ERR_VALUE(addr))
2292 		return addr;
2293 
2294 	if (addr > TASK_SIZE - len)
2295 		return -ENOMEM;
2296 	if (offset_in_page(addr))
2297 		return -EINVAL;
2298 
2299 	error = security_mmap_addr(addr);
2300 	return error ? error : addr;
2301 }
2302 
2303 EXPORT_SYMBOL(get_unmapped_area);
2304 
2305 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
find_vma(struct mm_struct * mm,unsigned long addr)2306 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2307 {
2308 	struct rb_node *rb_node;
2309 	struct vm_area_struct *vma;
2310 
2311 	/* Check the cache first. */
2312 	vma = vmacache_find(mm, addr);
2313 	if (likely(vma))
2314 		return vma;
2315 
2316 	rb_node = mm->mm_rb.rb_node;
2317 
2318 	while (rb_node) {
2319 		struct vm_area_struct *tmp;
2320 
2321 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2322 
2323 		if (tmp->vm_end > addr) {
2324 			vma = tmp;
2325 			if (tmp->vm_start <= addr)
2326 				break;
2327 			rb_node = rb_node->rb_left;
2328 		} else
2329 			rb_node = rb_node->rb_right;
2330 	}
2331 
2332 	if (vma)
2333 		vmacache_update(addr, vma);
2334 	return vma;
2335 }
2336 
2337 EXPORT_SYMBOL(find_vma);
2338 
2339 /*
2340  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2341  */
2342 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)2343 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2344 			struct vm_area_struct **pprev)
2345 {
2346 	struct vm_area_struct *vma;
2347 
2348 	vma = find_vma(mm, addr);
2349 	if (vma) {
2350 		*pprev = vma->vm_prev;
2351 	} else {
2352 		struct rb_node *rb_node = rb_last(&mm->mm_rb);
2353 
2354 		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2355 	}
2356 	return vma;
2357 }
2358 
2359 /*
2360  * Verify that the stack growth is acceptable and
2361  * update accounting. This is shared with both the
2362  * grow-up and grow-down cases.
2363  */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)2364 static int acct_stack_growth(struct vm_area_struct *vma,
2365 			     unsigned long size, unsigned long grow)
2366 {
2367 	struct mm_struct *mm = vma->vm_mm;
2368 	unsigned long new_start;
2369 
2370 	/* address space limit tests */
2371 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2372 		return -ENOMEM;
2373 
2374 	/* Stack limit test */
2375 	if (size > rlimit(RLIMIT_STACK))
2376 		return -ENOMEM;
2377 
2378 	/* mlock limit tests */
2379 	if (vma->vm_flags & VM_LOCKED) {
2380 		unsigned long locked;
2381 		unsigned long limit;
2382 		locked = mm->locked_vm + grow;
2383 		limit = rlimit(RLIMIT_MEMLOCK);
2384 		limit >>= PAGE_SHIFT;
2385 		if (locked > limit && !capable(CAP_IPC_LOCK))
2386 			return -ENOMEM;
2387 	}
2388 
2389 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2390 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2391 			vma->vm_end - size;
2392 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2393 		return -EFAULT;
2394 
2395 	/*
2396 	 * Overcommit..  This must be the final test, as it will
2397 	 * update security statistics.
2398 	 */
2399 	if (security_vm_enough_memory_mm(mm, grow))
2400 		return -ENOMEM;
2401 
2402 	return 0;
2403 }
2404 
2405 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2406 /*
2407  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2408  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2409  */
expand_upwards(struct vm_area_struct * vma,unsigned long address)2410 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2411 {
2412 	struct mm_struct *mm = vma->vm_mm;
2413 	struct vm_area_struct *next;
2414 	unsigned long gap_addr;
2415 	int error = 0;
2416 
2417 	if (!(vma->vm_flags & VM_GROWSUP))
2418 		return -EFAULT;
2419 
2420 	/* Guard against exceeding limits of the address space. */
2421 	address &= PAGE_MASK;
2422 	if (address >= (TASK_SIZE & PAGE_MASK))
2423 		return -ENOMEM;
2424 	address += PAGE_SIZE;
2425 
2426 	/* Enforce stack_guard_gap */
2427 	gap_addr = address + stack_guard_gap;
2428 
2429 	/* Guard against overflow */
2430 	if (gap_addr < address || gap_addr > TASK_SIZE)
2431 		gap_addr = TASK_SIZE;
2432 
2433 	next = vma->vm_next;
2434 	if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2435 		if (!(next->vm_flags & VM_GROWSUP))
2436 			return -ENOMEM;
2437 		/* Check that both stack segments have the same anon_vma? */
2438 	}
2439 
2440 	/* We must make sure the anon_vma is allocated. */
2441 	if (unlikely(anon_vma_prepare(vma)))
2442 		return -ENOMEM;
2443 
2444 	/*
2445 	 * vma->vm_start/vm_end cannot change under us because the caller
2446 	 * is required to hold the mmap_lock in read mode.  We need the
2447 	 * anon_vma lock to serialize against concurrent expand_stacks.
2448 	 */
2449 	anon_vma_lock_write(vma->anon_vma);
2450 
2451 	/* Somebody else might have raced and expanded it already */
2452 	if (address > vma->vm_end) {
2453 		unsigned long size, grow;
2454 
2455 		size = address - vma->vm_start;
2456 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2457 
2458 		error = -ENOMEM;
2459 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2460 			error = acct_stack_growth(vma, size, grow);
2461 			if (!error) {
2462 				/*
2463 				 * vma_gap_update() doesn't support concurrent
2464 				 * updates, but we only hold a shared mmap_lock
2465 				 * lock here, so we need to protect against
2466 				 * concurrent vma expansions.
2467 				 * anon_vma_lock_write() doesn't help here, as
2468 				 * we don't guarantee that all growable vmas
2469 				 * in a mm share the same root anon vma.
2470 				 * So, we reuse mm->page_table_lock to guard
2471 				 * against concurrent vma expansions.
2472 				 */
2473 				spin_lock(&mm->page_table_lock);
2474 				if (vma->vm_flags & VM_LOCKED)
2475 					mm->locked_vm += grow;
2476 				vm_stat_account(mm, vma->vm_flags, grow);
2477 				anon_vma_interval_tree_pre_update_vma(vma);
2478 				vma->vm_end = address;
2479 				anon_vma_interval_tree_post_update_vma(vma);
2480 				if (vma->vm_next)
2481 					vma_gap_update(vma->vm_next);
2482 				else
2483 					mm->highest_vm_end = vm_end_gap(vma);
2484 				spin_unlock(&mm->page_table_lock);
2485 
2486 				perf_event_mmap(vma);
2487 			}
2488 		}
2489 	}
2490 	anon_vma_unlock_write(vma->anon_vma);
2491 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2492 	validate_mm(mm);
2493 	return error;
2494 }
2495 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2496 
2497 /*
2498  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2499  */
expand_downwards(struct vm_area_struct * vma,unsigned long address)2500 int expand_downwards(struct vm_area_struct *vma,
2501 				   unsigned long address)
2502 {
2503 	struct mm_struct *mm = vma->vm_mm;
2504 	struct vm_area_struct *prev;
2505 	int error = 0;
2506 
2507 	address &= PAGE_MASK;
2508 	if (address < mmap_min_addr)
2509 		return -EPERM;
2510 
2511 	/* Enforce stack_guard_gap */
2512 	prev = vma->vm_prev;
2513 	/* Check that both stack segments have the same anon_vma? */
2514 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2515 			vma_is_accessible(prev)) {
2516 		if (address - prev->vm_end < stack_guard_gap)
2517 			return -ENOMEM;
2518 	}
2519 
2520 	/* We must make sure the anon_vma is allocated. */
2521 	if (unlikely(anon_vma_prepare(vma)))
2522 		return -ENOMEM;
2523 
2524 	/*
2525 	 * vma->vm_start/vm_end cannot change under us because the caller
2526 	 * is required to hold the mmap_lock in read mode.  We need the
2527 	 * anon_vma lock to serialize against concurrent expand_stacks.
2528 	 */
2529 	anon_vma_lock_write(vma->anon_vma);
2530 
2531 	/* Somebody else might have raced and expanded it already */
2532 	if (address < vma->vm_start) {
2533 		unsigned long size, grow;
2534 
2535 		size = vma->vm_end - address;
2536 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2537 
2538 		error = -ENOMEM;
2539 		if (grow <= vma->vm_pgoff) {
2540 			error = acct_stack_growth(vma, size, grow);
2541 			if (!error) {
2542 				/*
2543 				 * vma_gap_update() doesn't support concurrent
2544 				 * updates, but we only hold a shared mmap_lock
2545 				 * lock here, so we need to protect against
2546 				 * concurrent vma expansions.
2547 				 * anon_vma_lock_write() doesn't help here, as
2548 				 * we don't guarantee that all growable vmas
2549 				 * in a mm share the same root anon vma.
2550 				 * So, we reuse mm->page_table_lock to guard
2551 				 * against concurrent vma expansions.
2552 				 */
2553 				spin_lock(&mm->page_table_lock);
2554 				if (vma->vm_flags & VM_LOCKED)
2555 					mm->locked_vm += grow;
2556 				vm_stat_account(mm, vma->vm_flags, grow);
2557 				anon_vma_interval_tree_pre_update_vma(vma);
2558 				vma->vm_start = address;
2559 				vma->vm_pgoff -= grow;
2560 				anon_vma_interval_tree_post_update_vma(vma);
2561 				vma_gap_update(vma);
2562 				spin_unlock(&mm->page_table_lock);
2563 
2564 				perf_event_mmap(vma);
2565 			}
2566 		}
2567 	}
2568 	anon_vma_unlock_write(vma->anon_vma);
2569 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2570 	validate_mm(mm);
2571 	return error;
2572 }
2573 
2574 /* enforced gap between the expanding stack and other mappings. */
2575 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2576 
cmdline_parse_stack_guard_gap(char * p)2577 static int __init cmdline_parse_stack_guard_gap(char *p)
2578 {
2579 	unsigned long val;
2580 	char *endptr;
2581 
2582 	val = simple_strtoul(p, &endptr, 10);
2583 	if (!*endptr)
2584 		stack_guard_gap = val << PAGE_SHIFT;
2585 
2586 	return 0;
2587 }
2588 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2589 
2590 #ifdef CONFIG_STACK_GROWSUP
expand_stack(struct vm_area_struct * vma,unsigned long address)2591 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2592 {
2593 	return expand_upwards(vma, address);
2594 }
2595 
2596 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2597 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2598 {
2599 	struct vm_area_struct *vma, *prev;
2600 
2601 	addr &= PAGE_MASK;
2602 	vma = find_vma_prev(mm, addr, &prev);
2603 	if (vma && (vma->vm_start <= addr))
2604 		return vma;
2605 	/* don't alter vm_end if the coredump is running */
2606 	if (!prev || expand_stack(prev, addr))
2607 		return NULL;
2608 	if (prev->vm_flags & VM_LOCKED)
2609 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2610 	return prev;
2611 }
2612 #else
expand_stack(struct vm_area_struct * vma,unsigned long address)2613 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2614 {
2615 	return expand_downwards(vma, address);
2616 }
2617 
2618 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2619 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2620 {
2621 	struct vm_area_struct *vma;
2622 	unsigned long start;
2623 
2624 	addr &= PAGE_MASK;
2625 	vma = find_vma(mm, addr);
2626 	if (!vma)
2627 		return NULL;
2628 	if (vma->vm_start <= addr)
2629 		return vma;
2630 	if (!(vma->vm_flags & VM_GROWSDOWN))
2631 		return NULL;
2632 	start = vma->vm_start;
2633 	if (expand_stack(vma, addr))
2634 		return NULL;
2635 	if (vma->vm_flags & VM_LOCKED)
2636 		populate_vma_page_range(vma, addr, start, NULL);
2637 	return vma;
2638 }
2639 #endif
2640 
2641 EXPORT_SYMBOL_GPL(find_extend_vma);
2642 
2643 /*
2644  * Ok - we have the memory areas we should free on the vma list,
2645  * so release them, and do the vma updates.
2646  *
2647  * Called with the mm semaphore held.
2648  */
remove_vma_list(struct mm_struct * mm,struct vm_area_struct * vma)2649 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2650 {
2651 	unsigned long nr_accounted = 0;
2652 
2653 	/* Update high watermark before we lower total_vm */
2654 	update_hiwater_vm(mm);
2655 	do {
2656 		long nrpages = vma_pages(vma);
2657 
2658 		if (vma->vm_flags & VM_ACCOUNT)
2659 			nr_accounted += nrpages;
2660 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2661 		vma = remove_vma(vma);
2662 	} while (vma);
2663 	vm_unacct_memory(nr_accounted);
2664 	validate_mm(mm);
2665 }
2666 
2667 /*
2668  * Get rid of page table information in the indicated region.
2669  *
2670  * Called with the mm semaphore held.
2671  */
unmap_region(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long start,unsigned long end)2672 static void unmap_region(struct mm_struct *mm,
2673 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2674 		unsigned long start, unsigned long end)
2675 {
2676 	struct vm_area_struct *next = vma_next(mm, prev);
2677 	struct mmu_gather tlb;
2678 
2679 	lru_add_drain();
2680 	tlb_gather_mmu(&tlb, mm, start, end);
2681 	update_hiwater_rss(mm);
2682 	unmap_vmas(&tlb, vma, start, end);
2683 
2684 	/*
2685 	 * Ensure we have no stale TLB entries by the time this mapping is
2686 	 * removed from the rmap.
2687 	 * Note that we don't have to worry about nested flushes here because
2688 	 * we're holding the mm semaphore for removing the mapping - so any
2689 	 * concurrent flush in this region has to be coming through the rmap,
2690 	 * and we synchronize against that using the rmap lock.
2691 	 */
2692 	if ((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) != 0)
2693 		tlb_flush_mmu(&tlb);
2694 
2695 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2696 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2697 	tlb_finish_mmu(&tlb, start, end);
2698 }
2699 
2700 /*
2701  * Create a list of vma's touched by the unmap, removing them from the mm's
2702  * vma list as we go..
2703  */
2704 static bool
detach_vmas_to_be_unmapped(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long end)2705 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2706 	struct vm_area_struct *prev, unsigned long end)
2707 {
2708 	struct vm_area_struct **insertion_point;
2709 	struct vm_area_struct *tail_vma = NULL;
2710 
2711 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2712 	vma->vm_prev = NULL;
2713 	do {
2714 		vma_rb_erase(vma, &mm->mm_rb);
2715 		mm->map_count--;
2716 		tail_vma = vma;
2717 		vma = vma->vm_next;
2718 	} while (vma && vma->vm_start < end);
2719 	*insertion_point = vma;
2720 	if (vma) {
2721 		vma->vm_prev = prev;
2722 		vma_gap_update(vma);
2723 	} else
2724 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2725 	tail_vma->vm_next = NULL;
2726 
2727 	/* Kill the cache */
2728 	vmacache_invalidate(mm);
2729 
2730 	/*
2731 	 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2732 	 * VM_GROWSUP VMA. Such VMAs can change their size under
2733 	 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2734 	 */
2735 	if (vma && (vma->vm_flags & VM_GROWSDOWN))
2736 		return false;
2737 	if (prev && (prev->vm_flags & VM_GROWSUP))
2738 		return false;
2739 	return true;
2740 }
2741 
2742 /*
2743  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2744  * has already been checked or doesn't make sense to fail.
2745  */
__split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2746 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2747 		unsigned long addr, int new_below)
2748 {
2749 	struct vm_area_struct *new;
2750 	int err;
2751 
2752 	if (vma->vm_ops && vma->vm_ops->split) {
2753 		err = vma->vm_ops->split(vma, addr);
2754 		if (err)
2755 			return err;
2756 	}
2757 
2758 	new = vm_area_dup(vma);
2759 	if (!new)
2760 		return -ENOMEM;
2761 
2762 	if (new_below)
2763 		new->vm_end = addr;
2764 	else {
2765 		new->vm_start = addr;
2766 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2767 	}
2768 
2769 	err = vma_dup_policy(vma, new);
2770 	if (err)
2771 		goto out_free_vma;
2772 
2773 	err = anon_vma_clone(new, vma);
2774 	if (err)
2775 		goto out_free_mpol;
2776 
2777 	if (new->vm_file)
2778 		get_file(new->vm_file);
2779 
2780 	if (new->vm_ops && new->vm_ops->open)
2781 		new->vm_ops->open(new);
2782 
2783 	if (new_below)
2784 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2785 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2786 	else
2787 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2788 
2789 	/* Success. */
2790 	if (!err)
2791 		return 0;
2792 
2793 	/* Clean everything up if vma_adjust failed. */
2794 	if (new->vm_ops && new->vm_ops->close)
2795 		new->vm_ops->close(new);
2796 	if (new->vm_file)
2797 		fput(new->vm_file);
2798 	unlink_anon_vmas(new);
2799  out_free_mpol:
2800 	mpol_put(vma_policy(new));
2801  out_free_vma:
2802 	vm_area_free(new);
2803 	return err;
2804 }
2805 
2806 /*
2807  * Split a vma into two pieces at address 'addr', a new vma is allocated
2808  * either for the first part or the tail.
2809  */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2810 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2811 	      unsigned long addr, int new_below)
2812 {
2813 	if (mm->map_count >= sysctl_max_map_count)
2814 		return -ENOMEM;
2815 
2816 	return __split_vma(mm, vma, addr, new_below);
2817 }
2818 
2819 /* Munmap is split into 2 main parts -- this part which finds
2820  * what needs doing, and the areas themselves, which do the
2821  * work.  This now handles partial unmappings.
2822  * Jeremy Fitzhardinge <jeremy@goop.org>
2823  */
__do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf,bool downgrade)2824 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2825 		struct list_head *uf, bool downgrade)
2826 {
2827 	unsigned long end;
2828 	struct vm_area_struct *vma, *prev, *last;
2829 
2830 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2831 		return -EINVAL;
2832 
2833 	len = PAGE_ALIGN(len);
2834 	end = start + len;
2835 	if (len == 0)
2836 		return -EINVAL;
2837 
2838 	/*
2839 	 * arch_unmap() might do unmaps itself.  It must be called
2840 	 * and finish any rbtree manipulation before this code
2841 	 * runs and also starts to manipulate the rbtree.
2842 	 */
2843 	arch_unmap(mm, start, end);
2844 
2845 	/* Find the first overlapping VMA */
2846 	vma = find_vma(mm, start);
2847 	if (!vma)
2848 		return 0;
2849 	prev = vma->vm_prev;
2850 	/* we have  start < vma->vm_end  */
2851 
2852 	/* if it doesn't overlap, we have nothing.. */
2853 	if (vma->vm_start >= end)
2854 		return 0;
2855 
2856 	/*
2857 	 * If we need to split any vma, do it now to save pain later.
2858 	 *
2859 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2860 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2861 	 * places tmp vma above, and higher split_vma places tmp vma below.
2862 	 */
2863 	if (start > vma->vm_start) {
2864 		int error;
2865 
2866 		/*
2867 		 * Make sure that map_count on return from munmap() will
2868 		 * not exceed its limit; but let map_count go just above
2869 		 * its limit temporarily, to help free resources as expected.
2870 		 */
2871 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2872 			return -ENOMEM;
2873 
2874 		error = __split_vma(mm, vma, start, 0);
2875 		if (error)
2876 			return error;
2877 		prev = vma;
2878 	}
2879 
2880 	/* Does it split the last one? */
2881 	last = find_vma(mm, end);
2882 	if (last && end > last->vm_start) {
2883 		int error = __split_vma(mm, last, end, 1);
2884 		if (error)
2885 			return error;
2886 	}
2887 	vma = vma_next(mm, prev);
2888 
2889 	if (unlikely(uf)) {
2890 		/*
2891 		 * If userfaultfd_unmap_prep returns an error the vmas
2892 		 * will remain splitted, but userland will get a
2893 		 * highly unexpected error anyway. This is no
2894 		 * different than the case where the first of the two
2895 		 * __split_vma fails, but we don't undo the first
2896 		 * split, despite we could. This is unlikely enough
2897 		 * failure that it's not worth optimizing it for.
2898 		 */
2899 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2900 		if (error)
2901 			return error;
2902 	}
2903 
2904 	/*
2905 	 * unlock any mlock()ed ranges before detaching vmas
2906 	 */
2907 	if (mm->locked_vm) {
2908 		struct vm_area_struct *tmp = vma;
2909 		while (tmp && tmp->vm_start < end) {
2910 			if (tmp->vm_flags & VM_LOCKED) {
2911 				mm->locked_vm -= vma_pages(tmp);
2912 				munlock_vma_pages_all(tmp);
2913 			}
2914 
2915 			tmp = tmp->vm_next;
2916 		}
2917 	}
2918 
2919 	/* Detach vmas from rbtree */
2920 	if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2921 		downgrade = false;
2922 
2923 	if (downgrade)
2924 		mmap_write_downgrade(mm);
2925 
2926 	unmap_region(mm, vma, prev, start, end);
2927 
2928 	/* Fix up all other VM information */
2929 	remove_vma_list(mm, vma);
2930 
2931 	return downgrade ? 1 : 0;
2932 }
2933 
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)2934 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2935 	      struct list_head *uf)
2936 {
2937 	return __do_munmap(mm, start, len, uf, false);
2938 }
2939 
__vm_munmap(unsigned long start,size_t len,bool downgrade)2940 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2941 {
2942 	int ret;
2943 	struct mm_struct *mm = current->mm;
2944 	LIST_HEAD(uf);
2945 
2946 	if (mmap_write_lock_killable(mm))
2947 		return -EINTR;
2948 
2949 	ret = __do_munmap(mm, start, len, &uf, downgrade);
2950 	/*
2951 	 * Returning 1 indicates mmap_lock is downgraded.
2952 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2953 	 * it to 0 before return.
2954 	 */
2955 	if (ret == 1) {
2956 		mmap_read_unlock(mm);
2957 		ret = 0;
2958 	} else
2959 		mmap_write_unlock(mm);
2960 
2961 	userfaultfd_unmap_complete(mm, &uf);
2962 	return ret;
2963 }
2964 
vm_munmap(unsigned long start,size_t len)2965 int vm_munmap(unsigned long start, size_t len)
2966 {
2967 	return __vm_munmap(start, len, false);
2968 }
2969 EXPORT_SYMBOL(vm_munmap);
2970 
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)2971 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2972 {
2973 	addr = untagged_addr(addr);
2974 	profile_munmap(addr);
2975 	return __vm_munmap(addr, len, true);
2976 }
2977 
2978 
2979 /*
2980  * Emulation of deprecated remap_file_pages() syscall.
2981  */
SYSCALL_DEFINE5(remap_file_pages,unsigned long,start,unsigned long,size,unsigned long,prot,unsigned long,pgoff,unsigned long,flags)2982 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2983 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2984 {
2985 
2986 	struct mm_struct *mm = current->mm;
2987 	struct vm_area_struct *vma;
2988 	unsigned long populate = 0;
2989 	unsigned long ret = -EINVAL;
2990 	struct file *file;
2991 
2992 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2993 		     current->comm, current->pid);
2994 
2995 	if (prot)
2996 		return ret;
2997 	start = start & PAGE_MASK;
2998 	size = size & PAGE_MASK;
2999 
3000 	if (start + size <= start)
3001 		return ret;
3002 
3003 	/* Does pgoff wrap? */
3004 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3005 		return ret;
3006 
3007 	if (mmap_write_lock_killable(mm))
3008 		return -EINTR;
3009 
3010 	vma = find_vma(mm, start);
3011 
3012 	if (!vma || !(vma->vm_flags & VM_SHARED))
3013 		goto out;
3014 
3015 	if (start < vma->vm_start)
3016 		goto out;
3017 
3018 	if (start + size > vma->vm_end) {
3019 		struct vm_area_struct *next;
3020 
3021 		for (next = vma->vm_next; next; next = next->vm_next) {
3022 			/* hole between vmas ? */
3023 			if (next->vm_start != next->vm_prev->vm_end)
3024 				goto out;
3025 
3026 			if (next->vm_file != vma->vm_file)
3027 				goto out;
3028 
3029 			if (next->vm_flags != vma->vm_flags)
3030 				goto out;
3031 
3032 			if (start + size <= next->vm_end)
3033 				break;
3034 		}
3035 
3036 		if (!next)
3037 			goto out;
3038 	}
3039 
3040 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3041 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3042 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3043 
3044 	flags &= MAP_NONBLOCK;
3045 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3046 	if (vma->vm_flags & VM_LOCKED) {
3047 		struct vm_area_struct *tmp;
3048 		flags |= MAP_LOCKED;
3049 
3050 		/* drop PG_Mlocked flag for over-mapped range */
3051 		for (tmp = vma; tmp->vm_start >= start + size;
3052 				tmp = tmp->vm_next) {
3053 			/*
3054 			 * Split pmd and munlock page on the border
3055 			 * of the range.
3056 			 */
3057 			vma_adjust_trans_huge(tmp, start, start + size, 0);
3058 
3059 			munlock_vma_pages_range(tmp,
3060 					max(tmp->vm_start, start),
3061 					min(tmp->vm_end, start + size));
3062 		}
3063 	}
3064 
3065 	file = get_file(vma->vm_file);
3066 	ret = do_mmap(vma->vm_file, start, size,
3067 			prot, flags, pgoff, &populate, NULL);
3068 	fput(file);
3069 out:
3070 	mmap_write_unlock(mm);
3071 	if (populate)
3072 		mm_populate(ret, populate);
3073 	if (!IS_ERR_VALUE(ret))
3074 		ret = 0;
3075 	return ret;
3076 }
3077 
3078 /*
3079  *  this is really a simplified "do_mmap".  it only handles
3080  *  anonymous maps.  eventually we may be able to do some
3081  *  brk-specific accounting here.
3082  */
do_brk_flags(unsigned long addr,unsigned long len,unsigned long flags,struct list_head * uf)3083 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3084 {
3085 	struct mm_struct *mm = current->mm;
3086 	struct vm_area_struct *vma, *prev;
3087 	struct rb_node **rb_link, *rb_parent;
3088 	pgoff_t pgoff = addr >> PAGE_SHIFT;
3089 	int error;
3090 	unsigned long mapped_addr;
3091 
3092 	/* Until we need other flags, refuse anything except VM_EXEC. */
3093 	if ((flags & (~VM_EXEC)) != 0)
3094 		return -EINVAL;
3095 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3096 
3097 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3098 	if (IS_ERR_VALUE(mapped_addr))
3099 		return mapped_addr;
3100 
3101 	error = mlock_future_check(mm, mm->def_flags, len);
3102 	if (error)
3103 		return error;
3104 
3105 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3106 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3107 		return -ENOMEM;
3108 
3109 	/* Check against address space limits *after* clearing old maps... */
3110 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3111 		return -ENOMEM;
3112 
3113 	if (mm->map_count > sysctl_max_map_count)
3114 		return -ENOMEM;
3115 
3116 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3117 		return -ENOMEM;
3118 
3119 	/* Can we just expand an old private anonymous mapping? */
3120 	vma = vma_merge(mm, prev, addr, addr + len, flags,
3121 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
3122 	if (vma)
3123 		goto out;
3124 
3125 	/*
3126 	 * create a vma struct for an anonymous mapping
3127 	 */
3128 	vma = vm_area_alloc(mm);
3129 	if (!vma) {
3130 		vm_unacct_memory(len >> PAGE_SHIFT);
3131 		return -ENOMEM;
3132 	}
3133 
3134 	vma_set_anonymous(vma);
3135 	vma->vm_start = addr;
3136 	vma->vm_end = addr + len;
3137 	vma->vm_pgoff = pgoff;
3138 	vma->vm_flags = flags;
3139 	vma->vm_page_prot = vm_get_page_prot(flags);
3140 	vma_link(mm, vma, prev, rb_link, rb_parent);
3141 out:
3142 	perf_event_mmap(vma);
3143 	mm->total_vm += len >> PAGE_SHIFT;
3144 	mm->data_vm += len >> PAGE_SHIFT;
3145 	if (flags & VM_LOCKED)
3146 		mm->locked_vm += (len >> PAGE_SHIFT);
3147 	vma->vm_flags |= VM_SOFTDIRTY;
3148 	return 0;
3149 }
3150 
vm_brk_flags(unsigned long addr,unsigned long request,unsigned long flags)3151 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3152 {
3153 	struct mm_struct *mm = current->mm;
3154 	unsigned long len;
3155 	int ret;
3156 	bool populate;
3157 	LIST_HEAD(uf);
3158 
3159 	len = PAGE_ALIGN(request);
3160 	if (len < request)
3161 		return -ENOMEM;
3162 	if (!len)
3163 		return 0;
3164 
3165 	if (mmap_write_lock_killable(mm))
3166 		return -EINTR;
3167 
3168 	ret = do_brk_flags(addr, len, flags, &uf);
3169 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3170 	mmap_write_unlock(mm);
3171 	userfaultfd_unmap_complete(mm, &uf);
3172 	if (populate && !ret)
3173 		mm_populate(addr, len);
3174 	return ret;
3175 }
3176 EXPORT_SYMBOL(vm_brk_flags);
3177 
vm_brk(unsigned long addr,unsigned long len)3178 int vm_brk(unsigned long addr, unsigned long len)
3179 {
3180 	return vm_brk_flags(addr, len, 0);
3181 }
3182 EXPORT_SYMBOL(vm_brk);
3183 
3184 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)3185 void exit_mmap(struct mm_struct *mm)
3186 {
3187 	struct mmu_gather tlb;
3188 	struct vm_area_struct *vma;
3189 	unsigned long nr_accounted = 0;
3190 
3191 	/* mm's last user has gone, and its about to be pulled down */
3192 	mmu_notifier_release(mm);
3193 
3194 	if (unlikely(mm_is_oom_victim(mm))) {
3195 		/*
3196 		 * Manually reap the mm to free as much memory as possible.
3197 		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3198 		 * this mm from further consideration.  Taking mm->mmap_lock for
3199 		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3200 		 * reaper will not run on this mm again after mmap_lock is
3201 		 * dropped.
3202 		 *
3203 		 * Nothing can be holding mm->mmap_lock here and the above call
3204 		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3205 		 * __oom_reap_task_mm() will not block.
3206 		 *
3207 		 * This needs to be done before calling munlock_vma_pages_all(),
3208 		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3209 		 * reliably test it.
3210 		 */
3211 		(void)__oom_reap_task_mm(mm);
3212 
3213 		set_bit(MMF_OOM_SKIP, &mm->flags);
3214 		mmap_write_lock(mm);
3215 		mmap_write_unlock(mm);
3216 	}
3217 
3218 	if (mm->locked_vm) {
3219 		vma = mm->mmap;
3220 		while (vma) {
3221 			if (vma->vm_flags & VM_LOCKED)
3222 				munlock_vma_pages_all(vma);
3223 			vma = vma->vm_next;
3224 		}
3225 	}
3226 
3227 	arch_exit_mmap(mm);
3228 
3229 	vma = mm->mmap;
3230 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3231 		return;
3232 
3233 	lru_add_drain();
3234 	flush_cache_mm(mm);
3235 	tlb_gather_mmu(&tlb, mm, 0, -1);
3236 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3237 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3238 	unmap_vmas(&tlb, vma, 0, -1);
3239 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3240 	tlb_finish_mmu(&tlb, 0, -1);
3241 
3242 	/*
3243 	 * Walk the list again, actually closing and freeing it,
3244 	 * with preemption enabled, without holding any MM locks.
3245 	 */
3246 	while (vma) {
3247 		if (vma->vm_flags & VM_ACCOUNT)
3248 			nr_accounted += vma_pages(vma);
3249 		vma = remove_vma(vma);
3250 		cond_resched();
3251 	}
3252 	vm_unacct_memory(nr_accounted);
3253 }
3254 
3255 /* Insert vm structure into process list sorted by address
3256  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3257  * then i_mmap_rwsem is taken here.
3258  */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)3259 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3260 {
3261 	struct vm_area_struct *prev;
3262 	struct rb_node **rb_link, *rb_parent;
3263 
3264 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3265 			   &prev, &rb_link, &rb_parent))
3266 		return -ENOMEM;
3267 	if ((vma->vm_flags & VM_ACCOUNT) &&
3268 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3269 		return -ENOMEM;
3270 
3271 	/*
3272 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3273 	 * until its first write fault, when page's anon_vma and index
3274 	 * are set.  But now set the vm_pgoff it will almost certainly
3275 	 * end up with (unless mremap moves it elsewhere before that
3276 	 * first wfault), so /proc/pid/maps tells a consistent story.
3277 	 *
3278 	 * By setting it to reflect the virtual start address of the
3279 	 * vma, merges and splits can happen in a seamless way, just
3280 	 * using the existing file pgoff checks and manipulations.
3281 	 * Similarly in do_mmap and in do_brk_flags.
3282 	 */
3283 	if (vma_is_anonymous(vma)) {
3284 		BUG_ON(vma->anon_vma);
3285 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3286 	}
3287 
3288 	vma_link(mm, vma, prev, rb_link, rb_parent);
3289 	return 0;
3290 }
3291 
3292 /*
3293  * Copy the vma structure to a new location in the same mm,
3294  * prior to moving page table entries, to effect an mremap move.
3295  */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)3296 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3297 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3298 	bool *need_rmap_locks)
3299 {
3300 	struct vm_area_struct *vma = *vmap;
3301 	unsigned long vma_start = vma->vm_start;
3302 	struct mm_struct *mm = vma->vm_mm;
3303 	struct vm_area_struct *new_vma, *prev;
3304 	struct rb_node **rb_link, *rb_parent;
3305 	bool faulted_in_anon_vma = true;
3306 
3307 	/*
3308 	 * If anonymous vma has not yet been faulted, update new pgoff
3309 	 * to match new location, to increase its chance of merging.
3310 	 */
3311 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3312 		pgoff = addr >> PAGE_SHIFT;
3313 		faulted_in_anon_vma = false;
3314 	}
3315 
3316 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3317 		return NULL;	/* should never get here */
3318 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3319 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3320 			    vma->vm_userfaultfd_ctx, vma_anon_name(vma));
3321 	if (new_vma) {
3322 		/*
3323 		 * Source vma may have been merged into new_vma
3324 		 */
3325 		if (unlikely(vma_start >= new_vma->vm_start &&
3326 			     vma_start < new_vma->vm_end)) {
3327 			/*
3328 			 * The only way we can get a vma_merge with
3329 			 * self during an mremap is if the vma hasn't
3330 			 * been faulted in yet and we were allowed to
3331 			 * reset the dst vma->vm_pgoff to the
3332 			 * destination address of the mremap to allow
3333 			 * the merge to happen. mremap must change the
3334 			 * vm_pgoff linearity between src and dst vmas
3335 			 * (in turn preventing a vma_merge) to be
3336 			 * safe. It is only safe to keep the vm_pgoff
3337 			 * linear if there are no pages mapped yet.
3338 			 */
3339 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3340 			*vmap = vma = new_vma;
3341 		}
3342 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3343 	} else {
3344 		new_vma = vm_area_dup(vma);
3345 		if (!new_vma)
3346 			goto out;
3347 		new_vma->vm_start = addr;
3348 		new_vma->vm_end = addr + len;
3349 		new_vma->vm_pgoff = pgoff;
3350 		if (vma_dup_policy(vma, new_vma))
3351 			goto out_free_vma;
3352 		if (anon_vma_clone(new_vma, vma))
3353 			goto out_free_mempol;
3354 		if (new_vma->vm_file)
3355 			get_file(new_vma->vm_file);
3356 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3357 			new_vma->vm_ops->open(new_vma);
3358 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3359 		*need_rmap_locks = false;
3360 	}
3361 	return new_vma;
3362 
3363 out_free_mempol:
3364 	mpol_put(vma_policy(new_vma));
3365 out_free_vma:
3366 	vm_area_free(new_vma);
3367 out:
3368 	return NULL;
3369 }
3370 
3371 /*
3372  * Return true if the calling process may expand its vm space by the passed
3373  * number of pages
3374  */
may_expand_vm(struct mm_struct * mm,vm_flags_t flags,unsigned long npages)3375 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3376 {
3377 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3378 		return false;
3379 
3380 	if (is_data_mapping(flags) &&
3381 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3382 		/* Workaround for Valgrind */
3383 		if (rlimit(RLIMIT_DATA) == 0 &&
3384 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3385 			return true;
3386 
3387 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3388 			     current->comm, current->pid,
3389 			     (mm->data_vm + npages) << PAGE_SHIFT,
3390 			     rlimit(RLIMIT_DATA),
3391 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3392 
3393 		if (!ignore_rlimit_data)
3394 			return false;
3395 	}
3396 
3397 	return true;
3398 }
3399 
vm_stat_account(struct mm_struct * mm,vm_flags_t flags,long npages)3400 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3401 {
3402 	mm->total_vm += npages;
3403 
3404 	if (is_exec_mapping(flags))
3405 		mm->exec_vm += npages;
3406 	else if (is_stack_mapping(flags))
3407 		mm->stack_vm += npages;
3408 	else if (is_data_mapping(flags))
3409 		mm->data_vm += npages;
3410 }
3411 
3412 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3413 
3414 /*
3415  * Having a close hook prevents vma merging regardless of flags.
3416  */
special_mapping_close(struct vm_area_struct * vma)3417 static void special_mapping_close(struct vm_area_struct *vma)
3418 {
3419 }
3420 
special_mapping_name(struct vm_area_struct * vma)3421 static const char *special_mapping_name(struct vm_area_struct *vma)
3422 {
3423 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3424 }
3425 
special_mapping_mremap(struct vm_area_struct * new_vma)3426 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3427 {
3428 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3429 
3430 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3431 		return -EFAULT;
3432 
3433 	if (sm->mremap)
3434 		return sm->mremap(sm, new_vma);
3435 
3436 	return 0;
3437 }
3438 
3439 static const struct vm_operations_struct special_mapping_vmops = {
3440 	.close = special_mapping_close,
3441 	.fault = special_mapping_fault,
3442 	.mremap = special_mapping_mremap,
3443 	.name = special_mapping_name,
3444 	/* vDSO code relies that VVAR can't be accessed remotely */
3445 	.access = NULL,
3446 };
3447 
3448 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3449 	.close = special_mapping_close,
3450 	.fault = special_mapping_fault,
3451 };
3452 
special_mapping_fault(struct vm_fault * vmf)3453 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3454 {
3455 	struct vm_area_struct *vma = vmf->vma;
3456 	pgoff_t pgoff;
3457 	struct page **pages;
3458 
3459 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3460 		pages = vma->vm_private_data;
3461 	} else {
3462 		struct vm_special_mapping *sm = vma->vm_private_data;
3463 
3464 		if (sm->fault)
3465 			return sm->fault(sm, vmf->vma, vmf);
3466 
3467 		pages = sm->pages;
3468 	}
3469 
3470 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3471 		pgoff--;
3472 
3473 	if (*pages) {
3474 		struct page *page = *pages;
3475 		get_page(page);
3476 		vmf->page = page;
3477 		return 0;
3478 	}
3479 
3480 	return VM_FAULT_SIGBUS;
3481 }
3482 
__install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,void * priv,const struct vm_operations_struct * ops)3483 static struct vm_area_struct *__install_special_mapping(
3484 	struct mm_struct *mm,
3485 	unsigned long addr, unsigned long len,
3486 	unsigned long vm_flags, void *priv,
3487 	const struct vm_operations_struct *ops)
3488 {
3489 	int ret;
3490 	struct vm_area_struct *vma;
3491 
3492 	vma = vm_area_alloc(mm);
3493 	if (unlikely(vma == NULL))
3494 		return ERR_PTR(-ENOMEM);
3495 
3496 	vma->vm_start = addr;
3497 	vma->vm_end = addr + len;
3498 
3499 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3500 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3501 
3502 	vma->vm_ops = ops;
3503 	vma->vm_private_data = priv;
3504 
3505 	ret = insert_vm_struct(mm, vma);
3506 	if (ret)
3507 		goto out;
3508 
3509 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3510 
3511 	perf_event_mmap(vma);
3512 
3513 	return vma;
3514 
3515 out:
3516 	vm_area_free(vma);
3517 	return ERR_PTR(ret);
3518 }
3519 
vma_is_special_mapping(const struct vm_area_struct * vma,const struct vm_special_mapping * sm)3520 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3521 	const struct vm_special_mapping *sm)
3522 {
3523 	return vma->vm_private_data == sm &&
3524 		(vma->vm_ops == &special_mapping_vmops ||
3525 		 vma->vm_ops == &legacy_special_mapping_vmops);
3526 }
3527 
3528 /*
3529  * Called with mm->mmap_lock held for writing.
3530  * Insert a new vma covering the given region, with the given flags.
3531  * Its pages are supplied by the given array of struct page *.
3532  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3533  * The region past the last page supplied will always produce SIGBUS.
3534  * The array pointer and the pages it points to are assumed to stay alive
3535  * for as long as this mapping might exist.
3536  */
_install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_special_mapping * spec)3537 struct vm_area_struct *_install_special_mapping(
3538 	struct mm_struct *mm,
3539 	unsigned long addr, unsigned long len,
3540 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3541 {
3542 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3543 					&special_mapping_vmops);
3544 }
3545 
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)3546 int install_special_mapping(struct mm_struct *mm,
3547 			    unsigned long addr, unsigned long len,
3548 			    unsigned long vm_flags, struct page **pages)
3549 {
3550 	struct vm_area_struct *vma = __install_special_mapping(
3551 		mm, addr, len, vm_flags, (void *)pages,
3552 		&legacy_special_mapping_vmops);
3553 
3554 	return PTR_ERR_OR_ZERO(vma);
3555 }
3556 
3557 static DEFINE_MUTEX(mm_all_locks_mutex);
3558 
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)3559 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3560 {
3561 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3562 		/*
3563 		 * The LSB of head.next can't change from under us
3564 		 * because we hold the mm_all_locks_mutex.
3565 		 */
3566 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3567 		/*
3568 		 * We can safely modify head.next after taking the
3569 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3570 		 * the same anon_vma we won't take it again.
3571 		 *
3572 		 * No need of atomic instructions here, head.next
3573 		 * can't change from under us thanks to the
3574 		 * anon_vma->root->rwsem.
3575 		 */
3576 		if (__test_and_set_bit(0, (unsigned long *)
3577 				       &anon_vma->root->rb_root.rb_root.rb_node))
3578 			BUG();
3579 	}
3580 }
3581 
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)3582 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3583 {
3584 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3585 		/*
3586 		 * AS_MM_ALL_LOCKS can't change from under us because
3587 		 * we hold the mm_all_locks_mutex.
3588 		 *
3589 		 * Operations on ->flags have to be atomic because
3590 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3591 		 * mm_all_locks_mutex, there may be other cpus
3592 		 * changing other bitflags in parallel to us.
3593 		 */
3594 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3595 			BUG();
3596 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3597 	}
3598 }
3599 
3600 /*
3601  * This operation locks against the VM for all pte/vma/mm related
3602  * operations that could ever happen on a certain mm. This includes
3603  * vmtruncate, try_to_unmap, and all page faults.
3604  *
3605  * The caller must take the mmap_lock in write mode before calling
3606  * mm_take_all_locks(). The caller isn't allowed to release the
3607  * mmap_lock until mm_drop_all_locks() returns.
3608  *
3609  * mmap_lock in write mode is required in order to block all operations
3610  * that could modify pagetables and free pages without need of
3611  * altering the vma layout. It's also needed in write mode to avoid new
3612  * anon_vmas to be associated with existing vmas.
3613  *
3614  * A single task can't take more than one mm_take_all_locks() in a row
3615  * or it would deadlock.
3616  *
3617  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3618  * mapping->flags avoid to take the same lock twice, if more than one
3619  * vma in this mm is backed by the same anon_vma or address_space.
3620  *
3621  * We take locks in following order, accordingly to comment at beginning
3622  * of mm/rmap.c:
3623  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3624  *     hugetlb mapping);
3625  *   - all i_mmap_rwsem locks;
3626  *   - all anon_vma->rwseml
3627  *
3628  * We can take all locks within these types randomly because the VM code
3629  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3630  * mm_all_locks_mutex.
3631  *
3632  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3633  * that may have to take thousand of locks.
3634  *
3635  * mm_take_all_locks() can fail if it's interrupted by signals.
3636  */
mm_take_all_locks(struct mm_struct * mm)3637 int mm_take_all_locks(struct mm_struct *mm)
3638 {
3639 	struct vm_area_struct *vma;
3640 	struct anon_vma_chain *avc;
3641 
3642 	BUG_ON(mmap_read_trylock(mm));
3643 
3644 	mutex_lock(&mm_all_locks_mutex);
3645 
3646 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3647 		if (signal_pending(current))
3648 			goto out_unlock;
3649 		if (vma->vm_file && vma->vm_file->f_mapping &&
3650 				is_vm_hugetlb_page(vma))
3651 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3652 	}
3653 
3654 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3655 		if (signal_pending(current))
3656 			goto out_unlock;
3657 		if (vma->vm_file && vma->vm_file->f_mapping &&
3658 				!is_vm_hugetlb_page(vma))
3659 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3660 	}
3661 
3662 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3663 		if (signal_pending(current))
3664 			goto out_unlock;
3665 		if (vma->anon_vma)
3666 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3667 				vm_lock_anon_vma(mm, avc->anon_vma);
3668 	}
3669 
3670 	return 0;
3671 
3672 out_unlock:
3673 	mm_drop_all_locks(mm);
3674 	return -EINTR;
3675 }
3676 
vm_unlock_anon_vma(struct anon_vma * anon_vma)3677 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3678 {
3679 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3680 		/*
3681 		 * The LSB of head.next can't change to 0 from under
3682 		 * us because we hold the mm_all_locks_mutex.
3683 		 *
3684 		 * We must however clear the bitflag before unlocking
3685 		 * the vma so the users using the anon_vma->rb_root will
3686 		 * never see our bitflag.
3687 		 *
3688 		 * No need of atomic instructions here, head.next
3689 		 * can't change from under us until we release the
3690 		 * anon_vma->root->rwsem.
3691 		 */
3692 		if (!__test_and_clear_bit(0, (unsigned long *)
3693 					  &anon_vma->root->rb_root.rb_root.rb_node))
3694 			BUG();
3695 		anon_vma_unlock_write(anon_vma);
3696 	}
3697 }
3698 
vm_unlock_mapping(struct address_space * mapping)3699 static void vm_unlock_mapping(struct address_space *mapping)
3700 {
3701 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3702 		/*
3703 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3704 		 * because we hold the mm_all_locks_mutex.
3705 		 */
3706 		i_mmap_unlock_write(mapping);
3707 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3708 					&mapping->flags))
3709 			BUG();
3710 	}
3711 }
3712 
3713 /*
3714  * The mmap_lock cannot be released by the caller until
3715  * mm_drop_all_locks() returns.
3716  */
mm_drop_all_locks(struct mm_struct * mm)3717 void mm_drop_all_locks(struct mm_struct *mm)
3718 {
3719 	struct vm_area_struct *vma;
3720 	struct anon_vma_chain *avc;
3721 
3722 	BUG_ON(mmap_read_trylock(mm));
3723 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3724 
3725 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3726 		if (vma->anon_vma)
3727 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3728 				vm_unlock_anon_vma(avc->anon_vma);
3729 		if (vma->vm_file && vma->vm_file->f_mapping)
3730 			vm_unlock_mapping(vma->vm_file->f_mapping);
3731 	}
3732 
3733 	mutex_unlock(&mm_all_locks_mutex);
3734 }
3735 
3736 /*
3737  * initialise the percpu counter for VM
3738  */
mmap_init(void)3739 void __init mmap_init(void)
3740 {
3741 	int ret;
3742 
3743 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3744 	VM_BUG_ON(ret);
3745 }
3746 
3747 /*
3748  * Initialise sysctl_user_reserve_kbytes.
3749  *
3750  * This is intended to prevent a user from starting a single memory hogging
3751  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3752  * mode.
3753  *
3754  * The default value is min(3% of free memory, 128MB)
3755  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3756  */
init_user_reserve(void)3757 static int init_user_reserve(void)
3758 {
3759 	unsigned long free_kbytes;
3760 
3761 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3762 
3763 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3764 	return 0;
3765 }
3766 subsys_initcall(init_user_reserve);
3767 
3768 /*
3769  * Initialise sysctl_admin_reserve_kbytes.
3770  *
3771  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3772  * to log in and kill a memory hogging process.
3773  *
3774  * Systems with more than 256MB will reserve 8MB, enough to recover
3775  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3776  * only reserve 3% of free pages by default.
3777  */
init_admin_reserve(void)3778 static int init_admin_reserve(void)
3779 {
3780 	unsigned long free_kbytes;
3781 
3782 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3783 
3784 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3785 	return 0;
3786 }
3787 subsys_initcall(init_admin_reserve);
3788 
3789 /*
3790  * Reinititalise user and admin reserves if memory is added or removed.
3791  *
3792  * The default user reserve max is 128MB, and the default max for the
3793  * admin reserve is 8MB. These are usually, but not always, enough to
3794  * enable recovery from a memory hogging process using login/sshd, a shell,
3795  * and tools like top. It may make sense to increase or even disable the
3796  * reserve depending on the existence of swap or variations in the recovery
3797  * tools. So, the admin may have changed them.
3798  *
3799  * If memory is added and the reserves have been eliminated or increased above
3800  * the default max, then we'll trust the admin.
3801  *
3802  * If memory is removed and there isn't enough free memory, then we
3803  * need to reset the reserves.
3804  *
3805  * Otherwise keep the reserve set by the admin.
3806  */
reserve_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)3807 static int reserve_mem_notifier(struct notifier_block *nb,
3808 			     unsigned long action, void *data)
3809 {
3810 	unsigned long tmp, free_kbytes;
3811 
3812 	switch (action) {
3813 	case MEM_ONLINE:
3814 		/* Default max is 128MB. Leave alone if modified by operator. */
3815 		tmp = sysctl_user_reserve_kbytes;
3816 		if (0 < tmp && tmp < (1UL << 17))
3817 			init_user_reserve();
3818 
3819 		/* Default max is 8MB.  Leave alone if modified by operator. */
3820 		tmp = sysctl_admin_reserve_kbytes;
3821 		if (0 < tmp && tmp < (1UL << 13))
3822 			init_admin_reserve();
3823 
3824 		break;
3825 	case MEM_OFFLINE:
3826 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3827 
3828 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3829 			init_user_reserve();
3830 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3831 				sysctl_user_reserve_kbytes);
3832 		}
3833 
3834 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3835 			init_admin_reserve();
3836 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3837 				sysctl_admin_reserve_kbytes);
3838 		}
3839 		break;
3840 	default:
3841 		break;
3842 	}
3843 	return NOTIFY_OK;
3844 }
3845 
3846 static struct notifier_block reserve_mem_nb = {
3847 	.notifier_call = reserve_mem_notifier,
3848 };
3849 
init_reserve_notifier(void)3850 static int __meminit init_reserve_notifier(void)
3851 {
3852 	if (register_hotmemory_notifier(&reserve_mem_nb))
3853 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3854 
3855 	return 0;
3856 }
3857 subsys_initcall(init_reserve_notifier);
3858