• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * mm/percpu-vm.c - vmalloc area based chunk allocation
4   *
5   * Copyright (C) 2010		SUSE Linux Products GmbH
6   * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
7   *
8   * Chunks are mapped into vmalloc areas and populated page by page.
9   * This is the default chunk allocator.
10   */
11  
pcpu_chunk_page(struct pcpu_chunk * chunk,unsigned int cpu,int page_idx)12  static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
13  				    unsigned int cpu, int page_idx)
14  {
15  	/* must not be used on pre-mapped chunk */
16  	WARN_ON(chunk->immutable);
17  
18  	return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
19  }
20  
21  /**
22   * pcpu_get_pages - get temp pages array
23   *
24   * Returns pointer to array of pointers to struct page which can be indexed
25   * with pcpu_page_idx().  Note that there is only one array and accesses
26   * should be serialized by pcpu_alloc_mutex.
27   *
28   * RETURNS:
29   * Pointer to temp pages array on success.
30   */
pcpu_get_pages(void)31  static struct page **pcpu_get_pages(void)
32  {
33  	static struct page **pages;
34  	size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
35  
36  	lockdep_assert_held(&pcpu_alloc_mutex);
37  
38  	if (!pages)
39  		pages = pcpu_mem_zalloc(pages_size, GFP_KERNEL);
40  	return pages;
41  }
42  
43  /**
44   * pcpu_free_pages - free pages which were allocated for @chunk
45   * @chunk: chunk pages were allocated for
46   * @pages: array of pages to be freed, indexed by pcpu_page_idx()
47   * @page_start: page index of the first page to be freed
48   * @page_end: page index of the last page to be freed + 1
49   *
50   * Free pages [@page_start and @page_end) in @pages for all units.
51   * The pages were allocated for @chunk.
52   */
pcpu_free_pages(struct pcpu_chunk * chunk,struct page ** pages,int page_start,int page_end)53  static void pcpu_free_pages(struct pcpu_chunk *chunk,
54  			    struct page **pages, int page_start, int page_end)
55  {
56  	unsigned int cpu;
57  	int i;
58  
59  	for_each_possible_cpu(cpu) {
60  		for (i = page_start; i < page_end; i++) {
61  			struct page *page = pages[pcpu_page_idx(cpu, i)];
62  
63  			if (page)
64  				__free_page(page);
65  		}
66  	}
67  }
68  
69  /**
70   * pcpu_alloc_pages - allocates pages for @chunk
71   * @chunk: target chunk
72   * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
73   * @page_start: page index of the first page to be allocated
74   * @page_end: page index of the last page to be allocated + 1
75   * @gfp: allocation flags passed to the underlying allocator
76   *
77   * Allocate pages [@page_start,@page_end) into @pages for all units.
78   * The allocation is for @chunk.  Percpu core doesn't care about the
79   * content of @pages and will pass it verbatim to pcpu_map_pages().
80   */
pcpu_alloc_pages(struct pcpu_chunk * chunk,struct page ** pages,int page_start,int page_end,gfp_t gfp)81  static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
82  			    struct page **pages, int page_start, int page_end,
83  			    gfp_t gfp)
84  {
85  	unsigned int cpu, tcpu;
86  	int i;
87  
88  	gfp |= __GFP_HIGHMEM;
89  
90  	for_each_possible_cpu(cpu) {
91  		for (i = page_start; i < page_end; i++) {
92  			struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
93  
94  			*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
95  			if (!*pagep)
96  				goto err;
97  		}
98  	}
99  	return 0;
100  
101  err:
102  	while (--i >= page_start)
103  		__free_page(pages[pcpu_page_idx(cpu, i)]);
104  
105  	for_each_possible_cpu(tcpu) {
106  		if (tcpu == cpu)
107  			break;
108  		for (i = page_start; i < page_end; i++)
109  			__free_page(pages[pcpu_page_idx(tcpu, i)]);
110  	}
111  	return -ENOMEM;
112  }
113  
114  /**
115   * pcpu_pre_unmap_flush - flush cache prior to unmapping
116   * @chunk: chunk the regions to be flushed belongs to
117   * @page_start: page index of the first page to be flushed
118   * @page_end: page index of the last page to be flushed + 1
119   *
120   * Pages in [@page_start,@page_end) of @chunk are about to be
121   * unmapped.  Flush cache.  As each flushing trial can be very
122   * expensive, issue flush on the whole region at once rather than
123   * doing it for each cpu.  This could be an overkill but is more
124   * scalable.
125   */
pcpu_pre_unmap_flush(struct pcpu_chunk * chunk,int page_start,int page_end)126  static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
127  				 int page_start, int page_end)
128  {
129  	flush_cache_vunmap(
130  		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
131  		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
132  }
133  
__pcpu_unmap_pages(unsigned long addr,int nr_pages)134  static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
135  {
136  	unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
137  }
138  
139  /**
140   * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
141   * @chunk: chunk of interest
142   * @pages: pages array which can be used to pass information to free
143   * @page_start: page index of the first page to unmap
144   * @page_end: page index of the last page to unmap + 1
145   *
146   * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
147   * Corresponding elements in @pages were cleared by the caller and can
148   * be used to carry information to pcpu_free_pages() which will be
149   * called after all unmaps are finished.  The caller should call
150   * proper pre/post flush functions.
151   */
pcpu_unmap_pages(struct pcpu_chunk * chunk,struct page ** pages,int page_start,int page_end)152  static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
153  			     struct page **pages, int page_start, int page_end)
154  {
155  	unsigned int cpu;
156  	int i;
157  
158  	for_each_possible_cpu(cpu) {
159  		for (i = page_start; i < page_end; i++) {
160  			struct page *page;
161  
162  			page = pcpu_chunk_page(chunk, cpu, i);
163  			WARN_ON(!page);
164  			pages[pcpu_page_idx(cpu, i)] = page;
165  		}
166  		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
167  				   page_end - page_start);
168  	}
169  }
170  
171  /**
172   * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
173   * @chunk: pcpu_chunk the regions to be flushed belong to
174   * @page_start: page index of the first page to be flushed
175   * @page_end: page index of the last page to be flushed + 1
176   *
177   * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
178   * TLB for the regions.  This can be skipped if the area is to be
179   * returned to vmalloc as vmalloc will handle TLB flushing lazily.
180   *
181   * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
182   * for the whole region.
183   */
pcpu_post_unmap_tlb_flush(struct pcpu_chunk * chunk,int page_start,int page_end)184  static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
185  				      int page_start, int page_end)
186  {
187  	flush_tlb_kernel_range(
188  		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
189  		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
190  }
191  
__pcpu_map_pages(unsigned long addr,struct page ** pages,int nr_pages)192  static int __pcpu_map_pages(unsigned long addr, struct page **pages,
193  			    int nr_pages)
194  {
195  	return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
196  					PAGE_KERNEL, pages);
197  }
198  
199  /**
200   * pcpu_map_pages - map pages into a pcpu_chunk
201   * @chunk: chunk of interest
202   * @pages: pages array containing pages to be mapped
203   * @page_start: page index of the first page to map
204   * @page_end: page index of the last page to map + 1
205   *
206   * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
207   * caller is responsible for calling pcpu_post_map_flush() after all
208   * mappings are complete.
209   *
210   * This function is responsible for setting up whatever is necessary for
211   * reverse lookup (addr -> chunk).
212   */
pcpu_map_pages(struct pcpu_chunk * chunk,struct page ** pages,int page_start,int page_end)213  static int pcpu_map_pages(struct pcpu_chunk *chunk,
214  			  struct page **pages, int page_start, int page_end)
215  {
216  	unsigned int cpu, tcpu;
217  	int i, err;
218  
219  	for_each_possible_cpu(cpu) {
220  		err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
221  				       &pages[pcpu_page_idx(cpu, page_start)],
222  				       page_end - page_start);
223  		if (err < 0)
224  			goto err;
225  
226  		for (i = page_start; i < page_end; i++)
227  			pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
228  					    chunk);
229  	}
230  	return 0;
231  err:
232  	for_each_possible_cpu(tcpu) {
233  		if (tcpu == cpu)
234  			break;
235  		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
236  				   page_end - page_start);
237  	}
238  	pcpu_post_unmap_tlb_flush(chunk, page_start, page_end);
239  	return err;
240  }
241  
242  /**
243   * pcpu_post_map_flush - flush cache after mapping
244   * @chunk: pcpu_chunk the regions to be flushed belong to
245   * @page_start: page index of the first page to be flushed
246   * @page_end: page index of the last page to be flushed + 1
247   *
248   * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
249   * cache.
250   *
251   * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
252   * for the whole region.
253   */
pcpu_post_map_flush(struct pcpu_chunk * chunk,int page_start,int page_end)254  static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
255  				int page_start, int page_end)
256  {
257  	flush_cache_vmap(
258  		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
259  		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
260  }
261  
262  /**
263   * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
264   * @chunk: chunk of interest
265   * @page_start: the start page
266   * @page_end: the end page
267   * @gfp: allocation flags passed to the underlying memory allocator
268   *
269   * For each cpu, populate and map pages [@page_start,@page_end) into
270   * @chunk.
271   *
272   * CONTEXT:
273   * pcpu_alloc_mutex, does GFP_KERNEL allocation.
274   */
pcpu_populate_chunk(struct pcpu_chunk * chunk,int page_start,int page_end,gfp_t gfp)275  static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
276  			       int page_start, int page_end, gfp_t gfp)
277  {
278  	struct page **pages;
279  
280  	pages = pcpu_get_pages();
281  	if (!pages)
282  		return -ENOMEM;
283  
284  	if (pcpu_alloc_pages(chunk, pages, page_start, page_end, gfp))
285  		return -ENOMEM;
286  
287  	if (pcpu_map_pages(chunk, pages, page_start, page_end)) {
288  		pcpu_free_pages(chunk, pages, page_start, page_end);
289  		return -ENOMEM;
290  	}
291  	pcpu_post_map_flush(chunk, page_start, page_end);
292  
293  	return 0;
294  }
295  
296  /**
297   * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
298   * @chunk: chunk to depopulate
299   * @page_start: the start page
300   * @page_end: the end page
301   *
302   * For each cpu, depopulate and unmap pages [@page_start,@page_end)
303   * from @chunk.
304   *
305   * CONTEXT:
306   * pcpu_alloc_mutex.
307   */
pcpu_depopulate_chunk(struct pcpu_chunk * chunk,int page_start,int page_end)308  static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
309  				  int page_start, int page_end)
310  {
311  	struct page **pages;
312  
313  	/*
314  	 * If control reaches here, there must have been at least one
315  	 * successful population attempt so the temp pages array must
316  	 * be available now.
317  	 */
318  	pages = pcpu_get_pages();
319  	BUG_ON(!pages);
320  
321  	/* unmap and free */
322  	pcpu_pre_unmap_flush(chunk, page_start, page_end);
323  
324  	pcpu_unmap_pages(chunk, pages, page_start, page_end);
325  
326  	/* no need to flush tlb, vmalloc will handle it lazily */
327  
328  	pcpu_free_pages(chunk, pages, page_start, page_end);
329  }
330  
pcpu_create_chunk(enum pcpu_chunk_type type,gfp_t gfp)331  static struct pcpu_chunk *pcpu_create_chunk(enum pcpu_chunk_type type,
332  					    gfp_t gfp)
333  {
334  	struct pcpu_chunk *chunk;
335  	struct vm_struct **vms;
336  
337  	chunk = pcpu_alloc_chunk(type, gfp);
338  	if (!chunk)
339  		return NULL;
340  
341  	vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
342  				pcpu_nr_groups, pcpu_atom_size);
343  	if (!vms) {
344  		pcpu_free_chunk(chunk);
345  		return NULL;
346  	}
347  
348  	chunk->data = vms;
349  	chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
350  
351  	pcpu_stats_chunk_alloc();
352  	trace_percpu_create_chunk(chunk->base_addr);
353  
354  	return chunk;
355  }
356  
pcpu_destroy_chunk(struct pcpu_chunk * chunk)357  static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
358  {
359  	if (!chunk)
360  		return;
361  
362  	pcpu_stats_chunk_dealloc();
363  	trace_percpu_destroy_chunk(chunk->base_addr);
364  
365  	if (chunk->data)
366  		pcpu_free_vm_areas(chunk->data, pcpu_nr_groups);
367  	pcpu_free_chunk(chunk);
368  }
369  
pcpu_addr_to_page(void * addr)370  static struct page *pcpu_addr_to_page(void *addr)
371  {
372  	return vmalloc_to_page(addr);
373  }
374  
pcpu_verify_alloc_info(const struct pcpu_alloc_info * ai)375  static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
376  {
377  	/* no extra restriction */
378  	return 0;
379  }
380