1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60
61 #include "internal.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65
66 #ifdef CONFIG_HYPERHOLD_FILE_LRU
67 #include <linux/memcg_policy.h>
68 #endif
69
70 #ifdef ARCH_HAS_PREFETCHW
71 #define prefetchw_prev_lru_page(_page, _base, _field) \
72 do { \
73 if ((_page)->lru.prev != _base) { \
74 struct page *prev; \
75 \
76 prev = lru_to_page(&(_page->lru)); \
77 prefetchw(&prev->_field); \
78 } \
79 } while (0)
80 #else
81 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
82 #endif
83
84 #ifdef CONFIG_HYPERHOLD_FILE_LRU
85 unsigned int enough_inactive_file = 1;
86 #endif
87
88 /*
89 * From 0 .. 200. Higher means more swappy.
90 */
91 int vm_swappiness = 60;
92
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)93 static void set_task_reclaim_state(struct task_struct *task,
94 struct reclaim_state *rs)
95 {
96 /* Check for an overwrite */
97 WARN_ON_ONCE(rs && task->reclaim_state);
98
99 /* Check for the nulling of an already-nulled member */
100 WARN_ON_ONCE(!rs && !task->reclaim_state);
101
102 task->reclaim_state = rs;
103 }
104
105 static LIST_HEAD(shrinker_list);
106 static DECLARE_RWSEM(shrinker_rwsem);
107
108 #ifdef CONFIG_MEMCG
109
110 static DEFINE_IDR(shrinker_idr);
111 static int shrinker_nr_max;
112
prealloc_memcg_shrinker(struct shrinker * shrinker)113 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
114 {
115 int id, ret = -ENOMEM;
116
117 down_write(&shrinker_rwsem);
118 /* This may call shrinker, so it must use down_read_trylock() */
119 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
120 if (id < 0)
121 goto unlock;
122
123 if (id >= shrinker_nr_max) {
124 if (memcg_expand_shrinker_maps(id)) {
125 idr_remove(&shrinker_idr, id);
126 goto unlock;
127 }
128
129 shrinker_nr_max = id + 1;
130 }
131 shrinker->id = id;
132 ret = 0;
133 unlock:
134 up_write(&shrinker_rwsem);
135 return ret;
136 }
137
unregister_memcg_shrinker(struct shrinker * shrinker)138 static void unregister_memcg_shrinker(struct shrinker *shrinker)
139 {
140 int id = shrinker->id;
141
142 BUG_ON(id < 0);
143
144 lockdep_assert_held(&shrinker_rwsem);
145
146 idr_remove(&shrinker_idr, id);
147 }
148
cgroup_reclaim(struct scan_control * sc)149 bool cgroup_reclaim(struct scan_control *sc)
150 {
151 return sc->target_mem_cgroup;
152 }
153
154 /**
155 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
156 * @sc: scan_control in question
157 *
158 * The normal page dirty throttling mechanism in balance_dirty_pages() is
159 * completely broken with the legacy memcg and direct stalling in
160 * shrink_page_list() is used for throttling instead, which lacks all the
161 * niceties such as fairness, adaptive pausing, bandwidth proportional
162 * allocation and configurability.
163 *
164 * This function tests whether the vmscan currently in progress can assume
165 * that the normal dirty throttling mechanism is operational.
166 */
writeback_throttling_sane(struct scan_control * sc)167 bool writeback_throttling_sane(struct scan_control *sc)
168 {
169 if (!cgroup_reclaim(sc))
170 return true;
171 #ifdef CONFIG_CGROUP_WRITEBACK
172 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
173 return true;
174 #endif
175 return false;
176 }
177 #else
prealloc_memcg_shrinker(struct shrinker * shrinker)178 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
179 {
180 return 0;
181 }
182
unregister_memcg_shrinker(struct shrinker * shrinker)183 static void unregister_memcg_shrinker(struct shrinker *shrinker)
184 {
185 }
186
cgroup_reclaim(struct scan_control * sc)187 bool cgroup_reclaim(struct scan_control *sc)
188 {
189 return false;
190 }
191
writeback_throttling_sane(struct scan_control * sc)192 bool writeback_throttling_sane(struct scan_control *sc)
193 {
194 return true;
195 }
196 #endif
197
198 /*
199 * This misses isolated pages which are not accounted for to save counters.
200 * As the data only determines if reclaim or compaction continues, it is
201 * not expected that isolated pages will be a dominating factor.
202 */
zone_reclaimable_pages(struct zone * zone)203 unsigned long zone_reclaimable_pages(struct zone *zone)
204 {
205 unsigned long nr;
206
207 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
208 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
209 if (get_nr_swap_pages() > 0)
210 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
211 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
212
213 return nr;
214 }
215
216 /**
217 * lruvec_lru_size - Returns the number of pages on the given LRU list.
218 * @lruvec: lru vector
219 * @lru: lru to use
220 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
221 */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)222 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
223 {
224 unsigned long size = 0;
225 int zid;
226
227 #ifdef CONFIG_HYPERHOLD_FILE_LRU
228 if (!mem_cgroup_disabled() && is_node_lruvec(lruvec)) {
229 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
230 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
231
232 if (!managed_zone(zone))
233 continue;
234
235 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
236 }
237
238 return size;
239 }
240 #endif
241 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
242 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
243
244 if (!managed_zone(zone))
245 continue;
246
247 if (!mem_cgroup_disabled())
248 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
249 else
250 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
251 }
252 return size;
253 }
254
255 /*
256 * Add a shrinker callback to be called from the vm.
257 */
prealloc_shrinker(struct shrinker * shrinker)258 int prealloc_shrinker(struct shrinker *shrinker)
259 {
260 unsigned int size = sizeof(*shrinker->nr_deferred);
261
262 if (shrinker->flags & SHRINKER_NUMA_AWARE)
263 size *= nr_node_ids;
264
265 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
266 if (!shrinker->nr_deferred)
267 return -ENOMEM;
268
269 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
270 if (prealloc_memcg_shrinker(shrinker))
271 goto free_deferred;
272 }
273
274 return 0;
275
276 free_deferred:
277 kfree(shrinker->nr_deferred);
278 shrinker->nr_deferred = NULL;
279 return -ENOMEM;
280 }
281
free_prealloced_shrinker(struct shrinker * shrinker)282 void free_prealloced_shrinker(struct shrinker *shrinker)
283 {
284 if (!shrinker->nr_deferred)
285 return;
286
287 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
288 down_write(&shrinker_rwsem);
289 unregister_memcg_shrinker(shrinker);
290 up_write(&shrinker_rwsem);
291 }
292
293 kfree(shrinker->nr_deferred);
294 shrinker->nr_deferred = NULL;
295 }
296
register_shrinker_prepared(struct shrinker * shrinker)297 void register_shrinker_prepared(struct shrinker *shrinker)
298 {
299 down_write(&shrinker_rwsem);
300 list_add_tail(&shrinker->list, &shrinker_list);
301 shrinker->flags |= SHRINKER_REGISTERED;
302 up_write(&shrinker_rwsem);
303 }
304
register_shrinker(struct shrinker * shrinker)305 int register_shrinker(struct shrinker *shrinker)
306 {
307 int err = prealloc_shrinker(shrinker);
308
309 if (err)
310 return err;
311 register_shrinker_prepared(shrinker);
312 return 0;
313 }
314 EXPORT_SYMBOL(register_shrinker);
315
316 /*
317 * Remove one
318 */
unregister_shrinker(struct shrinker * shrinker)319 void unregister_shrinker(struct shrinker *shrinker)
320 {
321 if (!(shrinker->flags & SHRINKER_REGISTERED))
322 return;
323
324 down_write(&shrinker_rwsem);
325 list_del(&shrinker->list);
326 shrinker->flags &= ~SHRINKER_REGISTERED;
327 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
328 unregister_memcg_shrinker(shrinker);
329 up_write(&shrinker_rwsem);
330
331 kfree(shrinker->nr_deferred);
332 shrinker->nr_deferred = NULL;
333 }
334 EXPORT_SYMBOL(unregister_shrinker);
335
336 #define SHRINK_BATCH 128
337
do_shrink_slab(struct shrink_control * shrinkctl,struct shrinker * shrinker,int priority)338 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
339 struct shrinker *shrinker, int priority)
340 {
341 unsigned long freed = 0;
342 unsigned long long delta;
343 long total_scan;
344 long freeable;
345 long nr;
346 long new_nr;
347 int nid = shrinkctl->nid;
348 long batch_size = shrinker->batch ? shrinker->batch
349 : SHRINK_BATCH;
350 long scanned = 0, next_deferred;
351
352 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
353 nid = 0;
354
355 freeable = shrinker->count_objects(shrinker, shrinkctl);
356 if (freeable == 0 || freeable == SHRINK_EMPTY)
357 return freeable;
358
359 /*
360 * copy the current shrinker scan count into a local variable
361 * and zero it so that other concurrent shrinker invocations
362 * don't also do this scanning work.
363 */
364 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
365
366 total_scan = nr;
367 if (shrinker->seeks) {
368 delta = freeable >> priority;
369 delta *= 4;
370 do_div(delta, shrinker->seeks);
371 } else {
372 /*
373 * These objects don't require any IO to create. Trim
374 * them aggressively under memory pressure to keep
375 * them from causing refetches in the IO caches.
376 */
377 delta = freeable / 2;
378 }
379
380 total_scan += delta;
381 if (total_scan < 0) {
382 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
383 shrinker->scan_objects, total_scan);
384 total_scan = freeable;
385 next_deferred = nr;
386 } else
387 next_deferred = total_scan;
388
389 /*
390 * We need to avoid excessive windup on filesystem shrinkers
391 * due to large numbers of GFP_NOFS allocations causing the
392 * shrinkers to return -1 all the time. This results in a large
393 * nr being built up so when a shrink that can do some work
394 * comes along it empties the entire cache due to nr >>>
395 * freeable. This is bad for sustaining a working set in
396 * memory.
397 *
398 * Hence only allow the shrinker to scan the entire cache when
399 * a large delta change is calculated directly.
400 */
401 if (delta < freeable / 4)
402 total_scan = min(total_scan, freeable / 2);
403
404 /*
405 * Avoid risking looping forever due to too large nr value:
406 * never try to free more than twice the estimate number of
407 * freeable entries.
408 */
409 if (total_scan > freeable * 2)
410 total_scan = freeable * 2;
411
412 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
413 freeable, delta, total_scan, priority);
414
415 /*
416 * Normally, we should not scan less than batch_size objects in one
417 * pass to avoid too frequent shrinker calls, but if the slab has less
418 * than batch_size objects in total and we are really tight on memory,
419 * we will try to reclaim all available objects, otherwise we can end
420 * up failing allocations although there are plenty of reclaimable
421 * objects spread over several slabs with usage less than the
422 * batch_size.
423 *
424 * We detect the "tight on memory" situations by looking at the total
425 * number of objects we want to scan (total_scan). If it is greater
426 * than the total number of objects on slab (freeable), we must be
427 * scanning at high prio and therefore should try to reclaim as much as
428 * possible.
429 */
430 while (total_scan >= batch_size ||
431 total_scan >= freeable) {
432 unsigned long ret;
433 unsigned long nr_to_scan = min(batch_size, total_scan);
434
435 shrinkctl->nr_to_scan = nr_to_scan;
436 shrinkctl->nr_scanned = nr_to_scan;
437 ret = shrinker->scan_objects(shrinker, shrinkctl);
438 if (ret == SHRINK_STOP)
439 break;
440 freed += ret;
441
442 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
443 total_scan -= shrinkctl->nr_scanned;
444 scanned += shrinkctl->nr_scanned;
445
446 cond_resched();
447 }
448
449 if (next_deferred >= scanned)
450 next_deferred -= scanned;
451 else
452 next_deferred = 0;
453 /*
454 * move the unused scan count back into the shrinker in a
455 * manner that handles concurrent updates. If we exhausted the
456 * scan, there is no need to do an update.
457 */
458 if (next_deferred > 0)
459 new_nr = atomic_long_add_return(next_deferred,
460 &shrinker->nr_deferred[nid]);
461 else
462 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
463
464 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
465 return freed;
466 }
467
468 #ifdef CONFIG_MEMCG
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)469 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
470 struct mem_cgroup *memcg, int priority)
471 {
472 struct memcg_shrinker_map *map;
473 unsigned long ret, freed = 0;
474 int i;
475
476 if (!mem_cgroup_online(memcg))
477 return 0;
478
479 if (!down_read_trylock(&shrinker_rwsem))
480 return 0;
481
482 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
483 true);
484 if (unlikely(!map))
485 goto unlock;
486
487 for_each_set_bit(i, map->map, shrinker_nr_max) {
488 struct shrink_control sc = {
489 .gfp_mask = gfp_mask,
490 .nid = nid,
491 .memcg = memcg,
492 };
493 struct shrinker *shrinker;
494
495 shrinker = idr_find(&shrinker_idr, i);
496 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
497 if (!shrinker)
498 clear_bit(i, map->map);
499 continue;
500 }
501
502 /* Call non-slab shrinkers even though kmem is disabled */
503 if (!memcg_kmem_enabled() &&
504 !(shrinker->flags & SHRINKER_NONSLAB))
505 continue;
506
507 ret = do_shrink_slab(&sc, shrinker, priority);
508 if (ret == SHRINK_EMPTY) {
509 clear_bit(i, map->map);
510 /*
511 * After the shrinker reported that it had no objects to
512 * free, but before we cleared the corresponding bit in
513 * the memcg shrinker map, a new object might have been
514 * added. To make sure, we have the bit set in this
515 * case, we invoke the shrinker one more time and reset
516 * the bit if it reports that it is not empty anymore.
517 * The memory barrier here pairs with the barrier in
518 * memcg_set_shrinker_bit():
519 *
520 * list_lru_add() shrink_slab_memcg()
521 * list_add_tail() clear_bit()
522 * <MB> <MB>
523 * set_bit() do_shrink_slab()
524 */
525 smp_mb__after_atomic();
526 ret = do_shrink_slab(&sc, shrinker, priority);
527 if (ret == SHRINK_EMPTY)
528 ret = 0;
529 else
530 memcg_set_shrinker_bit(memcg, nid, i);
531 }
532 freed += ret;
533
534 if (rwsem_is_contended(&shrinker_rwsem)) {
535 freed = freed ? : 1;
536 break;
537 }
538 }
539 unlock:
540 up_read(&shrinker_rwsem);
541 return freed;
542 }
543 #else /* CONFIG_MEMCG */
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)544 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
545 struct mem_cgroup *memcg, int priority)
546 {
547 return 0;
548 }
549 #endif /* CONFIG_MEMCG */
550
551 /**
552 * shrink_slab - shrink slab caches
553 * @gfp_mask: allocation context
554 * @nid: node whose slab caches to target
555 * @memcg: memory cgroup whose slab caches to target
556 * @priority: the reclaim priority
557 *
558 * Call the shrink functions to age shrinkable caches.
559 *
560 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
561 * unaware shrinkers will receive a node id of 0 instead.
562 *
563 * @memcg specifies the memory cgroup to target. Unaware shrinkers
564 * are called only if it is the root cgroup.
565 *
566 * @priority is sc->priority, we take the number of objects and >> by priority
567 * in order to get the scan target.
568 *
569 * Returns the number of reclaimed slab objects.
570 */
shrink_slab(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)571 unsigned long shrink_slab(gfp_t gfp_mask, int nid,
572 struct mem_cgroup *memcg,
573 int priority)
574 {
575 unsigned long ret, freed = 0;
576 struct shrinker *shrinker;
577
578 /*
579 * The root memcg might be allocated even though memcg is disabled
580 * via "cgroup_disable=memory" boot parameter. This could make
581 * mem_cgroup_is_root() return false, then just run memcg slab
582 * shrink, but skip global shrink. This may result in premature
583 * oom.
584 */
585 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
586 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
587
588 if (!down_read_trylock(&shrinker_rwsem))
589 goto out;
590
591 list_for_each_entry(shrinker, &shrinker_list, list) {
592 struct shrink_control sc = {
593 .gfp_mask = gfp_mask,
594 .nid = nid,
595 .memcg = memcg,
596 };
597
598 ret = do_shrink_slab(&sc, shrinker, priority);
599 if (ret == SHRINK_EMPTY)
600 ret = 0;
601 freed += ret;
602 /*
603 * Bail out if someone want to register a new shrinker to
604 * prevent the registration from being stalled for long periods
605 * by parallel ongoing shrinking.
606 */
607 if (rwsem_is_contended(&shrinker_rwsem)) {
608 freed = freed ? : 1;
609 break;
610 }
611 }
612
613 up_read(&shrinker_rwsem);
614 out:
615 cond_resched();
616 return freed;
617 }
618
drop_slab_node(int nid)619 void drop_slab_node(int nid)
620 {
621 unsigned long freed;
622 int shift = 0;
623
624 do {
625 struct mem_cgroup *memcg = NULL;
626
627 if (fatal_signal_pending(current))
628 return;
629
630 freed = 0;
631 memcg = mem_cgroup_iter(NULL, NULL, NULL);
632 do {
633 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
634 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
635 } while ((freed >> shift++) > 1);
636 }
637
drop_slab(void)638 void drop_slab(void)
639 {
640 int nid;
641
642 for_each_online_node(nid)
643 drop_slab_node(nid);
644 }
645
is_page_cache_freeable(struct page * page)646 static inline int is_page_cache_freeable(struct page *page)
647 {
648 /*
649 * A freeable page cache page is referenced only by the caller
650 * that isolated the page, the page cache and optional buffer
651 * heads at page->private.
652 */
653 int page_cache_pins = thp_nr_pages(page);
654 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
655 }
656
may_write_to_inode(struct inode * inode)657 static int may_write_to_inode(struct inode *inode)
658 {
659 if (current->flags & PF_SWAPWRITE)
660 return 1;
661 if (!inode_write_congested(inode))
662 return 1;
663 if (inode_to_bdi(inode) == current->backing_dev_info)
664 return 1;
665 return 0;
666 }
667
668 /*
669 * We detected a synchronous write error writing a page out. Probably
670 * -ENOSPC. We need to propagate that into the address_space for a subsequent
671 * fsync(), msync() or close().
672 *
673 * The tricky part is that after writepage we cannot touch the mapping: nothing
674 * prevents it from being freed up. But we have a ref on the page and once
675 * that page is locked, the mapping is pinned.
676 *
677 * We're allowed to run sleeping lock_page() here because we know the caller has
678 * __GFP_FS.
679 */
handle_write_error(struct address_space * mapping,struct page * page,int error)680 static void handle_write_error(struct address_space *mapping,
681 struct page *page, int error)
682 {
683 lock_page(page);
684 if (page_mapping(page) == mapping)
685 mapping_set_error(mapping, error);
686 unlock_page(page);
687 }
688
689 /* possible outcome of pageout() */
690 typedef enum {
691 /* failed to write page out, page is locked */
692 PAGE_KEEP,
693 /* move page to the active list, page is locked */
694 PAGE_ACTIVATE,
695 /* page has been sent to the disk successfully, page is unlocked */
696 PAGE_SUCCESS,
697 /* page is clean and locked */
698 PAGE_CLEAN,
699 } pageout_t;
700
701 /*
702 * pageout is called by shrink_page_list() for each dirty page.
703 * Calls ->writepage().
704 */
pageout(struct page * page,struct address_space * mapping)705 static pageout_t pageout(struct page *page, struct address_space *mapping)
706 {
707 /*
708 * If the page is dirty, only perform writeback if that write
709 * will be non-blocking. To prevent this allocation from being
710 * stalled by pagecache activity. But note that there may be
711 * stalls if we need to run get_block(). We could test
712 * PagePrivate for that.
713 *
714 * If this process is currently in __generic_file_write_iter() against
715 * this page's queue, we can perform writeback even if that
716 * will block.
717 *
718 * If the page is swapcache, write it back even if that would
719 * block, for some throttling. This happens by accident, because
720 * swap_backing_dev_info is bust: it doesn't reflect the
721 * congestion state of the swapdevs. Easy to fix, if needed.
722 */
723 if (!is_page_cache_freeable(page))
724 return PAGE_KEEP;
725 if (!mapping) {
726 /*
727 * Some data journaling orphaned pages can have
728 * page->mapping == NULL while being dirty with clean buffers.
729 */
730 if (page_has_private(page)) {
731 if (try_to_free_buffers(page)) {
732 ClearPageDirty(page);
733 pr_info("%s: orphaned page\n", __func__);
734 return PAGE_CLEAN;
735 }
736 }
737 return PAGE_KEEP;
738 }
739 if (mapping->a_ops->writepage == NULL)
740 return PAGE_ACTIVATE;
741 if (!may_write_to_inode(mapping->host))
742 return PAGE_KEEP;
743
744 if (clear_page_dirty_for_io(page)) {
745 int res;
746 struct writeback_control wbc = {
747 .sync_mode = WB_SYNC_NONE,
748 .nr_to_write = SWAP_CLUSTER_MAX,
749 .range_start = 0,
750 .range_end = LLONG_MAX,
751 .for_reclaim = 1,
752 };
753
754 SetPageReclaim(page);
755 res = mapping->a_ops->writepage(page, &wbc);
756 if (res < 0)
757 handle_write_error(mapping, page, res);
758 if (res == AOP_WRITEPAGE_ACTIVATE) {
759 ClearPageReclaim(page);
760 return PAGE_ACTIVATE;
761 }
762
763 if (!PageWriteback(page)) {
764 /* synchronous write or broken a_ops? */
765 ClearPageReclaim(page);
766 }
767 trace_mm_vmscan_writepage(page);
768 inc_node_page_state(page, NR_VMSCAN_WRITE);
769 return PAGE_SUCCESS;
770 }
771
772 return PAGE_CLEAN;
773 }
774
775 /*
776 * Same as remove_mapping, but if the page is removed from the mapping, it
777 * gets returned with a refcount of 0.
778 */
__remove_mapping(struct address_space * mapping,struct page * page,bool reclaimed,struct mem_cgroup * target_memcg)779 static int __remove_mapping(struct address_space *mapping, struct page *page,
780 bool reclaimed, struct mem_cgroup *target_memcg)
781 {
782 unsigned long flags;
783 int refcount;
784 void *shadow = NULL;
785
786 BUG_ON(!PageLocked(page));
787 BUG_ON(mapping != page_mapping(page));
788
789 xa_lock_irqsave(&mapping->i_pages, flags);
790 /*
791 * The non racy check for a busy page.
792 *
793 * Must be careful with the order of the tests. When someone has
794 * a ref to the page, it may be possible that they dirty it then
795 * drop the reference. So if PageDirty is tested before page_count
796 * here, then the following race may occur:
797 *
798 * get_user_pages(&page);
799 * [user mapping goes away]
800 * write_to(page);
801 * !PageDirty(page) [good]
802 * SetPageDirty(page);
803 * put_page(page);
804 * !page_count(page) [good, discard it]
805 *
806 * [oops, our write_to data is lost]
807 *
808 * Reversing the order of the tests ensures such a situation cannot
809 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
810 * load is not satisfied before that of page->_refcount.
811 *
812 * Note that if SetPageDirty is always performed via set_page_dirty,
813 * and thus under the i_pages lock, then this ordering is not required.
814 */
815 refcount = 1 + compound_nr(page);
816 if (!page_ref_freeze(page, refcount))
817 goto cannot_free;
818 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
819 if (unlikely(PageDirty(page))) {
820 page_ref_unfreeze(page, refcount);
821 goto cannot_free;
822 }
823
824 if (PageSwapCache(page)) {
825 swp_entry_t swap = { .val = page_private(page) };
826 mem_cgroup_swapout(page, swap);
827 if (reclaimed && !mapping_exiting(mapping))
828 shadow = workingset_eviction(page, target_memcg);
829 __delete_from_swap_cache(page, swap, shadow);
830 xa_unlock_irqrestore(&mapping->i_pages, flags);
831 put_swap_page(page, swap);
832 } else {
833 void (*freepage)(struct page *);
834
835 freepage = mapping->a_ops->freepage;
836 /*
837 * Remember a shadow entry for reclaimed file cache in
838 * order to detect refaults, thus thrashing, later on.
839 *
840 * But don't store shadows in an address space that is
841 * already exiting. This is not just an optimization,
842 * inode reclaim needs to empty out the radix tree or
843 * the nodes are lost. Don't plant shadows behind its
844 * back.
845 *
846 * We also don't store shadows for DAX mappings because the
847 * only page cache pages found in these are zero pages
848 * covering holes, and because we don't want to mix DAX
849 * exceptional entries and shadow exceptional entries in the
850 * same address_space.
851 */
852 if (reclaimed && page_is_file_lru(page) &&
853 !mapping_exiting(mapping) && !dax_mapping(mapping))
854 shadow = workingset_eviction(page, target_memcg);
855 __delete_from_page_cache(page, shadow);
856 xa_unlock_irqrestore(&mapping->i_pages, flags);
857
858 if (freepage != NULL)
859 freepage(page);
860 }
861
862 return 1;
863
864 cannot_free:
865 xa_unlock_irqrestore(&mapping->i_pages, flags);
866 return 0;
867 }
868
869 /*
870 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
871 * someone else has a ref on the page, abort and return 0. If it was
872 * successfully detached, return 1. Assumes the caller has a single ref on
873 * this page.
874 */
remove_mapping(struct address_space * mapping,struct page * page)875 int remove_mapping(struct address_space *mapping, struct page *page)
876 {
877 if (__remove_mapping(mapping, page, false, NULL)) {
878 /*
879 * Unfreezing the refcount with 1 rather than 2 effectively
880 * drops the pagecache ref for us without requiring another
881 * atomic operation.
882 */
883 page_ref_unfreeze(page, 1);
884 return 1;
885 }
886 return 0;
887 }
888
889 /**
890 * putback_lru_page - put previously isolated page onto appropriate LRU list
891 * @page: page to be put back to appropriate lru list
892 *
893 * Add previously isolated @page to appropriate LRU list.
894 * Page may still be unevictable for other reasons.
895 *
896 * lru_lock must not be held, interrupts must be enabled.
897 */
putback_lru_page(struct page * page)898 void putback_lru_page(struct page *page)
899 {
900 lru_cache_add(page);
901 put_page(page); /* drop ref from isolate */
902 }
903
904 enum page_references {
905 PAGEREF_RECLAIM,
906 PAGEREF_RECLAIM_CLEAN,
907 PAGEREF_KEEP,
908 PAGEREF_ACTIVATE,
909 };
910
page_check_references(struct page * page,struct scan_control * sc)911 static enum page_references page_check_references(struct page *page,
912 struct scan_control *sc)
913 {
914 int referenced_ptes, referenced_page;
915 unsigned long vm_flags;
916
917 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
918 &vm_flags);
919 referenced_page = TestClearPageReferenced(page);
920
921 /*
922 * Mlock lost the isolation race with us. Let try_to_unmap()
923 * move the page to the unevictable list.
924 */
925 if (vm_flags & VM_LOCKED)
926 return PAGEREF_RECLAIM;
927
928 if (referenced_ptes) {
929 /*
930 * All mapped pages start out with page table
931 * references from the instantiating fault, so we need
932 * to look twice if a mapped file page is used more
933 * than once.
934 *
935 * Mark it and spare it for another trip around the
936 * inactive list. Another page table reference will
937 * lead to its activation.
938 *
939 * Note: the mark is set for activated pages as well
940 * so that recently deactivated but used pages are
941 * quickly recovered.
942 */
943 SetPageReferenced(page);
944
945 if (referenced_page || referenced_ptes > 1)
946 return PAGEREF_ACTIVATE;
947
948 /*
949 * Activate file-backed executable pages after first usage.
950 */
951 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
952 return PAGEREF_ACTIVATE;
953
954 return PAGEREF_KEEP;
955 }
956
957 /* Reclaim if clean, defer dirty pages to writeback */
958 if (referenced_page && !PageSwapBacked(page))
959 return PAGEREF_RECLAIM_CLEAN;
960
961 return PAGEREF_RECLAIM;
962 }
963
964 /* Check if a page is dirty or under writeback */
page_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)965 static void page_check_dirty_writeback(struct page *page,
966 bool *dirty, bool *writeback)
967 {
968 struct address_space *mapping;
969
970 /*
971 * Anonymous pages are not handled by flushers and must be written
972 * from reclaim context. Do not stall reclaim based on them
973 */
974 if (!page_is_file_lru(page) ||
975 (PageAnon(page) && !PageSwapBacked(page))) {
976 *dirty = false;
977 *writeback = false;
978 return;
979 }
980
981 /* By default assume that the page flags are accurate */
982 *dirty = PageDirty(page);
983 *writeback = PageWriteback(page);
984
985 /* Verify dirty/writeback state if the filesystem supports it */
986 if (!page_has_private(page))
987 return;
988
989 mapping = page_mapping(page);
990 if (mapping && mapping->a_ops->is_dirty_writeback)
991 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
992 }
993
994 /*
995 * shrink_page_list() returns the number of reclaimed pages
996 */
shrink_page_list(struct list_head * page_list,struct pglist_data * pgdat,struct scan_control * sc,struct reclaim_stat * stat,bool ignore_references)997 unsigned int shrink_page_list(struct list_head *page_list,
998 struct pglist_data *pgdat,
999 struct scan_control *sc,
1000 struct reclaim_stat *stat,
1001 bool ignore_references)
1002 {
1003 LIST_HEAD(ret_pages);
1004 LIST_HEAD(free_pages);
1005 unsigned int nr_reclaimed = 0;
1006 unsigned int pgactivate = 0;
1007
1008 memset(stat, 0, sizeof(*stat));
1009 cond_resched();
1010
1011 while (!list_empty(page_list)) {
1012 struct address_space *mapping;
1013 struct page *page;
1014 enum page_references references = PAGEREF_RECLAIM;
1015 bool dirty, writeback, may_enter_fs;
1016 unsigned int nr_pages;
1017
1018 cond_resched();
1019
1020 page = lru_to_page(page_list);
1021 list_del(&page->lru);
1022
1023 if (!trylock_page(page))
1024 goto keep;
1025
1026 VM_BUG_ON_PAGE(PageActive(page), page);
1027
1028 nr_pages = compound_nr(page);
1029
1030 /* Account the number of base pages even though THP */
1031 sc->nr_scanned += nr_pages;
1032
1033 if (unlikely(!page_evictable(page)))
1034 goto activate_locked;
1035
1036 if (!sc->may_unmap && page_mapped(page))
1037 goto keep_locked;
1038
1039 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1040 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1041
1042 /*
1043 * The number of dirty pages determines if a node is marked
1044 * reclaim_congested which affects wait_iff_congested. kswapd
1045 * will stall and start writing pages if the tail of the LRU
1046 * is all dirty unqueued pages.
1047 */
1048 page_check_dirty_writeback(page, &dirty, &writeback);
1049 if (dirty || writeback)
1050 stat->nr_dirty++;
1051
1052 if (dirty && !writeback)
1053 stat->nr_unqueued_dirty++;
1054
1055 /*
1056 * Treat this page as congested if the underlying BDI is or if
1057 * pages are cycling through the LRU so quickly that the
1058 * pages marked for immediate reclaim are making it to the
1059 * end of the LRU a second time.
1060 */
1061 mapping = page_mapping(page);
1062 if (((dirty || writeback) && mapping &&
1063 inode_write_congested(mapping->host)) ||
1064 (writeback && PageReclaim(page)))
1065 stat->nr_congested++;
1066
1067 /*
1068 * If a page at the tail of the LRU is under writeback, there
1069 * are three cases to consider.
1070 *
1071 * 1) If reclaim is encountering an excessive number of pages
1072 * under writeback and this page is both under writeback and
1073 * PageReclaim then it indicates that pages are being queued
1074 * for IO but are being recycled through the LRU before the
1075 * IO can complete. Waiting on the page itself risks an
1076 * indefinite stall if it is impossible to writeback the
1077 * page due to IO error or disconnected storage so instead
1078 * note that the LRU is being scanned too quickly and the
1079 * caller can stall after page list has been processed.
1080 *
1081 * 2) Global or new memcg reclaim encounters a page that is
1082 * not marked for immediate reclaim, or the caller does not
1083 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1084 * not to fs). In this case mark the page for immediate
1085 * reclaim and continue scanning.
1086 *
1087 * Require may_enter_fs because we would wait on fs, which
1088 * may not have submitted IO yet. And the loop driver might
1089 * enter reclaim, and deadlock if it waits on a page for
1090 * which it is needed to do the write (loop masks off
1091 * __GFP_IO|__GFP_FS for this reason); but more thought
1092 * would probably show more reasons.
1093 *
1094 * 3) Legacy memcg encounters a page that is already marked
1095 * PageReclaim. memcg does not have any dirty pages
1096 * throttling so we could easily OOM just because too many
1097 * pages are in writeback and there is nothing else to
1098 * reclaim. Wait for the writeback to complete.
1099 *
1100 * In cases 1) and 2) we activate the pages to get them out of
1101 * the way while we continue scanning for clean pages on the
1102 * inactive list and refilling from the active list. The
1103 * observation here is that waiting for disk writes is more
1104 * expensive than potentially causing reloads down the line.
1105 * Since they're marked for immediate reclaim, they won't put
1106 * memory pressure on the cache working set any longer than it
1107 * takes to write them to disk.
1108 */
1109 if (PageWriteback(page)) {
1110 /* Case 1 above */
1111 if (current_is_kswapd() &&
1112 PageReclaim(page) &&
1113 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1114 stat->nr_immediate++;
1115 goto activate_locked;
1116
1117 /* Case 2 above */
1118 } else if (writeback_throttling_sane(sc) ||
1119 !PageReclaim(page) || !may_enter_fs) {
1120 /*
1121 * This is slightly racy - end_page_writeback()
1122 * might have just cleared PageReclaim, then
1123 * setting PageReclaim here end up interpreted
1124 * as PageReadahead - but that does not matter
1125 * enough to care. What we do want is for this
1126 * page to have PageReclaim set next time memcg
1127 * reclaim reaches the tests above, so it will
1128 * then wait_on_page_writeback() to avoid OOM;
1129 * and it's also appropriate in global reclaim.
1130 */
1131 SetPageReclaim(page);
1132 stat->nr_writeback++;
1133 goto activate_locked;
1134
1135 /* Case 3 above */
1136 } else {
1137 unlock_page(page);
1138 wait_on_page_writeback(page);
1139 /* then go back and try same page again */
1140 list_add_tail(&page->lru, page_list);
1141 continue;
1142 }
1143 }
1144
1145 if (!ignore_references)
1146 references = page_check_references(page, sc);
1147
1148 switch (references) {
1149 case PAGEREF_ACTIVATE:
1150 goto activate_locked;
1151 case PAGEREF_KEEP:
1152 stat->nr_ref_keep += nr_pages;
1153 goto keep_locked;
1154 case PAGEREF_RECLAIM:
1155 case PAGEREF_RECLAIM_CLEAN:
1156 ; /* try to reclaim the page below */
1157 }
1158
1159 /*
1160 * Anonymous process memory has backing store?
1161 * Try to allocate it some swap space here.
1162 * Lazyfree page could be freed directly
1163 */
1164 if (PageAnon(page) && PageSwapBacked(page)) {
1165 if (!PageSwapCache(page)) {
1166 if (!(sc->gfp_mask & __GFP_IO))
1167 goto keep_locked;
1168 if (page_maybe_dma_pinned(page))
1169 goto keep_locked;
1170 if (PageTransHuge(page)) {
1171 /* cannot split THP, skip it */
1172 if (!can_split_huge_page(page, NULL))
1173 goto activate_locked;
1174 /*
1175 * Split pages without a PMD map right
1176 * away. Chances are some or all of the
1177 * tail pages can be freed without IO.
1178 */
1179 if (!compound_mapcount(page) &&
1180 split_huge_page_to_list(page,
1181 page_list))
1182 goto activate_locked;
1183 }
1184 if (!add_to_swap(page)) {
1185 if (!PageTransHuge(page))
1186 goto activate_locked_split;
1187 /* Fallback to swap normal pages */
1188 if (split_huge_page_to_list(page,
1189 page_list))
1190 goto activate_locked;
1191 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1192 count_vm_event(THP_SWPOUT_FALLBACK);
1193 #endif
1194 if (!add_to_swap(page))
1195 goto activate_locked_split;
1196 }
1197
1198 may_enter_fs = true;
1199
1200 /* Adding to swap updated mapping */
1201 mapping = page_mapping(page);
1202 }
1203 } else if (unlikely(PageTransHuge(page))) {
1204 /* Split file THP */
1205 if (split_huge_page_to_list(page, page_list))
1206 goto keep_locked;
1207 }
1208
1209 /*
1210 * THP may get split above, need minus tail pages and update
1211 * nr_pages to avoid accounting tail pages twice.
1212 *
1213 * The tail pages that are added into swap cache successfully
1214 * reach here.
1215 */
1216 if ((nr_pages > 1) && !PageTransHuge(page)) {
1217 sc->nr_scanned -= (nr_pages - 1);
1218 nr_pages = 1;
1219 }
1220
1221 /*
1222 * The page is mapped into the page tables of one or more
1223 * processes. Try to unmap it here.
1224 */
1225 if (page_mapped(page)) {
1226 enum ttu_flags flags = TTU_BATCH_FLUSH;
1227 bool was_swapbacked = PageSwapBacked(page);
1228
1229 if (unlikely(PageTransHuge(page)))
1230 flags |= TTU_SPLIT_HUGE_PMD;
1231
1232 if (!try_to_unmap(page, flags)) {
1233 stat->nr_unmap_fail += nr_pages;
1234 if (!was_swapbacked && PageSwapBacked(page))
1235 stat->nr_lazyfree_fail += nr_pages;
1236 goto activate_locked;
1237 }
1238 }
1239
1240 if (PageDirty(page)) {
1241 /*
1242 * Only kswapd can writeback filesystem pages
1243 * to avoid risk of stack overflow. But avoid
1244 * injecting inefficient single-page IO into
1245 * flusher writeback as much as possible: only
1246 * write pages when we've encountered many
1247 * dirty pages, and when we've already scanned
1248 * the rest of the LRU for clean pages and see
1249 * the same dirty pages again (PageReclaim).
1250 */
1251 if (page_is_file_lru(page) &&
1252 (!current_is_kswapd() || !PageReclaim(page) ||
1253 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1254 /*
1255 * Immediately reclaim when written back.
1256 * Similar in principal to deactivate_page()
1257 * except we already have the page isolated
1258 * and know it's dirty
1259 */
1260 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1261 SetPageReclaim(page);
1262
1263 goto activate_locked;
1264 }
1265
1266 if (references == PAGEREF_RECLAIM_CLEAN)
1267 goto keep_locked;
1268 if (!may_enter_fs)
1269 goto keep_locked;
1270 if (!sc->may_writepage)
1271 goto keep_locked;
1272
1273 /*
1274 * Page is dirty. Flush the TLB if a writable entry
1275 * potentially exists to avoid CPU writes after IO
1276 * starts and then write it out here.
1277 */
1278 try_to_unmap_flush_dirty();
1279 switch (pageout(page, mapping)) {
1280 case PAGE_KEEP:
1281 goto keep_locked;
1282 case PAGE_ACTIVATE:
1283 goto activate_locked;
1284 case PAGE_SUCCESS:
1285 stat->nr_pageout += thp_nr_pages(page);
1286
1287 if (PageWriteback(page))
1288 goto keep;
1289 if (PageDirty(page))
1290 goto keep;
1291
1292 /*
1293 * A synchronous write - probably a ramdisk. Go
1294 * ahead and try to reclaim the page.
1295 */
1296 if (!trylock_page(page))
1297 goto keep;
1298 if (PageDirty(page) || PageWriteback(page))
1299 goto keep_locked;
1300 mapping = page_mapping(page);
1301 case PAGE_CLEAN:
1302 ; /* try to free the page below */
1303 }
1304 }
1305
1306 /*
1307 * If the page has buffers, try to free the buffer mappings
1308 * associated with this page. If we succeed we try to free
1309 * the page as well.
1310 *
1311 * We do this even if the page is PageDirty().
1312 * try_to_release_page() does not perform I/O, but it is
1313 * possible for a page to have PageDirty set, but it is actually
1314 * clean (all its buffers are clean). This happens if the
1315 * buffers were written out directly, with submit_bh(). ext3
1316 * will do this, as well as the blockdev mapping.
1317 * try_to_release_page() will discover that cleanness and will
1318 * drop the buffers and mark the page clean - it can be freed.
1319 *
1320 * Rarely, pages can have buffers and no ->mapping. These are
1321 * the pages which were not successfully invalidated in
1322 * truncate_complete_page(). We try to drop those buffers here
1323 * and if that worked, and the page is no longer mapped into
1324 * process address space (page_count == 1) it can be freed.
1325 * Otherwise, leave the page on the LRU so it is swappable.
1326 */
1327 if (page_has_private(page)) {
1328 if (!try_to_release_page(page, sc->gfp_mask))
1329 goto activate_locked;
1330 if (!mapping && page_count(page) == 1) {
1331 unlock_page(page);
1332 if (put_page_testzero(page))
1333 goto free_it;
1334 else {
1335 /*
1336 * rare race with speculative reference.
1337 * the speculative reference will free
1338 * this page shortly, so we may
1339 * increment nr_reclaimed here (and
1340 * leave it off the LRU).
1341 */
1342 nr_reclaimed++;
1343 continue;
1344 }
1345 }
1346 }
1347
1348 if (PageAnon(page) && !PageSwapBacked(page)) {
1349 /* follow __remove_mapping for reference */
1350 if (!page_ref_freeze(page, 1))
1351 goto keep_locked;
1352 if (PageDirty(page)) {
1353 page_ref_unfreeze(page, 1);
1354 goto keep_locked;
1355 }
1356
1357 count_vm_event(PGLAZYFREED);
1358 count_memcg_page_event(page, PGLAZYFREED);
1359 } else if (!mapping || !__remove_mapping(mapping, page, true,
1360 sc->target_mem_cgroup))
1361 goto keep_locked;
1362
1363 unlock_page(page);
1364 free_it:
1365 /*
1366 * THP may get swapped out in a whole, need account
1367 * all base pages.
1368 */
1369 nr_reclaimed += nr_pages;
1370
1371 /*
1372 * Is there need to periodically free_page_list? It would
1373 * appear not as the counts should be low
1374 */
1375 if (unlikely(PageTransHuge(page)))
1376 destroy_compound_page(page);
1377 else
1378 list_add(&page->lru, &free_pages);
1379 continue;
1380
1381 activate_locked_split:
1382 /*
1383 * The tail pages that are failed to add into swap cache
1384 * reach here. Fixup nr_scanned and nr_pages.
1385 */
1386 if (nr_pages > 1) {
1387 sc->nr_scanned -= (nr_pages - 1);
1388 nr_pages = 1;
1389 }
1390 activate_locked:
1391 /* Not a candidate for swapping, so reclaim swap space. */
1392 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1393 PageMlocked(page)))
1394 try_to_free_swap(page);
1395 VM_BUG_ON_PAGE(PageActive(page), page);
1396 if (!PageMlocked(page)) {
1397 int type = page_is_file_lru(page);
1398 SetPageActive(page);
1399 stat->nr_activate[type] += nr_pages;
1400 count_memcg_page_event(page, PGACTIVATE);
1401 }
1402 keep_locked:
1403 unlock_page(page);
1404 keep:
1405 list_add(&page->lru, &ret_pages);
1406 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1407 }
1408
1409 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1410
1411 mem_cgroup_uncharge_list(&free_pages);
1412 try_to_unmap_flush();
1413 free_unref_page_list(&free_pages);
1414
1415 list_splice(&ret_pages, page_list);
1416 count_vm_events(PGACTIVATE, pgactivate);
1417
1418 return nr_reclaimed;
1419 }
1420
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * page_list)1421 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1422 struct list_head *page_list)
1423 {
1424 struct scan_control sc = {
1425 .gfp_mask = GFP_KERNEL,
1426 .priority = DEF_PRIORITY,
1427 .may_unmap = 1,
1428 };
1429 struct reclaim_stat stat;
1430 unsigned int nr_reclaimed;
1431 struct page *page, *next;
1432 LIST_HEAD(clean_pages);
1433
1434 list_for_each_entry_safe(page, next, page_list, lru) {
1435 if (page_is_file_lru(page) && !PageDirty(page) &&
1436 !__PageMovable(page) && !PageUnevictable(page)) {
1437 ClearPageActive(page);
1438 list_move(&page->lru, &clean_pages);
1439 }
1440 }
1441
1442 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1443 &stat, true);
1444 list_splice(&clean_pages, page_list);
1445 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1446 -(long)nr_reclaimed);
1447 /*
1448 * Since lazyfree pages are isolated from file LRU from the beginning,
1449 * they will rotate back to anonymous LRU in the end if it failed to
1450 * discard so isolated count will be mismatched.
1451 * Compensate the isolated count for both LRU lists.
1452 */
1453 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1454 stat.nr_lazyfree_fail);
1455 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1456 -(long)stat.nr_lazyfree_fail);
1457 return nr_reclaimed;
1458 }
1459
1460 /*
1461 * Attempt to remove the specified page from its LRU. Only take this page
1462 * if it is of the appropriate PageActive status. Pages which are being
1463 * freed elsewhere are also ignored.
1464 *
1465 * page: page to consider
1466 * mode: one of the LRU isolation modes defined above
1467 *
1468 * returns 0 on success, -ve errno on failure.
1469 */
__isolate_lru_page(struct page * page,isolate_mode_t mode)1470 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1471 {
1472 int ret = -EINVAL;
1473
1474 /* Only take pages on the LRU. */
1475 if (!PageLRU(page))
1476 return ret;
1477
1478 /* Compaction should not handle unevictable pages but CMA can do so */
1479 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1480 return ret;
1481
1482 ret = -EBUSY;
1483
1484 /*
1485 * To minimise LRU disruption, the caller can indicate that it only
1486 * wants to isolate pages it will be able to operate on without
1487 * blocking - clean pages for the most part.
1488 *
1489 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1490 * that it is possible to migrate without blocking
1491 */
1492 if (mode & ISOLATE_ASYNC_MIGRATE) {
1493 /* All the caller can do on PageWriteback is block */
1494 if (PageWriteback(page))
1495 return ret;
1496
1497 if (PageDirty(page)) {
1498 struct address_space *mapping;
1499 bool migrate_dirty;
1500
1501 /*
1502 * Only pages without mappings or that have a
1503 * ->migratepage callback are possible to migrate
1504 * without blocking. However, we can be racing with
1505 * truncation so it's necessary to lock the page
1506 * to stabilise the mapping as truncation holds
1507 * the page lock until after the page is removed
1508 * from the page cache.
1509 */
1510 if (!trylock_page(page))
1511 return ret;
1512
1513 mapping = page_mapping(page);
1514 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1515 unlock_page(page);
1516 if (!migrate_dirty)
1517 return ret;
1518 }
1519 }
1520
1521 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1522 return ret;
1523
1524 if (likely(get_page_unless_zero(page))) {
1525 /*
1526 * Be careful not to clear PageLRU until after we're
1527 * sure the page is not being freed elsewhere -- the
1528 * page release code relies on it.
1529 */
1530 ClearPageLRU(page);
1531 ret = 0;
1532 }
1533
1534 return ret;
1535 }
1536
1537
1538 /*
1539 * Update LRU sizes after isolating pages. The LRU size updates must
1540 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1541 */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1542 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1543 enum lru_list lru, unsigned long *nr_zone_taken)
1544 {
1545 int zid;
1546
1547 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1548 if (!nr_zone_taken[zid])
1549 continue;
1550
1551 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1552 }
1553
1554 }
1555
1556 /**
1557 * pgdat->lru_lock is heavily contended. Some of the functions that
1558 * shrink the lists perform better by taking out a batch of pages
1559 * and working on them outside the LRU lock.
1560 *
1561 * For pagecache intensive workloads, this function is the hottest
1562 * spot in the kernel (apart from copy_*_user functions).
1563 *
1564 * Appropriate locks must be held before calling this function.
1565 *
1566 * @nr_to_scan: The number of eligible pages to look through on the list.
1567 * @lruvec: The LRU vector to pull pages from.
1568 * @dst: The temp list to put pages on to.
1569 * @nr_scanned: The number of pages that were scanned.
1570 * @sc: The scan_control struct for this reclaim session
1571 * @lru: LRU list id for isolating
1572 *
1573 * returns how many pages were moved onto *@dst.
1574 */
isolate_lru_pages(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)1575 unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1576 struct lruvec *lruvec, struct list_head *dst,
1577 unsigned long *nr_scanned, struct scan_control *sc,
1578 enum lru_list lru)
1579 {
1580 struct list_head *src = &lruvec->lists[lru];
1581 unsigned long nr_taken = 0;
1582 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1583 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1584 unsigned long skipped = 0;
1585 unsigned long scan, total_scan, nr_pages;
1586 LIST_HEAD(pages_skipped);
1587 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1588
1589 total_scan = 0;
1590 scan = 0;
1591 while (scan < nr_to_scan && !list_empty(src)) {
1592 struct page *page;
1593
1594 page = lru_to_page(src);
1595 prefetchw_prev_lru_page(page, src, flags);
1596
1597 VM_BUG_ON_PAGE(!PageLRU(page), page);
1598
1599 nr_pages = compound_nr(page);
1600 total_scan += nr_pages;
1601
1602 if (page_zonenum(page) > sc->reclaim_idx) {
1603 list_move(&page->lru, &pages_skipped);
1604 nr_skipped[page_zonenum(page)] += nr_pages;
1605 continue;
1606 }
1607
1608 /*
1609 * Do not count skipped pages because that makes the function
1610 * return with no isolated pages if the LRU mostly contains
1611 * ineligible pages. This causes the VM to not reclaim any
1612 * pages, triggering a premature OOM.
1613 *
1614 * Account all tail pages of THP. This would not cause
1615 * premature OOM since __isolate_lru_page() returns -EBUSY
1616 * only when the page is being freed somewhere else.
1617 */
1618 scan += nr_pages;
1619 switch (__isolate_lru_page(page, mode)) {
1620 case 0:
1621 nr_taken += nr_pages;
1622 nr_zone_taken[page_zonenum(page)] += nr_pages;
1623 list_move(&page->lru, dst);
1624 break;
1625
1626 case -EBUSY:
1627 /* else it is being freed elsewhere */
1628 list_move(&page->lru, src);
1629 continue;
1630
1631 default:
1632 BUG();
1633 }
1634 }
1635
1636 /*
1637 * Splice any skipped pages to the start of the LRU list. Note that
1638 * this disrupts the LRU order when reclaiming for lower zones but
1639 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1640 * scanning would soon rescan the same pages to skip and put the
1641 * system at risk of premature OOM.
1642 */
1643 if (!list_empty(&pages_skipped)) {
1644 int zid;
1645
1646 list_splice(&pages_skipped, src);
1647 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1648 if (!nr_skipped[zid])
1649 continue;
1650
1651 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1652 skipped += nr_skipped[zid];
1653 }
1654 }
1655 *nr_scanned = total_scan;
1656 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1657 total_scan, skipped, nr_taken, mode, lru);
1658 update_lru_sizes(lruvec, lru, nr_zone_taken);
1659 return nr_taken;
1660 }
1661
1662 /**
1663 * isolate_lru_page - tries to isolate a page from its LRU list
1664 * @page: page to isolate from its LRU list
1665 *
1666 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1667 * vmstat statistic corresponding to whatever LRU list the page was on.
1668 *
1669 * Returns 0 if the page was removed from an LRU list.
1670 * Returns -EBUSY if the page was not on an LRU list.
1671 *
1672 * The returned page will have PageLRU() cleared. If it was found on
1673 * the active list, it will have PageActive set. If it was found on
1674 * the unevictable list, it will have the PageUnevictable bit set. That flag
1675 * may need to be cleared by the caller before letting the page go.
1676 *
1677 * The vmstat statistic corresponding to the list on which the page was
1678 * found will be decremented.
1679 *
1680 * Restrictions:
1681 *
1682 * (1) Must be called with an elevated refcount on the page. This is a
1683 * fundamental difference from isolate_lru_pages (which is called
1684 * without a stable reference).
1685 * (2) the lru_lock must not be held.
1686 * (3) interrupts must be enabled.
1687 */
isolate_lru_page(struct page * page)1688 int isolate_lru_page(struct page *page)
1689 {
1690 int ret = -EBUSY;
1691
1692 VM_BUG_ON_PAGE(!page_count(page), page);
1693 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1694
1695 if (PageLRU(page)) {
1696 pg_data_t *pgdat = page_pgdat(page);
1697 struct lruvec *lruvec;
1698
1699 spin_lock_irq(&pgdat->lru_lock);
1700 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1701 if (PageLRU(page)) {
1702 int lru = page_lru(page);
1703 get_page(page);
1704 ClearPageLRU(page);
1705 del_page_from_lru_list(page, lruvec, lru);
1706 ret = 0;
1707 }
1708 spin_unlock_irq(&pgdat->lru_lock);
1709 }
1710 return ret;
1711 }
1712
1713 /*
1714 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1715 * then get rescheduled. When there are massive number of tasks doing page
1716 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1717 * the LRU list will go small and be scanned faster than necessary, leading to
1718 * unnecessary swapping, thrashing and OOM.
1719 */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1720 static int too_many_isolated(struct pglist_data *pgdat, int file,
1721 struct scan_control *sc)
1722 {
1723 unsigned long inactive, isolated;
1724
1725 if (current_is_kswapd())
1726 return 0;
1727
1728 if (!writeback_throttling_sane(sc))
1729 return 0;
1730
1731 if (file) {
1732 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1733 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1734 } else {
1735 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1736 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1737 }
1738
1739 /*
1740 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1741 * won't get blocked by normal direct-reclaimers, forming a circular
1742 * deadlock.
1743 */
1744 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1745 inactive >>= 3;
1746
1747 return isolated > inactive;
1748 }
1749
1750 /*
1751 * This moves pages from @list to corresponding LRU list.
1752 *
1753 * We move them the other way if the page is referenced by one or more
1754 * processes, from rmap.
1755 *
1756 * If the pages are mostly unmapped, the processing is fast and it is
1757 * appropriate to hold zone_lru_lock across the whole operation. But if
1758 * the pages are mapped, the processing is slow (page_referenced()) so we
1759 * should drop zone_lru_lock around each page. It's impossible to balance
1760 * this, so instead we remove the pages from the LRU while processing them.
1761 * It is safe to rely on PG_active against the non-LRU pages in here because
1762 * nobody will play with that bit on a non-LRU page.
1763 *
1764 * The downside is that we have to touch page->_refcount against each page.
1765 * But we had to alter page->flags anyway.
1766 *
1767 * Returns the number of pages moved to the given lruvec.
1768 */
1769
move_pages_to_lru(struct lruvec * lruvec,struct list_head * list)1770 unsigned move_pages_to_lru(struct lruvec *lruvec, struct list_head *list)
1771 {
1772 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1773 int nr_pages, nr_moved = 0;
1774 LIST_HEAD(pages_to_free);
1775 struct page *page;
1776 enum lru_list lru;
1777 #ifdef CONFIG_HYPERHOLD_FILE_LRU
1778 bool prot;
1779 bool file;
1780 #endif
1781
1782 while (!list_empty(list)) {
1783 page = lru_to_page(list);
1784 VM_BUG_ON_PAGE(PageLRU(page), page);
1785 if (unlikely(!page_evictable(page))) {
1786 list_del(&page->lru);
1787 spin_unlock_irq(&pgdat->lru_lock);
1788 putback_lru_page(page);
1789 spin_lock_irq(&pgdat->lru_lock);
1790 continue;
1791 }
1792 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1793
1794 SetPageLRU(page);
1795 lru = page_lru(page);
1796
1797 nr_pages = thp_nr_pages(page);
1798 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1799 list_move(&page->lru, &lruvec->lists[lru]);
1800
1801 if (put_page_testzero(page)) {
1802 __ClearPageLRU(page);
1803 __ClearPageActive(page);
1804 del_page_from_lru_list(page, lruvec, lru);
1805
1806 if (unlikely(PageCompound(page))) {
1807 spin_unlock_irq(&pgdat->lru_lock);
1808 destroy_compound_page(page);
1809 spin_lock_irq(&pgdat->lru_lock);
1810 } else
1811 list_add(&page->lru, &pages_to_free);
1812 } else {
1813 nr_moved += nr_pages;
1814 #ifdef CONFIG_HYPERHOLD_FILE_LRU
1815 if (PageActive(page)) {
1816 prot = is_prot_page(page);
1817 file = page_is_file_lru(page);
1818 if (!prot && file) {
1819 lruvec = node_lruvec(pgdat);
1820 workingset_age_nonresident(lruvec,
1821 nr_pages);
1822 } else {
1823 workingset_age_nonresident(lruvec,
1824 nr_pages);
1825 }
1826 }
1827 #else
1828 if (PageActive(page))
1829 workingset_age_nonresident(lruvec, nr_pages);
1830 #endif
1831 }
1832 }
1833
1834 /*
1835 * To save our caller's stack, now use input list for pages to free.
1836 */
1837 list_splice(&pages_to_free, list);
1838
1839 return nr_moved;
1840 }
1841
1842 /*
1843 * If a kernel thread (such as nfsd for loop-back mounts) services
1844 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
1845 * In that case we should only throttle if the backing device it is
1846 * writing to is congested. In other cases it is safe to throttle.
1847 */
current_may_throttle(void)1848 int current_may_throttle(void)
1849 {
1850 return !(current->flags & PF_LOCAL_THROTTLE) ||
1851 current->backing_dev_info == NULL ||
1852 bdi_write_congested(current->backing_dev_info);
1853 }
1854
1855 /*
1856 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1857 * of reclaimed pages
1858 */
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1859 unsigned long shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1860 struct scan_control *sc, enum lru_list lru)
1861 {
1862 LIST_HEAD(page_list);
1863 unsigned long nr_scanned;
1864 unsigned int nr_reclaimed = 0;
1865 unsigned long nr_taken;
1866 struct reclaim_stat stat;
1867 bool file = is_file_lru(lru);
1868 enum vm_event_item item;
1869 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1870 bool stalled = false;
1871
1872 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1873 if (stalled)
1874 return 0;
1875
1876 #ifdef CONFIG_HYPERHOLD_FILE_LRU
1877 sc->isolate_count++;
1878 #endif
1879 /* wait a bit for the reclaimer. */
1880 msleep(100);
1881 stalled = true;
1882
1883 /* We are about to die and free our memory. Return now. */
1884 if (fatal_signal_pending(current))
1885 return SWAP_CLUSTER_MAX;
1886 }
1887
1888 lru_add_drain();
1889
1890 spin_lock_irq(&pgdat->lru_lock);
1891
1892 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1893 &nr_scanned, sc, lru);
1894
1895 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1896 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1897 if (!cgroup_reclaim(sc))
1898 __count_vm_events(item, nr_scanned);
1899 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1900 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
1901
1902 spin_unlock_irq(&pgdat->lru_lock);
1903
1904 if (nr_taken == 0)
1905 return 0;
1906
1907 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
1908
1909 spin_lock_irq(&pgdat->lru_lock);
1910
1911 move_pages_to_lru(lruvec, &page_list);
1912
1913 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1914 #ifdef CONFIG_HYPERHOLD_FILE_LRU
1915 if (file)
1916 lru_note_cost(node_lruvec(pgdat), file, stat.nr_pageout);
1917 else
1918 lru_note_cost(lruvec, file, stat.nr_pageout);
1919 #else
1920 lru_note_cost(lruvec, file, stat.nr_pageout);
1921
1922 #endif
1923
1924 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1925 if (!cgroup_reclaim(sc))
1926 __count_vm_events(item, nr_reclaimed);
1927 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1928 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1929
1930 spin_unlock_irq(&pgdat->lru_lock);
1931
1932 mem_cgroup_uncharge_list(&page_list);
1933 free_unref_page_list(&page_list);
1934
1935 /*
1936 * If dirty pages are scanned that are not queued for IO, it
1937 * implies that flushers are not doing their job. This can
1938 * happen when memory pressure pushes dirty pages to the end of
1939 * the LRU before the dirty limits are breached and the dirty
1940 * data has expired. It can also happen when the proportion of
1941 * dirty pages grows not through writes but through memory
1942 * pressure reclaiming all the clean cache. And in some cases,
1943 * the flushers simply cannot keep up with the allocation
1944 * rate. Nudge the flusher threads in case they are asleep.
1945 */
1946 if (stat.nr_unqueued_dirty == nr_taken)
1947 wakeup_flusher_threads(WB_REASON_VMSCAN);
1948
1949 sc->nr.dirty += stat.nr_dirty;
1950 sc->nr.congested += stat.nr_congested;
1951 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1952 sc->nr.writeback += stat.nr_writeback;
1953 sc->nr.immediate += stat.nr_immediate;
1954 sc->nr.taken += nr_taken;
1955 if (file)
1956 sc->nr.file_taken += nr_taken;
1957
1958 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1959 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1960 return nr_reclaimed;
1961 }
1962
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1963 void shrink_active_list(unsigned long nr_to_scan,
1964 struct lruvec *lruvec,
1965 struct scan_control *sc,
1966 enum lru_list lru)
1967 {
1968 unsigned long nr_taken;
1969 unsigned long nr_scanned;
1970 unsigned long vm_flags;
1971 LIST_HEAD(l_hold); /* The pages which were snipped off */
1972 LIST_HEAD(l_active);
1973 LIST_HEAD(l_inactive);
1974 struct page *page;
1975 unsigned nr_deactivate, nr_activate;
1976 unsigned nr_rotated = 0;
1977 int file = is_file_lru(lru);
1978 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1979
1980 lru_add_drain();
1981
1982 spin_lock_irq(&pgdat->lru_lock);
1983
1984 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1985 &nr_scanned, sc, lru);
1986
1987 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1988
1989 if (!cgroup_reclaim(sc))
1990 __count_vm_events(PGREFILL, nr_scanned);
1991 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
1992
1993 spin_unlock_irq(&pgdat->lru_lock);
1994
1995 while (!list_empty(&l_hold)) {
1996 cond_resched();
1997 page = lru_to_page(&l_hold);
1998 list_del(&page->lru);
1999
2000 if (unlikely(!page_evictable(page))) {
2001 putback_lru_page(page);
2002 continue;
2003 }
2004
2005 if (unlikely(buffer_heads_over_limit)) {
2006 if (page_has_private(page) && trylock_page(page)) {
2007 if (page_has_private(page))
2008 try_to_release_page(page, 0);
2009 unlock_page(page);
2010 }
2011 }
2012
2013 if (page_referenced(page, 0, sc->target_mem_cgroup,
2014 &vm_flags)) {
2015 /*
2016 * Identify referenced, file-backed active pages and
2017 * give them one more trip around the active list. So
2018 * that executable code get better chances to stay in
2019 * memory under moderate memory pressure. Anon pages
2020 * are not likely to be evicted by use-once streaming
2021 * IO, plus JVM can create lots of anon VM_EXEC pages,
2022 * so we ignore them here.
2023 */
2024 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2025 nr_rotated += thp_nr_pages(page);
2026 list_add(&page->lru, &l_active);
2027 continue;
2028 }
2029 }
2030
2031 ClearPageActive(page); /* we are de-activating */
2032 SetPageWorkingset(page);
2033 list_add(&page->lru, &l_inactive);
2034 }
2035
2036 /*
2037 * Move pages back to the lru list.
2038 */
2039 spin_lock_irq(&pgdat->lru_lock);
2040
2041 nr_activate = move_pages_to_lru(lruvec, &l_active);
2042 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2043 /* Keep all free pages in l_active list */
2044 list_splice(&l_inactive, &l_active);
2045
2046 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2047 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2048
2049 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2050 spin_unlock_irq(&pgdat->lru_lock);
2051
2052 mem_cgroup_uncharge_list(&l_active);
2053 free_unref_page_list(&l_active);
2054 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2055 nr_deactivate, nr_rotated, sc->priority, file);
2056 }
2057
reclaim_pages(struct list_head * page_list)2058 unsigned long reclaim_pages(struct list_head *page_list)
2059 {
2060 int nid = NUMA_NO_NODE;
2061 unsigned int nr_reclaimed = 0;
2062 LIST_HEAD(node_page_list);
2063 struct reclaim_stat dummy_stat;
2064 struct page *page;
2065 struct scan_control sc = {
2066 .gfp_mask = GFP_KERNEL,
2067 .priority = DEF_PRIORITY,
2068 .may_writepage = 1,
2069 .may_unmap = 1,
2070 .may_swap = 1,
2071 };
2072
2073 while (!list_empty(page_list)) {
2074 page = lru_to_page(page_list);
2075 if (nid == NUMA_NO_NODE) {
2076 nid = page_to_nid(page);
2077 INIT_LIST_HEAD(&node_page_list);
2078 }
2079
2080 if (nid == page_to_nid(page)) {
2081 ClearPageActive(page);
2082 list_move(&page->lru, &node_page_list);
2083 continue;
2084 }
2085
2086 nr_reclaimed += shrink_page_list(&node_page_list,
2087 NODE_DATA(nid),
2088 &sc, &dummy_stat, false);
2089 while (!list_empty(&node_page_list)) {
2090 page = lru_to_page(&node_page_list);
2091 list_del(&page->lru);
2092 putback_lru_page(page);
2093 }
2094
2095 nid = NUMA_NO_NODE;
2096 }
2097
2098 if (!list_empty(&node_page_list)) {
2099 nr_reclaimed += shrink_page_list(&node_page_list,
2100 NODE_DATA(nid),
2101 &sc, &dummy_stat, false);
2102 while (!list_empty(&node_page_list)) {
2103 page = lru_to_page(&node_page_list);
2104 list_del(&page->lru);
2105 putback_lru_page(page);
2106 }
2107 }
2108
2109 return nr_reclaimed;
2110 }
2111
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2112 unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2113 struct lruvec *lruvec, struct scan_control *sc)
2114 {
2115 if (is_active_lru(lru)) {
2116 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2117 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2118 else
2119 sc->skipped_deactivate = 1;
2120 return 0;
2121 }
2122
2123 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2124 }
2125
2126 /*
2127 * The inactive anon list should be small enough that the VM never has
2128 * to do too much work.
2129 *
2130 * The inactive file list should be small enough to leave most memory
2131 * to the established workingset on the scan-resistant active list,
2132 * but large enough to avoid thrashing the aggregate readahead window.
2133 *
2134 * Both inactive lists should also be large enough that each inactive
2135 * page has a chance to be referenced again before it is reclaimed.
2136 *
2137 * If that fails and refaulting is observed, the inactive list grows.
2138 *
2139 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2140 * on this LRU, maintained by the pageout code. An inactive_ratio
2141 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2142 *
2143 * total target max
2144 * memory ratio inactive
2145 * -------------------------------------
2146 * 10MB 1 5MB
2147 * 100MB 1 50MB
2148 * 1GB 3 250MB
2149 * 10GB 10 0.9GB
2150 * 100GB 31 3GB
2151 * 1TB 101 10GB
2152 * 10TB 320 32GB
2153 */
inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2154 bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2155 {
2156 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2157 unsigned long inactive, active;
2158 unsigned long inactive_ratio;
2159 unsigned long gb;
2160
2161 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2162 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2163
2164 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2165 if (gb)
2166 inactive_ratio = int_sqrt(10 * gb);
2167 else
2168 inactive_ratio = 1;
2169
2170 return inactive * inactive_ratio < active;
2171 }
2172
2173 /*
2174 * Determine how aggressively the anon and file LRU lists should be
2175 * scanned. The relative value of each set of LRU lists is determined
2176 * by looking at the fraction of the pages scanned we did rotate back
2177 * onto the active list instead of evict.
2178 *
2179 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2180 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2181 */
2182 #ifndef CONFIG_HYPERHOLD_FILE_LRU
get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)2183 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2184 unsigned long *nr)
2185 {
2186 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2187 unsigned long anon_cost, file_cost, total_cost;
2188 int swappiness = mem_cgroup_swappiness(memcg);
2189 u64 fraction[ANON_AND_FILE];
2190 u64 denominator = 0; /* gcc */
2191 enum scan_balance scan_balance;
2192 unsigned long ap, fp;
2193 enum lru_list lru;
2194
2195 /* If we have no swap space, do not bother scanning anon pages. */
2196 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2197 scan_balance = SCAN_FILE;
2198 goto out;
2199 }
2200
2201 /*
2202 * Global reclaim will swap to prevent OOM even with no
2203 * swappiness, but memcg users want to use this knob to
2204 * disable swapping for individual groups completely when
2205 * using the memory controller's swap limit feature would be
2206 * too expensive.
2207 */
2208 if (cgroup_reclaim(sc) && !swappiness) {
2209 scan_balance = SCAN_FILE;
2210 goto out;
2211 }
2212
2213 /*
2214 * Do not apply any pressure balancing cleverness when the
2215 * system is close to OOM, scan both anon and file equally
2216 * (unless the swappiness setting disagrees with swapping).
2217 */
2218 if (!sc->priority && swappiness) {
2219 scan_balance = SCAN_EQUAL;
2220 goto out;
2221 }
2222
2223 /*
2224 * If the system is almost out of file pages, force-scan anon.
2225 */
2226 if (sc->file_is_tiny) {
2227 scan_balance = SCAN_ANON;
2228 goto out;
2229 }
2230
2231 /*
2232 * If there is enough inactive page cache, we do not reclaim
2233 * anything from the anonymous working right now.
2234 */
2235 if (sc->cache_trim_mode) {
2236 scan_balance = SCAN_FILE;
2237 goto out;
2238 }
2239
2240 scan_balance = SCAN_FRACT;
2241 /*
2242 * Calculate the pressure balance between anon and file pages.
2243 *
2244 * The amount of pressure we put on each LRU is inversely
2245 * proportional to the cost of reclaiming each list, as
2246 * determined by the share of pages that are refaulting, times
2247 * the relative IO cost of bringing back a swapped out
2248 * anonymous page vs reloading a filesystem page (swappiness).
2249 *
2250 * Although we limit that influence to ensure no list gets
2251 * left behind completely: at least a third of the pressure is
2252 * applied, before swappiness.
2253 *
2254 * With swappiness at 100, anon and file have equal IO cost.
2255 */
2256 total_cost = sc->anon_cost + sc->file_cost;
2257 anon_cost = total_cost + sc->anon_cost;
2258 file_cost = total_cost + sc->file_cost;
2259 total_cost = anon_cost + file_cost;
2260
2261 ap = swappiness * (total_cost + 1);
2262 ap /= anon_cost + 1;
2263
2264 fp = (200 - swappiness) * (total_cost + 1);
2265 fp /= file_cost + 1;
2266
2267 fraction[0] = ap;
2268 fraction[1] = fp;
2269 denominator = ap + fp;
2270 out:
2271 for_each_evictable_lru(lru) {
2272 int file = is_file_lru(lru);
2273 unsigned long lruvec_size;
2274 unsigned long low, min;
2275 unsigned long scan;
2276
2277 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2278 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2279 &min, &low);
2280
2281 if (min || low) {
2282 /*
2283 * Scale a cgroup's reclaim pressure by proportioning
2284 * its current usage to its memory.low or memory.min
2285 * setting.
2286 *
2287 * This is important, as otherwise scanning aggression
2288 * becomes extremely binary -- from nothing as we
2289 * approach the memory protection threshold, to totally
2290 * nominal as we exceed it. This results in requiring
2291 * setting extremely liberal protection thresholds. It
2292 * also means we simply get no protection at all if we
2293 * set it too low, which is not ideal.
2294 *
2295 * If there is any protection in place, we reduce scan
2296 * pressure by how much of the total memory used is
2297 * within protection thresholds.
2298 *
2299 * There is one special case: in the first reclaim pass,
2300 * we skip over all groups that are within their low
2301 * protection. If that fails to reclaim enough pages to
2302 * satisfy the reclaim goal, we come back and override
2303 * the best-effort low protection. However, we still
2304 * ideally want to honor how well-behaved groups are in
2305 * that case instead of simply punishing them all
2306 * equally. As such, we reclaim them based on how much
2307 * memory they are using, reducing the scan pressure
2308 * again by how much of the total memory used is under
2309 * hard protection.
2310 */
2311 unsigned long cgroup_size = mem_cgroup_size(memcg);
2312 unsigned long protection;
2313
2314 /* memory.low scaling, make sure we retry before OOM */
2315 if (!sc->memcg_low_reclaim && low > min) {
2316 protection = low;
2317 sc->memcg_low_skipped = 1;
2318 } else {
2319 protection = min;
2320 }
2321
2322 /* Avoid TOCTOU with earlier protection check */
2323 cgroup_size = max(cgroup_size, protection);
2324
2325 scan = lruvec_size - lruvec_size * protection /
2326 (cgroup_size + 1);
2327
2328 /*
2329 * Minimally target SWAP_CLUSTER_MAX pages to keep
2330 * reclaim moving forwards, avoiding decrementing
2331 * sc->priority further than desirable.
2332 */
2333 scan = max(scan, SWAP_CLUSTER_MAX);
2334 } else {
2335 scan = lruvec_size;
2336 }
2337
2338 scan >>= sc->priority;
2339
2340 /*
2341 * If the cgroup's already been deleted, make sure to
2342 * scrape out the remaining cache.
2343 */
2344 if (!scan && !mem_cgroup_online(memcg))
2345 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2346
2347 switch (scan_balance) {
2348 case SCAN_EQUAL:
2349 /* Scan lists relative to size */
2350 break;
2351 case SCAN_FRACT:
2352 /*
2353 * Scan types proportional to swappiness and
2354 * their relative recent reclaim efficiency.
2355 * Make sure we don't miss the last page on
2356 * the offlined memory cgroups because of a
2357 * round-off error.
2358 */
2359 scan = mem_cgroup_online(memcg) ?
2360 div64_u64(scan * fraction[file], denominator) :
2361 DIV64_U64_ROUND_UP(scan * fraction[file],
2362 denominator);
2363 break;
2364 case SCAN_FILE:
2365 case SCAN_ANON:
2366 /* Scan one type exclusively */
2367 if ((scan_balance == SCAN_FILE) != file)
2368 scan = 0;
2369 break;
2370 default:
2371 /* Look ma, no brain */
2372 BUG();
2373 }
2374
2375 nr[lru] = scan;
2376 }
2377 }
2378
shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)2379 void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2380 {
2381 unsigned long nr[NR_LRU_LISTS];
2382 unsigned long targets[NR_LRU_LISTS];
2383 unsigned long nr_to_scan;
2384 enum lru_list lru;
2385 unsigned long nr_reclaimed = 0;
2386 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2387 struct blk_plug plug;
2388 bool scan_adjusted;
2389
2390 get_scan_count(lruvec, sc, nr);
2391
2392 /* Record the original scan target for proportional adjustments later */
2393 memcpy(targets, nr, sizeof(nr));
2394
2395 /*
2396 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2397 * event that can occur when there is little memory pressure e.g.
2398 * multiple streaming readers/writers. Hence, we do not abort scanning
2399 * when the requested number of pages are reclaimed when scanning at
2400 * DEF_PRIORITY on the assumption that the fact we are direct
2401 * reclaiming implies that kswapd is not keeping up and it is best to
2402 * do a batch of work at once. For memcg reclaim one check is made to
2403 * abort proportional reclaim if either the file or anon lru has already
2404 * dropped to zero at the first pass.
2405 */
2406 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2407 sc->priority == DEF_PRIORITY);
2408
2409 blk_start_plug(&plug);
2410 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2411 nr[LRU_INACTIVE_FILE]) {
2412 unsigned long nr_anon, nr_file, percentage;
2413 unsigned long nr_scanned;
2414
2415 for_each_evictable_lru(lru) {
2416 if (nr[lru]) {
2417 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2418 nr[lru] -= nr_to_scan;
2419
2420 nr_reclaimed += shrink_list(lru, nr_to_scan,
2421 lruvec, sc);
2422 }
2423 }
2424
2425 cond_resched();
2426
2427 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2428 continue;
2429
2430 /*
2431 * For kswapd and memcg, reclaim at least the number of pages
2432 * requested. Ensure that the anon and file LRUs are scanned
2433 * proportionally what was requested by get_scan_count(). We
2434 * stop reclaiming one LRU and reduce the amount scanning
2435 * proportional to the original scan target.
2436 */
2437 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2438 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2439
2440 /*
2441 * It's just vindictive to attack the larger once the smaller
2442 * has gone to zero. And given the way we stop scanning the
2443 * smaller below, this makes sure that we only make one nudge
2444 * towards proportionality once we've got nr_to_reclaim.
2445 */
2446 if (!nr_file || !nr_anon)
2447 break;
2448
2449 if (nr_file > nr_anon) {
2450 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2451 targets[LRU_ACTIVE_ANON] + 1;
2452 lru = LRU_BASE;
2453 percentage = nr_anon * 100 / scan_target;
2454 } else {
2455 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2456 targets[LRU_ACTIVE_FILE] + 1;
2457 lru = LRU_FILE;
2458 percentage = nr_file * 100 / scan_target;
2459 }
2460
2461 /* Stop scanning the smaller of the LRU */
2462 nr[lru] = 0;
2463 nr[lru + LRU_ACTIVE] = 0;
2464
2465 /*
2466 * Recalculate the other LRU scan count based on its original
2467 * scan target and the percentage scanning already complete
2468 */
2469 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2470 nr_scanned = targets[lru] - nr[lru];
2471 nr[lru] = targets[lru] * (100 - percentage) / 100;
2472 nr[lru] -= min(nr[lru], nr_scanned);
2473
2474 lru += LRU_ACTIVE;
2475 nr_scanned = targets[lru] - nr[lru];
2476 nr[lru] = targets[lru] * (100 - percentage) / 100;
2477 nr[lru] -= min(nr[lru], nr_scanned);
2478
2479 scan_adjusted = true;
2480 }
2481 blk_finish_plug(&plug);
2482 sc->nr_reclaimed += nr_reclaimed;
2483
2484 /*
2485 * Even if we did not try to evict anon pages at all, we want to
2486 * rebalance the anon lru active/inactive ratio.
2487 */
2488 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2489 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2490 sc, LRU_ACTIVE_ANON);
2491 }
2492 #endif
2493
2494 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)2495 static bool in_reclaim_compaction(struct scan_control *sc)
2496 {
2497 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2498 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2499 sc->priority < DEF_PRIORITY - 2))
2500 return true;
2501
2502 return false;
2503 }
2504
2505 /*
2506 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2507 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2508 * true if more pages should be reclaimed such that when the page allocator
2509 * calls try_to_compact_pages() that it will have enough free pages to succeed.
2510 * It will give up earlier than that if there is difficulty reclaiming pages.
2511 */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)2512 inline bool should_continue_reclaim(struct pglist_data *pgdat,
2513 unsigned long nr_reclaimed,
2514 struct scan_control *sc)
2515 {
2516 unsigned long pages_for_compaction;
2517 unsigned long inactive_lru_pages;
2518 int z;
2519
2520 /* If not in reclaim/compaction mode, stop */
2521 if (!in_reclaim_compaction(sc))
2522 return false;
2523
2524 /*
2525 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2526 * number of pages that were scanned. This will return to the caller
2527 * with the risk reclaim/compaction and the resulting allocation attempt
2528 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2529 * allocations through requiring that the full LRU list has been scanned
2530 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2531 * scan, but that approximation was wrong, and there were corner cases
2532 * where always a non-zero amount of pages were scanned.
2533 */
2534 if (!nr_reclaimed)
2535 return false;
2536
2537 /* If compaction would go ahead or the allocation would succeed, stop */
2538 for (z = 0; z <= sc->reclaim_idx; z++) {
2539 struct zone *zone = &pgdat->node_zones[z];
2540 if (!managed_zone(zone))
2541 continue;
2542
2543 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2544 case COMPACT_SUCCESS:
2545 case COMPACT_CONTINUE:
2546 return false;
2547 default:
2548 /* check next zone */
2549 ;
2550 }
2551 }
2552
2553 /*
2554 * If we have not reclaimed enough pages for compaction and the
2555 * inactive lists are large enough, continue reclaiming
2556 */
2557 pages_for_compaction = compact_gap(sc->order);
2558 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2559 if (get_nr_swap_pages() > 0)
2560 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2561
2562 return inactive_lru_pages > pages_for_compaction;
2563 }
2564
2565 #ifndef CONFIG_HYPERHOLD_FILE_LRU
shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)2566 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2567 {
2568 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2569 struct mem_cgroup *memcg;
2570
2571 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2572 do {
2573 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2574 unsigned long reclaimed;
2575 unsigned long scanned;
2576
2577 /*
2578 * This loop can become CPU-bound when target memcgs
2579 * aren't eligible for reclaim - either because they
2580 * don't have any reclaimable pages, or because their
2581 * memory is explicitly protected. Avoid soft lockups.
2582 */
2583 cond_resched();
2584
2585 mem_cgroup_calculate_protection(target_memcg, memcg);
2586
2587 if (mem_cgroup_below_min(memcg)) {
2588 /*
2589 * Hard protection.
2590 * If there is no reclaimable memory, OOM.
2591 */
2592 continue;
2593 } else if (mem_cgroup_below_low(memcg)) {
2594 /*
2595 * Soft protection.
2596 * Respect the protection only as long as
2597 * there is an unprotected supply
2598 * of reclaimable memory from other cgroups.
2599 */
2600 if (!sc->memcg_low_reclaim) {
2601 sc->memcg_low_skipped = 1;
2602 continue;
2603 }
2604 memcg_memory_event(memcg, MEMCG_LOW);
2605 }
2606
2607 reclaimed = sc->nr_reclaimed;
2608 scanned = sc->nr_scanned;
2609
2610 shrink_lruvec(lruvec, sc);
2611
2612 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2613 sc->priority);
2614
2615 /* Record the group's reclaim efficiency */
2616 vmpressure(sc->gfp_mask, memcg, false,
2617 sc->nr_scanned - scanned,
2618 sc->nr_reclaimed - reclaimed);
2619
2620 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2621 }
2622
shrink_node(pg_data_t * pgdat,struct scan_control * sc)2623 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2624 {
2625 struct reclaim_state *reclaim_state = current->reclaim_state;
2626 unsigned long nr_reclaimed, nr_scanned;
2627 struct lruvec *target_lruvec;
2628 bool reclaimable = false;
2629 unsigned long file;
2630
2631 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2632
2633 again:
2634 memset(&sc->nr, 0, sizeof(sc->nr));
2635
2636 nr_reclaimed = sc->nr_reclaimed;
2637 nr_scanned = sc->nr_scanned;
2638
2639 /*
2640 * Determine the scan balance between anon and file LRUs.
2641 */
2642 spin_lock_irq(&pgdat->lru_lock);
2643 sc->anon_cost = target_lruvec->anon_cost;
2644 sc->file_cost = target_lruvec->file_cost;
2645 spin_unlock_irq(&pgdat->lru_lock);
2646
2647 /*
2648 * Target desirable inactive:active list ratios for the anon
2649 * and file LRU lists.
2650 */
2651 if (!sc->force_deactivate) {
2652 unsigned long refaults;
2653
2654 refaults = lruvec_page_state(target_lruvec,
2655 WORKINGSET_ACTIVATE_ANON);
2656 if (refaults != target_lruvec->refaults[0] ||
2657 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2658 sc->may_deactivate |= DEACTIVATE_ANON;
2659 else
2660 sc->may_deactivate &= ~DEACTIVATE_ANON;
2661
2662 /*
2663 * When refaults are being observed, it means a new
2664 * workingset is being established. Deactivate to get
2665 * rid of any stale active pages quickly.
2666 */
2667 refaults = lruvec_page_state(target_lruvec,
2668 WORKINGSET_ACTIVATE_FILE);
2669 if (refaults != target_lruvec->refaults[1] ||
2670 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2671 sc->may_deactivate |= DEACTIVATE_FILE;
2672 else
2673 sc->may_deactivate &= ~DEACTIVATE_FILE;
2674 } else
2675 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2676
2677 /*
2678 * If we have plenty of inactive file pages that aren't
2679 * thrashing, try to reclaim those first before touching
2680 * anonymous pages.
2681 */
2682 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2683 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2684 sc->cache_trim_mode = 1;
2685 else
2686 sc->cache_trim_mode = 0;
2687
2688 /*
2689 * Prevent the reclaimer from falling into the cache trap: as
2690 * cache pages start out inactive, every cache fault will tip
2691 * the scan balance towards the file LRU. And as the file LRU
2692 * shrinks, so does the window for rotation from references.
2693 * This means we have a runaway feedback loop where a tiny
2694 * thrashing file LRU becomes infinitely more attractive than
2695 * anon pages. Try to detect this based on file LRU size.
2696 */
2697 if (!cgroup_reclaim(sc)) {
2698 unsigned long total_high_wmark = 0;
2699 unsigned long free, anon;
2700 int z;
2701
2702 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2703 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2704 node_page_state(pgdat, NR_INACTIVE_FILE);
2705
2706 for (z = 0; z < MAX_NR_ZONES; z++) {
2707 struct zone *zone = &pgdat->node_zones[z];
2708 if (!managed_zone(zone))
2709 continue;
2710
2711 total_high_wmark += high_wmark_pages(zone);
2712 }
2713
2714 /*
2715 * Consider anon: if that's low too, this isn't a
2716 * runaway file reclaim problem, but rather just
2717 * extreme pressure. Reclaim as per usual then.
2718 */
2719 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2720
2721 sc->file_is_tiny =
2722 file + free <= total_high_wmark &&
2723 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2724 anon >> sc->priority;
2725 }
2726
2727 shrink_node_memcgs(pgdat, sc);
2728
2729 if (reclaim_state) {
2730 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2731 reclaim_state->reclaimed_slab = 0;
2732 }
2733
2734 /* Record the subtree's reclaim efficiency */
2735 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2736 sc->nr_scanned - nr_scanned,
2737 sc->nr_reclaimed - nr_reclaimed);
2738
2739 if (sc->nr_reclaimed - nr_reclaimed)
2740 reclaimable = true;
2741
2742 if (current_is_kswapd()) {
2743 /*
2744 * If reclaim is isolating dirty pages under writeback,
2745 * it implies that the long-lived page allocation rate
2746 * is exceeding the page laundering rate. Either the
2747 * global limits are not being effective at throttling
2748 * processes due to the page distribution throughout
2749 * zones or there is heavy usage of a slow backing
2750 * device. The only option is to throttle from reclaim
2751 * context which is not ideal as there is no guarantee
2752 * the dirtying process is throttled in the same way
2753 * balance_dirty_pages() manages.
2754 *
2755 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2756 * count the number of pages under pages flagged for
2757 * immediate reclaim and stall if any are encountered
2758 * in the nr_immediate check below.
2759 */
2760 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2761 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2762
2763 /* Allow kswapd to start writing pages during reclaim.*/
2764 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2765 set_bit(PGDAT_DIRTY, &pgdat->flags);
2766
2767 /*
2768 * If kswapd scans pages marked for immediate
2769 * reclaim and under writeback (nr_immediate), it
2770 * implies that pages are cycling through the LRU
2771 * faster than they are written so also forcibly stall.
2772 */
2773 if (sc->nr.immediate)
2774 congestion_wait(BLK_RW_ASYNC, HZ/10);
2775 }
2776
2777 /*
2778 * Tag a node/memcg as congested if all the dirty pages
2779 * scanned were backed by a congested BDI and
2780 * wait_iff_congested will stall.
2781 *
2782 * Legacy memcg will stall in page writeback so avoid forcibly
2783 * stalling in wait_iff_congested().
2784 */
2785 if ((current_is_kswapd() ||
2786 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2787 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2788 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2789
2790 /*
2791 * Stall direct reclaim for IO completions if underlying BDIs
2792 * and node is congested. Allow kswapd to continue until it
2793 * starts encountering unqueued dirty pages or cycling through
2794 * the LRU too quickly.
2795 */
2796 if (!current_is_kswapd() && current_may_throttle() &&
2797 !sc->hibernation_mode &&
2798 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2799 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2800
2801 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2802 sc))
2803 goto again;
2804
2805 /*
2806 * Kswapd gives up on balancing particular nodes after too
2807 * many failures to reclaim anything from them and goes to
2808 * sleep. On reclaim progress, reset the failure counter. A
2809 * successful direct reclaim run will revive a dormant kswapd.
2810 */
2811 if (reclaimable)
2812 pgdat->kswapd_failures = 0;
2813 }
2814 #endif
2815
2816 /*
2817 * Returns true if compaction should go ahead for a costly-order request, or
2818 * the allocation would already succeed without compaction. Return false if we
2819 * should reclaim first.
2820 */
compaction_ready(struct zone * zone,struct scan_control * sc)2821 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2822 {
2823 unsigned long watermark;
2824 enum compact_result suitable;
2825
2826 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2827 if (suitable == COMPACT_SUCCESS)
2828 /* Allocation should succeed already. Don't reclaim. */
2829 return true;
2830 if (suitable == COMPACT_SKIPPED)
2831 /* Compaction cannot yet proceed. Do reclaim. */
2832 return false;
2833
2834 /*
2835 * Compaction is already possible, but it takes time to run and there
2836 * are potentially other callers using the pages just freed. So proceed
2837 * with reclaim to make a buffer of free pages available to give
2838 * compaction a reasonable chance of completing and allocating the page.
2839 * Note that we won't actually reclaim the whole buffer in one attempt
2840 * as the target watermark in should_continue_reclaim() is lower. But if
2841 * we are already above the high+gap watermark, don't reclaim at all.
2842 */
2843 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2844
2845 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2846 }
2847
2848 /*
2849 * This is the direct reclaim path, for page-allocating processes. We only
2850 * try to reclaim pages from zones which will satisfy the caller's allocation
2851 * request.
2852 *
2853 * If a zone is deemed to be full of pinned pages then just give it a light
2854 * scan then give up on it.
2855 */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)2856 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2857 {
2858 struct zoneref *z;
2859 struct zone *zone;
2860 unsigned long nr_soft_reclaimed;
2861 unsigned long nr_soft_scanned;
2862 gfp_t orig_mask;
2863 pg_data_t *last_pgdat = NULL;
2864
2865 /*
2866 * If the number of buffer_heads in the machine exceeds the maximum
2867 * allowed level, force direct reclaim to scan the highmem zone as
2868 * highmem pages could be pinning lowmem pages storing buffer_heads
2869 */
2870 orig_mask = sc->gfp_mask;
2871 if (buffer_heads_over_limit) {
2872 sc->gfp_mask |= __GFP_HIGHMEM;
2873 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2874 }
2875
2876 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2877 sc->reclaim_idx, sc->nodemask) {
2878 /*
2879 * Take care memory controller reclaiming has small influence
2880 * to global LRU.
2881 */
2882 if (!cgroup_reclaim(sc)) {
2883 if (!cpuset_zone_allowed(zone,
2884 GFP_KERNEL | __GFP_HARDWALL))
2885 continue;
2886
2887 /*
2888 * If we already have plenty of memory free for
2889 * compaction in this zone, don't free any more.
2890 * Even though compaction is invoked for any
2891 * non-zero order, only frequent costly order
2892 * reclamation is disruptive enough to become a
2893 * noticeable problem, like transparent huge
2894 * page allocations.
2895 */
2896 if (IS_ENABLED(CONFIG_COMPACTION) &&
2897 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2898 compaction_ready(zone, sc)) {
2899 sc->compaction_ready = true;
2900 continue;
2901 }
2902
2903 /*
2904 * Shrink each node in the zonelist once. If the
2905 * zonelist is ordered by zone (not the default) then a
2906 * node may be shrunk multiple times but in that case
2907 * the user prefers lower zones being preserved.
2908 */
2909 if (zone->zone_pgdat == last_pgdat)
2910 continue;
2911
2912 /*
2913 * This steals pages from memory cgroups over softlimit
2914 * and returns the number of reclaimed pages and
2915 * scanned pages. This works for global memory pressure
2916 * and balancing, not for a memcg's limit.
2917 */
2918 nr_soft_scanned = 0;
2919 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2920 sc->order, sc->gfp_mask,
2921 &nr_soft_scanned);
2922 sc->nr_reclaimed += nr_soft_reclaimed;
2923 sc->nr_scanned += nr_soft_scanned;
2924 /* need some check for avoid more shrink_zone() */
2925 }
2926
2927 /* See comment about same check for global reclaim above */
2928 if (zone->zone_pgdat == last_pgdat)
2929 continue;
2930 last_pgdat = zone->zone_pgdat;
2931 #ifdef CONFIG_HYPERHOLD_FILE_LRU
2932 shrink_node_hyperhold(zone->zone_pgdat, sc);
2933 #else
2934 shrink_node(zone->zone_pgdat, sc);
2935 #endif
2936 }
2937
2938 /*
2939 * Restore to original mask to avoid the impact on the caller if we
2940 * promoted it to __GFP_HIGHMEM.
2941 */
2942 sc->gfp_mask = orig_mask;
2943 }
2944
snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)2945 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2946 {
2947 struct lruvec *target_lruvec;
2948 unsigned long refaults;
2949
2950 #ifdef CONFIG_HYPERHOLD_FILE_LRU
2951 struct lruvec *lruvec;
2952
2953 lruvec = node_lruvec(pgdat);
2954 lruvec->refaults[0] = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE_ANON); /* modified */
2955 lruvec->refaults[1] = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE_FILE); /* modified */
2956 #endif
2957
2958 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
2959 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
2960 target_lruvec->refaults[0] = refaults;
2961 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
2962 target_lruvec->refaults[1] = refaults;
2963 }
2964
2965 /*
2966 * This is the main entry point to direct page reclaim.
2967 *
2968 * If a full scan of the inactive list fails to free enough memory then we
2969 * are "out of memory" and something needs to be killed.
2970 *
2971 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2972 * high - the zone may be full of dirty or under-writeback pages, which this
2973 * caller can't do much about. We kick the writeback threads and take explicit
2974 * naps in the hope that some of these pages can be written. But if the
2975 * allocating task holds filesystem locks which prevent writeout this might not
2976 * work, and the allocation attempt will fail.
2977 *
2978 * returns: 0, if no pages reclaimed
2979 * else, the number of pages reclaimed
2980 */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)2981 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2982 struct scan_control *sc)
2983 {
2984 int initial_priority = sc->priority;
2985 pg_data_t *last_pgdat;
2986 struct zoneref *z;
2987 struct zone *zone;
2988 retry:
2989 delayacct_freepages_start();
2990
2991 if (!cgroup_reclaim(sc))
2992 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2993
2994 do {
2995 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2996 sc->priority);
2997 sc->nr_scanned = 0;
2998 shrink_zones(zonelist, sc);
2999
3000 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3001 break;
3002
3003 if (sc->compaction_ready)
3004 break;
3005
3006 /*
3007 * If we're getting trouble reclaiming, start doing
3008 * writepage even in laptop mode.
3009 */
3010 if (sc->priority < DEF_PRIORITY - 2)
3011 sc->may_writepage = 1;
3012 } while (--sc->priority >= 0);
3013
3014 last_pgdat = NULL;
3015 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3016 sc->nodemask) {
3017 if (zone->zone_pgdat == last_pgdat)
3018 continue;
3019 last_pgdat = zone->zone_pgdat;
3020
3021 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3022
3023 if (cgroup_reclaim(sc)) {
3024 struct lruvec *lruvec;
3025
3026 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3027 zone->zone_pgdat);
3028 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3029 }
3030 }
3031
3032 delayacct_freepages_end();
3033
3034 if (sc->nr_reclaimed)
3035 return sc->nr_reclaimed;
3036
3037 /* Aborted reclaim to try compaction? don't OOM, then */
3038 if (sc->compaction_ready)
3039 return 1;
3040
3041 /*
3042 * We make inactive:active ratio decisions based on the node's
3043 * composition of memory, but a restrictive reclaim_idx or a
3044 * memory.low cgroup setting can exempt large amounts of
3045 * memory from reclaim. Neither of which are very common, so
3046 * instead of doing costly eligibility calculations of the
3047 * entire cgroup subtree up front, we assume the estimates are
3048 * good, and retry with forcible deactivation if that fails.
3049 */
3050 if (sc->skipped_deactivate) {
3051 sc->priority = initial_priority;
3052 sc->force_deactivate = 1;
3053 sc->skipped_deactivate = 0;
3054 goto retry;
3055 }
3056
3057 /* Untapped cgroup reserves? Don't OOM, retry. */
3058 if (sc->memcg_low_skipped) {
3059 sc->priority = initial_priority;
3060 sc->force_deactivate = 0;
3061 sc->memcg_low_reclaim = 1;
3062 sc->memcg_low_skipped = 0;
3063 goto retry;
3064 }
3065
3066 return 0;
3067 }
3068
allow_direct_reclaim(pg_data_t * pgdat)3069 static bool allow_direct_reclaim(pg_data_t *pgdat)
3070 {
3071 struct zone *zone;
3072 unsigned long pfmemalloc_reserve = 0;
3073 unsigned long free_pages = 0;
3074 int i;
3075 bool wmark_ok;
3076
3077 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3078 return true;
3079
3080 for (i = 0; i <= ZONE_NORMAL; i++) {
3081 zone = &pgdat->node_zones[i];
3082 if (!managed_zone(zone))
3083 continue;
3084
3085 if (!zone_reclaimable_pages(zone))
3086 continue;
3087
3088 pfmemalloc_reserve += min_wmark_pages(zone);
3089 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3090 }
3091
3092 /* If there are no reserves (unexpected config) then do not throttle */
3093 if (!pfmemalloc_reserve)
3094 return true;
3095
3096 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3097
3098 /* kswapd must be awake if processes are being throttled */
3099 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3100 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3101 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3102
3103 wake_up_interruptible(&pgdat->kswapd_wait);
3104 }
3105
3106 return wmark_ok;
3107 }
3108
3109 /*
3110 * Throttle direct reclaimers if backing storage is backed by the network
3111 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3112 * depleted. kswapd will continue to make progress and wake the processes
3113 * when the low watermark is reached.
3114 *
3115 * Returns true if a fatal signal was delivered during throttling. If this
3116 * happens, the page allocator should not consider triggering the OOM killer.
3117 */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)3118 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3119 nodemask_t *nodemask)
3120 {
3121 struct zoneref *z;
3122 struct zone *zone;
3123 pg_data_t *pgdat = NULL;
3124
3125 /*
3126 * Kernel threads should not be throttled as they may be indirectly
3127 * responsible for cleaning pages necessary for reclaim to make forward
3128 * progress. kjournald for example may enter direct reclaim while
3129 * committing a transaction where throttling it could forcing other
3130 * processes to block on log_wait_commit().
3131 */
3132 if (current->flags & PF_KTHREAD)
3133 goto out;
3134
3135 /*
3136 * If a fatal signal is pending, this process should not throttle.
3137 * It should return quickly so it can exit and free its memory
3138 */
3139 if (fatal_signal_pending(current))
3140 goto out;
3141
3142 /*
3143 * Check if the pfmemalloc reserves are ok by finding the first node
3144 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3145 * GFP_KERNEL will be required for allocating network buffers when
3146 * swapping over the network so ZONE_HIGHMEM is unusable.
3147 *
3148 * Throttling is based on the first usable node and throttled processes
3149 * wait on a queue until kswapd makes progress and wakes them. There
3150 * is an affinity then between processes waking up and where reclaim
3151 * progress has been made assuming the process wakes on the same node.
3152 * More importantly, processes running on remote nodes will not compete
3153 * for remote pfmemalloc reserves and processes on different nodes
3154 * should make reasonable progress.
3155 */
3156 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3157 gfp_zone(gfp_mask), nodemask) {
3158 if (zone_idx(zone) > ZONE_NORMAL)
3159 continue;
3160
3161 /* Throttle based on the first usable node */
3162 pgdat = zone->zone_pgdat;
3163 if (allow_direct_reclaim(pgdat))
3164 goto out;
3165 break;
3166 }
3167
3168 /* If no zone was usable by the allocation flags then do not throttle */
3169 if (!pgdat)
3170 goto out;
3171
3172 /* Account for the throttling */
3173 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3174
3175 /*
3176 * If the caller cannot enter the filesystem, it's possible that it
3177 * is due to the caller holding an FS lock or performing a journal
3178 * transaction in the case of a filesystem like ext[3|4]. In this case,
3179 * it is not safe to block on pfmemalloc_wait as kswapd could be
3180 * blocked waiting on the same lock. Instead, throttle for up to a
3181 * second before continuing.
3182 */
3183 if (!(gfp_mask & __GFP_FS)) {
3184 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3185 allow_direct_reclaim(pgdat), HZ);
3186
3187 goto check_pending;
3188 }
3189
3190 /* Throttle until kswapd wakes the process */
3191 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3192 allow_direct_reclaim(pgdat));
3193
3194 check_pending:
3195 if (fatal_signal_pending(current))
3196 return true;
3197
3198 out:
3199 return false;
3200 }
3201
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)3202 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3203 gfp_t gfp_mask, nodemask_t *nodemask)
3204 {
3205 unsigned long nr_reclaimed;
3206 struct scan_control sc = {
3207 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3208 .gfp_mask = current_gfp_context(gfp_mask),
3209 .reclaim_idx = gfp_zone(gfp_mask),
3210 .order = order,
3211 .nodemask = nodemask,
3212 .priority = DEF_PRIORITY,
3213 .may_writepage = !laptop_mode,
3214 .may_unmap = 1,
3215 .may_swap = 1,
3216 };
3217
3218 /*
3219 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3220 * Confirm they are large enough for max values.
3221 */
3222 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3223 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3224 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3225
3226 /*
3227 * Do not enter reclaim if fatal signal was delivered while throttled.
3228 * 1 is returned so that the page allocator does not OOM kill at this
3229 * point.
3230 */
3231 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3232 return 1;
3233
3234 set_task_reclaim_state(current, &sc.reclaim_state);
3235 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3236
3237 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3238
3239 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3240 set_task_reclaim_state(current, NULL);
3241
3242 return nr_reclaimed;
3243 }
3244
3245 #ifdef CONFIG_MEMCG
3246
3247 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)3248 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3249 gfp_t gfp_mask, bool noswap,
3250 pg_data_t *pgdat,
3251 unsigned long *nr_scanned)
3252 {
3253 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3254 struct scan_control sc = {
3255 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3256 .target_mem_cgroup = memcg,
3257 .may_writepage = !laptop_mode,
3258 .may_unmap = 1,
3259 .reclaim_idx = MAX_NR_ZONES - 1,
3260 .may_swap = !noswap,
3261 };
3262 #ifdef CONFIG_HYPERHOLD_FILE_LRU
3263 unsigned long nr[NR_LRU_LISTS];
3264 #endif
3265
3266 WARN_ON_ONCE(!current->reclaim_state);
3267
3268 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3269 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3270
3271 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3272 sc.gfp_mask);
3273
3274 /*
3275 * NOTE: Although we can get the priority field, using it
3276 * here is not a good idea, since it limits the pages we can scan.
3277 * if we don't reclaim here, the shrink_node from balance_pgdat
3278 * will pick up pages from other mem cgroup's as well. We hack
3279 * the priority and make it zero.
3280 */
3281 #ifdef CONFIG_HYPERHOLD_FILE_LRU
3282 nr[LRU_ACTIVE_ANON] = lruvec_lru_size(lruvec,
3283 LRU_ACTIVE_ANON, MAX_NR_ZONES);
3284 nr[LRU_INACTIVE_ANON] = lruvec_lru_size(lruvec,
3285 LRU_INACTIVE_ANON, MAX_NR_ZONES);
3286 nr[LRU_ACTIVE_FILE] = 0;
3287 nr[LRU_INACTIVE_FILE] = 0;
3288 shrink_anon_memcg(pgdat, memcg, &sc, nr);
3289 #else
3290 shrink_lruvec(lruvec, &sc);
3291 #endif
3292
3293 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3294
3295 *nr_scanned = sc.nr_scanned;
3296
3297 return sc.nr_reclaimed;
3298 }
3299
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,bool may_swap)3300 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3301 unsigned long nr_pages,
3302 gfp_t gfp_mask,
3303 bool may_swap)
3304 {
3305 unsigned long nr_reclaimed;
3306 unsigned int noreclaim_flag;
3307 struct scan_control sc = {
3308 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3309 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3310 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3311 .reclaim_idx = MAX_NR_ZONES - 1,
3312 .target_mem_cgroup = memcg,
3313 .priority = DEF_PRIORITY,
3314 .may_writepage = !laptop_mode,
3315 .may_unmap = 1,
3316 .may_swap = may_swap,
3317 };
3318 /*
3319 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3320 * equal pressure on all the nodes. This is based on the assumption that
3321 * the reclaim does not bail out early.
3322 */
3323 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3324
3325 set_task_reclaim_state(current, &sc.reclaim_state);
3326 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3327 noreclaim_flag = memalloc_noreclaim_save();
3328
3329 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3330
3331 memalloc_noreclaim_restore(noreclaim_flag);
3332 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3333 set_task_reclaim_state(current, NULL);
3334
3335 return nr_reclaimed;
3336 }
3337 #endif
3338
age_active_anon(struct pglist_data * pgdat,struct scan_control * sc)3339 static void age_active_anon(struct pglist_data *pgdat,
3340 struct scan_control *sc)
3341 {
3342 struct mem_cgroup *memcg;
3343 struct lruvec *lruvec;
3344
3345 if (!total_swap_pages)
3346 return;
3347
3348 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3349 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3350 return;
3351
3352 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3353 do {
3354 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3355 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3356 sc, LRU_ACTIVE_ANON);
3357 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3358 } while (memcg);
3359 }
3360
pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)3361 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3362 {
3363 int i;
3364 struct zone *zone;
3365
3366 /*
3367 * Check for watermark boosts top-down as the higher zones
3368 * are more likely to be boosted. Both watermarks and boosts
3369 * should not be checked at the same time as reclaim would
3370 * start prematurely when there is no boosting and a lower
3371 * zone is balanced.
3372 */
3373 for (i = highest_zoneidx; i >= 0; i--) {
3374 zone = pgdat->node_zones + i;
3375 if (!managed_zone(zone))
3376 continue;
3377
3378 if (zone->watermark_boost)
3379 return true;
3380 }
3381
3382 return false;
3383 }
3384
3385 /*
3386 * Returns true if there is an eligible zone balanced for the request order
3387 * and highest_zoneidx
3388 */
pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)3389 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3390 {
3391 int i;
3392 unsigned long mark = -1;
3393 struct zone *zone;
3394
3395 /*
3396 * Check watermarks bottom-up as lower zones are more likely to
3397 * meet watermarks.
3398 */
3399 for (i = 0; i <= highest_zoneidx; i++) {
3400 zone = pgdat->node_zones + i;
3401
3402 if (!managed_zone(zone))
3403 continue;
3404
3405 mark = high_wmark_pages(zone);
3406 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3407 return true;
3408 }
3409
3410 /*
3411 * If a node has no populated zone within highest_zoneidx, it does not
3412 * need balancing by definition. This can happen if a zone-restricted
3413 * allocation tries to wake a remote kswapd.
3414 */
3415 if (mark == -1)
3416 return true;
3417
3418 return false;
3419 }
3420
3421 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)3422 static void clear_pgdat_congested(pg_data_t *pgdat)
3423 {
3424 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3425
3426 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3427 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3428 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3429 }
3430
3431 /*
3432 * Prepare kswapd for sleeping. This verifies that there are no processes
3433 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3434 *
3435 * Returns true if kswapd is ready to sleep
3436 */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)3437 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3438 int highest_zoneidx)
3439 {
3440 /*
3441 * The throttled processes are normally woken up in balance_pgdat() as
3442 * soon as allow_direct_reclaim() is true. But there is a potential
3443 * race between when kswapd checks the watermarks and a process gets
3444 * throttled. There is also a potential race if processes get
3445 * throttled, kswapd wakes, a large process exits thereby balancing the
3446 * zones, which causes kswapd to exit balance_pgdat() before reaching
3447 * the wake up checks. If kswapd is going to sleep, no process should
3448 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3449 * the wake up is premature, processes will wake kswapd and get
3450 * throttled again. The difference from wake ups in balance_pgdat() is
3451 * that here we are under prepare_to_wait().
3452 */
3453 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3454 wake_up_all(&pgdat->pfmemalloc_wait);
3455
3456 /* Hopeless node, leave it to direct reclaim */
3457 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3458 return true;
3459
3460 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3461 clear_pgdat_congested(pgdat);
3462 return true;
3463 }
3464
3465 return false;
3466 }
3467
3468 /*
3469 * kswapd shrinks a node of pages that are at or below the highest usable
3470 * zone that is currently unbalanced.
3471 *
3472 * Returns true if kswapd scanned at least the requested number of pages to
3473 * reclaim or if the lack of progress was due to pages under writeback.
3474 * This is used to determine if the scanning priority needs to be raised.
3475 */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)3476 static bool kswapd_shrink_node(pg_data_t *pgdat,
3477 struct scan_control *sc)
3478 {
3479 struct zone *zone;
3480 int z;
3481
3482 /* Reclaim a number of pages proportional to the number of zones */
3483 sc->nr_to_reclaim = 0;
3484 for (z = 0; z <= sc->reclaim_idx; z++) {
3485 zone = pgdat->node_zones + z;
3486 if (!managed_zone(zone))
3487 continue;
3488
3489 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3490 }
3491
3492 /*
3493 * Historically care was taken to put equal pressure on all zones but
3494 * now pressure is applied based on node LRU order.
3495 */
3496 #ifdef CONFIG_HYPERHOLD_FILE_LRU
3497 shrink_node_hyperhold(pgdat, sc);
3498 #else
3499 shrink_node(pgdat, sc);
3500 #endif
3501
3502 /*
3503 * Fragmentation may mean that the system cannot be rebalanced for
3504 * high-order allocations. If twice the allocation size has been
3505 * reclaimed then recheck watermarks only at order-0 to prevent
3506 * excessive reclaim. Assume that a process requested a high-order
3507 * can direct reclaim/compact.
3508 */
3509 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3510 sc->order = 0;
3511
3512 return sc->nr_scanned >= sc->nr_to_reclaim;
3513 }
3514
3515 /*
3516 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3517 * that are eligible for use by the caller until at least one zone is
3518 * balanced.
3519 *
3520 * Returns the order kswapd finished reclaiming at.
3521 *
3522 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3523 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3524 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3525 * or lower is eligible for reclaim until at least one usable zone is
3526 * balanced.
3527 */
balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)3528 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3529 {
3530 int i;
3531 unsigned long nr_soft_reclaimed;
3532 unsigned long nr_soft_scanned;
3533 unsigned long pflags;
3534 unsigned long nr_boost_reclaim;
3535 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3536 bool boosted;
3537 struct zone *zone;
3538 struct scan_control sc = {
3539 .gfp_mask = GFP_KERNEL,
3540 .order = order,
3541 .may_unmap = 1,
3542 };
3543
3544 set_task_reclaim_state(current, &sc.reclaim_state);
3545 psi_memstall_enter(&pflags);
3546 __fs_reclaim_acquire();
3547
3548 count_vm_event(PAGEOUTRUN);
3549
3550 /*
3551 * Account for the reclaim boost. Note that the zone boost is left in
3552 * place so that parallel allocations that are near the watermark will
3553 * stall or direct reclaim until kswapd is finished.
3554 */
3555 nr_boost_reclaim = 0;
3556 for (i = 0; i <= highest_zoneidx; i++) {
3557 zone = pgdat->node_zones + i;
3558 if (!managed_zone(zone))
3559 continue;
3560
3561 nr_boost_reclaim += zone->watermark_boost;
3562 zone_boosts[i] = zone->watermark_boost;
3563 }
3564 boosted = nr_boost_reclaim;
3565
3566 restart:
3567 sc.priority = DEF_PRIORITY;
3568 do {
3569 unsigned long nr_reclaimed = sc.nr_reclaimed;
3570 bool raise_priority = true;
3571 bool balanced;
3572 bool ret;
3573
3574 sc.reclaim_idx = highest_zoneidx;
3575
3576 /*
3577 * If the number of buffer_heads exceeds the maximum allowed
3578 * then consider reclaiming from all zones. This has a dual
3579 * purpose -- on 64-bit systems it is expected that
3580 * buffer_heads are stripped during active rotation. On 32-bit
3581 * systems, highmem pages can pin lowmem memory and shrinking
3582 * buffers can relieve lowmem pressure. Reclaim may still not
3583 * go ahead if all eligible zones for the original allocation
3584 * request are balanced to avoid excessive reclaim from kswapd.
3585 */
3586 if (buffer_heads_over_limit) {
3587 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3588 zone = pgdat->node_zones + i;
3589 if (!managed_zone(zone))
3590 continue;
3591
3592 sc.reclaim_idx = i;
3593 break;
3594 }
3595 }
3596
3597 /*
3598 * If the pgdat is imbalanced then ignore boosting and preserve
3599 * the watermarks for a later time and restart. Note that the
3600 * zone watermarks will be still reset at the end of balancing
3601 * on the grounds that the normal reclaim should be enough to
3602 * re-evaluate if boosting is required when kswapd next wakes.
3603 */
3604 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3605 if (!balanced && nr_boost_reclaim) {
3606 nr_boost_reclaim = 0;
3607 goto restart;
3608 }
3609
3610 /*
3611 * If boosting is not active then only reclaim if there are no
3612 * eligible zones. Note that sc.reclaim_idx is not used as
3613 * buffer_heads_over_limit may have adjusted it.
3614 */
3615 if (!nr_boost_reclaim && balanced)
3616 goto out;
3617
3618 /* Limit the priority of boosting to avoid reclaim writeback */
3619 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3620 raise_priority = false;
3621
3622 /*
3623 * Do not writeback or swap pages for boosted reclaim. The
3624 * intent is to relieve pressure not issue sub-optimal IO
3625 * from reclaim context. If no pages are reclaimed, the
3626 * reclaim will be aborted.
3627 */
3628 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3629 sc.may_swap = !nr_boost_reclaim;
3630
3631 /*
3632 * Do some background aging of the anon list, to give
3633 * pages a chance to be referenced before reclaiming. All
3634 * pages are rotated regardless of classzone as this is
3635 * about consistent aging.
3636 */
3637 age_active_anon(pgdat, &sc);
3638
3639 /*
3640 * If we're getting trouble reclaiming, start doing writepage
3641 * even in laptop mode.
3642 */
3643 if (sc.priority < DEF_PRIORITY - 2)
3644 sc.may_writepage = 1;
3645
3646 /* Call soft limit reclaim before calling shrink_node. */
3647 sc.nr_scanned = 0;
3648 nr_soft_scanned = 0;
3649 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3650 sc.gfp_mask, &nr_soft_scanned);
3651 sc.nr_reclaimed += nr_soft_reclaimed;
3652
3653 /*
3654 * There should be no need to raise the scanning priority if
3655 * enough pages are already being scanned that that high
3656 * watermark would be met at 100% efficiency.
3657 */
3658 if (kswapd_shrink_node(pgdat, &sc))
3659 raise_priority = false;
3660
3661 /*
3662 * If the low watermark is met there is no need for processes
3663 * to be throttled on pfmemalloc_wait as they should not be
3664 * able to safely make forward progress. Wake them
3665 */
3666 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3667 allow_direct_reclaim(pgdat))
3668 wake_up_all(&pgdat->pfmemalloc_wait);
3669
3670 /* Check if kswapd should be suspending */
3671 __fs_reclaim_release();
3672 ret = try_to_freeze();
3673 __fs_reclaim_acquire();
3674 if (ret || kthread_should_stop())
3675 break;
3676
3677 /*
3678 * Raise priority if scanning rate is too low or there was no
3679 * progress in reclaiming pages
3680 */
3681 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3682 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3683
3684 /*
3685 * If reclaim made no progress for a boost, stop reclaim as
3686 * IO cannot be queued and it could be an infinite loop in
3687 * extreme circumstances.
3688 */
3689 if (nr_boost_reclaim && !nr_reclaimed)
3690 break;
3691
3692 if (raise_priority || !nr_reclaimed)
3693 sc.priority--;
3694 } while (sc.priority >= 1);
3695
3696 if (!sc.nr_reclaimed)
3697 pgdat->kswapd_failures++;
3698
3699 out:
3700 /* If reclaim was boosted, account for the reclaim done in this pass */
3701 if (boosted) {
3702 unsigned long flags;
3703
3704 for (i = 0; i <= highest_zoneidx; i++) {
3705 if (!zone_boosts[i])
3706 continue;
3707
3708 /* Increments are under the zone lock */
3709 zone = pgdat->node_zones + i;
3710 spin_lock_irqsave(&zone->lock, flags);
3711 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3712 spin_unlock_irqrestore(&zone->lock, flags);
3713 }
3714
3715 /*
3716 * As there is now likely space, wakeup kcompact to defragment
3717 * pageblocks.
3718 */
3719 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3720 }
3721
3722 snapshot_refaults(NULL, pgdat);
3723 __fs_reclaim_release();
3724 psi_memstall_leave(&pflags);
3725 set_task_reclaim_state(current, NULL);
3726
3727 /*
3728 * Return the order kswapd stopped reclaiming at as
3729 * prepare_kswapd_sleep() takes it into account. If another caller
3730 * entered the allocator slow path while kswapd was awake, order will
3731 * remain at the higher level.
3732 */
3733 return sc.order;
3734 }
3735
3736 /*
3737 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3738 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3739 * not a valid index then either kswapd runs for first time or kswapd couldn't
3740 * sleep after previous reclaim attempt (node is still unbalanced). In that
3741 * case return the zone index of the previous kswapd reclaim cycle.
3742 */
kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)3743 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3744 enum zone_type prev_highest_zoneidx)
3745 {
3746 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3747
3748 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
3749 }
3750
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)3751 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3752 unsigned int highest_zoneidx)
3753 {
3754 long remaining = 0;
3755 DEFINE_WAIT(wait);
3756
3757 if (freezing(current) || kthread_should_stop())
3758 return;
3759
3760 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3761
3762 /*
3763 * Try to sleep for a short interval. Note that kcompactd will only be
3764 * woken if it is possible to sleep for a short interval. This is
3765 * deliberate on the assumption that if reclaim cannot keep an
3766 * eligible zone balanced that it's also unlikely that compaction will
3767 * succeed.
3768 */
3769 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3770 /*
3771 * Compaction records what page blocks it recently failed to
3772 * isolate pages from and skips them in the future scanning.
3773 * When kswapd is going to sleep, it is reasonable to assume
3774 * that pages and compaction may succeed so reset the cache.
3775 */
3776 reset_isolation_suitable(pgdat);
3777
3778 /*
3779 * We have freed the memory, now we should compact it to make
3780 * allocation of the requested order possible.
3781 */
3782 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
3783
3784 remaining = schedule_timeout(HZ/10);
3785
3786 /*
3787 * If woken prematurely then reset kswapd_highest_zoneidx and
3788 * order. The values will either be from a wakeup request or
3789 * the previous request that slept prematurely.
3790 */
3791 if (remaining) {
3792 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
3793 kswapd_highest_zoneidx(pgdat,
3794 highest_zoneidx));
3795
3796 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3797 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3798 }
3799
3800 finish_wait(&pgdat->kswapd_wait, &wait);
3801 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3802 }
3803
3804 /*
3805 * After a short sleep, check if it was a premature sleep. If not, then
3806 * go fully to sleep until explicitly woken up.
3807 */
3808 if (!remaining &&
3809 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3810 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3811
3812 /*
3813 * vmstat counters are not perfectly accurate and the estimated
3814 * value for counters such as NR_FREE_PAGES can deviate from the
3815 * true value by nr_online_cpus * threshold. To avoid the zone
3816 * watermarks being breached while under pressure, we reduce the
3817 * per-cpu vmstat threshold while kswapd is awake and restore
3818 * them before going back to sleep.
3819 */
3820 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3821
3822 if (!kthread_should_stop())
3823 schedule();
3824
3825 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3826 } else {
3827 if (remaining)
3828 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3829 else
3830 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3831 }
3832 finish_wait(&pgdat->kswapd_wait, &wait);
3833 }
3834
3835 /*
3836 * The background pageout daemon, started as a kernel thread
3837 * from the init process.
3838 *
3839 * This basically trickles out pages so that we have _some_
3840 * free memory available even if there is no other activity
3841 * that frees anything up. This is needed for things like routing
3842 * etc, where we otherwise might have all activity going on in
3843 * asynchronous contexts that cannot page things out.
3844 *
3845 * If there are applications that are active memory-allocators
3846 * (most normal use), this basically shouldn't matter.
3847 */
kswapd(void * p)3848 static int kswapd(void *p)
3849 {
3850 unsigned int alloc_order, reclaim_order;
3851 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
3852 pg_data_t *pgdat = (pg_data_t*)p;
3853 struct task_struct *tsk = current;
3854 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3855
3856 if (!cpumask_empty(cpumask))
3857 set_cpus_allowed_ptr(tsk, cpumask);
3858
3859 /*
3860 * Tell the memory management that we're a "memory allocator",
3861 * and that if we need more memory we should get access to it
3862 * regardless (see "__alloc_pages()"). "kswapd" should
3863 * never get caught in the normal page freeing logic.
3864 *
3865 * (Kswapd normally doesn't need memory anyway, but sometimes
3866 * you need a small amount of memory in order to be able to
3867 * page out something else, and this flag essentially protects
3868 * us from recursively trying to free more memory as we're
3869 * trying to free the first piece of memory in the first place).
3870 */
3871 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3872 set_freezable();
3873
3874 WRITE_ONCE(pgdat->kswapd_order, 0);
3875 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3876 for ( ; ; ) {
3877 bool ret;
3878
3879 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3880 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3881 highest_zoneidx);
3882
3883 kswapd_try_sleep:
3884 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3885 highest_zoneidx);
3886
3887 /* Read the new order and highest_zoneidx */
3888 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3889 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3890 highest_zoneidx);
3891 WRITE_ONCE(pgdat->kswapd_order, 0);
3892 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3893
3894 ret = try_to_freeze();
3895 if (kthread_should_stop())
3896 break;
3897
3898 /*
3899 * We can speed up thawing tasks if we don't call balance_pgdat
3900 * after returning from the refrigerator
3901 */
3902 if (ret)
3903 continue;
3904
3905 /*
3906 * Reclaim begins at the requested order but if a high-order
3907 * reclaim fails then kswapd falls back to reclaiming for
3908 * order-0. If that happens, kswapd will consider sleeping
3909 * for the order it finished reclaiming at (reclaim_order)
3910 * but kcompactd is woken to compact for the original
3911 * request (alloc_order).
3912 */
3913 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
3914 alloc_order);
3915 reclaim_order = balance_pgdat(pgdat, alloc_order,
3916 highest_zoneidx);
3917 if (reclaim_order < alloc_order)
3918 goto kswapd_try_sleep;
3919 }
3920
3921 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3922
3923 return 0;
3924 }
3925
3926 /*
3927 * A zone is low on free memory or too fragmented for high-order memory. If
3928 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3929 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3930 * has failed or is not needed, still wake up kcompactd if only compaction is
3931 * needed.
3932 */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)3933 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3934 enum zone_type highest_zoneidx)
3935 {
3936 pg_data_t *pgdat;
3937 enum zone_type curr_idx;
3938
3939 if (!managed_zone(zone))
3940 return;
3941
3942 if (!cpuset_zone_allowed(zone, gfp_flags))
3943 return;
3944
3945 pgdat = zone->zone_pgdat;
3946 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3947
3948 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
3949 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
3950
3951 if (READ_ONCE(pgdat->kswapd_order) < order)
3952 WRITE_ONCE(pgdat->kswapd_order, order);
3953
3954 if (!waitqueue_active(&pgdat->kswapd_wait))
3955 return;
3956
3957 /* Hopeless node, leave it to direct reclaim if possible */
3958 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3959 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
3960 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
3961 /*
3962 * There may be plenty of free memory available, but it's too
3963 * fragmented for high-order allocations. Wake up kcompactd
3964 * and rely on compaction_suitable() to determine if it's
3965 * needed. If it fails, it will defer subsequent attempts to
3966 * ratelimit its work.
3967 */
3968 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3969 wakeup_kcompactd(pgdat, order, highest_zoneidx);
3970 return;
3971 }
3972
3973 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
3974 gfp_flags);
3975 wake_up_interruptible(&pgdat->kswapd_wait);
3976 }
3977
3978 #ifdef CONFIG_HIBERNATION
3979 /*
3980 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3981 * freed pages.
3982 *
3983 * Rather than trying to age LRUs the aim is to preserve the overall
3984 * LRU order by reclaiming preferentially
3985 * inactive > active > active referenced > active mapped
3986 */
shrink_all_memory(unsigned long nr_to_reclaim)3987 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3988 {
3989 struct scan_control sc = {
3990 .nr_to_reclaim = nr_to_reclaim,
3991 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3992 .reclaim_idx = MAX_NR_ZONES - 1,
3993 .priority = DEF_PRIORITY,
3994 .may_writepage = 1,
3995 .may_unmap = 1,
3996 .may_swap = 1,
3997 .hibernation_mode = 1,
3998 };
3999 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4000 unsigned long nr_reclaimed;
4001 unsigned int noreclaim_flag;
4002
4003 fs_reclaim_acquire(sc.gfp_mask);
4004 noreclaim_flag = memalloc_noreclaim_save();
4005 set_task_reclaim_state(current, &sc.reclaim_state);
4006
4007 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4008
4009 set_task_reclaim_state(current, NULL);
4010 memalloc_noreclaim_restore(noreclaim_flag);
4011 fs_reclaim_release(sc.gfp_mask);
4012
4013 return nr_reclaimed;
4014 }
4015 #endif /* CONFIG_HIBERNATION */
4016
4017 /*
4018 * This kswapd start function will be called by init and node-hot-add.
4019 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4020 */
kswapd_run(int nid)4021 int kswapd_run(int nid)
4022 {
4023 pg_data_t *pgdat = NODE_DATA(nid);
4024 int ret = 0;
4025
4026 if (pgdat->kswapd)
4027 return 0;
4028
4029 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4030 if (IS_ERR(pgdat->kswapd)) {
4031 /* failure at boot is fatal */
4032 BUG_ON(system_state < SYSTEM_RUNNING);
4033 pr_err("Failed to start kswapd on node %d\n", nid);
4034 ret = PTR_ERR(pgdat->kswapd);
4035 pgdat->kswapd = NULL;
4036 }
4037 return ret;
4038 }
4039
4040 /*
4041 * Called by memory hotplug when all memory in a node is offlined. Caller must
4042 * hold mem_hotplug_begin/end().
4043 */
kswapd_stop(int nid)4044 void kswapd_stop(int nid)
4045 {
4046 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4047
4048 if (kswapd) {
4049 kthread_stop(kswapd);
4050 NODE_DATA(nid)->kswapd = NULL;
4051 }
4052 }
4053
kswapd_init(void)4054 static int __init kswapd_init(void)
4055 {
4056 int nid;
4057
4058 swap_setup();
4059 for_each_node_state(nid, N_MEMORY)
4060 kswapd_run(nid);
4061 return 0;
4062 }
4063
4064 module_init(kswapd_init)
4065
4066 #ifdef CONFIG_NUMA
4067 /*
4068 * Node reclaim mode
4069 *
4070 * If non-zero call node_reclaim when the number of free pages falls below
4071 * the watermarks.
4072 */
4073 int node_reclaim_mode __read_mostly;
4074
4075 /*
4076 * These bit locations are exposed in the vm.zone_reclaim_mode sysctl
4077 * ABI. New bits are OK, but existing bits can never change.
4078 */
4079 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
4080 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
4081 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
4082
4083 /*
4084 * Priority for NODE_RECLAIM. This determines the fraction of pages
4085 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4086 * a zone.
4087 */
4088 #define NODE_RECLAIM_PRIORITY 4
4089
4090 /*
4091 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4092 * occur.
4093 */
4094 int sysctl_min_unmapped_ratio = 1;
4095
4096 /*
4097 * If the number of slab pages in a zone grows beyond this percentage then
4098 * slab reclaim needs to occur.
4099 */
4100 int sysctl_min_slab_ratio = 5;
4101
node_unmapped_file_pages(struct pglist_data * pgdat)4102 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4103 {
4104 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4105 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4106 node_page_state(pgdat, NR_ACTIVE_FILE);
4107
4108 /*
4109 * It's possible for there to be more file mapped pages than
4110 * accounted for by the pages on the file LRU lists because
4111 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4112 */
4113 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4114 }
4115
4116 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)4117 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4118 {
4119 unsigned long nr_pagecache_reclaimable;
4120 unsigned long delta = 0;
4121
4122 /*
4123 * If RECLAIM_UNMAP is set, then all file pages are considered
4124 * potentially reclaimable. Otherwise, we have to worry about
4125 * pages like swapcache and node_unmapped_file_pages() provides
4126 * a better estimate
4127 */
4128 if (node_reclaim_mode & RECLAIM_UNMAP)
4129 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4130 else
4131 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4132
4133 /* If we can't clean pages, remove dirty pages from consideration */
4134 if (!(node_reclaim_mode & RECLAIM_WRITE))
4135 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4136
4137 /* Watch for any possible underflows due to delta */
4138 if (unlikely(delta > nr_pagecache_reclaimable))
4139 delta = nr_pagecache_reclaimable;
4140
4141 return nr_pagecache_reclaimable - delta;
4142 }
4143
4144 /*
4145 * Try to free up some pages from this node through reclaim.
4146 */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)4147 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4148 {
4149 /* Minimum pages needed in order to stay on node */
4150 const unsigned long nr_pages = 1 << order;
4151 struct task_struct *p = current;
4152 unsigned int noreclaim_flag;
4153 struct scan_control sc = {
4154 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4155 .gfp_mask = current_gfp_context(gfp_mask),
4156 .order = order,
4157 .priority = NODE_RECLAIM_PRIORITY,
4158 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4159 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4160 .may_swap = 1,
4161 .reclaim_idx = gfp_zone(gfp_mask),
4162 };
4163 unsigned long pflags;
4164
4165 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4166 sc.gfp_mask);
4167
4168 cond_resched();
4169 psi_memstall_enter(&pflags);
4170 fs_reclaim_acquire(sc.gfp_mask);
4171 /*
4172 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4173 * and we also need to be able to write out pages for RECLAIM_WRITE
4174 * and RECLAIM_UNMAP.
4175 */
4176 noreclaim_flag = memalloc_noreclaim_save();
4177 p->flags |= PF_SWAPWRITE;
4178 set_task_reclaim_state(p, &sc.reclaim_state);
4179
4180 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4181 /*
4182 * Free memory by calling shrink node with increasing
4183 * priorities until we have enough memory freed.
4184 */
4185 do {
4186 #ifdef CONFIG_HYPERHOLD_FILE_LRU
4187 shrink_node_hyperhold(pgdat, &sc);
4188 #else
4189 shrink_node(pgdat, &sc);
4190 #endif
4191 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4192 }
4193
4194 set_task_reclaim_state(p, NULL);
4195 current->flags &= ~PF_SWAPWRITE;
4196 memalloc_noreclaim_restore(noreclaim_flag);
4197 fs_reclaim_release(sc.gfp_mask);
4198 psi_memstall_leave(&pflags);
4199
4200 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4201
4202 return sc.nr_reclaimed >= nr_pages;
4203 }
4204
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)4205 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4206 {
4207 int ret;
4208
4209 /*
4210 * Node reclaim reclaims unmapped file backed pages and
4211 * slab pages if we are over the defined limits.
4212 *
4213 * A small portion of unmapped file backed pages is needed for
4214 * file I/O otherwise pages read by file I/O will be immediately
4215 * thrown out if the node is overallocated. So we do not reclaim
4216 * if less than a specified percentage of the node is used by
4217 * unmapped file backed pages.
4218 */
4219 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4220 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4221 pgdat->min_slab_pages)
4222 return NODE_RECLAIM_FULL;
4223
4224 /*
4225 * Do not scan if the allocation should not be delayed.
4226 */
4227 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4228 return NODE_RECLAIM_NOSCAN;
4229
4230 /*
4231 * Only run node reclaim on the local node or on nodes that do not
4232 * have associated processors. This will favor the local processor
4233 * over remote processors and spread off node memory allocations
4234 * as wide as possible.
4235 */
4236 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4237 return NODE_RECLAIM_NOSCAN;
4238
4239 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4240 return NODE_RECLAIM_NOSCAN;
4241
4242 ret = __node_reclaim(pgdat, gfp_mask, order);
4243 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4244
4245 if (!ret)
4246 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4247
4248 return ret;
4249 }
4250 #endif
4251
4252 /**
4253 * check_move_unevictable_pages - check pages for evictability and move to
4254 * appropriate zone lru list
4255 * @pvec: pagevec with lru pages to check
4256 *
4257 * Checks pages for evictability, if an evictable page is in the unevictable
4258 * lru list, moves it to the appropriate evictable lru list. This function
4259 * should be only used for lru pages.
4260 */
check_move_unevictable_pages(struct pagevec * pvec)4261 void check_move_unevictable_pages(struct pagevec *pvec)
4262 {
4263 struct lruvec *lruvec;
4264 struct pglist_data *pgdat = NULL;
4265 int pgscanned = 0;
4266 int pgrescued = 0;
4267 int i;
4268
4269 for (i = 0; i < pvec->nr; i++) {
4270 struct page *page = pvec->pages[i];
4271 struct pglist_data *pagepgdat = page_pgdat(page);
4272 int nr_pages;
4273
4274 if (PageTransTail(page))
4275 continue;
4276
4277 nr_pages = thp_nr_pages(page);
4278 pgscanned += nr_pages;
4279
4280 if (pagepgdat != pgdat) {
4281 if (pgdat)
4282 spin_unlock_irq(&pgdat->lru_lock);
4283 pgdat = pagepgdat;
4284 spin_lock_irq(&pgdat->lru_lock);
4285 }
4286 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4287
4288 if (!PageLRU(page) || !PageUnevictable(page))
4289 continue;
4290
4291 if (page_evictable(page)) {
4292 enum lru_list lru = page_lru_base_type(page);
4293
4294 VM_BUG_ON_PAGE(PageActive(page), page);
4295 ClearPageUnevictable(page);
4296 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4297 add_page_to_lru_list(page, lruvec, lru);
4298 pgrescued += nr_pages;
4299 }
4300 }
4301
4302 if (pgdat) {
4303 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4304 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4305 spin_unlock_irq(&pgdat->lru_lock);
4306 }
4307 }
4308 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4309