1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags) (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm,
80 struct vm_area_struct *vma, struct vm_area_struct *prev,
81 unsigned long start, unsigned long end);
82
83 /* description of effects of mapping type and prot in current implementation.
84 * this is due to the limited x86 page protection hardware. The expected
85 * behavior is in parens:
86 *
87 * map_type prot
88 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
89 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
90 * w: (no) no w: (no) no w: (yes) yes w: (no) no
91 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
92 *
93 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
94 * w: (no) no w: (no) no w: (copy) copy w: (no) no
95 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
96 */
97 pgprot_t protection_map[16] __ro_after_init = {
98 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100 };
101
102 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
arch_filter_pgprot(pgprot_t prot)103 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
104 {
105 return prot;
106 }
107 #endif
108
vm_get_page_prot(unsigned long vm_flags)109 pgprot_t vm_get_page_prot(unsigned long vm_flags)
110 {
111 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
112 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
113 pgprot_val(arch_vm_get_page_prot(vm_flags)));
114
115 return arch_filter_pgprot(ret);
116 }
117 EXPORT_SYMBOL(vm_get_page_prot);
118
vm_pgprot_modify(pgprot_t oldprot,unsigned long vm_flags)119 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
120 {
121 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
122 }
123
124 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)125 void vma_set_page_prot(struct vm_area_struct *vma)
126 {
127 unsigned long vm_flags = vma->vm_flags;
128 pgprot_t vm_page_prot;
129
130 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
131 if (vma_wants_writenotify(vma, vm_page_prot)) {
132 vm_flags &= ~VM_SHARED;
133 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
134 }
135 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
136 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
137 }
138
139 /*
140 * Requires inode->i_mapping->i_mmap_rwsem
141 */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)142 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
143 struct file *file, struct address_space *mapping)
144 {
145 if (vma->vm_flags & VM_DENYWRITE)
146 allow_write_access(file);
147 if (vma->vm_flags & VM_SHARED)
148 mapping_unmap_writable(mapping);
149
150 flush_dcache_mmap_lock(mapping);
151 vma_interval_tree_remove(vma, &mapping->i_mmap);
152 flush_dcache_mmap_unlock(mapping);
153 }
154
155 /*
156 * Unlink a file-based vm structure from its interval tree, to hide
157 * vma from rmap and vmtruncate before freeing its page tables.
158 */
unlink_file_vma(struct vm_area_struct * vma)159 void unlink_file_vma(struct vm_area_struct *vma)
160 {
161 struct file *file = vma->vm_file;
162
163 if (file) {
164 struct address_space *mapping = file->f_mapping;
165 i_mmap_lock_write(mapping);
166 __remove_shared_vm_struct(vma, file, mapping);
167 i_mmap_unlock_write(mapping);
168 }
169 }
170
171 /*
172 * Close a vm structure and free it, returning the next.
173 */
remove_vma(struct vm_area_struct * vma)174 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
175 {
176 struct vm_area_struct *next = vma->vm_next;
177
178 might_sleep();
179 if (vma->vm_ops && vma->vm_ops->close)
180 vma->vm_ops->close(vma);
181 if (vma->vm_file)
182 fput(vma->vm_file);
183 mpol_put(vma_policy(vma));
184 vm_area_free(vma);
185 return next;
186 }
187
188 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
189 struct list_head *uf);
SYSCALL_DEFINE1(brk,unsigned long,brk)190 SYSCALL_DEFINE1(brk, unsigned long, brk)
191 {
192 unsigned long retval;
193 unsigned long newbrk, oldbrk, origbrk;
194 struct mm_struct *mm = current->mm;
195 struct vm_area_struct *next;
196 unsigned long min_brk;
197 bool populate;
198 bool downgraded = false;
199 LIST_HEAD(uf);
200
201 if (mmap_write_lock_killable(mm))
202 return -EINTR;
203
204 origbrk = mm->brk;
205
206 #ifdef CONFIG_COMPAT_BRK
207 /*
208 * CONFIG_COMPAT_BRK can still be overridden by setting
209 * randomize_va_space to 2, which will still cause mm->start_brk
210 * to be arbitrarily shifted
211 */
212 if (current->brk_randomized)
213 min_brk = mm->start_brk;
214 else
215 min_brk = mm->end_data;
216 #else
217 min_brk = mm->start_brk;
218 #endif
219 if (brk < min_brk)
220 goto out;
221
222 /*
223 * Check against rlimit here. If this check is done later after the test
224 * of oldbrk with newbrk then it can escape the test and let the data
225 * segment grow beyond its set limit the in case where the limit is
226 * not page aligned -Ram Gupta
227 */
228 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
229 mm->end_data, mm->start_data))
230 goto out;
231
232 newbrk = PAGE_ALIGN(brk);
233 oldbrk = PAGE_ALIGN(mm->brk);
234 if (oldbrk == newbrk) {
235 mm->brk = brk;
236 goto success;
237 }
238
239 /*
240 * Always allow shrinking brk.
241 * __do_munmap() may downgrade mmap_lock to read.
242 */
243 if (brk <= mm->brk) {
244 int ret;
245
246 /*
247 * mm->brk must to be protected by write mmap_lock so update it
248 * before downgrading mmap_lock. When __do_munmap() fails,
249 * mm->brk will be restored from origbrk.
250 */
251 mm->brk = brk;
252 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
253 if (ret < 0) {
254 mm->brk = origbrk;
255 goto out;
256 } else if (ret == 1) {
257 downgraded = true;
258 }
259 goto success;
260 }
261
262 /* Check against existing mmap mappings. */
263 next = find_vma(mm, oldbrk);
264 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
265 goto out;
266
267 /* Ok, looks good - let it rip. */
268 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
269 goto out;
270 mm->brk = brk;
271
272 success:
273 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
274 if (downgraded)
275 mmap_read_unlock(mm);
276 else
277 mmap_write_unlock(mm);
278 userfaultfd_unmap_complete(mm, &uf);
279 if (populate)
280 mm_populate(oldbrk, newbrk - oldbrk);
281 return brk;
282
283 out:
284 retval = origbrk;
285 mmap_write_unlock(mm);
286 return retval;
287 }
288
vma_compute_gap(struct vm_area_struct * vma)289 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
290 {
291 unsigned long gap, prev_end;
292
293 /*
294 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
295 * allow two stack_guard_gaps between them here, and when choosing
296 * an unmapped area; whereas when expanding we only require one.
297 * That's a little inconsistent, but keeps the code here simpler.
298 */
299 gap = vm_start_gap(vma);
300 if (vma->vm_prev) {
301 prev_end = vm_end_gap(vma->vm_prev);
302 if (gap > prev_end)
303 gap -= prev_end;
304 else
305 gap = 0;
306 }
307 return gap;
308 }
309
310 #ifdef CONFIG_DEBUG_VM_RB
vma_compute_subtree_gap(struct vm_area_struct * vma)311 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
312 {
313 unsigned long max = vma_compute_gap(vma), subtree_gap;
314 if (vma->vm_rb.rb_left) {
315 subtree_gap = rb_entry(vma->vm_rb.rb_left,
316 struct vm_area_struct, vm_rb)->rb_subtree_gap;
317 if (subtree_gap > max)
318 max = subtree_gap;
319 }
320 if (vma->vm_rb.rb_right) {
321 subtree_gap = rb_entry(vma->vm_rb.rb_right,
322 struct vm_area_struct, vm_rb)->rb_subtree_gap;
323 if (subtree_gap > max)
324 max = subtree_gap;
325 }
326 return max;
327 }
328
browse_rb(struct mm_struct * mm)329 static int browse_rb(struct mm_struct *mm)
330 {
331 struct rb_root *root = &mm->mm_rb;
332 int i = 0, j, bug = 0;
333 struct rb_node *nd, *pn = NULL;
334 unsigned long prev = 0, pend = 0;
335
336 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
337 struct vm_area_struct *vma;
338 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
339 if (vma->vm_start < prev) {
340 pr_emerg("vm_start %lx < prev %lx\n",
341 vma->vm_start, prev);
342 bug = 1;
343 }
344 if (vma->vm_start < pend) {
345 pr_emerg("vm_start %lx < pend %lx\n",
346 vma->vm_start, pend);
347 bug = 1;
348 }
349 if (vma->vm_start > vma->vm_end) {
350 pr_emerg("vm_start %lx > vm_end %lx\n",
351 vma->vm_start, vma->vm_end);
352 bug = 1;
353 }
354 spin_lock(&mm->page_table_lock);
355 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
356 pr_emerg("free gap %lx, correct %lx\n",
357 vma->rb_subtree_gap,
358 vma_compute_subtree_gap(vma));
359 bug = 1;
360 }
361 spin_unlock(&mm->page_table_lock);
362 i++;
363 pn = nd;
364 prev = vma->vm_start;
365 pend = vma->vm_end;
366 }
367 j = 0;
368 for (nd = pn; nd; nd = rb_prev(nd))
369 j++;
370 if (i != j) {
371 pr_emerg("backwards %d, forwards %d\n", j, i);
372 bug = 1;
373 }
374 return bug ? -1 : i;
375 }
376
validate_mm_rb(struct rb_root * root,struct vm_area_struct * ignore)377 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
378 {
379 struct rb_node *nd;
380
381 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
382 struct vm_area_struct *vma;
383 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
384 VM_BUG_ON_VMA(vma != ignore &&
385 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
386 vma);
387 }
388 }
389
validate_mm(struct mm_struct * mm)390 static void validate_mm(struct mm_struct *mm)
391 {
392 int bug = 0;
393 int i = 0;
394 unsigned long highest_address = 0;
395 struct vm_area_struct *vma = mm->mmap;
396
397 while (vma) {
398 struct anon_vma *anon_vma = vma->anon_vma;
399 struct anon_vma_chain *avc;
400
401 if (anon_vma) {
402 anon_vma_lock_read(anon_vma);
403 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
404 anon_vma_interval_tree_verify(avc);
405 anon_vma_unlock_read(anon_vma);
406 }
407
408 highest_address = vm_end_gap(vma);
409 vma = vma->vm_next;
410 i++;
411 }
412 if (i != mm->map_count) {
413 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
414 bug = 1;
415 }
416 if (highest_address != mm->highest_vm_end) {
417 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
418 mm->highest_vm_end, highest_address);
419 bug = 1;
420 }
421 i = browse_rb(mm);
422 if (i != mm->map_count) {
423 if (i != -1)
424 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
425 bug = 1;
426 }
427 VM_BUG_ON_MM(bug, mm);
428 }
429 #else
430 #define validate_mm_rb(root, ignore) do { } while (0)
431 #define validate_mm(mm) do { } while (0)
432 #endif
433
RB_DECLARE_CALLBACKS_MAX(static,vma_gap_callbacks,struct vm_area_struct,vm_rb,unsigned long,rb_subtree_gap,vma_compute_gap)434 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
435 struct vm_area_struct, vm_rb,
436 unsigned long, rb_subtree_gap, vma_compute_gap)
437
438 /*
439 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
440 * vma->vm_prev->vm_end values changed, without modifying the vma's position
441 * in the rbtree.
442 */
443 static void vma_gap_update(struct vm_area_struct *vma)
444 {
445 /*
446 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
447 * a callback function that does exactly what we want.
448 */
449 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
450 }
451
vma_rb_insert(struct vm_area_struct * vma,struct rb_root * root)452 static inline void vma_rb_insert(struct vm_area_struct *vma,
453 struct rb_root *root)
454 {
455 /* All rb_subtree_gap values must be consistent prior to insertion */
456 validate_mm_rb(root, NULL);
457
458 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
459 }
460
__vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)461 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
462 {
463 /*
464 * Note rb_erase_augmented is a fairly large inline function,
465 * so make sure we instantiate it only once with our desired
466 * augmented rbtree callbacks.
467 */
468 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
469 }
470
vma_rb_erase_ignore(struct vm_area_struct * vma,struct rb_root * root,struct vm_area_struct * ignore)471 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
472 struct rb_root *root,
473 struct vm_area_struct *ignore)
474 {
475 /*
476 * All rb_subtree_gap values must be consistent prior to erase,
477 * with the possible exception of
478 *
479 * a. the "next" vma being erased if next->vm_start was reduced in
480 * __vma_adjust() -> __vma_unlink()
481 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
482 * vma_rb_erase()
483 */
484 validate_mm_rb(root, ignore);
485
486 __vma_rb_erase(vma, root);
487 }
488
vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)489 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
490 struct rb_root *root)
491 {
492 vma_rb_erase_ignore(vma, root, vma);
493 }
494
495 /*
496 * vma has some anon_vma assigned, and is already inserted on that
497 * anon_vma's interval trees.
498 *
499 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
500 * vma must be removed from the anon_vma's interval trees using
501 * anon_vma_interval_tree_pre_update_vma().
502 *
503 * After the update, the vma will be reinserted using
504 * anon_vma_interval_tree_post_update_vma().
505 *
506 * The entire update must be protected by exclusive mmap_lock and by
507 * the root anon_vma's mutex.
508 */
509 static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)510 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
511 {
512 struct anon_vma_chain *avc;
513
514 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
515 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
516 }
517
518 static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)519 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
520 {
521 struct anon_vma_chain *avc;
522
523 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
524 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
525 }
526
find_vma_links(struct mm_struct * mm,unsigned long addr,unsigned long end,struct vm_area_struct ** pprev,struct rb_node *** rb_link,struct rb_node ** rb_parent)527 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
528 unsigned long end, struct vm_area_struct **pprev,
529 struct rb_node ***rb_link, struct rb_node **rb_parent)
530 {
531 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
532
533 __rb_link = &mm->mm_rb.rb_node;
534 rb_prev = __rb_parent = NULL;
535
536 while (*__rb_link) {
537 struct vm_area_struct *vma_tmp;
538
539 __rb_parent = *__rb_link;
540 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
541
542 if (vma_tmp->vm_end > addr) {
543 /* Fail if an existing vma overlaps the area */
544 if (vma_tmp->vm_start < end)
545 return -ENOMEM;
546 __rb_link = &__rb_parent->rb_left;
547 } else {
548 rb_prev = __rb_parent;
549 __rb_link = &__rb_parent->rb_right;
550 }
551 }
552
553 *pprev = NULL;
554 if (rb_prev)
555 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
556 *rb_link = __rb_link;
557 *rb_parent = __rb_parent;
558 return 0;
559 }
560
561 /*
562 * vma_next() - Get the next VMA.
563 * @mm: The mm_struct.
564 * @vma: The current vma.
565 *
566 * If @vma is NULL, return the first vma in the mm.
567 *
568 * Returns: The next VMA after @vma.
569 */
vma_next(struct mm_struct * mm,struct vm_area_struct * vma)570 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
571 struct vm_area_struct *vma)
572 {
573 if (!vma)
574 return mm->mmap;
575
576 return vma->vm_next;
577 }
578
579 /*
580 * munmap_vma_range() - munmap VMAs that overlap a range.
581 * @mm: The mm struct
582 * @start: The start of the range.
583 * @len: The length of the range.
584 * @pprev: pointer to the pointer that will be set to previous vm_area_struct
585 * @rb_link: the rb_node
586 * @rb_parent: the parent rb_node
587 *
588 * Find all the vm_area_struct that overlap from @start to
589 * @end and munmap them. Set @pprev to the previous vm_area_struct.
590 *
591 * Returns: -ENOMEM on munmap failure or 0 on success.
592 */
593 static inline int
munmap_vma_range(struct mm_struct * mm,unsigned long start,unsigned long len,struct vm_area_struct ** pprev,struct rb_node *** link,struct rb_node ** parent,struct list_head * uf)594 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
595 struct vm_area_struct **pprev, struct rb_node ***link,
596 struct rb_node **parent, struct list_head *uf)
597 {
598
599 while (find_vma_links(mm, start, start + len, pprev, link, parent))
600 if (do_munmap(mm, start, len, uf))
601 return -ENOMEM;
602
603 return 0;
604 }
count_vma_pages_range(struct mm_struct * mm,unsigned long addr,unsigned long end)605 static unsigned long count_vma_pages_range(struct mm_struct *mm,
606 unsigned long addr, unsigned long end)
607 {
608 unsigned long nr_pages = 0;
609 struct vm_area_struct *vma;
610
611 /* Find first overlaping mapping */
612 vma = find_vma_intersection(mm, addr, end);
613 if (!vma)
614 return 0;
615
616 nr_pages = (min(end, vma->vm_end) -
617 max(addr, vma->vm_start)) >> PAGE_SHIFT;
618
619 /* Iterate over the rest of the overlaps */
620 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
621 unsigned long overlap_len;
622
623 if (vma->vm_start > end)
624 break;
625
626 overlap_len = min(end, vma->vm_end) - vma->vm_start;
627 nr_pages += overlap_len >> PAGE_SHIFT;
628 }
629
630 return nr_pages;
631 }
632
__vma_link_rb(struct mm_struct * mm,struct vm_area_struct * vma,struct rb_node ** rb_link,struct rb_node * rb_parent)633 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
634 struct rb_node **rb_link, struct rb_node *rb_parent)
635 {
636 /* Update tracking information for the gap following the new vma. */
637 if (vma->vm_next)
638 vma_gap_update(vma->vm_next);
639 else
640 mm->highest_vm_end = vm_end_gap(vma);
641
642 /*
643 * vma->vm_prev wasn't known when we followed the rbtree to find the
644 * correct insertion point for that vma. As a result, we could not
645 * update the vma vm_rb parents rb_subtree_gap values on the way down.
646 * So, we first insert the vma with a zero rb_subtree_gap value
647 * (to be consistent with what we did on the way down), and then
648 * immediately update the gap to the correct value. Finally we
649 * rebalance the rbtree after all augmented values have been set.
650 */
651 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
652 vma->rb_subtree_gap = 0;
653 vma_gap_update(vma);
654 vma_rb_insert(vma, &mm->mm_rb);
655 }
656
__vma_link_file(struct vm_area_struct * vma)657 static void __vma_link_file(struct vm_area_struct *vma)
658 {
659 struct file *file;
660
661 file = vma->vm_file;
662 if (file) {
663 struct address_space *mapping = file->f_mapping;
664
665 if (vma->vm_flags & VM_DENYWRITE)
666 put_write_access(file_inode(file));
667 if (vma->vm_flags & VM_SHARED)
668 mapping_allow_writable(mapping);
669
670 flush_dcache_mmap_lock(mapping);
671 vma_interval_tree_insert(vma, &mapping->i_mmap);
672 flush_dcache_mmap_unlock(mapping);
673 }
674 }
675
676 static void
__vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)677 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
678 struct vm_area_struct *prev, struct rb_node **rb_link,
679 struct rb_node *rb_parent)
680 {
681 __vma_link_list(mm, vma, prev);
682 __vma_link_rb(mm, vma, rb_link, rb_parent);
683 }
684
vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)685 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
686 struct vm_area_struct *prev, struct rb_node **rb_link,
687 struct rb_node *rb_parent)
688 {
689 struct address_space *mapping = NULL;
690
691 if (vma->vm_file) {
692 mapping = vma->vm_file->f_mapping;
693 i_mmap_lock_write(mapping);
694 }
695
696 __vma_link(mm, vma, prev, rb_link, rb_parent);
697 __vma_link_file(vma);
698
699 if (mapping)
700 i_mmap_unlock_write(mapping);
701
702 mm->map_count++;
703 validate_mm(mm);
704 }
705
706 /*
707 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
708 * mm's list and rbtree. It has already been inserted into the interval tree.
709 */
__insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)710 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
711 {
712 struct vm_area_struct *prev;
713 struct rb_node **rb_link, *rb_parent;
714
715 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
716 &prev, &rb_link, &rb_parent))
717 BUG();
718 __vma_link(mm, vma, prev, rb_link, rb_parent);
719 mm->map_count++;
720 }
721
__vma_unlink(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * ignore)722 static __always_inline void __vma_unlink(struct mm_struct *mm,
723 struct vm_area_struct *vma,
724 struct vm_area_struct *ignore)
725 {
726 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
727 __vma_unlink_list(mm, vma);
728 /* Kill the cache */
729 vmacache_invalidate(mm);
730 }
731
732 /*
733 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
734 * is already present in an i_mmap tree without adjusting the tree.
735 * The following helper function should be used when such adjustments
736 * are necessary. The "insert" vma (if any) is to be inserted
737 * before we drop the necessary locks.
738 */
__vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert,struct vm_area_struct * expand)739 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
740 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
741 struct vm_area_struct *expand)
742 {
743 struct mm_struct *mm = vma->vm_mm;
744 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
745 struct address_space *mapping = NULL;
746 struct rb_root_cached *root = NULL;
747 struct anon_vma *anon_vma = NULL;
748 struct file *file = vma->vm_file;
749 bool start_changed = false, end_changed = false;
750 long adjust_next = 0;
751 int remove_next = 0;
752
753 if (next && !insert) {
754 struct vm_area_struct *exporter = NULL, *importer = NULL;
755
756 if (end >= next->vm_end) {
757 /*
758 * vma expands, overlapping all the next, and
759 * perhaps the one after too (mprotect case 6).
760 * The only other cases that gets here are
761 * case 1, case 7 and case 8.
762 */
763 if (next == expand) {
764 /*
765 * The only case where we don't expand "vma"
766 * and we expand "next" instead is case 8.
767 */
768 VM_WARN_ON(end != next->vm_end);
769 /*
770 * remove_next == 3 means we're
771 * removing "vma" and that to do so we
772 * swapped "vma" and "next".
773 */
774 remove_next = 3;
775 VM_WARN_ON(file != next->vm_file);
776 swap(vma, next);
777 } else {
778 VM_WARN_ON(expand != vma);
779 /*
780 * case 1, 6, 7, remove_next == 2 is case 6,
781 * remove_next == 1 is case 1 or 7.
782 */
783 remove_next = 1 + (end > next->vm_end);
784 VM_WARN_ON(remove_next == 2 &&
785 end != next->vm_next->vm_end);
786 /* trim end to next, for case 6 first pass */
787 end = next->vm_end;
788 }
789
790 exporter = next;
791 importer = vma;
792
793 /*
794 * If next doesn't have anon_vma, import from vma after
795 * next, if the vma overlaps with it.
796 */
797 if (remove_next == 2 && !next->anon_vma)
798 exporter = next->vm_next;
799
800 } else if (end > next->vm_start) {
801 /*
802 * vma expands, overlapping part of the next:
803 * mprotect case 5 shifting the boundary up.
804 */
805 adjust_next = (end - next->vm_start);
806 exporter = next;
807 importer = vma;
808 VM_WARN_ON(expand != importer);
809 } else if (end < vma->vm_end) {
810 /*
811 * vma shrinks, and !insert tells it's not
812 * split_vma inserting another: so it must be
813 * mprotect case 4 shifting the boundary down.
814 */
815 adjust_next = -(vma->vm_end - end);
816 exporter = vma;
817 importer = next;
818 VM_WARN_ON(expand != importer);
819 }
820
821 /*
822 * Easily overlooked: when mprotect shifts the boundary,
823 * make sure the expanding vma has anon_vma set if the
824 * shrinking vma had, to cover any anon pages imported.
825 */
826 if (exporter && exporter->anon_vma && !importer->anon_vma) {
827 int error;
828
829 importer->anon_vma = exporter->anon_vma;
830 error = anon_vma_clone(importer, exporter);
831 if (error)
832 return error;
833 }
834 }
835 again:
836 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
837
838 if (file) {
839 mapping = file->f_mapping;
840 root = &mapping->i_mmap;
841 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
842
843 if (adjust_next)
844 uprobe_munmap(next, next->vm_start, next->vm_end);
845
846 i_mmap_lock_write(mapping);
847 if (insert) {
848 /*
849 * Put into interval tree now, so instantiated pages
850 * are visible to arm/parisc __flush_dcache_page
851 * throughout; but we cannot insert into address
852 * space until vma start or end is updated.
853 */
854 __vma_link_file(insert);
855 }
856 }
857
858 anon_vma = vma->anon_vma;
859 if (!anon_vma && adjust_next)
860 anon_vma = next->anon_vma;
861 if (anon_vma) {
862 VM_WARN_ON(adjust_next && next->anon_vma &&
863 anon_vma != next->anon_vma);
864 anon_vma_lock_write(anon_vma);
865 anon_vma_interval_tree_pre_update_vma(vma);
866 if (adjust_next)
867 anon_vma_interval_tree_pre_update_vma(next);
868 }
869
870 if (file) {
871 flush_dcache_mmap_lock(mapping);
872 vma_interval_tree_remove(vma, root);
873 if (adjust_next)
874 vma_interval_tree_remove(next, root);
875 }
876
877 if (start != vma->vm_start) {
878 vma->vm_start = start;
879 start_changed = true;
880 }
881 if (end != vma->vm_end) {
882 vma->vm_end = end;
883 end_changed = true;
884 }
885 vma->vm_pgoff = pgoff;
886 if (adjust_next) {
887 next->vm_start += adjust_next;
888 next->vm_pgoff += adjust_next >> PAGE_SHIFT;
889 }
890
891 if (file) {
892 if (adjust_next)
893 vma_interval_tree_insert(next, root);
894 vma_interval_tree_insert(vma, root);
895 flush_dcache_mmap_unlock(mapping);
896 }
897
898 if (remove_next) {
899 /*
900 * vma_merge has merged next into vma, and needs
901 * us to remove next before dropping the locks.
902 */
903 if (remove_next != 3)
904 __vma_unlink(mm, next, next);
905 else
906 /*
907 * vma is not before next if they've been
908 * swapped.
909 *
910 * pre-swap() next->vm_start was reduced so
911 * tell validate_mm_rb to ignore pre-swap()
912 * "next" (which is stored in post-swap()
913 * "vma").
914 */
915 __vma_unlink(mm, next, vma);
916 if (file)
917 __remove_shared_vm_struct(next, file, mapping);
918 } else if (insert) {
919 /*
920 * split_vma has split insert from vma, and needs
921 * us to insert it before dropping the locks
922 * (it may either follow vma or precede it).
923 */
924 __insert_vm_struct(mm, insert);
925 } else {
926 if (start_changed)
927 vma_gap_update(vma);
928 if (end_changed) {
929 if (!next)
930 mm->highest_vm_end = vm_end_gap(vma);
931 else if (!adjust_next)
932 vma_gap_update(next);
933 }
934 }
935
936 if (anon_vma) {
937 anon_vma_interval_tree_post_update_vma(vma);
938 if (adjust_next)
939 anon_vma_interval_tree_post_update_vma(next);
940 anon_vma_unlock_write(anon_vma);
941 }
942
943 if (file) {
944 i_mmap_unlock_write(mapping);
945 uprobe_mmap(vma);
946
947 if (adjust_next)
948 uprobe_mmap(next);
949 }
950
951 if (remove_next) {
952 if (file) {
953 uprobe_munmap(next, next->vm_start, next->vm_end);
954 fput(file);
955 }
956 if (next->anon_vma)
957 anon_vma_merge(vma, next);
958 mm->map_count--;
959 mpol_put(vma_policy(next));
960 vm_area_free(next);
961 /*
962 * In mprotect's case 6 (see comments on vma_merge),
963 * we must remove another next too. It would clutter
964 * up the code too much to do both in one go.
965 */
966 if (remove_next != 3) {
967 /*
968 * If "next" was removed and vma->vm_end was
969 * expanded (up) over it, in turn
970 * "next->vm_prev->vm_end" changed and the
971 * "vma->vm_next" gap must be updated.
972 */
973 next = vma->vm_next;
974 } else {
975 /*
976 * For the scope of the comment "next" and
977 * "vma" considered pre-swap(): if "vma" was
978 * removed, next->vm_start was expanded (down)
979 * over it and the "next" gap must be updated.
980 * Because of the swap() the post-swap() "vma"
981 * actually points to pre-swap() "next"
982 * (post-swap() "next" as opposed is now a
983 * dangling pointer).
984 */
985 next = vma;
986 }
987 if (remove_next == 2) {
988 remove_next = 1;
989 end = next->vm_end;
990 goto again;
991 }
992 else if (next)
993 vma_gap_update(next);
994 else {
995 /*
996 * If remove_next == 2 we obviously can't
997 * reach this path.
998 *
999 * If remove_next == 3 we can't reach this
1000 * path because pre-swap() next is always not
1001 * NULL. pre-swap() "next" is not being
1002 * removed and its next->vm_end is not altered
1003 * (and furthermore "end" already matches
1004 * next->vm_end in remove_next == 3).
1005 *
1006 * We reach this only in the remove_next == 1
1007 * case if the "next" vma that was removed was
1008 * the highest vma of the mm. However in such
1009 * case next->vm_end == "end" and the extended
1010 * "vma" has vma->vm_end == next->vm_end so
1011 * mm->highest_vm_end doesn't need any update
1012 * in remove_next == 1 case.
1013 */
1014 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1015 }
1016 }
1017 if (insert && file)
1018 uprobe_mmap(insert);
1019
1020 validate_mm(mm);
1021
1022 return 0;
1023 }
1024
1025 /*
1026 * If the vma has a ->close operation then the driver probably needs to release
1027 * per-vma resources, so we don't attempt to merge those.
1028 */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,const char * anon_name)1029 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1030 struct file *file, unsigned long vm_flags,
1031 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1032 const char *anon_name)
1033 {
1034 /*
1035 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1036 * match the flags but dirty bit -- the caller should mark
1037 * merged VMA as dirty. If dirty bit won't be excluded from
1038 * comparison, we increase pressure on the memory system forcing
1039 * the kernel to generate new VMAs when old one could be
1040 * extended instead.
1041 */
1042 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1043 return 0;
1044 if (vma->vm_file != file)
1045 return 0;
1046 if (vma->vm_ops && vma->vm_ops->close)
1047 return 0;
1048 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1049 return 0;
1050 if (!is_same_vma_anon_name(vma, anon_name))
1051 return 0;
1052 return 1;
1053 }
1054
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)1055 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1056 struct anon_vma *anon_vma2,
1057 struct vm_area_struct *vma)
1058 {
1059 /*
1060 * The list_is_singular() test is to avoid merging VMA cloned from
1061 * parents. This can improve scalability caused by anon_vma lock.
1062 */
1063 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1064 list_is_singular(&vma->anon_vma_chain)))
1065 return 1;
1066 return anon_vma1 == anon_vma2;
1067 }
1068
1069 /*
1070 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1071 * in front of (at a lower virtual address and file offset than) the vma.
1072 *
1073 * We cannot merge two vmas if they have differently assigned (non-NULL)
1074 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1075 *
1076 * We don't check here for the merged mmap wrapping around the end of pagecache
1077 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1078 * wrap, nor mmaps which cover the final page at index -1UL.
1079 */
1080 static int
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,const char * anon_name)1081 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1082 struct anon_vma *anon_vma, struct file *file,
1083 pgoff_t vm_pgoff,
1084 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1085 const char *anon_name)
1086 {
1087 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1088 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1089 if (vma->vm_pgoff == vm_pgoff)
1090 return 1;
1091 }
1092 return 0;
1093 }
1094
1095 /*
1096 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1097 * beyond (at a higher virtual address and file offset than) the vma.
1098 *
1099 * We cannot merge two vmas if they have differently assigned (non-NULL)
1100 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1101 */
1102 static int
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,const char * anon_name)1103 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1104 struct anon_vma *anon_vma, struct file *file,
1105 pgoff_t vm_pgoff,
1106 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1107 const char *anon_name)
1108 {
1109 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1110 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1111 pgoff_t vm_pglen;
1112 vm_pglen = vma_pages(vma);
1113 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1114 return 1;
1115 }
1116 return 0;
1117 }
1118
1119 /*
1120 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1121 * figure out whether that can be merged with its predecessor or its
1122 * successor. Or both (it neatly fills a hole).
1123 *
1124 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1125 * certain not to be mapped by the time vma_merge is called; but when
1126 * called for mprotect, it is certain to be already mapped (either at
1127 * an offset within prev, or at the start of next), and the flags of
1128 * this area are about to be changed to vm_flags - and the no-change
1129 * case has already been eliminated.
1130 *
1131 * The following mprotect cases have to be considered, where AAAA is
1132 * the area passed down from mprotect_fixup, never extending beyond one
1133 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1134 *
1135 * AAAA AAAA AAAA
1136 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN
1137 * cannot merge might become might become
1138 * PPNNNNNNNNNN PPPPPPPPPPNN
1139 * mmap, brk or case 4 below case 5 below
1140 * mremap move:
1141 * AAAA AAAA
1142 * PPPP NNNN PPPPNNNNXXXX
1143 * might become might become
1144 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
1145 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or
1146 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8
1147 *
1148 * It is important for case 8 that the vma NNNN overlapping the
1149 * region AAAA is never going to extended over XXXX. Instead XXXX must
1150 * be extended in region AAAA and NNNN must be removed. This way in
1151 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1152 * rmap_locks, the properties of the merged vma will be already
1153 * correct for the whole merged range. Some of those properties like
1154 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1155 * be correct for the whole merged range immediately after the
1156 * rmap_locks are released. Otherwise if XXXX would be removed and
1157 * NNNN would be extended over the XXXX range, remove_migration_ptes
1158 * or other rmap walkers (if working on addresses beyond the "end"
1159 * parameter) may establish ptes with the wrong permissions of NNNN
1160 * instead of the right permissions of XXXX.
1161 */
vma_merge(struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,const char * anon_name)1162 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1163 struct vm_area_struct *prev, unsigned long addr,
1164 unsigned long end, unsigned long vm_flags,
1165 struct anon_vma *anon_vma, struct file *file,
1166 pgoff_t pgoff, struct mempolicy *policy,
1167 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1168 const char *anon_name)
1169 {
1170 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1171 struct vm_area_struct *area, *next;
1172 int err;
1173
1174 /*
1175 * We later require that vma->vm_flags == vm_flags,
1176 * so this tests vma->vm_flags & VM_SPECIAL, too.
1177 */
1178 if (vm_flags & VM_SPECIAL)
1179 return NULL;
1180
1181 next = vma_next(mm, prev);
1182 area = next;
1183 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1184 next = next->vm_next;
1185
1186 /* verify some invariant that must be enforced by the caller */
1187 VM_WARN_ON(prev && addr <= prev->vm_start);
1188 VM_WARN_ON(area && end > area->vm_end);
1189 VM_WARN_ON(addr >= end);
1190
1191 /*
1192 * Can it merge with the predecessor?
1193 */
1194 if (prev && prev->vm_end == addr &&
1195 mpol_equal(vma_policy(prev), policy) &&
1196 can_vma_merge_after(prev, vm_flags,
1197 anon_vma, file, pgoff,
1198 vm_userfaultfd_ctx, anon_name)) {
1199 /*
1200 * OK, it can. Can we now merge in the successor as well?
1201 */
1202 if (next && end == next->vm_start &&
1203 mpol_equal(policy, vma_policy(next)) &&
1204 can_vma_merge_before(next, vm_flags,
1205 anon_vma, file,
1206 pgoff+pglen,
1207 vm_userfaultfd_ctx, anon_name) &&
1208 is_mergeable_anon_vma(prev->anon_vma,
1209 next->anon_vma, NULL)) {
1210 /* cases 1, 6 */
1211 err = __vma_adjust(prev, prev->vm_start,
1212 next->vm_end, prev->vm_pgoff, NULL,
1213 prev);
1214 } else /* cases 2, 5, 7 */
1215 err = __vma_adjust(prev, prev->vm_start,
1216 end, prev->vm_pgoff, NULL, prev);
1217 if (err)
1218 return NULL;
1219 khugepaged_enter_vma_merge(prev, vm_flags);
1220 return prev;
1221 }
1222
1223 /*
1224 * Can this new request be merged in front of next?
1225 */
1226 if (next && end == next->vm_start &&
1227 mpol_equal(policy, vma_policy(next)) &&
1228 can_vma_merge_before(next, vm_flags,
1229 anon_vma, file, pgoff+pglen,
1230 vm_userfaultfd_ctx, anon_name)) {
1231 if (prev && addr < prev->vm_end) /* case 4 */
1232 err = __vma_adjust(prev, prev->vm_start,
1233 addr, prev->vm_pgoff, NULL, next);
1234 else { /* cases 3, 8 */
1235 err = __vma_adjust(area, addr, next->vm_end,
1236 next->vm_pgoff - pglen, NULL, next);
1237 /*
1238 * In case 3 area is already equal to next and
1239 * this is a noop, but in case 8 "area" has
1240 * been removed and next was expanded over it.
1241 */
1242 area = next;
1243 }
1244 if (err)
1245 return NULL;
1246 khugepaged_enter_vma_merge(area, vm_flags);
1247 return area;
1248 }
1249
1250 return NULL;
1251 }
1252
1253 /*
1254 * Rough compatibility check to quickly see if it's even worth looking
1255 * at sharing an anon_vma.
1256 *
1257 * They need to have the same vm_file, and the flags can only differ
1258 * in things that mprotect may change.
1259 *
1260 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1261 * we can merge the two vma's. For example, we refuse to merge a vma if
1262 * there is a vm_ops->close() function, because that indicates that the
1263 * driver is doing some kind of reference counting. But that doesn't
1264 * really matter for the anon_vma sharing case.
1265 */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1266 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1267 {
1268 return a->vm_end == b->vm_start &&
1269 mpol_equal(vma_policy(a), vma_policy(b)) &&
1270 a->vm_file == b->vm_file &&
1271 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1272 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1273 }
1274
1275 /*
1276 * Do some basic sanity checking to see if we can re-use the anon_vma
1277 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1278 * the same as 'old', the other will be the new one that is trying
1279 * to share the anon_vma.
1280 *
1281 * NOTE! This runs with mm_sem held for reading, so it is possible that
1282 * the anon_vma of 'old' is concurrently in the process of being set up
1283 * by another page fault trying to merge _that_. But that's ok: if it
1284 * is being set up, that automatically means that it will be a singleton
1285 * acceptable for merging, so we can do all of this optimistically. But
1286 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1287 *
1288 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1289 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1290 * is to return an anon_vma that is "complex" due to having gone through
1291 * a fork).
1292 *
1293 * We also make sure that the two vma's are compatible (adjacent,
1294 * and with the same memory policies). That's all stable, even with just
1295 * a read lock on the mm_sem.
1296 */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1297 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1298 {
1299 if (anon_vma_compatible(a, b)) {
1300 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1301
1302 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1303 return anon_vma;
1304 }
1305 return NULL;
1306 }
1307
1308 /*
1309 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1310 * neighbouring vmas for a suitable anon_vma, before it goes off
1311 * to allocate a new anon_vma. It checks because a repetitive
1312 * sequence of mprotects and faults may otherwise lead to distinct
1313 * anon_vmas being allocated, preventing vma merge in subsequent
1314 * mprotect.
1315 */
find_mergeable_anon_vma(struct vm_area_struct * vma)1316 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1317 {
1318 struct anon_vma *anon_vma = NULL;
1319
1320 /* Try next first. */
1321 if (vma->vm_next) {
1322 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1323 if (anon_vma)
1324 return anon_vma;
1325 }
1326
1327 /* Try prev next. */
1328 if (vma->vm_prev)
1329 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1330
1331 /*
1332 * We might reach here with anon_vma == NULL if we can't find
1333 * any reusable anon_vma.
1334 * There's no absolute need to look only at touching neighbours:
1335 * we could search further afield for "compatible" anon_vmas.
1336 * But it would probably just be a waste of time searching,
1337 * or lead to too many vmas hanging off the same anon_vma.
1338 * We're trying to allow mprotect remerging later on,
1339 * not trying to minimize memory used for anon_vmas.
1340 */
1341 return anon_vma;
1342 }
1343
1344 /*
1345 * If a hint addr is less than mmap_min_addr change hint to be as
1346 * low as possible but still greater than mmap_min_addr
1347 */
round_hint_to_min(unsigned long hint)1348 static inline unsigned long round_hint_to_min(unsigned long hint)
1349 {
1350 hint &= PAGE_MASK;
1351 if (((void *)hint != NULL) &&
1352 (hint < mmap_min_addr))
1353 return PAGE_ALIGN(mmap_min_addr);
1354 return hint;
1355 }
1356
mlock_future_check(struct mm_struct * mm,unsigned long flags,unsigned long len)1357 static inline int mlock_future_check(struct mm_struct *mm,
1358 unsigned long flags,
1359 unsigned long len)
1360 {
1361 unsigned long locked, lock_limit;
1362
1363 /* mlock MCL_FUTURE? */
1364 if (flags & VM_LOCKED) {
1365 locked = len >> PAGE_SHIFT;
1366 locked += mm->locked_vm;
1367 lock_limit = rlimit(RLIMIT_MEMLOCK);
1368 lock_limit >>= PAGE_SHIFT;
1369 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1370 return -EAGAIN;
1371 }
1372 return 0;
1373 }
1374
file_mmap_size_max(struct file * file,struct inode * inode)1375 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1376 {
1377 if (S_ISREG(inode->i_mode))
1378 return MAX_LFS_FILESIZE;
1379
1380 if (S_ISBLK(inode->i_mode))
1381 return MAX_LFS_FILESIZE;
1382
1383 if (S_ISSOCK(inode->i_mode))
1384 return MAX_LFS_FILESIZE;
1385
1386 /* Special "we do even unsigned file positions" case */
1387 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1388 return 0;
1389
1390 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1391 return ULONG_MAX;
1392 }
1393
file_mmap_ok(struct file * file,struct inode * inode,unsigned long pgoff,unsigned long len)1394 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1395 unsigned long pgoff, unsigned long len)
1396 {
1397 u64 maxsize = file_mmap_size_max(file, inode);
1398
1399 if (maxsize && len > maxsize)
1400 return false;
1401 maxsize -= len;
1402 if (pgoff > maxsize >> PAGE_SHIFT)
1403 return false;
1404 return true;
1405 }
1406
1407 /*
1408 * The caller must write-lock current->mm->mmap_lock.
1409 */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1410 unsigned long do_mmap(struct file *file, unsigned long addr,
1411 unsigned long len, unsigned long prot,
1412 unsigned long flags, unsigned long pgoff,
1413 unsigned long *populate, struct list_head *uf)
1414 {
1415 struct mm_struct *mm = current->mm;
1416 vm_flags_t vm_flags;
1417 int pkey = 0;
1418
1419 *populate = 0;
1420
1421 if (!len)
1422 return -EINVAL;
1423
1424 /*
1425 * Does the application expect PROT_READ to imply PROT_EXEC?
1426 *
1427 * (the exception is when the underlying filesystem is noexec
1428 * mounted, in which case we dont add PROT_EXEC.)
1429 */
1430 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1431 if (!(file && path_noexec(&file->f_path)))
1432 prot |= PROT_EXEC;
1433
1434 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1435 if (flags & MAP_FIXED_NOREPLACE)
1436 flags |= MAP_FIXED;
1437
1438 if (!(flags & MAP_FIXED))
1439 addr = round_hint_to_min(addr);
1440
1441 /* Careful about overflows.. */
1442 len = PAGE_ALIGN(len);
1443 if (!len)
1444 return -ENOMEM;
1445
1446 /* offset overflow? */
1447 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1448 return -EOVERFLOW;
1449
1450 /* Too many mappings? */
1451 if (mm->map_count > sysctl_max_map_count)
1452 return -ENOMEM;
1453
1454 /* Obtain the address to map to. we verify (or select) it and ensure
1455 * that it represents a valid section of the address space.
1456 */
1457 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1458 if (IS_ERR_VALUE(addr))
1459 return addr;
1460
1461 if (flags & MAP_FIXED_NOREPLACE) {
1462 struct vm_area_struct *vma = find_vma(mm, addr);
1463
1464 if (vma && vma->vm_start < addr + len)
1465 return -EEXIST;
1466 }
1467
1468 if (prot == PROT_EXEC) {
1469 pkey = execute_only_pkey(mm);
1470 if (pkey < 0)
1471 pkey = 0;
1472 }
1473
1474 /* Do simple checking here so the lower-level routines won't have
1475 * to. we assume access permissions have been handled by the open
1476 * of the memory object, so we don't do any here.
1477 */
1478 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1479 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1480
1481 if (flags & MAP_LOCKED)
1482 if (!can_do_mlock())
1483 return -EPERM;
1484
1485 if (mlock_future_check(mm, vm_flags, len))
1486 return -EAGAIN;
1487
1488 if (file) {
1489 struct inode *inode = file_inode(file);
1490 unsigned long flags_mask;
1491
1492 if (!file_mmap_ok(file, inode, pgoff, len))
1493 return -EOVERFLOW;
1494
1495 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1496
1497 switch (flags & MAP_TYPE) {
1498 case MAP_SHARED:
1499 /*
1500 * Force use of MAP_SHARED_VALIDATE with non-legacy
1501 * flags. E.g. MAP_SYNC is dangerous to use with
1502 * MAP_SHARED as you don't know which consistency model
1503 * you will get. We silently ignore unsupported flags
1504 * with MAP_SHARED to preserve backward compatibility.
1505 */
1506 flags &= LEGACY_MAP_MASK;
1507 fallthrough;
1508 case MAP_SHARED_VALIDATE:
1509 if (flags & ~flags_mask)
1510 return -EOPNOTSUPP;
1511 if (prot & PROT_WRITE) {
1512 if (!(file->f_mode & FMODE_WRITE))
1513 return -EACCES;
1514 if (IS_SWAPFILE(file->f_mapping->host))
1515 return -ETXTBSY;
1516 }
1517
1518 /*
1519 * Make sure we don't allow writing to an append-only
1520 * file..
1521 */
1522 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1523 return -EACCES;
1524
1525 /*
1526 * Make sure there are no mandatory locks on the file.
1527 */
1528 if (locks_verify_locked(file))
1529 return -EAGAIN;
1530
1531 vm_flags |= VM_SHARED | VM_MAYSHARE;
1532 if (!(file->f_mode & FMODE_WRITE))
1533 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1534 fallthrough;
1535 case MAP_PRIVATE:
1536 if (!(file->f_mode & FMODE_READ))
1537 return -EACCES;
1538 if (path_noexec(&file->f_path)) {
1539 if (vm_flags & VM_EXEC)
1540 return -EPERM;
1541 vm_flags &= ~VM_MAYEXEC;
1542 }
1543
1544 if (!file->f_op->mmap)
1545 return -ENODEV;
1546 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1547 return -EINVAL;
1548 break;
1549
1550 default:
1551 return -EINVAL;
1552 }
1553 } else {
1554 switch (flags & MAP_TYPE) {
1555 case MAP_SHARED:
1556 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1557 return -EINVAL;
1558 /*
1559 * Ignore pgoff.
1560 */
1561 pgoff = 0;
1562 vm_flags |= VM_SHARED | VM_MAYSHARE;
1563 break;
1564 case MAP_PRIVATE:
1565 /*
1566 * Set pgoff according to addr for anon_vma.
1567 */
1568 pgoff = addr >> PAGE_SHIFT;
1569 break;
1570 default:
1571 return -EINVAL;
1572 }
1573 }
1574
1575 /*
1576 * Set 'VM_NORESERVE' if we should not account for the
1577 * memory use of this mapping.
1578 */
1579 if (flags & MAP_NORESERVE) {
1580 /* We honor MAP_NORESERVE if allowed to overcommit */
1581 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1582 vm_flags |= VM_NORESERVE;
1583
1584 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1585 if (file && is_file_hugepages(file))
1586 vm_flags |= VM_NORESERVE;
1587 }
1588
1589 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1590 if (!IS_ERR_VALUE(addr) &&
1591 ((vm_flags & VM_LOCKED) ||
1592 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1593 *populate = len;
1594 return addr;
1595 }
1596
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1597 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1598 unsigned long prot, unsigned long flags,
1599 unsigned long fd, unsigned long pgoff)
1600 {
1601 struct file *file = NULL;
1602 unsigned long retval;
1603
1604 if (!(flags & MAP_ANONYMOUS)) {
1605 audit_mmap_fd(fd, flags);
1606 file = fget(fd);
1607 if (!file)
1608 return -EBADF;
1609 if (is_file_hugepages(file)) {
1610 len = ALIGN(len, huge_page_size(hstate_file(file)));
1611 } else if (unlikely(flags & MAP_HUGETLB)) {
1612 retval = -EINVAL;
1613 goto out_fput;
1614 }
1615 } else if (flags & MAP_HUGETLB) {
1616 struct user_struct *user = NULL;
1617 struct hstate *hs;
1618
1619 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1620 if (!hs)
1621 return -EINVAL;
1622
1623 len = ALIGN(len, huge_page_size(hs));
1624 /*
1625 * VM_NORESERVE is used because the reservations will be
1626 * taken when vm_ops->mmap() is called
1627 * A dummy user value is used because we are not locking
1628 * memory so no accounting is necessary
1629 */
1630 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1631 VM_NORESERVE,
1632 &user, HUGETLB_ANONHUGE_INODE,
1633 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1634 if (IS_ERR(file))
1635 return PTR_ERR(file);
1636 }
1637
1638 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1639
1640 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1641 out_fput:
1642 if (file)
1643 fput(file);
1644 return retval;
1645 }
1646
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1647 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1648 unsigned long, prot, unsigned long, flags,
1649 unsigned long, fd, unsigned long, pgoff)
1650 {
1651 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1652 }
1653
1654 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1655 struct mmap_arg_struct {
1656 unsigned long addr;
1657 unsigned long len;
1658 unsigned long prot;
1659 unsigned long flags;
1660 unsigned long fd;
1661 unsigned long offset;
1662 };
1663
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1664 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1665 {
1666 struct mmap_arg_struct a;
1667
1668 if (copy_from_user(&a, arg, sizeof(a)))
1669 return -EFAULT;
1670 if (offset_in_page(a.offset))
1671 return -EINVAL;
1672
1673 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1674 a.offset >> PAGE_SHIFT);
1675 }
1676 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1677
1678 /*
1679 * Some shared mappings will want the pages marked read-only
1680 * to track write events. If so, we'll downgrade vm_page_prot
1681 * to the private version (using protection_map[] without the
1682 * VM_SHARED bit).
1683 */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)1684 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1685 {
1686 vm_flags_t vm_flags = vma->vm_flags;
1687 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1688
1689 /* If it was private or non-writable, the write bit is already clear */
1690 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1691 return 0;
1692
1693 /* The backer wishes to know when pages are first written to? */
1694 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1695 return 1;
1696
1697 /* The open routine did something to the protections that pgprot_modify
1698 * won't preserve? */
1699 if (pgprot_val(vm_page_prot) !=
1700 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1701 return 0;
1702
1703 /* Do we need to track softdirty? */
1704 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1705 return 1;
1706
1707 /* Specialty mapping? */
1708 if (vm_flags & VM_PFNMAP)
1709 return 0;
1710
1711 /* Can the mapping track the dirty pages? */
1712 return vma->vm_file && vma->vm_file->f_mapping &&
1713 mapping_can_writeback(vma->vm_file->f_mapping);
1714 }
1715
1716 /*
1717 * We account for memory if it's a private writeable mapping,
1718 * not hugepages and VM_NORESERVE wasn't set.
1719 */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1720 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1721 {
1722 /*
1723 * hugetlb has its own accounting separate from the core VM
1724 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1725 */
1726 if (file && is_file_hugepages(file))
1727 return 0;
1728
1729 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1730 }
1731
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)1732 unsigned long mmap_region(struct file *file, unsigned long addr,
1733 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1734 struct list_head *uf)
1735 {
1736 struct mm_struct *mm = current->mm;
1737 struct vm_area_struct *vma, *prev, *merge;
1738 int error;
1739 struct rb_node **rb_link, *rb_parent;
1740 unsigned long charged = 0;
1741
1742 /* Check against address space limit. */
1743 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1744 unsigned long nr_pages;
1745
1746 /*
1747 * MAP_FIXED may remove pages of mappings that intersects with
1748 * requested mapping. Account for the pages it would unmap.
1749 */
1750 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1751
1752 if (!may_expand_vm(mm, vm_flags,
1753 (len >> PAGE_SHIFT) - nr_pages))
1754 return -ENOMEM;
1755 }
1756
1757 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1758 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1759 return -ENOMEM;
1760 /*
1761 * Private writable mapping: check memory availability
1762 */
1763 if (accountable_mapping(file, vm_flags)) {
1764 charged = len >> PAGE_SHIFT;
1765 if (security_vm_enough_memory_mm(mm, charged))
1766 return -ENOMEM;
1767 vm_flags |= VM_ACCOUNT;
1768 }
1769
1770 /*
1771 * Can we just expand an old mapping?
1772 */
1773 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1774 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1775 if (vma)
1776 goto out;
1777
1778 /*
1779 * Determine the object being mapped and call the appropriate
1780 * specific mapper. the address has already been validated, but
1781 * not unmapped, but the maps are removed from the list.
1782 */
1783 vma = vm_area_alloc(mm);
1784 if (!vma) {
1785 error = -ENOMEM;
1786 goto unacct_error;
1787 }
1788
1789 vma->vm_start = addr;
1790 vma->vm_end = addr + len;
1791 vma->vm_flags = vm_flags;
1792 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1793 vma->vm_pgoff = pgoff;
1794
1795 if (file) {
1796 if (vm_flags & VM_DENYWRITE) {
1797 error = deny_write_access(file);
1798 if (error)
1799 goto free_vma;
1800 }
1801 if (vm_flags & VM_SHARED) {
1802 error = mapping_map_writable(file->f_mapping);
1803 if (error)
1804 goto allow_write_and_free_vma;
1805 }
1806
1807 /* ->mmap() can change vma->vm_file, but must guarantee that
1808 * vma_link() below can deny write-access if VM_DENYWRITE is set
1809 * and map writably if VM_SHARED is set. This usually means the
1810 * new file must not have been exposed to user-space, yet.
1811 */
1812 vma->vm_file = get_file(file);
1813 error = call_mmap(file, vma);
1814 if (error)
1815 goto unmap_and_free_vma;
1816
1817 /* Can addr have changed??
1818 *
1819 * Answer: Yes, several device drivers can do it in their
1820 * f_op->mmap method. -DaveM
1821 * Bug: If addr is changed, prev, rb_link, rb_parent should
1822 * be updated for vma_link()
1823 */
1824 WARN_ON_ONCE(addr != vma->vm_start);
1825
1826 addr = vma->vm_start;
1827
1828 /* If vm_flags changed after call_mmap(), we should try merge vma again
1829 * as we may succeed this time.
1830 */
1831 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1832 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1833 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1834 if (merge) {
1835 /* ->mmap() can change vma->vm_file and fput the original file. So
1836 * fput the vma->vm_file here or we would add an extra fput for file
1837 * and cause general protection fault ultimately.
1838 */
1839 fput(vma->vm_file);
1840 vm_area_free(vma);
1841 vma = merge;
1842 /* Update vm_flags to pick up the change. */
1843 vm_flags = vma->vm_flags;
1844 goto unmap_writable;
1845 }
1846 }
1847
1848 vm_flags = vma->vm_flags;
1849 } else if (vm_flags & VM_SHARED) {
1850 error = shmem_zero_setup(vma);
1851 if (error)
1852 goto free_vma;
1853 } else {
1854 vma_set_anonymous(vma);
1855 }
1856
1857 /* Allow architectures to sanity-check the vm_flags */
1858 if (!arch_validate_flags(vma->vm_flags)) {
1859 error = -EINVAL;
1860 if (file)
1861 goto unmap_and_free_vma;
1862 else
1863 goto free_vma;
1864 }
1865
1866 vma_link(mm, vma, prev, rb_link, rb_parent);
1867 /* Once vma denies write, undo our temporary denial count */
1868 if (file) {
1869 unmap_writable:
1870 if (vm_flags & VM_SHARED)
1871 mapping_unmap_writable(file->f_mapping);
1872 if (vm_flags & VM_DENYWRITE)
1873 allow_write_access(file);
1874 }
1875 file = vma->vm_file;
1876 out:
1877 perf_event_mmap(vma);
1878
1879 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1880 if (vm_flags & VM_LOCKED) {
1881 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1882 is_vm_hugetlb_page(vma) ||
1883 vma == get_gate_vma(current->mm))
1884 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1885 else
1886 mm->locked_vm += (len >> PAGE_SHIFT);
1887 }
1888
1889 if (file)
1890 uprobe_mmap(vma);
1891
1892 /*
1893 * New (or expanded) vma always get soft dirty status.
1894 * Otherwise user-space soft-dirty page tracker won't
1895 * be able to distinguish situation when vma area unmapped,
1896 * then new mapped in-place (which must be aimed as
1897 * a completely new data area).
1898 */
1899 vma->vm_flags |= VM_SOFTDIRTY;
1900
1901 vma_set_page_prot(vma);
1902
1903 return addr;
1904
1905 unmap_and_free_vma:
1906 vma->vm_file = NULL;
1907 fput(file);
1908
1909 /* Undo any partial mapping done by a device driver. */
1910 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1911 charged = 0;
1912 if (vm_flags & VM_SHARED)
1913 mapping_unmap_writable(file->f_mapping);
1914 allow_write_and_free_vma:
1915 if (vm_flags & VM_DENYWRITE)
1916 allow_write_access(file);
1917 free_vma:
1918 vm_area_free(vma);
1919 unacct_error:
1920 if (charged)
1921 vm_unacct_memory(charged);
1922 return error;
1923 }
1924
unmapped_area(struct vm_unmapped_area_info * info)1925 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1926 {
1927 /*
1928 * We implement the search by looking for an rbtree node that
1929 * immediately follows a suitable gap. That is,
1930 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1931 * - gap_end = vma->vm_start >= info->low_limit + length;
1932 * - gap_end - gap_start >= length
1933 */
1934
1935 struct mm_struct *mm = current->mm;
1936 struct vm_area_struct *vma;
1937 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1938
1939 /* Adjust search length to account for worst case alignment overhead */
1940 length = info->length + info->align_mask;
1941 if (length < info->length)
1942 return -ENOMEM;
1943
1944 /* Adjust search limits by the desired length */
1945 if (info->high_limit < length)
1946 return -ENOMEM;
1947 high_limit = info->high_limit - length;
1948
1949 if (info->low_limit > high_limit)
1950 return -ENOMEM;
1951 low_limit = info->low_limit + length;
1952
1953 /* Check if rbtree root looks promising */
1954 if (RB_EMPTY_ROOT(&mm->mm_rb))
1955 goto check_highest;
1956 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1957 if (vma->rb_subtree_gap < length)
1958 goto check_highest;
1959
1960 while (true) {
1961 /* Visit left subtree if it looks promising */
1962 gap_end = vm_start_gap(vma);
1963 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1964 struct vm_area_struct *left =
1965 rb_entry(vma->vm_rb.rb_left,
1966 struct vm_area_struct, vm_rb);
1967 if (left->rb_subtree_gap >= length) {
1968 vma = left;
1969 continue;
1970 }
1971 }
1972
1973 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1974 check_current:
1975 /* Check if current node has a suitable gap */
1976 if (gap_start > high_limit)
1977 return -ENOMEM;
1978 if (gap_end >= low_limit &&
1979 gap_end > gap_start && gap_end - gap_start >= length)
1980 goto found;
1981
1982 /* Visit right subtree if it looks promising */
1983 if (vma->vm_rb.rb_right) {
1984 struct vm_area_struct *right =
1985 rb_entry(vma->vm_rb.rb_right,
1986 struct vm_area_struct, vm_rb);
1987 if (right->rb_subtree_gap >= length) {
1988 vma = right;
1989 continue;
1990 }
1991 }
1992
1993 /* Go back up the rbtree to find next candidate node */
1994 while (true) {
1995 struct rb_node *prev = &vma->vm_rb;
1996 if (!rb_parent(prev))
1997 goto check_highest;
1998 vma = rb_entry(rb_parent(prev),
1999 struct vm_area_struct, vm_rb);
2000 if (prev == vma->vm_rb.rb_left) {
2001 gap_start = vm_end_gap(vma->vm_prev);
2002 gap_end = vm_start_gap(vma);
2003 goto check_current;
2004 }
2005 }
2006 }
2007
2008 check_highest:
2009 /* Check highest gap, which does not precede any rbtree node */
2010 gap_start = mm->highest_vm_end;
2011 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
2012 if (gap_start > high_limit)
2013 return -ENOMEM;
2014
2015 found:
2016 /* We found a suitable gap. Clip it with the original low_limit. */
2017 if (gap_start < info->low_limit)
2018 gap_start = info->low_limit;
2019
2020 /* Adjust gap address to the desired alignment */
2021 gap_start += (info->align_offset - gap_start) & info->align_mask;
2022
2023 VM_BUG_ON(gap_start + info->length > info->high_limit);
2024 VM_BUG_ON(gap_start + info->length > gap_end);
2025 return gap_start;
2026 }
2027
unmapped_area_topdown(struct vm_unmapped_area_info * info)2028 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2029 {
2030 struct mm_struct *mm = current->mm;
2031 struct vm_area_struct *vma;
2032 unsigned long length, low_limit, high_limit, gap_start, gap_end;
2033
2034 /* Adjust search length to account for worst case alignment overhead */
2035 length = info->length + info->align_mask;
2036 if (length < info->length)
2037 return -ENOMEM;
2038
2039 /*
2040 * Adjust search limits by the desired length.
2041 * See implementation comment at top of unmapped_area().
2042 */
2043 gap_end = info->high_limit;
2044 if (gap_end < length)
2045 return -ENOMEM;
2046 high_limit = gap_end - length;
2047
2048 if (info->low_limit > high_limit)
2049 return -ENOMEM;
2050 low_limit = info->low_limit + length;
2051
2052 /* Check highest gap, which does not precede any rbtree node */
2053 gap_start = mm->highest_vm_end;
2054 if (gap_start <= high_limit)
2055 goto found_highest;
2056
2057 /* Check if rbtree root looks promising */
2058 if (RB_EMPTY_ROOT(&mm->mm_rb))
2059 return -ENOMEM;
2060 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2061 if (vma->rb_subtree_gap < length)
2062 return -ENOMEM;
2063
2064 while (true) {
2065 /* Visit right subtree if it looks promising */
2066 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2067 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2068 struct vm_area_struct *right =
2069 rb_entry(vma->vm_rb.rb_right,
2070 struct vm_area_struct, vm_rb);
2071 if (right->rb_subtree_gap >= length) {
2072 vma = right;
2073 continue;
2074 }
2075 }
2076
2077 check_current:
2078 /* Check if current node has a suitable gap */
2079 gap_end = vm_start_gap(vma);
2080 if (gap_end < low_limit)
2081 return -ENOMEM;
2082 if (gap_start <= high_limit &&
2083 gap_end > gap_start && gap_end - gap_start >= length)
2084 goto found;
2085
2086 /* Visit left subtree if it looks promising */
2087 if (vma->vm_rb.rb_left) {
2088 struct vm_area_struct *left =
2089 rb_entry(vma->vm_rb.rb_left,
2090 struct vm_area_struct, vm_rb);
2091 if (left->rb_subtree_gap >= length) {
2092 vma = left;
2093 continue;
2094 }
2095 }
2096
2097 /* Go back up the rbtree to find next candidate node */
2098 while (true) {
2099 struct rb_node *prev = &vma->vm_rb;
2100 if (!rb_parent(prev))
2101 return -ENOMEM;
2102 vma = rb_entry(rb_parent(prev),
2103 struct vm_area_struct, vm_rb);
2104 if (prev == vma->vm_rb.rb_right) {
2105 gap_start = vma->vm_prev ?
2106 vm_end_gap(vma->vm_prev) : 0;
2107 goto check_current;
2108 }
2109 }
2110 }
2111
2112 found:
2113 /* We found a suitable gap. Clip it with the original high_limit. */
2114 if (gap_end > info->high_limit)
2115 gap_end = info->high_limit;
2116
2117 found_highest:
2118 /* Compute highest gap address at the desired alignment */
2119 gap_end -= info->length;
2120 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2121
2122 VM_BUG_ON(gap_end < info->low_limit);
2123 VM_BUG_ON(gap_end < gap_start);
2124 return gap_end;
2125 }
2126
2127 /*
2128 * Search for an unmapped address range.
2129 *
2130 * We are looking for a range that:
2131 * - does not intersect with any VMA;
2132 * - is contained within the [low_limit, high_limit) interval;
2133 * - is at least the desired size.
2134 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2135 */
vm_unmapped_area(struct vm_unmapped_area_info * info)2136 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2137 {
2138 unsigned long addr;
2139
2140 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2141 addr = unmapped_area_topdown(info);
2142 else
2143 addr = unmapped_area(info);
2144
2145 trace_vm_unmapped_area(addr, info);
2146 return addr;
2147 }
2148
2149 #ifndef arch_get_mmap_end
2150 #define arch_get_mmap_end(addr) (TASK_SIZE)
2151 #endif
2152
2153 #ifndef arch_get_mmap_base
2154 #define arch_get_mmap_base(addr, base) (base)
2155 #endif
2156
2157 /* Get an address range which is currently unmapped.
2158 * For shmat() with addr=0.
2159 *
2160 * Ugly calling convention alert:
2161 * Return value with the low bits set means error value,
2162 * ie
2163 * if (ret & ~PAGE_MASK)
2164 * error = ret;
2165 *
2166 * This function "knows" that -ENOMEM has the bits set.
2167 */
2168 #ifndef HAVE_ARCH_UNMAPPED_AREA
2169 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2170 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2171 unsigned long len, unsigned long pgoff, unsigned long flags)
2172 {
2173 struct mm_struct *mm = current->mm;
2174 struct vm_area_struct *vma, *prev;
2175 struct vm_unmapped_area_info info;
2176 const unsigned long mmap_end = arch_get_mmap_end(addr);
2177
2178 if (len > mmap_end - mmap_min_addr)
2179 return -ENOMEM;
2180
2181 if (flags & MAP_FIXED)
2182 return addr;
2183
2184 if (addr) {
2185 addr = PAGE_ALIGN(addr);
2186 vma = find_vma_prev(mm, addr, &prev);
2187 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2188 (!vma || addr + len <= vm_start_gap(vma)) &&
2189 (!prev || addr >= vm_end_gap(prev)))
2190 return addr;
2191 }
2192
2193 info.flags = 0;
2194 info.length = len;
2195 info.low_limit = mm->mmap_base;
2196 info.high_limit = mmap_end;
2197 info.align_mask = 0;
2198 info.align_offset = 0;
2199 return vm_unmapped_area(&info);
2200 }
2201 #endif
2202
2203 /*
2204 * This mmap-allocator allocates new areas top-down from below the
2205 * stack's low limit (the base):
2206 */
2207 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2208 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2209 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2210 unsigned long len, unsigned long pgoff,
2211 unsigned long flags)
2212 {
2213 struct vm_area_struct *vma, *prev;
2214 struct mm_struct *mm = current->mm;
2215 struct vm_unmapped_area_info info;
2216 const unsigned long mmap_end = arch_get_mmap_end(addr);
2217
2218 /* requested length too big for entire address space */
2219 if (len > mmap_end - mmap_min_addr)
2220 return -ENOMEM;
2221
2222 if (flags & MAP_FIXED)
2223 return addr;
2224
2225 /* requesting a specific address */
2226 if (addr) {
2227 addr = PAGE_ALIGN(addr);
2228 vma = find_vma_prev(mm, addr, &prev);
2229 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2230 (!vma || addr + len <= vm_start_gap(vma)) &&
2231 (!prev || addr >= vm_end_gap(prev)))
2232 return addr;
2233 }
2234
2235 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2236 info.length = len;
2237 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2238 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2239 info.align_mask = 0;
2240 info.align_offset = 0;
2241 addr = vm_unmapped_area(&info);
2242
2243 /*
2244 * A failed mmap() very likely causes application failure,
2245 * so fall back to the bottom-up function here. This scenario
2246 * can happen with large stack limits and large mmap()
2247 * allocations.
2248 */
2249 if (offset_in_page(addr)) {
2250 VM_BUG_ON(addr != -ENOMEM);
2251 info.flags = 0;
2252 info.low_limit = TASK_UNMAPPED_BASE;
2253 info.high_limit = mmap_end;
2254 addr = vm_unmapped_area(&info);
2255 }
2256
2257 return addr;
2258 }
2259 #endif
2260
2261 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2262 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2263 unsigned long pgoff, unsigned long flags)
2264 {
2265 unsigned long (*get_area)(struct file *, unsigned long,
2266 unsigned long, unsigned long, unsigned long);
2267
2268 unsigned long error = arch_mmap_check(addr, len, flags);
2269 if (error)
2270 return error;
2271
2272 /* Careful about overflows.. */
2273 if (len > TASK_SIZE)
2274 return -ENOMEM;
2275
2276 get_area = current->mm->get_unmapped_area;
2277 if (file) {
2278 if (file->f_op->get_unmapped_area)
2279 get_area = file->f_op->get_unmapped_area;
2280 } else if (flags & MAP_SHARED) {
2281 /*
2282 * mmap_region() will call shmem_zero_setup() to create a file,
2283 * so use shmem's get_unmapped_area in case it can be huge.
2284 * do_mmap() will clear pgoff, so match alignment.
2285 */
2286 pgoff = 0;
2287 get_area = shmem_get_unmapped_area;
2288 }
2289
2290 addr = get_area(file, addr, len, pgoff, flags);
2291 if (IS_ERR_VALUE(addr))
2292 return addr;
2293
2294 if (addr > TASK_SIZE - len)
2295 return -ENOMEM;
2296 if (offset_in_page(addr))
2297 return -EINVAL;
2298
2299 error = security_mmap_addr(addr);
2300 return error ? error : addr;
2301 }
2302
2303 EXPORT_SYMBOL(get_unmapped_area);
2304
2305 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
find_vma(struct mm_struct * mm,unsigned long addr)2306 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2307 {
2308 struct rb_node *rb_node;
2309 struct vm_area_struct *vma;
2310
2311 /* Check the cache first. */
2312 vma = vmacache_find(mm, addr);
2313 if (likely(vma))
2314 return vma;
2315
2316 rb_node = mm->mm_rb.rb_node;
2317
2318 while (rb_node) {
2319 struct vm_area_struct *tmp;
2320
2321 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2322
2323 if (tmp->vm_end > addr) {
2324 vma = tmp;
2325 if (tmp->vm_start <= addr)
2326 break;
2327 rb_node = rb_node->rb_left;
2328 } else
2329 rb_node = rb_node->rb_right;
2330 }
2331
2332 if (vma)
2333 vmacache_update(addr, vma);
2334 return vma;
2335 }
2336
2337 EXPORT_SYMBOL(find_vma);
2338
2339 /*
2340 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2341 */
2342 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)2343 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2344 struct vm_area_struct **pprev)
2345 {
2346 struct vm_area_struct *vma;
2347
2348 vma = find_vma(mm, addr);
2349 if (vma) {
2350 *pprev = vma->vm_prev;
2351 } else {
2352 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2353
2354 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2355 }
2356 return vma;
2357 }
2358
2359 /*
2360 * Verify that the stack growth is acceptable and
2361 * update accounting. This is shared with both the
2362 * grow-up and grow-down cases.
2363 */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)2364 static int acct_stack_growth(struct vm_area_struct *vma,
2365 unsigned long size, unsigned long grow)
2366 {
2367 struct mm_struct *mm = vma->vm_mm;
2368 unsigned long new_start;
2369
2370 /* address space limit tests */
2371 if (!may_expand_vm(mm, vma->vm_flags, grow))
2372 return -ENOMEM;
2373
2374 /* Stack limit test */
2375 if (size > rlimit(RLIMIT_STACK))
2376 return -ENOMEM;
2377
2378 /* mlock limit tests */
2379 if (vma->vm_flags & VM_LOCKED) {
2380 unsigned long locked;
2381 unsigned long limit;
2382 locked = mm->locked_vm + grow;
2383 limit = rlimit(RLIMIT_MEMLOCK);
2384 limit >>= PAGE_SHIFT;
2385 if (locked > limit && !capable(CAP_IPC_LOCK))
2386 return -ENOMEM;
2387 }
2388
2389 /* Check to ensure the stack will not grow into a hugetlb-only region */
2390 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2391 vma->vm_end - size;
2392 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2393 return -EFAULT;
2394
2395 /*
2396 * Overcommit.. This must be the final test, as it will
2397 * update security statistics.
2398 */
2399 if (security_vm_enough_memory_mm(mm, grow))
2400 return -ENOMEM;
2401
2402 return 0;
2403 }
2404
2405 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2406 /*
2407 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2408 * vma is the last one with address > vma->vm_end. Have to extend vma.
2409 */
expand_upwards(struct vm_area_struct * vma,unsigned long address)2410 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2411 {
2412 struct mm_struct *mm = vma->vm_mm;
2413 struct vm_area_struct *next;
2414 unsigned long gap_addr;
2415 int error = 0;
2416
2417 if (!(vma->vm_flags & VM_GROWSUP))
2418 return -EFAULT;
2419
2420 /* Guard against exceeding limits of the address space. */
2421 address &= PAGE_MASK;
2422 if (address >= (TASK_SIZE & PAGE_MASK))
2423 return -ENOMEM;
2424 address += PAGE_SIZE;
2425
2426 /* Enforce stack_guard_gap */
2427 gap_addr = address + stack_guard_gap;
2428
2429 /* Guard against overflow */
2430 if (gap_addr < address || gap_addr > TASK_SIZE)
2431 gap_addr = TASK_SIZE;
2432
2433 next = vma->vm_next;
2434 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2435 if (!(next->vm_flags & VM_GROWSUP))
2436 return -ENOMEM;
2437 /* Check that both stack segments have the same anon_vma? */
2438 }
2439
2440 /* We must make sure the anon_vma is allocated. */
2441 if (unlikely(anon_vma_prepare(vma)))
2442 return -ENOMEM;
2443
2444 /*
2445 * vma->vm_start/vm_end cannot change under us because the caller
2446 * is required to hold the mmap_lock in read mode. We need the
2447 * anon_vma lock to serialize against concurrent expand_stacks.
2448 */
2449 anon_vma_lock_write(vma->anon_vma);
2450
2451 /* Somebody else might have raced and expanded it already */
2452 if (address > vma->vm_end) {
2453 unsigned long size, grow;
2454
2455 size = address - vma->vm_start;
2456 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2457
2458 error = -ENOMEM;
2459 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2460 error = acct_stack_growth(vma, size, grow);
2461 if (!error) {
2462 /*
2463 * vma_gap_update() doesn't support concurrent
2464 * updates, but we only hold a shared mmap_lock
2465 * lock here, so we need to protect against
2466 * concurrent vma expansions.
2467 * anon_vma_lock_write() doesn't help here, as
2468 * we don't guarantee that all growable vmas
2469 * in a mm share the same root anon vma.
2470 * So, we reuse mm->page_table_lock to guard
2471 * against concurrent vma expansions.
2472 */
2473 spin_lock(&mm->page_table_lock);
2474 if (vma->vm_flags & VM_LOCKED)
2475 mm->locked_vm += grow;
2476 vm_stat_account(mm, vma->vm_flags, grow);
2477 anon_vma_interval_tree_pre_update_vma(vma);
2478 vma->vm_end = address;
2479 anon_vma_interval_tree_post_update_vma(vma);
2480 if (vma->vm_next)
2481 vma_gap_update(vma->vm_next);
2482 else
2483 mm->highest_vm_end = vm_end_gap(vma);
2484 spin_unlock(&mm->page_table_lock);
2485
2486 perf_event_mmap(vma);
2487 }
2488 }
2489 }
2490 anon_vma_unlock_write(vma->anon_vma);
2491 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2492 validate_mm(mm);
2493 return error;
2494 }
2495 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2496
2497 /*
2498 * vma is the first one with address < vma->vm_start. Have to extend vma.
2499 */
expand_downwards(struct vm_area_struct * vma,unsigned long address)2500 int expand_downwards(struct vm_area_struct *vma,
2501 unsigned long address)
2502 {
2503 struct mm_struct *mm = vma->vm_mm;
2504 struct vm_area_struct *prev;
2505 int error = 0;
2506
2507 address &= PAGE_MASK;
2508 if (address < mmap_min_addr)
2509 return -EPERM;
2510
2511 /* Enforce stack_guard_gap */
2512 prev = vma->vm_prev;
2513 /* Check that both stack segments have the same anon_vma? */
2514 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2515 vma_is_accessible(prev)) {
2516 if (address - prev->vm_end < stack_guard_gap)
2517 return -ENOMEM;
2518 }
2519
2520 /* We must make sure the anon_vma is allocated. */
2521 if (unlikely(anon_vma_prepare(vma)))
2522 return -ENOMEM;
2523
2524 /*
2525 * vma->vm_start/vm_end cannot change under us because the caller
2526 * is required to hold the mmap_lock in read mode. We need the
2527 * anon_vma lock to serialize against concurrent expand_stacks.
2528 */
2529 anon_vma_lock_write(vma->anon_vma);
2530
2531 /* Somebody else might have raced and expanded it already */
2532 if (address < vma->vm_start) {
2533 unsigned long size, grow;
2534
2535 size = vma->vm_end - address;
2536 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2537
2538 error = -ENOMEM;
2539 if (grow <= vma->vm_pgoff) {
2540 error = acct_stack_growth(vma, size, grow);
2541 if (!error) {
2542 /*
2543 * vma_gap_update() doesn't support concurrent
2544 * updates, but we only hold a shared mmap_lock
2545 * lock here, so we need to protect against
2546 * concurrent vma expansions.
2547 * anon_vma_lock_write() doesn't help here, as
2548 * we don't guarantee that all growable vmas
2549 * in a mm share the same root anon vma.
2550 * So, we reuse mm->page_table_lock to guard
2551 * against concurrent vma expansions.
2552 */
2553 spin_lock(&mm->page_table_lock);
2554 if (vma->vm_flags & VM_LOCKED)
2555 mm->locked_vm += grow;
2556 vm_stat_account(mm, vma->vm_flags, grow);
2557 anon_vma_interval_tree_pre_update_vma(vma);
2558 vma->vm_start = address;
2559 vma->vm_pgoff -= grow;
2560 anon_vma_interval_tree_post_update_vma(vma);
2561 vma_gap_update(vma);
2562 spin_unlock(&mm->page_table_lock);
2563
2564 perf_event_mmap(vma);
2565 }
2566 }
2567 }
2568 anon_vma_unlock_write(vma->anon_vma);
2569 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2570 validate_mm(mm);
2571 return error;
2572 }
2573
2574 /* enforced gap between the expanding stack and other mappings. */
2575 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2576
cmdline_parse_stack_guard_gap(char * p)2577 static int __init cmdline_parse_stack_guard_gap(char *p)
2578 {
2579 unsigned long val;
2580 char *endptr;
2581
2582 val = simple_strtoul(p, &endptr, 10);
2583 if (!*endptr)
2584 stack_guard_gap = val << PAGE_SHIFT;
2585
2586 return 0;
2587 }
2588 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2589
2590 #ifdef CONFIG_STACK_GROWSUP
expand_stack(struct vm_area_struct * vma,unsigned long address)2591 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2592 {
2593 return expand_upwards(vma, address);
2594 }
2595
2596 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2597 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2598 {
2599 struct vm_area_struct *vma, *prev;
2600
2601 addr &= PAGE_MASK;
2602 vma = find_vma_prev(mm, addr, &prev);
2603 if (vma && (vma->vm_start <= addr))
2604 return vma;
2605 /* don't alter vm_end if the coredump is running */
2606 if (!prev || expand_stack(prev, addr))
2607 return NULL;
2608 if (prev->vm_flags & VM_LOCKED)
2609 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2610 return prev;
2611 }
2612 #else
expand_stack(struct vm_area_struct * vma,unsigned long address)2613 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2614 {
2615 return expand_downwards(vma, address);
2616 }
2617
2618 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2619 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2620 {
2621 struct vm_area_struct *vma;
2622 unsigned long start;
2623
2624 addr &= PAGE_MASK;
2625 vma = find_vma(mm, addr);
2626 if (!vma)
2627 return NULL;
2628 if (vma->vm_start <= addr)
2629 return vma;
2630 if (!(vma->vm_flags & VM_GROWSDOWN))
2631 return NULL;
2632 start = vma->vm_start;
2633 if (expand_stack(vma, addr))
2634 return NULL;
2635 if (vma->vm_flags & VM_LOCKED)
2636 populate_vma_page_range(vma, addr, start, NULL);
2637 return vma;
2638 }
2639 #endif
2640
2641 EXPORT_SYMBOL_GPL(find_extend_vma);
2642
2643 /*
2644 * Ok - we have the memory areas we should free on the vma list,
2645 * so release them, and do the vma updates.
2646 *
2647 * Called with the mm semaphore held.
2648 */
remove_vma_list(struct mm_struct * mm,struct vm_area_struct * vma)2649 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2650 {
2651 unsigned long nr_accounted = 0;
2652
2653 /* Update high watermark before we lower total_vm */
2654 update_hiwater_vm(mm);
2655 do {
2656 long nrpages = vma_pages(vma);
2657
2658 if (vma->vm_flags & VM_ACCOUNT)
2659 nr_accounted += nrpages;
2660 vm_stat_account(mm, vma->vm_flags, -nrpages);
2661 vma = remove_vma(vma);
2662 } while (vma);
2663 vm_unacct_memory(nr_accounted);
2664 validate_mm(mm);
2665 }
2666
2667 /*
2668 * Get rid of page table information in the indicated region.
2669 *
2670 * Called with the mm semaphore held.
2671 */
unmap_region(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long start,unsigned long end)2672 static void unmap_region(struct mm_struct *mm,
2673 struct vm_area_struct *vma, struct vm_area_struct *prev,
2674 unsigned long start, unsigned long end)
2675 {
2676 struct vm_area_struct *next = vma_next(mm, prev);
2677 struct mmu_gather tlb;
2678
2679 lru_add_drain();
2680 tlb_gather_mmu(&tlb, mm, start, end);
2681 update_hiwater_rss(mm);
2682 unmap_vmas(&tlb, vma, start, end);
2683
2684 /*
2685 * Ensure we have no stale TLB entries by the time this mapping is
2686 * removed from the rmap.
2687 * Note that we don't have to worry about nested flushes here because
2688 * we're holding the mm semaphore for removing the mapping - so any
2689 * concurrent flush in this region has to be coming through the rmap,
2690 * and we synchronize against that using the rmap lock.
2691 */
2692 if ((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) != 0)
2693 tlb_flush_mmu(&tlb);
2694
2695 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2696 next ? next->vm_start : USER_PGTABLES_CEILING);
2697 tlb_finish_mmu(&tlb, start, end);
2698 }
2699
2700 /*
2701 * Create a list of vma's touched by the unmap, removing them from the mm's
2702 * vma list as we go..
2703 */
2704 static bool
detach_vmas_to_be_unmapped(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long end)2705 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2706 struct vm_area_struct *prev, unsigned long end)
2707 {
2708 struct vm_area_struct **insertion_point;
2709 struct vm_area_struct *tail_vma = NULL;
2710
2711 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2712 vma->vm_prev = NULL;
2713 do {
2714 vma_rb_erase(vma, &mm->mm_rb);
2715 mm->map_count--;
2716 tail_vma = vma;
2717 vma = vma->vm_next;
2718 } while (vma && vma->vm_start < end);
2719 *insertion_point = vma;
2720 if (vma) {
2721 vma->vm_prev = prev;
2722 vma_gap_update(vma);
2723 } else
2724 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2725 tail_vma->vm_next = NULL;
2726
2727 /* Kill the cache */
2728 vmacache_invalidate(mm);
2729
2730 /*
2731 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2732 * VM_GROWSUP VMA. Such VMAs can change their size under
2733 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2734 */
2735 if (vma && (vma->vm_flags & VM_GROWSDOWN))
2736 return false;
2737 if (prev && (prev->vm_flags & VM_GROWSUP))
2738 return false;
2739 return true;
2740 }
2741
2742 /*
2743 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2744 * has already been checked or doesn't make sense to fail.
2745 */
__split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2746 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2747 unsigned long addr, int new_below)
2748 {
2749 struct vm_area_struct *new;
2750 int err;
2751
2752 if (vma->vm_ops && vma->vm_ops->split) {
2753 err = vma->vm_ops->split(vma, addr);
2754 if (err)
2755 return err;
2756 }
2757
2758 new = vm_area_dup(vma);
2759 if (!new)
2760 return -ENOMEM;
2761
2762 if (new_below)
2763 new->vm_end = addr;
2764 else {
2765 new->vm_start = addr;
2766 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2767 }
2768
2769 err = vma_dup_policy(vma, new);
2770 if (err)
2771 goto out_free_vma;
2772
2773 err = anon_vma_clone(new, vma);
2774 if (err)
2775 goto out_free_mpol;
2776
2777 if (new->vm_file)
2778 get_file(new->vm_file);
2779
2780 if (new->vm_ops && new->vm_ops->open)
2781 new->vm_ops->open(new);
2782
2783 if (new_below)
2784 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2785 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2786 else
2787 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2788
2789 /* Success. */
2790 if (!err)
2791 return 0;
2792
2793 /* Clean everything up if vma_adjust failed. */
2794 if (new->vm_ops && new->vm_ops->close)
2795 new->vm_ops->close(new);
2796 if (new->vm_file)
2797 fput(new->vm_file);
2798 unlink_anon_vmas(new);
2799 out_free_mpol:
2800 mpol_put(vma_policy(new));
2801 out_free_vma:
2802 vm_area_free(new);
2803 return err;
2804 }
2805
2806 /*
2807 * Split a vma into two pieces at address 'addr', a new vma is allocated
2808 * either for the first part or the tail.
2809 */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2810 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2811 unsigned long addr, int new_below)
2812 {
2813 if (mm->map_count >= sysctl_max_map_count)
2814 return -ENOMEM;
2815
2816 return __split_vma(mm, vma, addr, new_below);
2817 }
2818
2819 /* Munmap is split into 2 main parts -- this part which finds
2820 * what needs doing, and the areas themselves, which do the
2821 * work. This now handles partial unmappings.
2822 * Jeremy Fitzhardinge <jeremy@goop.org>
2823 */
__do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf,bool downgrade)2824 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2825 struct list_head *uf, bool downgrade)
2826 {
2827 unsigned long end;
2828 struct vm_area_struct *vma, *prev, *last;
2829
2830 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2831 return -EINVAL;
2832
2833 len = PAGE_ALIGN(len);
2834 end = start + len;
2835 if (len == 0)
2836 return -EINVAL;
2837
2838 /*
2839 * arch_unmap() might do unmaps itself. It must be called
2840 * and finish any rbtree manipulation before this code
2841 * runs and also starts to manipulate the rbtree.
2842 */
2843 arch_unmap(mm, start, end);
2844
2845 /* Find the first overlapping VMA */
2846 vma = find_vma(mm, start);
2847 if (!vma)
2848 return 0;
2849 prev = vma->vm_prev;
2850 /* we have start < vma->vm_end */
2851
2852 /* if it doesn't overlap, we have nothing.. */
2853 if (vma->vm_start >= end)
2854 return 0;
2855
2856 /*
2857 * If we need to split any vma, do it now to save pain later.
2858 *
2859 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2860 * unmapped vm_area_struct will remain in use: so lower split_vma
2861 * places tmp vma above, and higher split_vma places tmp vma below.
2862 */
2863 if (start > vma->vm_start) {
2864 int error;
2865
2866 /*
2867 * Make sure that map_count on return from munmap() will
2868 * not exceed its limit; but let map_count go just above
2869 * its limit temporarily, to help free resources as expected.
2870 */
2871 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2872 return -ENOMEM;
2873
2874 error = __split_vma(mm, vma, start, 0);
2875 if (error)
2876 return error;
2877 prev = vma;
2878 }
2879
2880 /* Does it split the last one? */
2881 last = find_vma(mm, end);
2882 if (last && end > last->vm_start) {
2883 int error = __split_vma(mm, last, end, 1);
2884 if (error)
2885 return error;
2886 }
2887 vma = vma_next(mm, prev);
2888
2889 if (unlikely(uf)) {
2890 /*
2891 * If userfaultfd_unmap_prep returns an error the vmas
2892 * will remain splitted, but userland will get a
2893 * highly unexpected error anyway. This is no
2894 * different than the case where the first of the two
2895 * __split_vma fails, but we don't undo the first
2896 * split, despite we could. This is unlikely enough
2897 * failure that it's not worth optimizing it for.
2898 */
2899 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2900 if (error)
2901 return error;
2902 }
2903
2904 /*
2905 * unlock any mlock()ed ranges before detaching vmas
2906 */
2907 if (mm->locked_vm) {
2908 struct vm_area_struct *tmp = vma;
2909 while (tmp && tmp->vm_start < end) {
2910 if (tmp->vm_flags & VM_LOCKED) {
2911 mm->locked_vm -= vma_pages(tmp);
2912 munlock_vma_pages_all(tmp);
2913 }
2914
2915 tmp = tmp->vm_next;
2916 }
2917 }
2918
2919 /* Detach vmas from rbtree */
2920 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2921 downgrade = false;
2922
2923 if (downgrade)
2924 mmap_write_downgrade(mm);
2925
2926 unmap_region(mm, vma, prev, start, end);
2927
2928 /* Fix up all other VM information */
2929 remove_vma_list(mm, vma);
2930
2931 return downgrade ? 1 : 0;
2932 }
2933
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)2934 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2935 struct list_head *uf)
2936 {
2937 return __do_munmap(mm, start, len, uf, false);
2938 }
2939
__vm_munmap(unsigned long start,size_t len,bool downgrade)2940 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2941 {
2942 int ret;
2943 struct mm_struct *mm = current->mm;
2944 LIST_HEAD(uf);
2945
2946 if (mmap_write_lock_killable(mm))
2947 return -EINTR;
2948
2949 ret = __do_munmap(mm, start, len, &uf, downgrade);
2950 /*
2951 * Returning 1 indicates mmap_lock is downgraded.
2952 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2953 * it to 0 before return.
2954 */
2955 if (ret == 1) {
2956 mmap_read_unlock(mm);
2957 ret = 0;
2958 } else
2959 mmap_write_unlock(mm);
2960
2961 userfaultfd_unmap_complete(mm, &uf);
2962 return ret;
2963 }
2964
vm_munmap(unsigned long start,size_t len)2965 int vm_munmap(unsigned long start, size_t len)
2966 {
2967 return __vm_munmap(start, len, false);
2968 }
2969 EXPORT_SYMBOL(vm_munmap);
2970
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)2971 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2972 {
2973 addr = untagged_addr(addr);
2974 profile_munmap(addr);
2975 return __vm_munmap(addr, len, true);
2976 }
2977
2978
2979 /*
2980 * Emulation of deprecated remap_file_pages() syscall.
2981 */
SYSCALL_DEFINE5(remap_file_pages,unsigned long,start,unsigned long,size,unsigned long,prot,unsigned long,pgoff,unsigned long,flags)2982 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2983 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2984 {
2985
2986 struct mm_struct *mm = current->mm;
2987 struct vm_area_struct *vma;
2988 unsigned long populate = 0;
2989 unsigned long ret = -EINVAL;
2990 struct file *file;
2991
2992 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2993 current->comm, current->pid);
2994
2995 if (prot)
2996 return ret;
2997 start = start & PAGE_MASK;
2998 size = size & PAGE_MASK;
2999
3000 if (start + size <= start)
3001 return ret;
3002
3003 /* Does pgoff wrap? */
3004 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3005 return ret;
3006
3007 if (mmap_write_lock_killable(mm))
3008 return -EINTR;
3009
3010 vma = find_vma(mm, start);
3011
3012 if (!vma || !(vma->vm_flags & VM_SHARED))
3013 goto out;
3014
3015 if (start < vma->vm_start)
3016 goto out;
3017
3018 if (start + size > vma->vm_end) {
3019 struct vm_area_struct *next;
3020
3021 for (next = vma->vm_next; next; next = next->vm_next) {
3022 /* hole between vmas ? */
3023 if (next->vm_start != next->vm_prev->vm_end)
3024 goto out;
3025
3026 if (next->vm_file != vma->vm_file)
3027 goto out;
3028
3029 if (next->vm_flags != vma->vm_flags)
3030 goto out;
3031
3032 if (start + size <= next->vm_end)
3033 break;
3034 }
3035
3036 if (!next)
3037 goto out;
3038 }
3039
3040 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3041 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3042 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3043
3044 flags &= MAP_NONBLOCK;
3045 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3046 if (vma->vm_flags & VM_LOCKED) {
3047 struct vm_area_struct *tmp;
3048 flags |= MAP_LOCKED;
3049
3050 /* drop PG_Mlocked flag for over-mapped range */
3051 for (tmp = vma; tmp->vm_start >= start + size;
3052 tmp = tmp->vm_next) {
3053 /*
3054 * Split pmd and munlock page on the border
3055 * of the range.
3056 */
3057 vma_adjust_trans_huge(tmp, start, start + size, 0);
3058
3059 munlock_vma_pages_range(tmp,
3060 max(tmp->vm_start, start),
3061 min(tmp->vm_end, start + size));
3062 }
3063 }
3064
3065 file = get_file(vma->vm_file);
3066 ret = do_mmap(vma->vm_file, start, size,
3067 prot, flags, pgoff, &populate, NULL);
3068 fput(file);
3069 out:
3070 mmap_write_unlock(mm);
3071 if (populate)
3072 mm_populate(ret, populate);
3073 if (!IS_ERR_VALUE(ret))
3074 ret = 0;
3075 return ret;
3076 }
3077
3078 /*
3079 * this is really a simplified "do_mmap". it only handles
3080 * anonymous maps. eventually we may be able to do some
3081 * brk-specific accounting here.
3082 */
do_brk_flags(unsigned long addr,unsigned long len,unsigned long flags,struct list_head * uf)3083 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3084 {
3085 struct mm_struct *mm = current->mm;
3086 struct vm_area_struct *vma, *prev;
3087 struct rb_node **rb_link, *rb_parent;
3088 pgoff_t pgoff = addr >> PAGE_SHIFT;
3089 int error;
3090 unsigned long mapped_addr;
3091
3092 /* Until we need other flags, refuse anything except VM_EXEC. */
3093 if ((flags & (~VM_EXEC)) != 0)
3094 return -EINVAL;
3095 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3096
3097 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3098 if (IS_ERR_VALUE(mapped_addr))
3099 return mapped_addr;
3100
3101 error = mlock_future_check(mm, mm->def_flags, len);
3102 if (error)
3103 return error;
3104
3105 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3106 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3107 return -ENOMEM;
3108
3109 /* Check against address space limits *after* clearing old maps... */
3110 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3111 return -ENOMEM;
3112
3113 if (mm->map_count > sysctl_max_map_count)
3114 return -ENOMEM;
3115
3116 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3117 return -ENOMEM;
3118
3119 /* Can we just expand an old private anonymous mapping? */
3120 vma = vma_merge(mm, prev, addr, addr + len, flags,
3121 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
3122 if (vma)
3123 goto out;
3124
3125 /*
3126 * create a vma struct for an anonymous mapping
3127 */
3128 vma = vm_area_alloc(mm);
3129 if (!vma) {
3130 vm_unacct_memory(len >> PAGE_SHIFT);
3131 return -ENOMEM;
3132 }
3133
3134 vma_set_anonymous(vma);
3135 vma->vm_start = addr;
3136 vma->vm_end = addr + len;
3137 vma->vm_pgoff = pgoff;
3138 vma->vm_flags = flags;
3139 vma->vm_page_prot = vm_get_page_prot(flags);
3140 vma_link(mm, vma, prev, rb_link, rb_parent);
3141 out:
3142 perf_event_mmap(vma);
3143 mm->total_vm += len >> PAGE_SHIFT;
3144 mm->data_vm += len >> PAGE_SHIFT;
3145 if (flags & VM_LOCKED)
3146 mm->locked_vm += (len >> PAGE_SHIFT);
3147 vma->vm_flags |= VM_SOFTDIRTY;
3148 return 0;
3149 }
3150
vm_brk_flags(unsigned long addr,unsigned long request,unsigned long flags)3151 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3152 {
3153 struct mm_struct *mm = current->mm;
3154 unsigned long len;
3155 int ret;
3156 bool populate;
3157 LIST_HEAD(uf);
3158
3159 len = PAGE_ALIGN(request);
3160 if (len < request)
3161 return -ENOMEM;
3162 if (!len)
3163 return 0;
3164
3165 if (mmap_write_lock_killable(mm))
3166 return -EINTR;
3167
3168 ret = do_brk_flags(addr, len, flags, &uf);
3169 populate = ((mm->def_flags & VM_LOCKED) != 0);
3170 mmap_write_unlock(mm);
3171 userfaultfd_unmap_complete(mm, &uf);
3172 if (populate && !ret)
3173 mm_populate(addr, len);
3174 return ret;
3175 }
3176 EXPORT_SYMBOL(vm_brk_flags);
3177
vm_brk(unsigned long addr,unsigned long len)3178 int vm_brk(unsigned long addr, unsigned long len)
3179 {
3180 return vm_brk_flags(addr, len, 0);
3181 }
3182 EXPORT_SYMBOL(vm_brk);
3183
3184 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)3185 void exit_mmap(struct mm_struct *mm)
3186 {
3187 struct mmu_gather tlb;
3188 struct vm_area_struct *vma;
3189 unsigned long nr_accounted = 0;
3190
3191 /* mm's last user has gone, and its about to be pulled down */
3192 mmu_notifier_release(mm);
3193
3194 if (unlikely(mm_is_oom_victim(mm))) {
3195 /*
3196 * Manually reap the mm to free as much memory as possible.
3197 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3198 * this mm from further consideration. Taking mm->mmap_lock for
3199 * write after setting MMF_OOM_SKIP will guarantee that the oom
3200 * reaper will not run on this mm again after mmap_lock is
3201 * dropped.
3202 *
3203 * Nothing can be holding mm->mmap_lock here and the above call
3204 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3205 * __oom_reap_task_mm() will not block.
3206 *
3207 * This needs to be done before calling munlock_vma_pages_all(),
3208 * which clears VM_LOCKED, otherwise the oom reaper cannot
3209 * reliably test it.
3210 */
3211 (void)__oom_reap_task_mm(mm);
3212
3213 set_bit(MMF_OOM_SKIP, &mm->flags);
3214 mmap_write_lock(mm);
3215 mmap_write_unlock(mm);
3216 }
3217
3218 if (mm->locked_vm) {
3219 vma = mm->mmap;
3220 while (vma) {
3221 if (vma->vm_flags & VM_LOCKED)
3222 munlock_vma_pages_all(vma);
3223 vma = vma->vm_next;
3224 }
3225 }
3226
3227 arch_exit_mmap(mm);
3228
3229 vma = mm->mmap;
3230 if (!vma) /* Can happen if dup_mmap() received an OOM */
3231 return;
3232
3233 lru_add_drain();
3234 flush_cache_mm(mm);
3235 tlb_gather_mmu(&tlb, mm, 0, -1);
3236 /* update_hiwater_rss(mm) here? but nobody should be looking */
3237 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3238 unmap_vmas(&tlb, vma, 0, -1);
3239 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3240 tlb_finish_mmu(&tlb, 0, -1);
3241
3242 /*
3243 * Walk the list again, actually closing and freeing it,
3244 * with preemption enabled, without holding any MM locks.
3245 */
3246 while (vma) {
3247 if (vma->vm_flags & VM_ACCOUNT)
3248 nr_accounted += vma_pages(vma);
3249 vma = remove_vma(vma);
3250 cond_resched();
3251 }
3252 vm_unacct_memory(nr_accounted);
3253 }
3254
3255 /* Insert vm structure into process list sorted by address
3256 * and into the inode's i_mmap tree. If vm_file is non-NULL
3257 * then i_mmap_rwsem is taken here.
3258 */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)3259 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3260 {
3261 struct vm_area_struct *prev;
3262 struct rb_node **rb_link, *rb_parent;
3263
3264 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3265 &prev, &rb_link, &rb_parent))
3266 return -ENOMEM;
3267 if ((vma->vm_flags & VM_ACCOUNT) &&
3268 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3269 return -ENOMEM;
3270
3271 /*
3272 * The vm_pgoff of a purely anonymous vma should be irrelevant
3273 * until its first write fault, when page's anon_vma and index
3274 * are set. But now set the vm_pgoff it will almost certainly
3275 * end up with (unless mremap moves it elsewhere before that
3276 * first wfault), so /proc/pid/maps tells a consistent story.
3277 *
3278 * By setting it to reflect the virtual start address of the
3279 * vma, merges and splits can happen in a seamless way, just
3280 * using the existing file pgoff checks and manipulations.
3281 * Similarly in do_mmap and in do_brk_flags.
3282 */
3283 if (vma_is_anonymous(vma)) {
3284 BUG_ON(vma->anon_vma);
3285 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3286 }
3287
3288 vma_link(mm, vma, prev, rb_link, rb_parent);
3289 return 0;
3290 }
3291
3292 /*
3293 * Copy the vma structure to a new location in the same mm,
3294 * prior to moving page table entries, to effect an mremap move.
3295 */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)3296 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3297 unsigned long addr, unsigned long len, pgoff_t pgoff,
3298 bool *need_rmap_locks)
3299 {
3300 struct vm_area_struct *vma = *vmap;
3301 unsigned long vma_start = vma->vm_start;
3302 struct mm_struct *mm = vma->vm_mm;
3303 struct vm_area_struct *new_vma, *prev;
3304 struct rb_node **rb_link, *rb_parent;
3305 bool faulted_in_anon_vma = true;
3306
3307 /*
3308 * If anonymous vma has not yet been faulted, update new pgoff
3309 * to match new location, to increase its chance of merging.
3310 */
3311 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3312 pgoff = addr >> PAGE_SHIFT;
3313 faulted_in_anon_vma = false;
3314 }
3315
3316 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3317 return NULL; /* should never get here */
3318 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3319 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3320 vma->vm_userfaultfd_ctx, vma_anon_name(vma));
3321 if (new_vma) {
3322 /*
3323 * Source vma may have been merged into new_vma
3324 */
3325 if (unlikely(vma_start >= new_vma->vm_start &&
3326 vma_start < new_vma->vm_end)) {
3327 /*
3328 * The only way we can get a vma_merge with
3329 * self during an mremap is if the vma hasn't
3330 * been faulted in yet and we were allowed to
3331 * reset the dst vma->vm_pgoff to the
3332 * destination address of the mremap to allow
3333 * the merge to happen. mremap must change the
3334 * vm_pgoff linearity between src and dst vmas
3335 * (in turn preventing a vma_merge) to be
3336 * safe. It is only safe to keep the vm_pgoff
3337 * linear if there are no pages mapped yet.
3338 */
3339 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3340 *vmap = vma = new_vma;
3341 }
3342 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3343 } else {
3344 new_vma = vm_area_dup(vma);
3345 if (!new_vma)
3346 goto out;
3347 new_vma->vm_start = addr;
3348 new_vma->vm_end = addr + len;
3349 new_vma->vm_pgoff = pgoff;
3350 if (vma_dup_policy(vma, new_vma))
3351 goto out_free_vma;
3352 if (anon_vma_clone(new_vma, vma))
3353 goto out_free_mempol;
3354 if (new_vma->vm_file)
3355 get_file(new_vma->vm_file);
3356 if (new_vma->vm_ops && new_vma->vm_ops->open)
3357 new_vma->vm_ops->open(new_vma);
3358 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3359 *need_rmap_locks = false;
3360 }
3361 return new_vma;
3362
3363 out_free_mempol:
3364 mpol_put(vma_policy(new_vma));
3365 out_free_vma:
3366 vm_area_free(new_vma);
3367 out:
3368 return NULL;
3369 }
3370
3371 /*
3372 * Return true if the calling process may expand its vm space by the passed
3373 * number of pages
3374 */
may_expand_vm(struct mm_struct * mm,vm_flags_t flags,unsigned long npages)3375 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3376 {
3377 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3378 return false;
3379
3380 if (is_data_mapping(flags) &&
3381 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3382 /* Workaround for Valgrind */
3383 if (rlimit(RLIMIT_DATA) == 0 &&
3384 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3385 return true;
3386
3387 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3388 current->comm, current->pid,
3389 (mm->data_vm + npages) << PAGE_SHIFT,
3390 rlimit(RLIMIT_DATA),
3391 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3392
3393 if (!ignore_rlimit_data)
3394 return false;
3395 }
3396
3397 return true;
3398 }
3399
vm_stat_account(struct mm_struct * mm,vm_flags_t flags,long npages)3400 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3401 {
3402 mm->total_vm += npages;
3403
3404 if (is_exec_mapping(flags))
3405 mm->exec_vm += npages;
3406 else if (is_stack_mapping(flags))
3407 mm->stack_vm += npages;
3408 else if (is_data_mapping(flags))
3409 mm->data_vm += npages;
3410 }
3411
3412 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3413
3414 /*
3415 * Having a close hook prevents vma merging regardless of flags.
3416 */
special_mapping_close(struct vm_area_struct * vma)3417 static void special_mapping_close(struct vm_area_struct *vma)
3418 {
3419 }
3420
special_mapping_name(struct vm_area_struct * vma)3421 static const char *special_mapping_name(struct vm_area_struct *vma)
3422 {
3423 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3424 }
3425
special_mapping_mremap(struct vm_area_struct * new_vma)3426 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3427 {
3428 struct vm_special_mapping *sm = new_vma->vm_private_data;
3429
3430 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3431 return -EFAULT;
3432
3433 if (sm->mremap)
3434 return sm->mremap(sm, new_vma);
3435
3436 return 0;
3437 }
3438
3439 static const struct vm_operations_struct special_mapping_vmops = {
3440 .close = special_mapping_close,
3441 .fault = special_mapping_fault,
3442 .mremap = special_mapping_mremap,
3443 .name = special_mapping_name,
3444 /* vDSO code relies that VVAR can't be accessed remotely */
3445 .access = NULL,
3446 };
3447
3448 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3449 .close = special_mapping_close,
3450 .fault = special_mapping_fault,
3451 };
3452
special_mapping_fault(struct vm_fault * vmf)3453 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3454 {
3455 struct vm_area_struct *vma = vmf->vma;
3456 pgoff_t pgoff;
3457 struct page **pages;
3458
3459 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3460 pages = vma->vm_private_data;
3461 } else {
3462 struct vm_special_mapping *sm = vma->vm_private_data;
3463
3464 if (sm->fault)
3465 return sm->fault(sm, vmf->vma, vmf);
3466
3467 pages = sm->pages;
3468 }
3469
3470 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3471 pgoff--;
3472
3473 if (*pages) {
3474 struct page *page = *pages;
3475 get_page(page);
3476 vmf->page = page;
3477 return 0;
3478 }
3479
3480 return VM_FAULT_SIGBUS;
3481 }
3482
__install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,void * priv,const struct vm_operations_struct * ops)3483 static struct vm_area_struct *__install_special_mapping(
3484 struct mm_struct *mm,
3485 unsigned long addr, unsigned long len,
3486 unsigned long vm_flags, void *priv,
3487 const struct vm_operations_struct *ops)
3488 {
3489 int ret;
3490 struct vm_area_struct *vma;
3491
3492 vma = vm_area_alloc(mm);
3493 if (unlikely(vma == NULL))
3494 return ERR_PTR(-ENOMEM);
3495
3496 vma->vm_start = addr;
3497 vma->vm_end = addr + len;
3498
3499 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3500 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3501
3502 vma->vm_ops = ops;
3503 vma->vm_private_data = priv;
3504
3505 ret = insert_vm_struct(mm, vma);
3506 if (ret)
3507 goto out;
3508
3509 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3510
3511 perf_event_mmap(vma);
3512
3513 return vma;
3514
3515 out:
3516 vm_area_free(vma);
3517 return ERR_PTR(ret);
3518 }
3519
vma_is_special_mapping(const struct vm_area_struct * vma,const struct vm_special_mapping * sm)3520 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3521 const struct vm_special_mapping *sm)
3522 {
3523 return vma->vm_private_data == sm &&
3524 (vma->vm_ops == &special_mapping_vmops ||
3525 vma->vm_ops == &legacy_special_mapping_vmops);
3526 }
3527
3528 /*
3529 * Called with mm->mmap_lock held for writing.
3530 * Insert a new vma covering the given region, with the given flags.
3531 * Its pages are supplied by the given array of struct page *.
3532 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3533 * The region past the last page supplied will always produce SIGBUS.
3534 * The array pointer and the pages it points to are assumed to stay alive
3535 * for as long as this mapping might exist.
3536 */
_install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_special_mapping * spec)3537 struct vm_area_struct *_install_special_mapping(
3538 struct mm_struct *mm,
3539 unsigned long addr, unsigned long len,
3540 unsigned long vm_flags, const struct vm_special_mapping *spec)
3541 {
3542 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3543 &special_mapping_vmops);
3544 }
3545
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)3546 int install_special_mapping(struct mm_struct *mm,
3547 unsigned long addr, unsigned long len,
3548 unsigned long vm_flags, struct page **pages)
3549 {
3550 struct vm_area_struct *vma = __install_special_mapping(
3551 mm, addr, len, vm_flags, (void *)pages,
3552 &legacy_special_mapping_vmops);
3553
3554 return PTR_ERR_OR_ZERO(vma);
3555 }
3556
3557 static DEFINE_MUTEX(mm_all_locks_mutex);
3558
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)3559 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3560 {
3561 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3562 /*
3563 * The LSB of head.next can't change from under us
3564 * because we hold the mm_all_locks_mutex.
3565 */
3566 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3567 /*
3568 * We can safely modify head.next after taking the
3569 * anon_vma->root->rwsem. If some other vma in this mm shares
3570 * the same anon_vma we won't take it again.
3571 *
3572 * No need of atomic instructions here, head.next
3573 * can't change from under us thanks to the
3574 * anon_vma->root->rwsem.
3575 */
3576 if (__test_and_set_bit(0, (unsigned long *)
3577 &anon_vma->root->rb_root.rb_root.rb_node))
3578 BUG();
3579 }
3580 }
3581
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)3582 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3583 {
3584 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3585 /*
3586 * AS_MM_ALL_LOCKS can't change from under us because
3587 * we hold the mm_all_locks_mutex.
3588 *
3589 * Operations on ->flags have to be atomic because
3590 * even if AS_MM_ALL_LOCKS is stable thanks to the
3591 * mm_all_locks_mutex, there may be other cpus
3592 * changing other bitflags in parallel to us.
3593 */
3594 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3595 BUG();
3596 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3597 }
3598 }
3599
3600 /*
3601 * This operation locks against the VM for all pte/vma/mm related
3602 * operations that could ever happen on a certain mm. This includes
3603 * vmtruncate, try_to_unmap, and all page faults.
3604 *
3605 * The caller must take the mmap_lock in write mode before calling
3606 * mm_take_all_locks(). The caller isn't allowed to release the
3607 * mmap_lock until mm_drop_all_locks() returns.
3608 *
3609 * mmap_lock in write mode is required in order to block all operations
3610 * that could modify pagetables and free pages without need of
3611 * altering the vma layout. It's also needed in write mode to avoid new
3612 * anon_vmas to be associated with existing vmas.
3613 *
3614 * A single task can't take more than one mm_take_all_locks() in a row
3615 * or it would deadlock.
3616 *
3617 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3618 * mapping->flags avoid to take the same lock twice, if more than one
3619 * vma in this mm is backed by the same anon_vma or address_space.
3620 *
3621 * We take locks in following order, accordingly to comment at beginning
3622 * of mm/rmap.c:
3623 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3624 * hugetlb mapping);
3625 * - all i_mmap_rwsem locks;
3626 * - all anon_vma->rwseml
3627 *
3628 * We can take all locks within these types randomly because the VM code
3629 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3630 * mm_all_locks_mutex.
3631 *
3632 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3633 * that may have to take thousand of locks.
3634 *
3635 * mm_take_all_locks() can fail if it's interrupted by signals.
3636 */
mm_take_all_locks(struct mm_struct * mm)3637 int mm_take_all_locks(struct mm_struct *mm)
3638 {
3639 struct vm_area_struct *vma;
3640 struct anon_vma_chain *avc;
3641
3642 BUG_ON(mmap_read_trylock(mm));
3643
3644 mutex_lock(&mm_all_locks_mutex);
3645
3646 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3647 if (signal_pending(current))
3648 goto out_unlock;
3649 if (vma->vm_file && vma->vm_file->f_mapping &&
3650 is_vm_hugetlb_page(vma))
3651 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3652 }
3653
3654 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3655 if (signal_pending(current))
3656 goto out_unlock;
3657 if (vma->vm_file && vma->vm_file->f_mapping &&
3658 !is_vm_hugetlb_page(vma))
3659 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3660 }
3661
3662 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3663 if (signal_pending(current))
3664 goto out_unlock;
3665 if (vma->anon_vma)
3666 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3667 vm_lock_anon_vma(mm, avc->anon_vma);
3668 }
3669
3670 return 0;
3671
3672 out_unlock:
3673 mm_drop_all_locks(mm);
3674 return -EINTR;
3675 }
3676
vm_unlock_anon_vma(struct anon_vma * anon_vma)3677 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3678 {
3679 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3680 /*
3681 * The LSB of head.next can't change to 0 from under
3682 * us because we hold the mm_all_locks_mutex.
3683 *
3684 * We must however clear the bitflag before unlocking
3685 * the vma so the users using the anon_vma->rb_root will
3686 * never see our bitflag.
3687 *
3688 * No need of atomic instructions here, head.next
3689 * can't change from under us until we release the
3690 * anon_vma->root->rwsem.
3691 */
3692 if (!__test_and_clear_bit(0, (unsigned long *)
3693 &anon_vma->root->rb_root.rb_root.rb_node))
3694 BUG();
3695 anon_vma_unlock_write(anon_vma);
3696 }
3697 }
3698
vm_unlock_mapping(struct address_space * mapping)3699 static void vm_unlock_mapping(struct address_space *mapping)
3700 {
3701 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3702 /*
3703 * AS_MM_ALL_LOCKS can't change to 0 from under us
3704 * because we hold the mm_all_locks_mutex.
3705 */
3706 i_mmap_unlock_write(mapping);
3707 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3708 &mapping->flags))
3709 BUG();
3710 }
3711 }
3712
3713 /*
3714 * The mmap_lock cannot be released by the caller until
3715 * mm_drop_all_locks() returns.
3716 */
mm_drop_all_locks(struct mm_struct * mm)3717 void mm_drop_all_locks(struct mm_struct *mm)
3718 {
3719 struct vm_area_struct *vma;
3720 struct anon_vma_chain *avc;
3721
3722 BUG_ON(mmap_read_trylock(mm));
3723 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3724
3725 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3726 if (vma->anon_vma)
3727 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3728 vm_unlock_anon_vma(avc->anon_vma);
3729 if (vma->vm_file && vma->vm_file->f_mapping)
3730 vm_unlock_mapping(vma->vm_file->f_mapping);
3731 }
3732
3733 mutex_unlock(&mm_all_locks_mutex);
3734 }
3735
3736 /*
3737 * initialise the percpu counter for VM
3738 */
mmap_init(void)3739 void __init mmap_init(void)
3740 {
3741 int ret;
3742
3743 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3744 VM_BUG_ON(ret);
3745 }
3746
3747 /*
3748 * Initialise sysctl_user_reserve_kbytes.
3749 *
3750 * This is intended to prevent a user from starting a single memory hogging
3751 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3752 * mode.
3753 *
3754 * The default value is min(3% of free memory, 128MB)
3755 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3756 */
init_user_reserve(void)3757 static int init_user_reserve(void)
3758 {
3759 unsigned long free_kbytes;
3760
3761 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3762
3763 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3764 return 0;
3765 }
3766 subsys_initcall(init_user_reserve);
3767
3768 /*
3769 * Initialise sysctl_admin_reserve_kbytes.
3770 *
3771 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3772 * to log in and kill a memory hogging process.
3773 *
3774 * Systems with more than 256MB will reserve 8MB, enough to recover
3775 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3776 * only reserve 3% of free pages by default.
3777 */
init_admin_reserve(void)3778 static int init_admin_reserve(void)
3779 {
3780 unsigned long free_kbytes;
3781
3782 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3783
3784 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3785 return 0;
3786 }
3787 subsys_initcall(init_admin_reserve);
3788
3789 /*
3790 * Reinititalise user and admin reserves if memory is added or removed.
3791 *
3792 * The default user reserve max is 128MB, and the default max for the
3793 * admin reserve is 8MB. These are usually, but not always, enough to
3794 * enable recovery from a memory hogging process using login/sshd, a shell,
3795 * and tools like top. It may make sense to increase or even disable the
3796 * reserve depending on the existence of swap or variations in the recovery
3797 * tools. So, the admin may have changed them.
3798 *
3799 * If memory is added and the reserves have been eliminated or increased above
3800 * the default max, then we'll trust the admin.
3801 *
3802 * If memory is removed and there isn't enough free memory, then we
3803 * need to reset the reserves.
3804 *
3805 * Otherwise keep the reserve set by the admin.
3806 */
reserve_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)3807 static int reserve_mem_notifier(struct notifier_block *nb,
3808 unsigned long action, void *data)
3809 {
3810 unsigned long tmp, free_kbytes;
3811
3812 switch (action) {
3813 case MEM_ONLINE:
3814 /* Default max is 128MB. Leave alone if modified by operator. */
3815 tmp = sysctl_user_reserve_kbytes;
3816 if (0 < tmp && tmp < (1UL << 17))
3817 init_user_reserve();
3818
3819 /* Default max is 8MB. Leave alone if modified by operator. */
3820 tmp = sysctl_admin_reserve_kbytes;
3821 if (0 < tmp && tmp < (1UL << 13))
3822 init_admin_reserve();
3823
3824 break;
3825 case MEM_OFFLINE:
3826 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3827
3828 if (sysctl_user_reserve_kbytes > free_kbytes) {
3829 init_user_reserve();
3830 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3831 sysctl_user_reserve_kbytes);
3832 }
3833
3834 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3835 init_admin_reserve();
3836 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3837 sysctl_admin_reserve_kbytes);
3838 }
3839 break;
3840 default:
3841 break;
3842 }
3843 return NOTIFY_OK;
3844 }
3845
3846 static struct notifier_block reserve_mem_nb = {
3847 .notifier_call = reserve_mem_notifier,
3848 };
3849
init_reserve_notifier(void)3850 static int __meminit init_reserve_notifier(void)
3851 {
3852 if (register_hotmemory_notifier(&reserve_mem_nb))
3853 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3854
3855 return 0;
3856 }
3857 subsys_initcall(init_reserve_notifier);
3858