1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 */
85
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
94 #include <linux/in.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/init.h>
111 #include <linux/highmem.h>
112 #include <linux/user_namespace.h>
113 #include <linux/static_key.h>
114 #include <linux/memcontrol.h>
115 #include <linux/prefetch.h>
116 #include <linux/compat.h>
117
118 #include <linux/uaccess.h>
119
120 #include <linux/netdevice.h>
121 #include <net/protocol.h>
122 #include <linux/skbuff.h>
123 #include <net/net_namespace.h>
124 #include <net/request_sock.h>
125 #include <net/sock.h>
126 #include <linux/net_tstamp.h>
127 #include <net/xfrm.h>
128 #include <linux/ipsec.h>
129 #include <net/cls_cgroup.h>
130 #include <net/netprio_cgroup.h>
131 #include <linux/sock_diag.h>
132
133 #include <linux/filter.h>
134 #include <net/sock_reuseport.h>
135 #include <net/bpf_sk_storage.h>
136
137 #include <trace/events/sock.h>
138
139 #include <net/tcp.h>
140 #include <net/busy_poll.h>
141
142 static DEFINE_MUTEX(proto_list_mutex);
143 static LIST_HEAD(proto_list);
144
145 static void sock_inuse_add(struct net *net, int val);
146
147 /**
148 * sk_ns_capable - General socket capability test
149 * @sk: Socket to use a capability on or through
150 * @user_ns: The user namespace of the capability to use
151 * @cap: The capability to use
152 *
153 * Test to see if the opener of the socket had when the socket was
154 * created and the current process has the capability @cap in the user
155 * namespace @user_ns.
156 */
sk_ns_capable(const struct sock * sk,struct user_namespace * user_ns,int cap)157 bool sk_ns_capable(const struct sock *sk,
158 struct user_namespace *user_ns, int cap)
159 {
160 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
161 ns_capable(user_ns, cap);
162 }
163 EXPORT_SYMBOL(sk_ns_capable);
164
165 /**
166 * sk_capable - Socket global capability test
167 * @sk: Socket to use a capability on or through
168 * @cap: The global capability to use
169 *
170 * Test to see if the opener of the socket had when the socket was
171 * created and the current process has the capability @cap in all user
172 * namespaces.
173 */
sk_capable(const struct sock * sk,int cap)174 bool sk_capable(const struct sock *sk, int cap)
175 {
176 return sk_ns_capable(sk, &init_user_ns, cap);
177 }
178 EXPORT_SYMBOL(sk_capable);
179
180 /**
181 * sk_net_capable - Network namespace socket capability test
182 * @sk: Socket to use a capability on or through
183 * @cap: The capability to use
184 *
185 * Test to see if the opener of the socket had when the socket was created
186 * and the current process has the capability @cap over the network namespace
187 * the socket is a member of.
188 */
sk_net_capable(const struct sock * sk,int cap)189 bool sk_net_capable(const struct sock *sk, int cap)
190 {
191 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
192 }
193 EXPORT_SYMBOL(sk_net_capable);
194
195 /*
196 * Each address family might have different locking rules, so we have
197 * one slock key per address family and separate keys for internal and
198 * userspace sockets.
199 */
200 static struct lock_class_key af_family_keys[AF_MAX];
201 static struct lock_class_key af_family_kern_keys[AF_MAX];
202 static struct lock_class_key af_family_slock_keys[AF_MAX];
203 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
204
205 /*
206 * Make lock validator output more readable. (we pre-construct these
207 * strings build-time, so that runtime initialization of socket
208 * locks is fast):
209 */
210
211 #define _sock_locks(x) \
212 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
213 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
214 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
215 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
216 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
217 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
218 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
219 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
220 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
221 x "27" , x "28" , x "AF_CAN" , \
222 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
223 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
224 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
225 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
226 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
227 x "AF_MAX"
228
229 static const char *const af_family_key_strings[AF_MAX+1] = {
230 _sock_locks("sk_lock-")
231 };
232 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
233 _sock_locks("slock-")
234 };
235 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
236 _sock_locks("clock-")
237 };
238
239 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
240 _sock_locks("k-sk_lock-")
241 };
242 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
243 _sock_locks("k-slock-")
244 };
245 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
246 _sock_locks("k-clock-")
247 };
248 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
249 _sock_locks("rlock-")
250 };
251 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
252 _sock_locks("wlock-")
253 };
254 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
255 _sock_locks("elock-")
256 };
257
258 /*
259 * sk_callback_lock and sk queues locking rules are per-address-family,
260 * so split the lock classes by using a per-AF key:
261 */
262 static struct lock_class_key af_callback_keys[AF_MAX];
263 static struct lock_class_key af_rlock_keys[AF_MAX];
264 static struct lock_class_key af_wlock_keys[AF_MAX];
265 static struct lock_class_key af_elock_keys[AF_MAX];
266 static struct lock_class_key af_kern_callback_keys[AF_MAX];
267
268 /* Run time adjustable parameters. */
269 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
270 EXPORT_SYMBOL(sysctl_wmem_max);
271 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
272 EXPORT_SYMBOL(sysctl_rmem_max);
273 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
274 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
275
276 /* Maximal space eaten by iovec or ancillary data plus some space */
277 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
278 EXPORT_SYMBOL(sysctl_optmem_max);
279
280 int sysctl_tstamp_allow_data __read_mostly = 1;
281
282 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
283 EXPORT_SYMBOL_GPL(memalloc_socks_key);
284
285 /**
286 * sk_set_memalloc - sets %SOCK_MEMALLOC
287 * @sk: socket to set it on
288 *
289 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
290 * It's the responsibility of the admin to adjust min_free_kbytes
291 * to meet the requirements
292 */
sk_set_memalloc(struct sock * sk)293 void sk_set_memalloc(struct sock *sk)
294 {
295 sock_set_flag(sk, SOCK_MEMALLOC);
296 sk->sk_allocation |= __GFP_MEMALLOC;
297 static_branch_inc(&memalloc_socks_key);
298 }
299 EXPORT_SYMBOL_GPL(sk_set_memalloc);
300
sk_clear_memalloc(struct sock * sk)301 void sk_clear_memalloc(struct sock *sk)
302 {
303 sock_reset_flag(sk, SOCK_MEMALLOC);
304 sk->sk_allocation &= ~__GFP_MEMALLOC;
305 static_branch_dec(&memalloc_socks_key);
306
307 /*
308 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
309 * progress of swapping. SOCK_MEMALLOC may be cleared while
310 * it has rmem allocations due to the last swapfile being deactivated
311 * but there is a risk that the socket is unusable due to exceeding
312 * the rmem limits. Reclaim the reserves and obey rmem limits again.
313 */
314 sk_mem_reclaim(sk);
315 }
316 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
317
__sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)318 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
319 {
320 int ret;
321 unsigned int noreclaim_flag;
322
323 /* these should have been dropped before queueing */
324 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
325
326 noreclaim_flag = memalloc_noreclaim_save();
327 ret = sk->sk_backlog_rcv(sk, skb);
328 memalloc_noreclaim_restore(noreclaim_flag);
329
330 return ret;
331 }
332 EXPORT_SYMBOL(__sk_backlog_rcv);
333
sock_get_timeout(long timeo,void * optval,bool old_timeval)334 static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
335 {
336 struct __kernel_sock_timeval tv;
337
338 if (timeo == MAX_SCHEDULE_TIMEOUT) {
339 tv.tv_sec = 0;
340 tv.tv_usec = 0;
341 } else {
342 tv.tv_sec = timeo / HZ;
343 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
344 }
345
346 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
347 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
348 *(struct old_timeval32 *)optval = tv32;
349 return sizeof(tv32);
350 }
351
352 if (old_timeval) {
353 struct __kernel_old_timeval old_tv;
354 old_tv.tv_sec = tv.tv_sec;
355 old_tv.tv_usec = tv.tv_usec;
356 *(struct __kernel_old_timeval *)optval = old_tv;
357 return sizeof(old_tv);
358 }
359
360 *(struct __kernel_sock_timeval *)optval = tv;
361 return sizeof(tv);
362 }
363
sock_set_timeout(long * timeo_p,sockptr_t optval,int optlen,bool old_timeval)364 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
365 bool old_timeval)
366 {
367 struct __kernel_sock_timeval tv;
368
369 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
370 struct old_timeval32 tv32;
371
372 if (optlen < sizeof(tv32))
373 return -EINVAL;
374
375 if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
376 return -EFAULT;
377 tv.tv_sec = tv32.tv_sec;
378 tv.tv_usec = tv32.tv_usec;
379 } else if (old_timeval) {
380 struct __kernel_old_timeval old_tv;
381
382 if (optlen < sizeof(old_tv))
383 return -EINVAL;
384 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
385 return -EFAULT;
386 tv.tv_sec = old_tv.tv_sec;
387 tv.tv_usec = old_tv.tv_usec;
388 } else {
389 if (optlen < sizeof(tv))
390 return -EINVAL;
391 if (copy_from_sockptr(&tv, optval, sizeof(tv)))
392 return -EFAULT;
393 }
394 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
395 return -EDOM;
396
397 if (tv.tv_sec < 0) {
398 static int warned __read_mostly;
399
400 *timeo_p = 0;
401 if (warned < 10 && net_ratelimit()) {
402 warned++;
403 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
404 __func__, current->comm, task_pid_nr(current));
405 }
406 return 0;
407 }
408 *timeo_p = MAX_SCHEDULE_TIMEOUT;
409 if (tv.tv_sec == 0 && tv.tv_usec == 0)
410 return 0;
411 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
412 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
413 return 0;
414 }
415
sock_needs_netstamp(const struct sock * sk)416 static bool sock_needs_netstamp(const struct sock *sk)
417 {
418 switch (sk->sk_family) {
419 case AF_UNSPEC:
420 case AF_UNIX:
421 return false;
422 default:
423 return true;
424 }
425 }
426
sock_disable_timestamp(struct sock * sk,unsigned long flags)427 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
428 {
429 if (sk->sk_flags & flags) {
430 sk->sk_flags &= ~flags;
431 if (sock_needs_netstamp(sk) &&
432 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
433 net_disable_timestamp();
434 }
435 }
436
437
__sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)438 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
439 {
440 unsigned long flags;
441 struct sk_buff_head *list = &sk->sk_receive_queue;
442
443 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
444 atomic_inc(&sk->sk_drops);
445 trace_sock_rcvqueue_full(sk, skb);
446 return -ENOMEM;
447 }
448
449 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
450 atomic_inc(&sk->sk_drops);
451 return -ENOBUFS;
452 }
453
454 skb->dev = NULL;
455 skb_set_owner_r(skb, sk);
456
457 /* we escape from rcu protected region, make sure we dont leak
458 * a norefcounted dst
459 */
460 skb_dst_force(skb);
461
462 spin_lock_irqsave(&list->lock, flags);
463 sock_skb_set_dropcount(sk, skb);
464 __skb_queue_tail(list, skb);
465 spin_unlock_irqrestore(&list->lock, flags);
466
467 if (!sock_flag(sk, SOCK_DEAD))
468 sk->sk_data_ready(sk);
469 return 0;
470 }
471 EXPORT_SYMBOL(__sock_queue_rcv_skb);
472
sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)473 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
474 {
475 int err;
476
477 err = sk_filter(sk, skb);
478 if (err)
479 return err;
480
481 return __sock_queue_rcv_skb(sk, skb);
482 }
483 EXPORT_SYMBOL(sock_queue_rcv_skb);
484
__sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested,unsigned int trim_cap,bool refcounted)485 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
486 const int nested, unsigned int trim_cap, bool refcounted)
487 {
488 int rc = NET_RX_SUCCESS;
489
490 if (sk_filter_trim_cap(sk, skb, trim_cap))
491 goto discard_and_relse;
492
493 skb->dev = NULL;
494
495 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
496 atomic_inc(&sk->sk_drops);
497 goto discard_and_relse;
498 }
499 if (nested)
500 bh_lock_sock_nested(sk);
501 else
502 bh_lock_sock(sk);
503 if (!sock_owned_by_user(sk)) {
504 /*
505 * trylock + unlock semantics:
506 */
507 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
508
509 rc = sk_backlog_rcv(sk, skb);
510
511 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
512 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
513 bh_unlock_sock(sk);
514 atomic_inc(&sk->sk_drops);
515 goto discard_and_relse;
516 }
517
518 bh_unlock_sock(sk);
519 out:
520 if (refcounted)
521 sock_put(sk);
522 return rc;
523 discard_and_relse:
524 kfree_skb(skb);
525 goto out;
526 }
527 EXPORT_SYMBOL(__sk_receive_skb);
528
__sk_dst_check(struct sock * sk,u32 cookie)529 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
530 {
531 struct dst_entry *dst = __sk_dst_get(sk);
532
533 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
534 sk_tx_queue_clear(sk);
535 sk->sk_dst_pending_confirm = 0;
536 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
537 dst_release(dst);
538 return NULL;
539 }
540
541 return dst;
542 }
543 EXPORT_SYMBOL(__sk_dst_check);
544
sk_dst_check(struct sock * sk,u32 cookie)545 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
546 {
547 struct dst_entry *dst = sk_dst_get(sk);
548
549 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
550 sk_dst_reset(sk);
551 dst_release(dst);
552 return NULL;
553 }
554
555 return dst;
556 }
557 EXPORT_SYMBOL(sk_dst_check);
558
sock_bindtoindex_locked(struct sock * sk,int ifindex)559 static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
560 {
561 int ret = -ENOPROTOOPT;
562 #ifdef CONFIG_NETDEVICES
563 struct net *net = sock_net(sk);
564
565 /* Sorry... */
566 ret = -EPERM;
567 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
568 goto out;
569
570 ret = -EINVAL;
571 if (ifindex < 0)
572 goto out;
573
574 sk->sk_bound_dev_if = ifindex;
575 if (sk->sk_prot->rehash)
576 sk->sk_prot->rehash(sk);
577 sk_dst_reset(sk);
578
579 ret = 0;
580
581 out:
582 #endif
583
584 return ret;
585 }
586
sock_bindtoindex(struct sock * sk,int ifindex,bool lock_sk)587 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
588 {
589 int ret;
590
591 if (lock_sk)
592 lock_sock(sk);
593 ret = sock_bindtoindex_locked(sk, ifindex);
594 if (lock_sk)
595 release_sock(sk);
596
597 return ret;
598 }
599 EXPORT_SYMBOL(sock_bindtoindex);
600
sock_setbindtodevice(struct sock * sk,sockptr_t optval,int optlen)601 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
602 {
603 int ret = -ENOPROTOOPT;
604 #ifdef CONFIG_NETDEVICES
605 struct net *net = sock_net(sk);
606 char devname[IFNAMSIZ];
607 int index;
608
609 ret = -EINVAL;
610 if (optlen < 0)
611 goto out;
612
613 /* Bind this socket to a particular device like "eth0",
614 * as specified in the passed interface name. If the
615 * name is "" or the option length is zero the socket
616 * is not bound.
617 */
618 if (optlen > IFNAMSIZ - 1)
619 optlen = IFNAMSIZ - 1;
620 memset(devname, 0, sizeof(devname));
621
622 ret = -EFAULT;
623 if (copy_from_sockptr(devname, optval, optlen))
624 goto out;
625
626 index = 0;
627 if (devname[0] != '\0') {
628 struct net_device *dev;
629
630 rcu_read_lock();
631 dev = dev_get_by_name_rcu(net, devname);
632 if (dev)
633 index = dev->ifindex;
634 rcu_read_unlock();
635 ret = -ENODEV;
636 if (!dev)
637 goto out;
638 }
639
640 return sock_bindtoindex(sk, index, true);
641 out:
642 #endif
643
644 return ret;
645 }
646
sock_getbindtodevice(struct sock * sk,char __user * optval,int __user * optlen,int len)647 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
648 int __user *optlen, int len)
649 {
650 int ret = -ENOPROTOOPT;
651 #ifdef CONFIG_NETDEVICES
652 struct net *net = sock_net(sk);
653 char devname[IFNAMSIZ];
654
655 if (sk->sk_bound_dev_if == 0) {
656 len = 0;
657 goto zero;
658 }
659
660 ret = -EINVAL;
661 if (len < IFNAMSIZ)
662 goto out;
663
664 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
665 if (ret)
666 goto out;
667
668 len = strlen(devname) + 1;
669
670 ret = -EFAULT;
671 if (copy_to_user(optval, devname, len))
672 goto out;
673
674 zero:
675 ret = -EFAULT;
676 if (put_user(len, optlen))
677 goto out;
678
679 ret = 0;
680
681 out:
682 #endif
683
684 return ret;
685 }
686
sk_mc_loop(struct sock * sk)687 bool sk_mc_loop(struct sock *sk)
688 {
689 if (dev_recursion_level())
690 return false;
691 if (!sk)
692 return true;
693 switch (sk->sk_family) {
694 case AF_INET:
695 return inet_sk(sk)->mc_loop;
696 #if IS_ENABLED(CONFIG_IPV6)
697 case AF_INET6:
698 return inet6_sk(sk)->mc_loop;
699 #endif
700 }
701 WARN_ON_ONCE(1);
702 return true;
703 }
704 EXPORT_SYMBOL(sk_mc_loop);
705
sock_set_reuseaddr(struct sock * sk)706 void sock_set_reuseaddr(struct sock *sk)
707 {
708 lock_sock(sk);
709 sk->sk_reuse = SK_CAN_REUSE;
710 release_sock(sk);
711 }
712 EXPORT_SYMBOL(sock_set_reuseaddr);
713
sock_set_reuseport(struct sock * sk)714 void sock_set_reuseport(struct sock *sk)
715 {
716 lock_sock(sk);
717 sk->sk_reuseport = true;
718 release_sock(sk);
719 }
720 EXPORT_SYMBOL(sock_set_reuseport);
721
sock_no_linger(struct sock * sk)722 void sock_no_linger(struct sock *sk)
723 {
724 lock_sock(sk);
725 sk->sk_lingertime = 0;
726 sock_set_flag(sk, SOCK_LINGER);
727 release_sock(sk);
728 }
729 EXPORT_SYMBOL(sock_no_linger);
730
sock_set_priority(struct sock * sk,u32 priority)731 void sock_set_priority(struct sock *sk, u32 priority)
732 {
733 lock_sock(sk);
734 sk->sk_priority = priority;
735 release_sock(sk);
736 }
737 EXPORT_SYMBOL(sock_set_priority);
738
sock_set_sndtimeo(struct sock * sk,s64 secs)739 void sock_set_sndtimeo(struct sock *sk, s64 secs)
740 {
741 lock_sock(sk);
742 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
743 sk->sk_sndtimeo = secs * HZ;
744 else
745 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
746 release_sock(sk);
747 }
748 EXPORT_SYMBOL(sock_set_sndtimeo);
749
__sock_set_timestamps(struct sock * sk,bool val,bool new,bool ns)750 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
751 {
752 if (val) {
753 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
754 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
755 sock_set_flag(sk, SOCK_RCVTSTAMP);
756 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
757 } else {
758 sock_reset_flag(sk, SOCK_RCVTSTAMP);
759 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
760 }
761 }
762
sock_enable_timestamps(struct sock * sk)763 void sock_enable_timestamps(struct sock *sk)
764 {
765 lock_sock(sk);
766 __sock_set_timestamps(sk, true, false, true);
767 release_sock(sk);
768 }
769 EXPORT_SYMBOL(sock_enable_timestamps);
770
sock_set_keepalive(struct sock * sk)771 void sock_set_keepalive(struct sock *sk)
772 {
773 lock_sock(sk);
774 if (sk->sk_prot->keepalive)
775 sk->sk_prot->keepalive(sk, true);
776 sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
777 release_sock(sk);
778 }
779 EXPORT_SYMBOL(sock_set_keepalive);
780
__sock_set_rcvbuf(struct sock * sk,int val)781 static void __sock_set_rcvbuf(struct sock *sk, int val)
782 {
783 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it
784 * as a negative value.
785 */
786 val = min_t(int, val, INT_MAX / 2);
787 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
788
789 /* We double it on the way in to account for "struct sk_buff" etc.
790 * overhead. Applications assume that the SO_RCVBUF setting they make
791 * will allow that much actual data to be received on that socket.
792 *
793 * Applications are unaware that "struct sk_buff" and other overheads
794 * allocate from the receive buffer during socket buffer allocation.
795 *
796 * And after considering the possible alternatives, returning the value
797 * we actually used in getsockopt is the most desirable behavior.
798 */
799 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
800 }
801
sock_set_rcvbuf(struct sock * sk,int val)802 void sock_set_rcvbuf(struct sock *sk, int val)
803 {
804 lock_sock(sk);
805 __sock_set_rcvbuf(sk, val);
806 release_sock(sk);
807 }
808 EXPORT_SYMBOL(sock_set_rcvbuf);
809
__sock_set_mark(struct sock * sk,u32 val)810 static void __sock_set_mark(struct sock *sk, u32 val)
811 {
812 if (val != sk->sk_mark) {
813 sk->sk_mark = val;
814 sk_dst_reset(sk);
815 }
816 }
817
sock_set_mark(struct sock * sk,u32 val)818 void sock_set_mark(struct sock *sk, u32 val)
819 {
820 lock_sock(sk);
821 __sock_set_mark(sk, val);
822 release_sock(sk);
823 }
824 EXPORT_SYMBOL(sock_set_mark);
825
826 /*
827 * This is meant for all protocols to use and covers goings on
828 * at the socket level. Everything here is generic.
829 */
830
sock_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)831 int sock_setsockopt(struct socket *sock, int level, int optname,
832 sockptr_t optval, unsigned int optlen)
833 {
834 struct sock_txtime sk_txtime;
835 struct sock *sk = sock->sk;
836 int val;
837 int valbool;
838 struct linger ling;
839 int ret = 0;
840
841 /*
842 * Options without arguments
843 */
844
845 if (optname == SO_BINDTODEVICE)
846 return sock_setbindtodevice(sk, optval, optlen);
847
848 if (optlen < sizeof(int))
849 return -EINVAL;
850
851 if (copy_from_sockptr(&val, optval, sizeof(val)))
852 return -EFAULT;
853
854 valbool = val ? 1 : 0;
855
856 lock_sock(sk);
857
858 switch (optname) {
859 case SO_DEBUG:
860 if (val && !capable(CAP_NET_ADMIN))
861 ret = -EACCES;
862 else
863 sock_valbool_flag(sk, SOCK_DBG, valbool);
864 break;
865 case SO_REUSEADDR:
866 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
867 break;
868 case SO_REUSEPORT:
869 sk->sk_reuseport = valbool;
870 break;
871 case SO_TYPE:
872 case SO_PROTOCOL:
873 case SO_DOMAIN:
874 case SO_ERROR:
875 ret = -ENOPROTOOPT;
876 break;
877 case SO_DONTROUTE:
878 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
879 sk_dst_reset(sk);
880 break;
881 case SO_BROADCAST:
882 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
883 break;
884 case SO_SNDBUF:
885 /* Don't error on this BSD doesn't and if you think
886 * about it this is right. Otherwise apps have to
887 * play 'guess the biggest size' games. RCVBUF/SNDBUF
888 * are treated in BSD as hints
889 */
890 val = min_t(u32, val, sysctl_wmem_max);
891 set_sndbuf:
892 /* Ensure val * 2 fits into an int, to prevent max_t()
893 * from treating it as a negative value.
894 */
895 val = min_t(int, val, INT_MAX / 2);
896 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
897 WRITE_ONCE(sk->sk_sndbuf,
898 max_t(int, val * 2, SOCK_MIN_SNDBUF));
899 /* Wake up sending tasks if we upped the value. */
900 sk->sk_write_space(sk);
901 break;
902
903 case SO_SNDBUFFORCE:
904 if (!capable(CAP_NET_ADMIN)) {
905 ret = -EPERM;
906 break;
907 }
908
909 /* No negative values (to prevent underflow, as val will be
910 * multiplied by 2).
911 */
912 if (val < 0)
913 val = 0;
914 goto set_sndbuf;
915
916 case SO_RCVBUF:
917 /* Don't error on this BSD doesn't and if you think
918 * about it this is right. Otherwise apps have to
919 * play 'guess the biggest size' games. RCVBUF/SNDBUF
920 * are treated in BSD as hints
921 */
922 __sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max));
923 break;
924
925 case SO_RCVBUFFORCE:
926 if (!capable(CAP_NET_ADMIN)) {
927 ret = -EPERM;
928 break;
929 }
930
931 /* No negative values (to prevent underflow, as val will be
932 * multiplied by 2).
933 */
934 __sock_set_rcvbuf(sk, max(val, 0));
935 break;
936
937 case SO_KEEPALIVE:
938 if (sk->sk_prot->keepalive)
939 sk->sk_prot->keepalive(sk, valbool);
940 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
941 break;
942
943 case SO_OOBINLINE:
944 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
945 break;
946
947 case SO_NO_CHECK:
948 sk->sk_no_check_tx = valbool;
949 break;
950
951 case SO_PRIORITY:
952 if ((val >= 0 && val <= 6) ||
953 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
954 sk->sk_priority = val;
955 else
956 ret = -EPERM;
957 break;
958
959 case SO_LINGER:
960 if (optlen < sizeof(ling)) {
961 ret = -EINVAL; /* 1003.1g */
962 break;
963 }
964 if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
965 ret = -EFAULT;
966 break;
967 }
968 if (!ling.l_onoff)
969 sock_reset_flag(sk, SOCK_LINGER);
970 else {
971 #if (BITS_PER_LONG == 32)
972 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
973 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
974 else
975 #endif
976 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
977 sock_set_flag(sk, SOCK_LINGER);
978 }
979 break;
980
981 case SO_BSDCOMPAT:
982 break;
983
984 case SO_PASSCRED:
985 if (valbool)
986 set_bit(SOCK_PASSCRED, &sock->flags);
987 else
988 clear_bit(SOCK_PASSCRED, &sock->flags);
989 break;
990
991 case SO_TIMESTAMP_OLD:
992 __sock_set_timestamps(sk, valbool, false, false);
993 break;
994 case SO_TIMESTAMP_NEW:
995 __sock_set_timestamps(sk, valbool, true, false);
996 break;
997 case SO_TIMESTAMPNS_OLD:
998 __sock_set_timestamps(sk, valbool, false, true);
999 break;
1000 case SO_TIMESTAMPNS_NEW:
1001 __sock_set_timestamps(sk, valbool, true, true);
1002 break;
1003 case SO_TIMESTAMPING_NEW:
1004 case SO_TIMESTAMPING_OLD:
1005 if (val & ~SOF_TIMESTAMPING_MASK) {
1006 ret = -EINVAL;
1007 break;
1008 }
1009
1010 if (val & SOF_TIMESTAMPING_OPT_ID &&
1011 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
1012 if (sk->sk_protocol == IPPROTO_TCP &&
1013 sk->sk_type == SOCK_STREAM) {
1014 if ((1 << sk->sk_state) &
1015 (TCPF_CLOSE | TCPF_LISTEN)) {
1016 ret = -EINVAL;
1017 break;
1018 }
1019 sk->sk_tskey = tcp_sk(sk)->snd_una;
1020 } else {
1021 sk->sk_tskey = 0;
1022 }
1023 }
1024
1025 if (val & SOF_TIMESTAMPING_OPT_STATS &&
1026 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
1027 ret = -EINVAL;
1028 break;
1029 }
1030
1031 sk->sk_tsflags = val;
1032 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
1033
1034 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
1035 sock_enable_timestamp(sk,
1036 SOCK_TIMESTAMPING_RX_SOFTWARE);
1037 else
1038 sock_disable_timestamp(sk,
1039 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
1040 break;
1041
1042 case SO_RCVLOWAT:
1043 if (val < 0)
1044 val = INT_MAX;
1045 if (sock->ops->set_rcvlowat)
1046 ret = sock->ops->set_rcvlowat(sk, val);
1047 else
1048 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1049 break;
1050
1051 case SO_RCVTIMEO_OLD:
1052 case SO_RCVTIMEO_NEW:
1053 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1054 optlen, optname == SO_RCVTIMEO_OLD);
1055 break;
1056
1057 case SO_SNDTIMEO_OLD:
1058 case SO_SNDTIMEO_NEW:
1059 ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1060 optlen, optname == SO_SNDTIMEO_OLD);
1061 break;
1062
1063 case SO_ATTACH_FILTER: {
1064 struct sock_fprog fprog;
1065
1066 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1067 if (!ret)
1068 ret = sk_attach_filter(&fprog, sk);
1069 break;
1070 }
1071 case SO_ATTACH_BPF:
1072 ret = -EINVAL;
1073 if (optlen == sizeof(u32)) {
1074 u32 ufd;
1075
1076 ret = -EFAULT;
1077 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1078 break;
1079
1080 ret = sk_attach_bpf(ufd, sk);
1081 }
1082 break;
1083
1084 case SO_ATTACH_REUSEPORT_CBPF: {
1085 struct sock_fprog fprog;
1086
1087 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1088 if (!ret)
1089 ret = sk_reuseport_attach_filter(&fprog, sk);
1090 break;
1091 }
1092 case SO_ATTACH_REUSEPORT_EBPF:
1093 ret = -EINVAL;
1094 if (optlen == sizeof(u32)) {
1095 u32 ufd;
1096
1097 ret = -EFAULT;
1098 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1099 break;
1100
1101 ret = sk_reuseport_attach_bpf(ufd, sk);
1102 }
1103 break;
1104
1105 case SO_DETACH_REUSEPORT_BPF:
1106 ret = reuseport_detach_prog(sk);
1107 break;
1108
1109 case SO_DETACH_FILTER:
1110 ret = sk_detach_filter(sk);
1111 break;
1112
1113 case SO_LOCK_FILTER:
1114 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1115 ret = -EPERM;
1116 else
1117 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1118 break;
1119
1120 case SO_PASSSEC:
1121 if (valbool)
1122 set_bit(SOCK_PASSSEC, &sock->flags);
1123 else
1124 clear_bit(SOCK_PASSSEC, &sock->flags);
1125 break;
1126 case SO_MARK:
1127 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1128 ret = -EPERM;
1129 break;
1130 }
1131
1132 __sock_set_mark(sk, val);
1133 break;
1134
1135 case SO_RXQ_OVFL:
1136 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1137 break;
1138
1139 case SO_WIFI_STATUS:
1140 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1141 break;
1142
1143 case SO_PEEK_OFF:
1144 if (sock->ops->set_peek_off)
1145 ret = sock->ops->set_peek_off(sk, val);
1146 else
1147 ret = -EOPNOTSUPP;
1148 break;
1149
1150 case SO_NOFCS:
1151 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1152 break;
1153
1154 case SO_SELECT_ERR_QUEUE:
1155 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1156 break;
1157
1158 #ifdef CONFIG_NET_RX_BUSY_POLL
1159 case SO_BUSY_POLL:
1160 /* allow unprivileged users to decrease the value */
1161 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1162 ret = -EPERM;
1163 else {
1164 if (val < 0)
1165 ret = -EINVAL;
1166 else
1167 WRITE_ONCE(sk->sk_ll_usec, val);
1168 }
1169 break;
1170 #endif
1171
1172 case SO_MAX_PACING_RATE:
1173 {
1174 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1175
1176 if (sizeof(ulval) != sizeof(val) &&
1177 optlen >= sizeof(ulval) &&
1178 copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1179 ret = -EFAULT;
1180 break;
1181 }
1182 if (ulval != ~0UL)
1183 cmpxchg(&sk->sk_pacing_status,
1184 SK_PACING_NONE,
1185 SK_PACING_NEEDED);
1186 sk->sk_max_pacing_rate = ulval;
1187 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1188 break;
1189 }
1190 case SO_INCOMING_CPU:
1191 WRITE_ONCE(sk->sk_incoming_cpu, val);
1192 break;
1193
1194 case SO_CNX_ADVICE:
1195 if (val == 1)
1196 dst_negative_advice(sk);
1197 break;
1198
1199 case SO_ZEROCOPY:
1200 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1201 if (!((sk->sk_type == SOCK_STREAM &&
1202 sk->sk_protocol == IPPROTO_TCP) ||
1203 (sk->sk_type == SOCK_DGRAM &&
1204 sk->sk_protocol == IPPROTO_UDP)))
1205 ret = -ENOTSUPP;
1206 } else if (sk->sk_family != PF_RDS) {
1207 ret = -ENOTSUPP;
1208 }
1209 if (!ret) {
1210 if (val < 0 || val > 1)
1211 ret = -EINVAL;
1212 else
1213 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1214 }
1215 break;
1216
1217 case SO_TXTIME:
1218 if (optlen != sizeof(struct sock_txtime)) {
1219 ret = -EINVAL;
1220 break;
1221 } else if (copy_from_sockptr(&sk_txtime, optval,
1222 sizeof(struct sock_txtime))) {
1223 ret = -EFAULT;
1224 break;
1225 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1226 ret = -EINVAL;
1227 break;
1228 }
1229 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1230 * scheduler has enough safe guards.
1231 */
1232 if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1233 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1234 ret = -EPERM;
1235 break;
1236 }
1237 sock_valbool_flag(sk, SOCK_TXTIME, true);
1238 sk->sk_clockid = sk_txtime.clockid;
1239 sk->sk_txtime_deadline_mode =
1240 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1241 sk->sk_txtime_report_errors =
1242 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1243 break;
1244
1245 case SO_BINDTOIFINDEX:
1246 ret = sock_bindtoindex_locked(sk, val);
1247 break;
1248
1249 default:
1250 ret = -ENOPROTOOPT;
1251 break;
1252 }
1253 release_sock(sk);
1254 return ret;
1255 }
1256 EXPORT_SYMBOL(sock_setsockopt);
1257
sk_get_peer_cred(struct sock * sk)1258 static const struct cred *sk_get_peer_cred(struct sock *sk)
1259 {
1260 const struct cred *cred;
1261
1262 spin_lock(&sk->sk_peer_lock);
1263 cred = get_cred(sk->sk_peer_cred);
1264 spin_unlock(&sk->sk_peer_lock);
1265
1266 return cred;
1267 }
1268
cred_to_ucred(struct pid * pid,const struct cred * cred,struct ucred * ucred)1269 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1270 struct ucred *ucred)
1271 {
1272 ucred->pid = pid_vnr(pid);
1273 ucred->uid = ucred->gid = -1;
1274 if (cred) {
1275 struct user_namespace *current_ns = current_user_ns();
1276
1277 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1278 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1279 }
1280 }
1281
groups_to_user(gid_t __user * dst,const struct group_info * src)1282 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1283 {
1284 struct user_namespace *user_ns = current_user_ns();
1285 int i;
1286
1287 for (i = 0; i < src->ngroups; i++)
1288 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1289 return -EFAULT;
1290
1291 return 0;
1292 }
1293
sock_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1294 int sock_getsockopt(struct socket *sock, int level, int optname,
1295 char __user *optval, int __user *optlen)
1296 {
1297 struct sock *sk = sock->sk;
1298
1299 union {
1300 int val;
1301 u64 val64;
1302 unsigned long ulval;
1303 struct linger ling;
1304 struct old_timeval32 tm32;
1305 struct __kernel_old_timeval tm;
1306 struct __kernel_sock_timeval stm;
1307 struct sock_txtime txtime;
1308 } v;
1309
1310 int lv = sizeof(int);
1311 int len;
1312
1313 if (get_user(len, optlen))
1314 return -EFAULT;
1315 if (len < 0)
1316 return -EINVAL;
1317
1318 memset(&v, 0, sizeof(v));
1319
1320 switch (optname) {
1321 case SO_DEBUG:
1322 v.val = sock_flag(sk, SOCK_DBG);
1323 break;
1324
1325 case SO_DONTROUTE:
1326 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1327 break;
1328
1329 case SO_BROADCAST:
1330 v.val = sock_flag(sk, SOCK_BROADCAST);
1331 break;
1332
1333 case SO_SNDBUF:
1334 v.val = sk->sk_sndbuf;
1335 break;
1336
1337 case SO_RCVBUF:
1338 v.val = sk->sk_rcvbuf;
1339 break;
1340
1341 case SO_REUSEADDR:
1342 v.val = sk->sk_reuse;
1343 break;
1344
1345 case SO_REUSEPORT:
1346 v.val = sk->sk_reuseport;
1347 break;
1348
1349 case SO_KEEPALIVE:
1350 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1351 break;
1352
1353 case SO_TYPE:
1354 v.val = sk->sk_type;
1355 break;
1356
1357 case SO_PROTOCOL:
1358 v.val = sk->sk_protocol;
1359 break;
1360
1361 case SO_DOMAIN:
1362 v.val = sk->sk_family;
1363 break;
1364
1365 case SO_ERROR:
1366 v.val = -sock_error(sk);
1367 if (v.val == 0)
1368 v.val = xchg(&sk->sk_err_soft, 0);
1369 break;
1370
1371 case SO_OOBINLINE:
1372 v.val = sock_flag(sk, SOCK_URGINLINE);
1373 break;
1374
1375 case SO_NO_CHECK:
1376 v.val = sk->sk_no_check_tx;
1377 break;
1378
1379 case SO_PRIORITY:
1380 v.val = sk->sk_priority;
1381 break;
1382
1383 case SO_LINGER:
1384 lv = sizeof(v.ling);
1385 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1386 v.ling.l_linger = sk->sk_lingertime / HZ;
1387 break;
1388
1389 case SO_BSDCOMPAT:
1390 break;
1391
1392 case SO_TIMESTAMP_OLD:
1393 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1394 !sock_flag(sk, SOCK_TSTAMP_NEW) &&
1395 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1396 break;
1397
1398 case SO_TIMESTAMPNS_OLD:
1399 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1400 break;
1401
1402 case SO_TIMESTAMP_NEW:
1403 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1404 break;
1405
1406 case SO_TIMESTAMPNS_NEW:
1407 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1408 break;
1409
1410 case SO_TIMESTAMPING_OLD:
1411 v.val = sk->sk_tsflags;
1412 break;
1413
1414 case SO_RCVTIMEO_OLD:
1415 case SO_RCVTIMEO_NEW:
1416 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1417 break;
1418
1419 case SO_SNDTIMEO_OLD:
1420 case SO_SNDTIMEO_NEW:
1421 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1422 break;
1423
1424 case SO_RCVLOWAT:
1425 v.val = sk->sk_rcvlowat;
1426 break;
1427
1428 case SO_SNDLOWAT:
1429 v.val = 1;
1430 break;
1431
1432 case SO_PASSCRED:
1433 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1434 break;
1435
1436 case SO_PEERCRED:
1437 {
1438 struct ucred peercred;
1439 if (len > sizeof(peercred))
1440 len = sizeof(peercred);
1441
1442 spin_lock(&sk->sk_peer_lock);
1443 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1444 spin_unlock(&sk->sk_peer_lock);
1445
1446 if (copy_to_user(optval, &peercred, len))
1447 return -EFAULT;
1448 goto lenout;
1449 }
1450
1451 case SO_PEERGROUPS:
1452 {
1453 const struct cred *cred;
1454 int ret, n;
1455
1456 cred = sk_get_peer_cred(sk);
1457 if (!cred)
1458 return -ENODATA;
1459
1460 n = cred->group_info->ngroups;
1461 if (len < n * sizeof(gid_t)) {
1462 len = n * sizeof(gid_t);
1463 put_cred(cred);
1464 return put_user(len, optlen) ? -EFAULT : -ERANGE;
1465 }
1466 len = n * sizeof(gid_t);
1467
1468 ret = groups_to_user((gid_t __user *)optval, cred->group_info);
1469 put_cred(cred);
1470 if (ret)
1471 return ret;
1472 goto lenout;
1473 }
1474
1475 case SO_PEERNAME:
1476 {
1477 char address[128];
1478
1479 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1480 if (lv < 0)
1481 return -ENOTCONN;
1482 if (lv < len)
1483 return -EINVAL;
1484 if (copy_to_user(optval, address, len))
1485 return -EFAULT;
1486 goto lenout;
1487 }
1488
1489 /* Dubious BSD thing... Probably nobody even uses it, but
1490 * the UNIX standard wants it for whatever reason... -DaveM
1491 */
1492 case SO_ACCEPTCONN:
1493 v.val = sk->sk_state == TCP_LISTEN;
1494 break;
1495
1496 case SO_PASSSEC:
1497 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1498 break;
1499
1500 case SO_PEERSEC:
1501 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1502
1503 case SO_MARK:
1504 v.val = sk->sk_mark;
1505 break;
1506
1507 case SO_RXQ_OVFL:
1508 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1509 break;
1510
1511 case SO_WIFI_STATUS:
1512 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1513 break;
1514
1515 case SO_PEEK_OFF:
1516 if (!sock->ops->set_peek_off)
1517 return -EOPNOTSUPP;
1518
1519 v.val = sk->sk_peek_off;
1520 break;
1521 case SO_NOFCS:
1522 v.val = sock_flag(sk, SOCK_NOFCS);
1523 break;
1524
1525 case SO_BINDTODEVICE:
1526 return sock_getbindtodevice(sk, optval, optlen, len);
1527
1528 case SO_GET_FILTER:
1529 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1530 if (len < 0)
1531 return len;
1532
1533 goto lenout;
1534
1535 case SO_LOCK_FILTER:
1536 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1537 break;
1538
1539 case SO_BPF_EXTENSIONS:
1540 v.val = bpf_tell_extensions();
1541 break;
1542
1543 case SO_SELECT_ERR_QUEUE:
1544 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1545 break;
1546
1547 #ifdef CONFIG_NET_RX_BUSY_POLL
1548 case SO_BUSY_POLL:
1549 v.val = sk->sk_ll_usec;
1550 break;
1551 #endif
1552
1553 case SO_MAX_PACING_RATE:
1554 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1555 lv = sizeof(v.ulval);
1556 v.ulval = sk->sk_max_pacing_rate;
1557 } else {
1558 /* 32bit version */
1559 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1560 }
1561 break;
1562
1563 case SO_INCOMING_CPU:
1564 v.val = READ_ONCE(sk->sk_incoming_cpu);
1565 break;
1566
1567 case SO_MEMINFO:
1568 {
1569 u32 meminfo[SK_MEMINFO_VARS];
1570
1571 sk_get_meminfo(sk, meminfo);
1572
1573 len = min_t(unsigned int, len, sizeof(meminfo));
1574 if (copy_to_user(optval, &meminfo, len))
1575 return -EFAULT;
1576
1577 goto lenout;
1578 }
1579
1580 #ifdef CONFIG_NET_RX_BUSY_POLL
1581 case SO_INCOMING_NAPI_ID:
1582 v.val = READ_ONCE(sk->sk_napi_id);
1583
1584 /* aggregate non-NAPI IDs down to 0 */
1585 if (v.val < MIN_NAPI_ID)
1586 v.val = 0;
1587
1588 break;
1589 #endif
1590
1591 case SO_COOKIE:
1592 lv = sizeof(u64);
1593 if (len < lv)
1594 return -EINVAL;
1595 v.val64 = sock_gen_cookie(sk);
1596 break;
1597
1598 case SO_ZEROCOPY:
1599 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1600 break;
1601
1602 case SO_TXTIME:
1603 lv = sizeof(v.txtime);
1604 v.txtime.clockid = sk->sk_clockid;
1605 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1606 SOF_TXTIME_DEADLINE_MODE : 0;
1607 v.txtime.flags |= sk->sk_txtime_report_errors ?
1608 SOF_TXTIME_REPORT_ERRORS : 0;
1609 break;
1610
1611 case SO_BINDTOIFINDEX:
1612 v.val = sk->sk_bound_dev_if;
1613 break;
1614
1615 default:
1616 /* We implement the SO_SNDLOWAT etc to not be settable
1617 * (1003.1g 7).
1618 */
1619 return -ENOPROTOOPT;
1620 }
1621
1622 if (len > lv)
1623 len = lv;
1624 if (copy_to_user(optval, &v, len))
1625 return -EFAULT;
1626 lenout:
1627 if (put_user(len, optlen))
1628 return -EFAULT;
1629 return 0;
1630 }
1631
1632 /*
1633 * Initialize an sk_lock.
1634 *
1635 * (We also register the sk_lock with the lock validator.)
1636 */
sock_lock_init(struct sock * sk)1637 static inline void sock_lock_init(struct sock *sk)
1638 {
1639 if (sk->sk_kern_sock)
1640 sock_lock_init_class_and_name(
1641 sk,
1642 af_family_kern_slock_key_strings[sk->sk_family],
1643 af_family_kern_slock_keys + sk->sk_family,
1644 af_family_kern_key_strings[sk->sk_family],
1645 af_family_kern_keys + sk->sk_family);
1646 else
1647 sock_lock_init_class_and_name(
1648 sk,
1649 af_family_slock_key_strings[sk->sk_family],
1650 af_family_slock_keys + sk->sk_family,
1651 af_family_key_strings[sk->sk_family],
1652 af_family_keys + sk->sk_family);
1653 }
1654
1655 /*
1656 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1657 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1658 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1659 */
sock_copy(struct sock * nsk,const struct sock * osk)1660 static void sock_copy(struct sock *nsk, const struct sock *osk)
1661 {
1662 const struct proto *prot = READ_ONCE(osk->sk_prot);
1663 #ifdef CONFIG_SECURITY_NETWORK
1664 void *sptr = nsk->sk_security;
1665 #endif
1666 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1667
1668 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1669 prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1670
1671 #ifdef CONFIG_SECURITY_NETWORK
1672 nsk->sk_security = sptr;
1673 security_sk_clone(osk, nsk);
1674 #endif
1675 }
1676
sk_prot_alloc(struct proto * prot,gfp_t priority,int family)1677 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1678 int family)
1679 {
1680 struct sock *sk;
1681 struct kmem_cache *slab;
1682
1683 slab = prot->slab;
1684 if (slab != NULL) {
1685 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1686 if (!sk)
1687 return sk;
1688 if (want_init_on_alloc(priority))
1689 sk_prot_clear_nulls(sk, prot->obj_size);
1690 } else
1691 sk = kmalloc(prot->obj_size, priority);
1692
1693 if (sk != NULL) {
1694 if (security_sk_alloc(sk, family, priority))
1695 goto out_free;
1696
1697 if (!try_module_get(prot->owner))
1698 goto out_free_sec;
1699 sk_tx_queue_clear(sk);
1700 }
1701
1702 return sk;
1703
1704 out_free_sec:
1705 security_sk_free(sk);
1706 out_free:
1707 if (slab != NULL)
1708 kmem_cache_free(slab, sk);
1709 else
1710 kfree(sk);
1711 return NULL;
1712 }
1713
sk_prot_free(struct proto * prot,struct sock * sk)1714 static void sk_prot_free(struct proto *prot, struct sock *sk)
1715 {
1716 struct kmem_cache *slab;
1717 struct module *owner;
1718
1719 owner = prot->owner;
1720 slab = prot->slab;
1721
1722 cgroup_sk_free(&sk->sk_cgrp_data);
1723 mem_cgroup_sk_free(sk);
1724 security_sk_free(sk);
1725 if (slab != NULL)
1726 kmem_cache_free(slab, sk);
1727 else
1728 kfree(sk);
1729 module_put(owner);
1730 }
1731
1732 /**
1733 * sk_alloc - All socket objects are allocated here
1734 * @net: the applicable net namespace
1735 * @family: protocol family
1736 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1737 * @prot: struct proto associated with this new sock instance
1738 * @kern: is this to be a kernel socket?
1739 */
sk_alloc(struct net * net,int family,gfp_t priority,struct proto * prot,int kern)1740 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1741 struct proto *prot, int kern)
1742 {
1743 struct sock *sk;
1744
1745 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1746 if (sk) {
1747 sk->sk_family = family;
1748 /*
1749 * See comment in struct sock definition to understand
1750 * why we need sk_prot_creator -acme
1751 */
1752 sk->sk_prot = sk->sk_prot_creator = prot;
1753 sk->sk_kern_sock = kern;
1754 sock_lock_init(sk);
1755 sk->sk_net_refcnt = kern ? 0 : 1;
1756 if (likely(sk->sk_net_refcnt)) {
1757 get_net(net);
1758 sock_inuse_add(net, 1);
1759 }
1760
1761 sock_net_set(sk, net);
1762 refcount_set(&sk->sk_wmem_alloc, 1);
1763
1764 mem_cgroup_sk_alloc(sk);
1765 cgroup_sk_alloc(&sk->sk_cgrp_data);
1766 sock_update_classid(&sk->sk_cgrp_data);
1767 sock_update_netprioidx(&sk->sk_cgrp_data);
1768 sk_tx_queue_clear(sk);
1769 }
1770
1771 return sk;
1772 }
1773 EXPORT_SYMBOL(sk_alloc);
1774
1775 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1776 * grace period. This is the case for UDP sockets and TCP listeners.
1777 */
__sk_destruct(struct rcu_head * head)1778 static void __sk_destruct(struct rcu_head *head)
1779 {
1780 struct sock *sk = container_of(head, struct sock, sk_rcu);
1781 struct sk_filter *filter;
1782
1783 if (sk->sk_destruct)
1784 sk->sk_destruct(sk);
1785
1786 filter = rcu_dereference_check(sk->sk_filter,
1787 refcount_read(&sk->sk_wmem_alloc) == 0);
1788 if (filter) {
1789 sk_filter_uncharge(sk, filter);
1790 RCU_INIT_POINTER(sk->sk_filter, NULL);
1791 }
1792
1793 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1794
1795 #ifdef CONFIG_BPF_SYSCALL
1796 bpf_sk_storage_free(sk);
1797 #endif
1798
1799 if (atomic_read(&sk->sk_omem_alloc))
1800 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1801 __func__, atomic_read(&sk->sk_omem_alloc));
1802
1803 if (sk->sk_frag.page) {
1804 put_page(sk->sk_frag.page);
1805 sk->sk_frag.page = NULL;
1806 }
1807
1808 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */
1809 put_cred(sk->sk_peer_cred);
1810 put_pid(sk->sk_peer_pid);
1811
1812 if (likely(sk->sk_net_refcnt))
1813 put_net(sock_net(sk));
1814 sk_prot_free(sk->sk_prot_creator, sk);
1815 }
1816
sk_destruct(struct sock * sk)1817 void sk_destruct(struct sock *sk)
1818 {
1819 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1820
1821 if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1822 reuseport_detach_sock(sk);
1823 use_call_rcu = true;
1824 }
1825
1826 if (use_call_rcu)
1827 call_rcu(&sk->sk_rcu, __sk_destruct);
1828 else
1829 __sk_destruct(&sk->sk_rcu);
1830 }
1831
__sk_free(struct sock * sk)1832 static void __sk_free(struct sock *sk)
1833 {
1834 if (likely(sk->sk_net_refcnt))
1835 sock_inuse_add(sock_net(sk), -1);
1836
1837 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1838 sock_diag_broadcast_destroy(sk);
1839 else
1840 sk_destruct(sk);
1841 }
1842
sk_free(struct sock * sk)1843 void sk_free(struct sock *sk)
1844 {
1845 /*
1846 * We subtract one from sk_wmem_alloc and can know if
1847 * some packets are still in some tx queue.
1848 * If not null, sock_wfree() will call __sk_free(sk) later
1849 */
1850 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1851 __sk_free(sk);
1852 }
1853 EXPORT_SYMBOL(sk_free);
1854
sk_init_common(struct sock * sk)1855 static void sk_init_common(struct sock *sk)
1856 {
1857 skb_queue_head_init(&sk->sk_receive_queue);
1858 skb_queue_head_init(&sk->sk_write_queue);
1859 skb_queue_head_init(&sk->sk_error_queue);
1860
1861 rwlock_init(&sk->sk_callback_lock);
1862 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1863 af_rlock_keys + sk->sk_family,
1864 af_family_rlock_key_strings[sk->sk_family]);
1865 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1866 af_wlock_keys + sk->sk_family,
1867 af_family_wlock_key_strings[sk->sk_family]);
1868 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1869 af_elock_keys + sk->sk_family,
1870 af_family_elock_key_strings[sk->sk_family]);
1871 lockdep_set_class_and_name(&sk->sk_callback_lock,
1872 af_callback_keys + sk->sk_family,
1873 af_family_clock_key_strings[sk->sk_family]);
1874 }
1875
1876 /**
1877 * sk_clone_lock - clone a socket, and lock its clone
1878 * @sk: the socket to clone
1879 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1880 *
1881 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1882 */
sk_clone_lock(const struct sock * sk,const gfp_t priority)1883 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1884 {
1885 struct proto *prot = READ_ONCE(sk->sk_prot);
1886 struct sock *newsk;
1887 bool is_charged = true;
1888
1889 newsk = sk_prot_alloc(prot, priority, sk->sk_family);
1890 if (newsk != NULL) {
1891 struct sk_filter *filter;
1892
1893 sock_copy(newsk, sk);
1894
1895 newsk->sk_prot_creator = prot;
1896
1897 /* SANITY */
1898 if (likely(newsk->sk_net_refcnt))
1899 get_net(sock_net(newsk));
1900 sk_node_init(&newsk->sk_node);
1901 sock_lock_init(newsk);
1902 bh_lock_sock(newsk);
1903 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1904 newsk->sk_backlog.len = 0;
1905
1906 atomic_set(&newsk->sk_rmem_alloc, 0);
1907 /*
1908 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1909 */
1910 refcount_set(&newsk->sk_wmem_alloc, 1);
1911 atomic_set(&newsk->sk_omem_alloc, 0);
1912 sk_init_common(newsk);
1913
1914 newsk->sk_dst_cache = NULL;
1915 newsk->sk_dst_pending_confirm = 0;
1916 newsk->sk_wmem_queued = 0;
1917 newsk->sk_forward_alloc = 0;
1918 atomic_set(&newsk->sk_drops, 0);
1919 newsk->sk_send_head = NULL;
1920 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1921 atomic_set(&newsk->sk_zckey, 0);
1922
1923 sock_reset_flag(newsk, SOCK_DONE);
1924
1925 /* sk->sk_memcg will be populated at accept() time */
1926 newsk->sk_memcg = NULL;
1927
1928 cgroup_sk_clone(&newsk->sk_cgrp_data);
1929
1930 rcu_read_lock();
1931 filter = rcu_dereference(sk->sk_filter);
1932 if (filter != NULL)
1933 /* though it's an empty new sock, the charging may fail
1934 * if sysctl_optmem_max was changed between creation of
1935 * original socket and cloning
1936 */
1937 is_charged = sk_filter_charge(newsk, filter);
1938 RCU_INIT_POINTER(newsk->sk_filter, filter);
1939 rcu_read_unlock();
1940
1941 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1942 /* We need to make sure that we don't uncharge the new
1943 * socket if we couldn't charge it in the first place
1944 * as otherwise we uncharge the parent's filter.
1945 */
1946 if (!is_charged)
1947 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1948 sk_free_unlock_clone(newsk);
1949 newsk = NULL;
1950 goto out;
1951 }
1952 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1953
1954 if (bpf_sk_storage_clone(sk, newsk)) {
1955 sk_free_unlock_clone(newsk);
1956 newsk = NULL;
1957 goto out;
1958 }
1959
1960 /* Clear sk_user_data if parent had the pointer tagged
1961 * as not suitable for copying when cloning.
1962 */
1963 if (sk_user_data_is_nocopy(newsk))
1964 newsk->sk_user_data = NULL;
1965
1966 newsk->sk_err = 0;
1967 newsk->sk_err_soft = 0;
1968 newsk->sk_priority = 0;
1969 newsk->sk_incoming_cpu = raw_smp_processor_id();
1970 if (likely(newsk->sk_net_refcnt))
1971 sock_inuse_add(sock_net(newsk), 1);
1972
1973 /*
1974 * Before updating sk_refcnt, we must commit prior changes to memory
1975 * (Documentation/RCU/rculist_nulls.rst for details)
1976 */
1977 smp_wmb();
1978 refcount_set(&newsk->sk_refcnt, 2);
1979
1980 /*
1981 * Increment the counter in the same struct proto as the master
1982 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1983 * is the same as sk->sk_prot->socks, as this field was copied
1984 * with memcpy).
1985 *
1986 * This _changes_ the previous behaviour, where
1987 * tcp_create_openreq_child always was incrementing the
1988 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1989 * to be taken into account in all callers. -acme
1990 */
1991 sk_refcnt_debug_inc(newsk);
1992 sk_set_socket(newsk, NULL);
1993 sk_tx_queue_clear(newsk);
1994 RCU_INIT_POINTER(newsk->sk_wq, NULL);
1995
1996 if (newsk->sk_prot->sockets_allocated)
1997 sk_sockets_allocated_inc(newsk);
1998
1999 if (sock_needs_netstamp(sk) &&
2000 newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2001 net_enable_timestamp();
2002 }
2003 out:
2004 return newsk;
2005 }
2006 EXPORT_SYMBOL_GPL(sk_clone_lock);
2007
sk_free_unlock_clone(struct sock * sk)2008 void sk_free_unlock_clone(struct sock *sk)
2009 {
2010 /* It is still raw copy of parent, so invalidate
2011 * destructor and make plain sk_free() */
2012 sk->sk_destruct = NULL;
2013 bh_unlock_sock(sk);
2014 sk_free(sk);
2015 }
2016 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2017
sk_setup_caps(struct sock * sk,struct dst_entry * dst)2018 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2019 {
2020 u32 max_segs = 1;
2021
2022 sk_dst_set(sk, dst);
2023 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
2024 if (sk->sk_route_caps & NETIF_F_GSO)
2025 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2026 sk->sk_route_caps &= ~sk->sk_route_nocaps;
2027 if (sk_can_gso(sk)) {
2028 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2029 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2030 } else {
2031 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2032 sk->sk_gso_max_size = dst->dev->gso_max_size;
2033 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
2034 }
2035 }
2036 sk->sk_gso_max_segs = max_segs;
2037 }
2038 EXPORT_SYMBOL_GPL(sk_setup_caps);
2039
2040 /*
2041 * Simple resource managers for sockets.
2042 */
2043
2044
2045 /*
2046 * Write buffer destructor automatically called from kfree_skb.
2047 */
sock_wfree(struct sk_buff * skb)2048 void sock_wfree(struct sk_buff *skb)
2049 {
2050 struct sock *sk = skb->sk;
2051 unsigned int len = skb->truesize;
2052
2053 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2054 /*
2055 * Keep a reference on sk_wmem_alloc, this will be released
2056 * after sk_write_space() call
2057 */
2058 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2059 sk->sk_write_space(sk);
2060 len = 1;
2061 }
2062 /*
2063 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2064 * could not do because of in-flight packets
2065 */
2066 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2067 __sk_free(sk);
2068 }
2069 EXPORT_SYMBOL(sock_wfree);
2070
2071 /* This variant of sock_wfree() is used by TCP,
2072 * since it sets SOCK_USE_WRITE_QUEUE.
2073 */
__sock_wfree(struct sk_buff * skb)2074 void __sock_wfree(struct sk_buff *skb)
2075 {
2076 struct sock *sk = skb->sk;
2077
2078 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2079 __sk_free(sk);
2080 }
2081
skb_set_owner_w(struct sk_buff * skb,struct sock * sk)2082 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2083 {
2084 skb_orphan(skb);
2085 skb->sk = sk;
2086 #ifdef CONFIG_INET
2087 if (unlikely(!sk_fullsock(sk))) {
2088 skb->destructor = sock_edemux;
2089 sock_hold(sk);
2090 return;
2091 }
2092 #endif
2093 skb->destructor = sock_wfree;
2094 skb_set_hash_from_sk(skb, sk);
2095 /*
2096 * We used to take a refcount on sk, but following operation
2097 * is enough to guarantee sk_free() wont free this sock until
2098 * all in-flight packets are completed
2099 */
2100 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2101 }
2102 EXPORT_SYMBOL(skb_set_owner_w);
2103
can_skb_orphan_partial(const struct sk_buff * skb)2104 static bool can_skb_orphan_partial(const struct sk_buff *skb)
2105 {
2106 #ifdef CONFIG_TLS_DEVICE
2107 /* Drivers depend on in-order delivery for crypto offload,
2108 * partial orphan breaks out-of-order-OK logic.
2109 */
2110 if (skb->decrypted)
2111 return false;
2112 #endif
2113 return (skb->destructor == sock_wfree ||
2114 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2115 }
2116
2117 /* This helper is used by netem, as it can hold packets in its
2118 * delay queue. We want to allow the owner socket to send more
2119 * packets, as if they were already TX completed by a typical driver.
2120 * But we also want to keep skb->sk set because some packet schedulers
2121 * rely on it (sch_fq for example).
2122 */
skb_orphan_partial(struct sk_buff * skb)2123 void skb_orphan_partial(struct sk_buff *skb)
2124 {
2125 if (skb_is_tcp_pure_ack(skb))
2126 return;
2127
2128 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2129 return;
2130
2131 skb_orphan(skb);
2132 }
2133 EXPORT_SYMBOL(skb_orphan_partial);
2134
2135 /*
2136 * Read buffer destructor automatically called from kfree_skb.
2137 */
sock_rfree(struct sk_buff * skb)2138 void sock_rfree(struct sk_buff *skb)
2139 {
2140 struct sock *sk = skb->sk;
2141 unsigned int len = skb->truesize;
2142
2143 atomic_sub(len, &sk->sk_rmem_alloc);
2144 sk_mem_uncharge(sk, len);
2145 }
2146 EXPORT_SYMBOL(sock_rfree);
2147
2148 /*
2149 * Buffer destructor for skbs that are not used directly in read or write
2150 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2151 */
sock_efree(struct sk_buff * skb)2152 void sock_efree(struct sk_buff *skb)
2153 {
2154 sock_put(skb->sk);
2155 }
2156 EXPORT_SYMBOL(sock_efree);
2157
2158 /* Buffer destructor for prefetch/receive path where reference count may
2159 * not be held, e.g. for listen sockets.
2160 */
2161 #ifdef CONFIG_INET
sock_pfree(struct sk_buff * skb)2162 void sock_pfree(struct sk_buff *skb)
2163 {
2164 if (sk_is_refcounted(skb->sk))
2165 sock_gen_put(skb->sk);
2166 }
2167 EXPORT_SYMBOL(sock_pfree);
2168 #endif /* CONFIG_INET */
2169
sock_i_uid(struct sock * sk)2170 kuid_t sock_i_uid(struct sock *sk)
2171 {
2172 kuid_t uid;
2173
2174 read_lock_bh(&sk->sk_callback_lock);
2175 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2176 read_unlock_bh(&sk->sk_callback_lock);
2177 return uid;
2178 }
2179 EXPORT_SYMBOL(sock_i_uid);
2180
sock_i_ino(struct sock * sk)2181 unsigned long sock_i_ino(struct sock *sk)
2182 {
2183 unsigned long ino;
2184
2185 read_lock_bh(&sk->sk_callback_lock);
2186 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2187 read_unlock_bh(&sk->sk_callback_lock);
2188 return ino;
2189 }
2190 EXPORT_SYMBOL(sock_i_ino);
2191
2192 /*
2193 * Allocate a skb from the socket's send buffer.
2194 */
sock_wmalloc(struct sock * sk,unsigned long size,int force,gfp_t priority)2195 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2196 gfp_t priority)
2197 {
2198 if (force ||
2199 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2200 struct sk_buff *skb = alloc_skb(size, priority);
2201
2202 if (skb) {
2203 skb_set_owner_w(skb, sk);
2204 return skb;
2205 }
2206 }
2207 return NULL;
2208 }
2209 EXPORT_SYMBOL(sock_wmalloc);
2210
sock_ofree(struct sk_buff * skb)2211 static void sock_ofree(struct sk_buff *skb)
2212 {
2213 struct sock *sk = skb->sk;
2214
2215 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2216 }
2217
sock_omalloc(struct sock * sk,unsigned long size,gfp_t priority)2218 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2219 gfp_t priority)
2220 {
2221 struct sk_buff *skb;
2222
2223 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2224 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2225 sysctl_optmem_max)
2226 return NULL;
2227
2228 skb = alloc_skb(size, priority);
2229 if (!skb)
2230 return NULL;
2231
2232 atomic_add(skb->truesize, &sk->sk_omem_alloc);
2233 skb->sk = sk;
2234 skb->destructor = sock_ofree;
2235 return skb;
2236 }
2237
2238 /*
2239 * Allocate a memory block from the socket's option memory buffer.
2240 */
sock_kmalloc(struct sock * sk,int size,gfp_t priority)2241 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2242 {
2243 if ((unsigned int)size <= sysctl_optmem_max &&
2244 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2245 void *mem;
2246 /* First do the add, to avoid the race if kmalloc
2247 * might sleep.
2248 */
2249 atomic_add(size, &sk->sk_omem_alloc);
2250 mem = kmalloc(size, priority);
2251 if (mem)
2252 return mem;
2253 atomic_sub(size, &sk->sk_omem_alloc);
2254 }
2255 return NULL;
2256 }
2257 EXPORT_SYMBOL(sock_kmalloc);
2258
2259 /* Free an option memory block. Note, we actually want the inline
2260 * here as this allows gcc to detect the nullify and fold away the
2261 * condition entirely.
2262 */
__sock_kfree_s(struct sock * sk,void * mem,int size,const bool nullify)2263 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2264 const bool nullify)
2265 {
2266 if (WARN_ON_ONCE(!mem))
2267 return;
2268 if (nullify)
2269 kfree_sensitive(mem);
2270 else
2271 kfree(mem);
2272 atomic_sub(size, &sk->sk_omem_alloc);
2273 }
2274
sock_kfree_s(struct sock * sk,void * mem,int size)2275 void sock_kfree_s(struct sock *sk, void *mem, int size)
2276 {
2277 __sock_kfree_s(sk, mem, size, false);
2278 }
2279 EXPORT_SYMBOL(sock_kfree_s);
2280
sock_kzfree_s(struct sock * sk,void * mem,int size)2281 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2282 {
2283 __sock_kfree_s(sk, mem, size, true);
2284 }
2285 EXPORT_SYMBOL(sock_kzfree_s);
2286
2287 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2288 I think, these locks should be removed for datagram sockets.
2289 */
sock_wait_for_wmem(struct sock * sk,long timeo)2290 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2291 {
2292 DEFINE_WAIT(wait);
2293
2294 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2295 for (;;) {
2296 if (!timeo)
2297 break;
2298 if (signal_pending(current))
2299 break;
2300 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2301 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2302 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2303 break;
2304 if (sk->sk_shutdown & SEND_SHUTDOWN)
2305 break;
2306 if (sk->sk_err)
2307 break;
2308 timeo = schedule_timeout(timeo);
2309 }
2310 finish_wait(sk_sleep(sk), &wait);
2311 return timeo;
2312 }
2313
2314
2315 /*
2316 * Generic send/receive buffer handlers
2317 */
2318
sock_alloc_send_pskb(struct sock * sk,unsigned long header_len,unsigned long data_len,int noblock,int * errcode,int max_page_order)2319 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2320 unsigned long data_len, int noblock,
2321 int *errcode, int max_page_order)
2322 {
2323 struct sk_buff *skb;
2324 long timeo;
2325 int err;
2326
2327 timeo = sock_sndtimeo(sk, noblock);
2328 for (;;) {
2329 err = sock_error(sk);
2330 if (err != 0)
2331 goto failure;
2332
2333 err = -EPIPE;
2334 if (sk->sk_shutdown & SEND_SHUTDOWN)
2335 goto failure;
2336
2337 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2338 break;
2339
2340 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2341 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2342 err = -EAGAIN;
2343 if (!timeo)
2344 goto failure;
2345 if (signal_pending(current))
2346 goto interrupted;
2347 timeo = sock_wait_for_wmem(sk, timeo);
2348 }
2349 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2350 errcode, sk->sk_allocation);
2351 if (skb)
2352 skb_set_owner_w(skb, sk);
2353 return skb;
2354
2355 interrupted:
2356 err = sock_intr_errno(timeo);
2357 failure:
2358 *errcode = err;
2359 return NULL;
2360 }
2361 EXPORT_SYMBOL(sock_alloc_send_pskb);
2362
sock_alloc_send_skb(struct sock * sk,unsigned long size,int noblock,int * errcode)2363 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2364 int noblock, int *errcode)
2365 {
2366 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2367 }
2368 EXPORT_SYMBOL(sock_alloc_send_skb);
2369
__sock_cmsg_send(struct sock * sk,struct msghdr * msg,struct cmsghdr * cmsg,struct sockcm_cookie * sockc)2370 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2371 struct sockcm_cookie *sockc)
2372 {
2373 u32 tsflags;
2374
2375 switch (cmsg->cmsg_type) {
2376 case SO_MARK:
2377 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2378 return -EPERM;
2379 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2380 return -EINVAL;
2381 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2382 break;
2383 case SO_TIMESTAMPING_OLD:
2384 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2385 return -EINVAL;
2386
2387 tsflags = *(u32 *)CMSG_DATA(cmsg);
2388 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2389 return -EINVAL;
2390
2391 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2392 sockc->tsflags |= tsflags;
2393 break;
2394 case SCM_TXTIME:
2395 if (!sock_flag(sk, SOCK_TXTIME))
2396 return -EINVAL;
2397 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2398 return -EINVAL;
2399 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2400 break;
2401 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2402 case SCM_RIGHTS:
2403 case SCM_CREDENTIALS:
2404 break;
2405 default:
2406 return -EINVAL;
2407 }
2408 return 0;
2409 }
2410 EXPORT_SYMBOL(__sock_cmsg_send);
2411
sock_cmsg_send(struct sock * sk,struct msghdr * msg,struct sockcm_cookie * sockc)2412 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2413 struct sockcm_cookie *sockc)
2414 {
2415 struct cmsghdr *cmsg;
2416 int ret;
2417
2418 for_each_cmsghdr(cmsg, msg) {
2419 if (!CMSG_OK(msg, cmsg))
2420 return -EINVAL;
2421 if (cmsg->cmsg_level != SOL_SOCKET)
2422 continue;
2423 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2424 if (ret)
2425 return ret;
2426 }
2427 return 0;
2428 }
2429 EXPORT_SYMBOL(sock_cmsg_send);
2430
sk_enter_memory_pressure(struct sock * sk)2431 static void sk_enter_memory_pressure(struct sock *sk)
2432 {
2433 if (!sk->sk_prot->enter_memory_pressure)
2434 return;
2435
2436 sk->sk_prot->enter_memory_pressure(sk);
2437 }
2438
sk_leave_memory_pressure(struct sock * sk)2439 static void sk_leave_memory_pressure(struct sock *sk)
2440 {
2441 if (sk->sk_prot->leave_memory_pressure) {
2442 sk->sk_prot->leave_memory_pressure(sk);
2443 } else {
2444 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2445
2446 if (memory_pressure && READ_ONCE(*memory_pressure))
2447 WRITE_ONCE(*memory_pressure, 0);
2448 }
2449 }
2450
2451 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2452
2453 /**
2454 * skb_page_frag_refill - check that a page_frag contains enough room
2455 * @sz: minimum size of the fragment we want to get
2456 * @pfrag: pointer to page_frag
2457 * @gfp: priority for memory allocation
2458 *
2459 * Note: While this allocator tries to use high order pages, there is
2460 * no guarantee that allocations succeed. Therefore, @sz MUST be
2461 * less or equal than PAGE_SIZE.
2462 */
skb_page_frag_refill(unsigned int sz,struct page_frag * pfrag,gfp_t gfp)2463 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2464 {
2465 if (pfrag->page) {
2466 if (page_ref_count(pfrag->page) == 1) {
2467 pfrag->offset = 0;
2468 return true;
2469 }
2470 if (pfrag->offset + sz <= pfrag->size)
2471 return true;
2472 put_page(pfrag->page);
2473 }
2474
2475 pfrag->offset = 0;
2476 if (SKB_FRAG_PAGE_ORDER &&
2477 !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2478 /* Avoid direct reclaim but allow kswapd to wake */
2479 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2480 __GFP_COMP | __GFP_NOWARN |
2481 __GFP_NORETRY,
2482 SKB_FRAG_PAGE_ORDER);
2483 if (likely(pfrag->page)) {
2484 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2485 return true;
2486 }
2487 }
2488 pfrag->page = alloc_page(gfp);
2489 if (likely(pfrag->page)) {
2490 pfrag->size = PAGE_SIZE;
2491 return true;
2492 }
2493 return false;
2494 }
2495 EXPORT_SYMBOL(skb_page_frag_refill);
2496
sk_page_frag_refill(struct sock * sk,struct page_frag * pfrag)2497 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2498 {
2499 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2500 return true;
2501
2502 sk_enter_memory_pressure(sk);
2503 sk_stream_moderate_sndbuf(sk);
2504 return false;
2505 }
2506 EXPORT_SYMBOL(sk_page_frag_refill);
2507
__lock_sock(struct sock * sk)2508 static void __lock_sock(struct sock *sk)
2509 __releases(&sk->sk_lock.slock)
2510 __acquires(&sk->sk_lock.slock)
2511 {
2512 DEFINE_WAIT(wait);
2513
2514 for (;;) {
2515 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2516 TASK_UNINTERRUPTIBLE);
2517 spin_unlock_bh(&sk->sk_lock.slock);
2518 schedule();
2519 spin_lock_bh(&sk->sk_lock.slock);
2520 if (!sock_owned_by_user(sk))
2521 break;
2522 }
2523 finish_wait(&sk->sk_lock.wq, &wait);
2524 }
2525
__release_sock(struct sock * sk)2526 void __release_sock(struct sock *sk)
2527 __releases(&sk->sk_lock.slock)
2528 __acquires(&sk->sk_lock.slock)
2529 {
2530 struct sk_buff *skb, *next;
2531
2532 while ((skb = sk->sk_backlog.head) != NULL) {
2533 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2534
2535 spin_unlock_bh(&sk->sk_lock.slock);
2536
2537 do {
2538 next = skb->next;
2539 prefetch(next);
2540 WARN_ON_ONCE(skb_dst_is_noref(skb));
2541 skb_mark_not_on_list(skb);
2542 sk_backlog_rcv(sk, skb);
2543
2544 cond_resched();
2545
2546 skb = next;
2547 } while (skb != NULL);
2548
2549 spin_lock_bh(&sk->sk_lock.slock);
2550 }
2551
2552 /*
2553 * Doing the zeroing here guarantee we can not loop forever
2554 * while a wild producer attempts to flood us.
2555 */
2556 sk->sk_backlog.len = 0;
2557 }
2558
__sk_flush_backlog(struct sock * sk)2559 void __sk_flush_backlog(struct sock *sk)
2560 {
2561 spin_lock_bh(&sk->sk_lock.slock);
2562 __release_sock(sk);
2563 spin_unlock_bh(&sk->sk_lock.slock);
2564 }
2565
2566 /**
2567 * sk_wait_data - wait for data to arrive at sk_receive_queue
2568 * @sk: sock to wait on
2569 * @timeo: for how long
2570 * @skb: last skb seen on sk_receive_queue
2571 *
2572 * Now socket state including sk->sk_err is changed only under lock,
2573 * hence we may omit checks after joining wait queue.
2574 * We check receive queue before schedule() only as optimization;
2575 * it is very likely that release_sock() added new data.
2576 */
sk_wait_data(struct sock * sk,long * timeo,const struct sk_buff * skb)2577 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2578 {
2579 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2580 int rc;
2581
2582 add_wait_queue(sk_sleep(sk), &wait);
2583 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2584 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2585 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2586 remove_wait_queue(sk_sleep(sk), &wait);
2587 return rc;
2588 }
2589 EXPORT_SYMBOL(sk_wait_data);
2590
2591 /**
2592 * __sk_mem_raise_allocated - increase memory_allocated
2593 * @sk: socket
2594 * @size: memory size to allocate
2595 * @amt: pages to allocate
2596 * @kind: allocation type
2597 *
2598 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2599 */
__sk_mem_raise_allocated(struct sock * sk,int size,int amt,int kind)2600 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2601 {
2602 struct proto *prot = sk->sk_prot;
2603 long allocated = sk_memory_allocated_add(sk, amt);
2604 bool charged = true;
2605
2606 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2607 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2608 goto suppress_allocation;
2609
2610 /* Under limit. */
2611 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2612 sk_leave_memory_pressure(sk);
2613 return 1;
2614 }
2615
2616 /* Under pressure. */
2617 if (allocated > sk_prot_mem_limits(sk, 1))
2618 sk_enter_memory_pressure(sk);
2619
2620 /* Over hard limit. */
2621 if (allocated > sk_prot_mem_limits(sk, 2))
2622 goto suppress_allocation;
2623
2624 /* guarantee minimum buffer size under pressure */
2625 if (kind == SK_MEM_RECV) {
2626 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2627 return 1;
2628
2629 } else { /* SK_MEM_SEND */
2630 int wmem0 = sk_get_wmem0(sk, prot);
2631
2632 if (sk->sk_type == SOCK_STREAM) {
2633 if (sk->sk_wmem_queued < wmem0)
2634 return 1;
2635 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2636 return 1;
2637 }
2638 }
2639
2640 if (sk_has_memory_pressure(sk)) {
2641 u64 alloc;
2642
2643 if (!sk_under_memory_pressure(sk))
2644 return 1;
2645 alloc = sk_sockets_allocated_read_positive(sk);
2646 if (sk_prot_mem_limits(sk, 2) > alloc *
2647 sk_mem_pages(sk->sk_wmem_queued +
2648 atomic_read(&sk->sk_rmem_alloc) +
2649 sk->sk_forward_alloc))
2650 return 1;
2651 }
2652
2653 suppress_allocation:
2654
2655 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2656 sk_stream_moderate_sndbuf(sk);
2657
2658 /* Fail only if socket is _under_ its sndbuf.
2659 * In this case we cannot block, so that we have to fail.
2660 */
2661 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2662 return 1;
2663 }
2664
2665 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2666 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2667
2668 sk_memory_allocated_sub(sk, amt);
2669
2670 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2671 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2672
2673 return 0;
2674 }
2675 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2676
2677 /**
2678 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2679 * @sk: socket
2680 * @size: memory size to allocate
2681 * @kind: allocation type
2682 *
2683 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2684 * rmem allocation. This function assumes that protocols which have
2685 * memory_pressure use sk_wmem_queued as write buffer accounting.
2686 */
__sk_mem_schedule(struct sock * sk,int size,int kind)2687 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2688 {
2689 int ret, amt = sk_mem_pages(size);
2690
2691 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2692 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2693 if (!ret)
2694 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2695 return ret;
2696 }
2697 EXPORT_SYMBOL(__sk_mem_schedule);
2698
2699 /**
2700 * __sk_mem_reduce_allocated - reclaim memory_allocated
2701 * @sk: socket
2702 * @amount: number of quanta
2703 *
2704 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2705 */
__sk_mem_reduce_allocated(struct sock * sk,int amount)2706 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2707 {
2708 sk_memory_allocated_sub(sk, amount);
2709
2710 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2711 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2712
2713 if (sk_under_memory_pressure(sk) &&
2714 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2715 sk_leave_memory_pressure(sk);
2716 }
2717 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2718
2719 /**
2720 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2721 * @sk: socket
2722 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2723 */
__sk_mem_reclaim(struct sock * sk,int amount)2724 void __sk_mem_reclaim(struct sock *sk, int amount)
2725 {
2726 amount >>= SK_MEM_QUANTUM_SHIFT;
2727 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2728 __sk_mem_reduce_allocated(sk, amount);
2729 }
2730 EXPORT_SYMBOL(__sk_mem_reclaim);
2731
sk_set_peek_off(struct sock * sk,int val)2732 int sk_set_peek_off(struct sock *sk, int val)
2733 {
2734 sk->sk_peek_off = val;
2735 return 0;
2736 }
2737 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2738
2739 /*
2740 * Set of default routines for initialising struct proto_ops when
2741 * the protocol does not support a particular function. In certain
2742 * cases where it makes no sense for a protocol to have a "do nothing"
2743 * function, some default processing is provided.
2744 */
2745
sock_no_bind(struct socket * sock,struct sockaddr * saddr,int len)2746 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2747 {
2748 return -EOPNOTSUPP;
2749 }
2750 EXPORT_SYMBOL(sock_no_bind);
2751
sock_no_connect(struct socket * sock,struct sockaddr * saddr,int len,int flags)2752 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2753 int len, int flags)
2754 {
2755 return -EOPNOTSUPP;
2756 }
2757 EXPORT_SYMBOL(sock_no_connect);
2758
sock_no_socketpair(struct socket * sock1,struct socket * sock2)2759 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2760 {
2761 return -EOPNOTSUPP;
2762 }
2763 EXPORT_SYMBOL(sock_no_socketpair);
2764
sock_no_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)2765 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2766 bool kern)
2767 {
2768 return -EOPNOTSUPP;
2769 }
2770 EXPORT_SYMBOL(sock_no_accept);
2771
sock_no_getname(struct socket * sock,struct sockaddr * saddr,int peer)2772 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2773 int peer)
2774 {
2775 return -EOPNOTSUPP;
2776 }
2777 EXPORT_SYMBOL(sock_no_getname);
2778
sock_no_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)2779 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2780 {
2781 return -EOPNOTSUPP;
2782 }
2783 EXPORT_SYMBOL(sock_no_ioctl);
2784
sock_no_listen(struct socket * sock,int backlog)2785 int sock_no_listen(struct socket *sock, int backlog)
2786 {
2787 return -EOPNOTSUPP;
2788 }
2789 EXPORT_SYMBOL(sock_no_listen);
2790
sock_no_shutdown(struct socket * sock,int how)2791 int sock_no_shutdown(struct socket *sock, int how)
2792 {
2793 return -EOPNOTSUPP;
2794 }
2795 EXPORT_SYMBOL(sock_no_shutdown);
2796
sock_no_sendmsg(struct socket * sock,struct msghdr * m,size_t len)2797 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2798 {
2799 return -EOPNOTSUPP;
2800 }
2801 EXPORT_SYMBOL(sock_no_sendmsg);
2802
sock_no_sendmsg_locked(struct sock * sk,struct msghdr * m,size_t len)2803 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2804 {
2805 return -EOPNOTSUPP;
2806 }
2807 EXPORT_SYMBOL(sock_no_sendmsg_locked);
2808
sock_no_recvmsg(struct socket * sock,struct msghdr * m,size_t len,int flags)2809 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2810 int flags)
2811 {
2812 return -EOPNOTSUPP;
2813 }
2814 EXPORT_SYMBOL(sock_no_recvmsg);
2815
sock_no_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)2816 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2817 {
2818 /* Mirror missing mmap method error code */
2819 return -ENODEV;
2820 }
2821 EXPORT_SYMBOL(sock_no_mmap);
2822
2823 /*
2824 * When a file is received (via SCM_RIGHTS, etc), we must bump the
2825 * various sock-based usage counts.
2826 */
__receive_sock(struct file * file)2827 void __receive_sock(struct file *file)
2828 {
2829 struct socket *sock;
2830 int error;
2831
2832 /*
2833 * The resulting value of "error" is ignored here since we only
2834 * need to take action when the file is a socket and testing
2835 * "sock" for NULL is sufficient.
2836 */
2837 sock = sock_from_file(file, &error);
2838 if (sock) {
2839 sock_update_netprioidx(&sock->sk->sk_cgrp_data);
2840 sock_update_classid(&sock->sk->sk_cgrp_data);
2841 }
2842 }
2843
sock_no_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)2844 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2845 {
2846 ssize_t res;
2847 struct msghdr msg = {.msg_flags = flags};
2848 struct kvec iov;
2849 char *kaddr = kmap(page);
2850 iov.iov_base = kaddr + offset;
2851 iov.iov_len = size;
2852 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2853 kunmap(page);
2854 return res;
2855 }
2856 EXPORT_SYMBOL(sock_no_sendpage);
2857
sock_no_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)2858 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2859 int offset, size_t size, int flags)
2860 {
2861 ssize_t res;
2862 struct msghdr msg = {.msg_flags = flags};
2863 struct kvec iov;
2864 char *kaddr = kmap(page);
2865
2866 iov.iov_base = kaddr + offset;
2867 iov.iov_len = size;
2868 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2869 kunmap(page);
2870 return res;
2871 }
2872 EXPORT_SYMBOL(sock_no_sendpage_locked);
2873
2874 /*
2875 * Default Socket Callbacks
2876 */
2877
sock_def_wakeup(struct sock * sk)2878 static void sock_def_wakeup(struct sock *sk)
2879 {
2880 struct socket_wq *wq;
2881
2882 rcu_read_lock();
2883 wq = rcu_dereference(sk->sk_wq);
2884 if (skwq_has_sleeper(wq))
2885 wake_up_interruptible_all(&wq->wait);
2886 rcu_read_unlock();
2887 }
2888
sock_def_error_report(struct sock * sk)2889 static void sock_def_error_report(struct sock *sk)
2890 {
2891 struct socket_wq *wq;
2892
2893 rcu_read_lock();
2894 wq = rcu_dereference(sk->sk_wq);
2895 if (skwq_has_sleeper(wq))
2896 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2897 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2898 rcu_read_unlock();
2899 }
2900
sock_def_readable(struct sock * sk)2901 void sock_def_readable(struct sock *sk)
2902 {
2903 struct socket_wq *wq;
2904
2905 rcu_read_lock();
2906 wq = rcu_dereference(sk->sk_wq);
2907 if (skwq_has_sleeper(wq))
2908 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2909 EPOLLRDNORM | EPOLLRDBAND);
2910 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2911 rcu_read_unlock();
2912 }
2913
sock_def_write_space(struct sock * sk)2914 static void sock_def_write_space(struct sock *sk)
2915 {
2916 struct socket_wq *wq;
2917
2918 rcu_read_lock();
2919
2920 /* Do not wake up a writer until he can make "significant"
2921 * progress. --DaveM
2922 */
2923 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
2924 wq = rcu_dereference(sk->sk_wq);
2925 if (skwq_has_sleeper(wq))
2926 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2927 EPOLLWRNORM | EPOLLWRBAND);
2928
2929 /* Should agree with poll, otherwise some programs break */
2930 if (sock_writeable(sk))
2931 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2932 }
2933
2934 rcu_read_unlock();
2935 }
2936
sock_def_destruct(struct sock * sk)2937 static void sock_def_destruct(struct sock *sk)
2938 {
2939 }
2940
sk_send_sigurg(struct sock * sk)2941 void sk_send_sigurg(struct sock *sk)
2942 {
2943 if (sk->sk_socket && sk->sk_socket->file)
2944 if (send_sigurg(&sk->sk_socket->file->f_owner))
2945 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2946 }
2947 EXPORT_SYMBOL(sk_send_sigurg);
2948
sk_reset_timer(struct sock * sk,struct timer_list * timer,unsigned long expires)2949 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2950 unsigned long expires)
2951 {
2952 if (!mod_timer(timer, expires))
2953 sock_hold(sk);
2954 }
2955 EXPORT_SYMBOL(sk_reset_timer);
2956
sk_stop_timer(struct sock * sk,struct timer_list * timer)2957 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2958 {
2959 if (del_timer(timer))
2960 __sock_put(sk);
2961 }
2962 EXPORT_SYMBOL(sk_stop_timer);
2963
sk_stop_timer_sync(struct sock * sk,struct timer_list * timer)2964 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
2965 {
2966 if (del_timer_sync(timer))
2967 __sock_put(sk);
2968 }
2969 EXPORT_SYMBOL(sk_stop_timer_sync);
2970
sock_init_data(struct socket * sock,struct sock * sk)2971 void sock_init_data(struct socket *sock, struct sock *sk)
2972 {
2973 sk_init_common(sk);
2974 sk->sk_send_head = NULL;
2975
2976 timer_setup(&sk->sk_timer, NULL, 0);
2977
2978 sk->sk_allocation = GFP_KERNEL;
2979 sk->sk_rcvbuf = sysctl_rmem_default;
2980 sk->sk_sndbuf = sysctl_wmem_default;
2981 sk->sk_state = TCP_CLOSE;
2982 sk_set_socket(sk, sock);
2983
2984 sock_set_flag(sk, SOCK_ZAPPED);
2985
2986 if (sock) {
2987 sk->sk_type = sock->type;
2988 RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
2989 sock->sk = sk;
2990 sk->sk_uid = SOCK_INODE(sock)->i_uid;
2991 } else {
2992 RCU_INIT_POINTER(sk->sk_wq, NULL);
2993 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
2994 }
2995
2996 rwlock_init(&sk->sk_callback_lock);
2997 if (sk->sk_kern_sock)
2998 lockdep_set_class_and_name(
2999 &sk->sk_callback_lock,
3000 af_kern_callback_keys + sk->sk_family,
3001 af_family_kern_clock_key_strings[sk->sk_family]);
3002 else
3003 lockdep_set_class_and_name(
3004 &sk->sk_callback_lock,
3005 af_callback_keys + sk->sk_family,
3006 af_family_clock_key_strings[sk->sk_family]);
3007
3008 sk->sk_state_change = sock_def_wakeup;
3009 sk->sk_data_ready = sock_def_readable;
3010 sk->sk_write_space = sock_def_write_space;
3011 sk->sk_error_report = sock_def_error_report;
3012 sk->sk_destruct = sock_def_destruct;
3013
3014 sk->sk_frag.page = NULL;
3015 sk->sk_frag.offset = 0;
3016 sk->sk_peek_off = -1;
3017
3018 sk->sk_peer_pid = NULL;
3019 sk->sk_peer_cred = NULL;
3020 spin_lock_init(&sk->sk_peer_lock);
3021
3022 sk->sk_write_pending = 0;
3023 sk->sk_rcvlowat = 1;
3024 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
3025 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
3026
3027 sk->sk_stamp = SK_DEFAULT_STAMP;
3028 #if BITS_PER_LONG==32
3029 seqlock_init(&sk->sk_stamp_seq);
3030 #endif
3031 atomic_set(&sk->sk_zckey, 0);
3032
3033 #ifdef CONFIG_NET_RX_BUSY_POLL
3034 sk->sk_napi_id = 0;
3035 sk->sk_ll_usec = sysctl_net_busy_read;
3036 #endif
3037
3038 sk->sk_max_pacing_rate = ~0UL;
3039 sk->sk_pacing_rate = ~0UL;
3040 WRITE_ONCE(sk->sk_pacing_shift, 10);
3041 sk->sk_incoming_cpu = -1;
3042
3043 sk_rx_queue_clear(sk);
3044 /*
3045 * Before updating sk_refcnt, we must commit prior changes to memory
3046 * (Documentation/RCU/rculist_nulls.rst for details)
3047 */
3048 smp_wmb();
3049 refcount_set(&sk->sk_refcnt, 1);
3050 atomic_set(&sk->sk_drops, 0);
3051 }
3052 EXPORT_SYMBOL(sock_init_data);
3053
lock_sock_nested(struct sock * sk,int subclass)3054 void lock_sock_nested(struct sock *sk, int subclass)
3055 {
3056 might_sleep();
3057 spin_lock_bh(&sk->sk_lock.slock);
3058 if (sk->sk_lock.owned)
3059 __lock_sock(sk);
3060 sk->sk_lock.owned = 1;
3061 spin_unlock(&sk->sk_lock.slock);
3062 /*
3063 * The sk_lock has mutex_lock() semantics here:
3064 */
3065 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3066 local_bh_enable();
3067 }
3068 EXPORT_SYMBOL(lock_sock_nested);
3069
release_sock(struct sock * sk)3070 void release_sock(struct sock *sk)
3071 {
3072 spin_lock_bh(&sk->sk_lock.slock);
3073 if (sk->sk_backlog.tail)
3074 __release_sock(sk);
3075
3076 /* Warning : release_cb() might need to release sk ownership,
3077 * ie call sock_release_ownership(sk) before us.
3078 */
3079 if (sk->sk_prot->release_cb)
3080 sk->sk_prot->release_cb(sk);
3081
3082 sock_release_ownership(sk);
3083 if (waitqueue_active(&sk->sk_lock.wq))
3084 wake_up(&sk->sk_lock.wq);
3085 spin_unlock_bh(&sk->sk_lock.slock);
3086 }
3087 EXPORT_SYMBOL(release_sock);
3088
3089 /**
3090 * lock_sock_fast - fast version of lock_sock
3091 * @sk: socket
3092 *
3093 * This version should be used for very small section, where process wont block
3094 * return false if fast path is taken:
3095 *
3096 * sk_lock.slock locked, owned = 0, BH disabled
3097 *
3098 * return true if slow path is taken:
3099 *
3100 * sk_lock.slock unlocked, owned = 1, BH enabled
3101 */
lock_sock_fast(struct sock * sk)3102 bool lock_sock_fast(struct sock *sk)
3103 {
3104 might_sleep();
3105 spin_lock_bh(&sk->sk_lock.slock);
3106
3107 if (!sk->sk_lock.owned)
3108 /*
3109 * Note : We must disable BH
3110 */
3111 return false;
3112
3113 __lock_sock(sk);
3114 sk->sk_lock.owned = 1;
3115 spin_unlock(&sk->sk_lock.slock);
3116 /*
3117 * The sk_lock has mutex_lock() semantics here:
3118 */
3119 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3120 local_bh_enable();
3121 return true;
3122 }
3123 EXPORT_SYMBOL(lock_sock_fast);
3124
sock_gettstamp(struct socket * sock,void __user * userstamp,bool timeval,bool time32)3125 int sock_gettstamp(struct socket *sock, void __user *userstamp,
3126 bool timeval, bool time32)
3127 {
3128 struct sock *sk = sock->sk;
3129 struct timespec64 ts;
3130
3131 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3132 ts = ktime_to_timespec64(sock_read_timestamp(sk));
3133 if (ts.tv_sec == -1)
3134 return -ENOENT;
3135 if (ts.tv_sec == 0) {
3136 ktime_t kt = ktime_get_real();
3137 sock_write_timestamp(sk, kt);
3138 ts = ktime_to_timespec64(kt);
3139 }
3140
3141 if (timeval)
3142 ts.tv_nsec /= 1000;
3143
3144 #ifdef CONFIG_COMPAT_32BIT_TIME
3145 if (time32)
3146 return put_old_timespec32(&ts, userstamp);
3147 #endif
3148 #ifdef CONFIG_SPARC64
3149 /* beware of padding in sparc64 timeval */
3150 if (timeval && !in_compat_syscall()) {
3151 struct __kernel_old_timeval __user tv = {
3152 .tv_sec = ts.tv_sec,
3153 .tv_usec = ts.tv_nsec,
3154 };
3155 if (copy_to_user(userstamp, &tv, sizeof(tv)))
3156 return -EFAULT;
3157 return 0;
3158 }
3159 #endif
3160 return put_timespec64(&ts, userstamp);
3161 }
3162 EXPORT_SYMBOL(sock_gettstamp);
3163
sock_enable_timestamp(struct sock * sk,enum sock_flags flag)3164 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3165 {
3166 if (!sock_flag(sk, flag)) {
3167 unsigned long previous_flags = sk->sk_flags;
3168
3169 sock_set_flag(sk, flag);
3170 /*
3171 * we just set one of the two flags which require net
3172 * time stamping, but time stamping might have been on
3173 * already because of the other one
3174 */
3175 if (sock_needs_netstamp(sk) &&
3176 !(previous_flags & SK_FLAGS_TIMESTAMP))
3177 net_enable_timestamp();
3178 }
3179 }
3180
sock_recv_errqueue(struct sock * sk,struct msghdr * msg,int len,int level,int type)3181 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3182 int level, int type)
3183 {
3184 struct sock_exterr_skb *serr;
3185 struct sk_buff *skb;
3186 int copied, err;
3187
3188 err = -EAGAIN;
3189 skb = sock_dequeue_err_skb(sk);
3190 if (skb == NULL)
3191 goto out;
3192
3193 copied = skb->len;
3194 if (copied > len) {
3195 msg->msg_flags |= MSG_TRUNC;
3196 copied = len;
3197 }
3198 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3199 if (err)
3200 goto out_free_skb;
3201
3202 sock_recv_timestamp(msg, sk, skb);
3203
3204 serr = SKB_EXT_ERR(skb);
3205 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3206
3207 msg->msg_flags |= MSG_ERRQUEUE;
3208 err = copied;
3209
3210 out_free_skb:
3211 kfree_skb(skb);
3212 out:
3213 return err;
3214 }
3215 EXPORT_SYMBOL(sock_recv_errqueue);
3216
3217 /*
3218 * Get a socket option on an socket.
3219 *
3220 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3221 * asynchronous errors should be reported by getsockopt. We assume
3222 * this means if you specify SO_ERROR (otherwise whats the point of it).
3223 */
sock_common_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)3224 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3225 char __user *optval, int __user *optlen)
3226 {
3227 struct sock *sk = sock->sk;
3228
3229 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
3230 return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3231 }
3232 EXPORT_SYMBOL(sock_common_getsockopt);
3233
sock_common_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)3234 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3235 int flags)
3236 {
3237 struct sock *sk = sock->sk;
3238 int addr_len = 0;
3239 int err;
3240
3241 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3242 flags & ~MSG_DONTWAIT, &addr_len);
3243 if (err >= 0)
3244 msg->msg_namelen = addr_len;
3245 return err;
3246 }
3247 EXPORT_SYMBOL(sock_common_recvmsg);
3248
3249 /*
3250 * Set socket options on an inet socket.
3251 */
sock_common_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)3252 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3253 sockptr_t optval, unsigned int optlen)
3254 {
3255 struct sock *sk = sock->sk;
3256
3257 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
3258 return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3259 }
3260 EXPORT_SYMBOL(sock_common_setsockopt);
3261
sk_common_release(struct sock * sk)3262 void sk_common_release(struct sock *sk)
3263 {
3264 if (sk->sk_prot->destroy)
3265 sk->sk_prot->destroy(sk);
3266
3267 /*
3268 * Observation: when sk_common_release is called, processes have
3269 * no access to socket. But net still has.
3270 * Step one, detach it from networking:
3271 *
3272 * A. Remove from hash tables.
3273 */
3274
3275 sk->sk_prot->unhash(sk);
3276
3277 /*
3278 * In this point socket cannot receive new packets, but it is possible
3279 * that some packets are in flight because some CPU runs receiver and
3280 * did hash table lookup before we unhashed socket. They will achieve
3281 * receive queue and will be purged by socket destructor.
3282 *
3283 * Also we still have packets pending on receive queue and probably,
3284 * our own packets waiting in device queues. sock_destroy will drain
3285 * receive queue, but transmitted packets will delay socket destruction
3286 * until the last reference will be released.
3287 */
3288
3289 sock_orphan(sk);
3290
3291 xfrm_sk_free_policy(sk);
3292
3293 sk_refcnt_debug_release(sk);
3294
3295 sock_put(sk);
3296 }
3297 EXPORT_SYMBOL(sk_common_release);
3298
sk_get_meminfo(const struct sock * sk,u32 * mem)3299 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3300 {
3301 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3302
3303 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3304 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3305 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3306 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3307 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3308 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3309 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3310 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3311 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3312 }
3313
3314 #ifdef CONFIG_PROC_FS
3315 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
3316 struct prot_inuse {
3317 int val[PROTO_INUSE_NR];
3318 };
3319
3320 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3321
sock_prot_inuse_add(struct net * net,struct proto * prot,int val)3322 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3323 {
3324 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3325 }
3326 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3327
sock_prot_inuse_get(struct net * net,struct proto * prot)3328 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3329 {
3330 int cpu, idx = prot->inuse_idx;
3331 int res = 0;
3332
3333 for_each_possible_cpu(cpu)
3334 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3335
3336 return res >= 0 ? res : 0;
3337 }
3338 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3339
sock_inuse_add(struct net * net,int val)3340 static void sock_inuse_add(struct net *net, int val)
3341 {
3342 this_cpu_add(*net->core.sock_inuse, val);
3343 }
3344
sock_inuse_get(struct net * net)3345 int sock_inuse_get(struct net *net)
3346 {
3347 int cpu, res = 0;
3348
3349 for_each_possible_cpu(cpu)
3350 res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3351
3352 return res;
3353 }
3354
3355 EXPORT_SYMBOL_GPL(sock_inuse_get);
3356
sock_inuse_init_net(struct net * net)3357 static int __net_init sock_inuse_init_net(struct net *net)
3358 {
3359 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3360 if (net->core.prot_inuse == NULL)
3361 return -ENOMEM;
3362
3363 net->core.sock_inuse = alloc_percpu(int);
3364 if (net->core.sock_inuse == NULL)
3365 goto out;
3366
3367 return 0;
3368
3369 out:
3370 free_percpu(net->core.prot_inuse);
3371 return -ENOMEM;
3372 }
3373
sock_inuse_exit_net(struct net * net)3374 static void __net_exit sock_inuse_exit_net(struct net *net)
3375 {
3376 free_percpu(net->core.prot_inuse);
3377 free_percpu(net->core.sock_inuse);
3378 }
3379
3380 static struct pernet_operations net_inuse_ops = {
3381 .init = sock_inuse_init_net,
3382 .exit = sock_inuse_exit_net,
3383 };
3384
net_inuse_init(void)3385 static __init int net_inuse_init(void)
3386 {
3387 if (register_pernet_subsys(&net_inuse_ops))
3388 panic("Cannot initialize net inuse counters");
3389
3390 return 0;
3391 }
3392
3393 core_initcall(net_inuse_init);
3394
assign_proto_idx(struct proto * prot)3395 static int assign_proto_idx(struct proto *prot)
3396 {
3397 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3398
3399 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3400 pr_err("PROTO_INUSE_NR exhausted\n");
3401 return -ENOSPC;
3402 }
3403
3404 set_bit(prot->inuse_idx, proto_inuse_idx);
3405 return 0;
3406 }
3407
release_proto_idx(struct proto * prot)3408 static void release_proto_idx(struct proto *prot)
3409 {
3410 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3411 clear_bit(prot->inuse_idx, proto_inuse_idx);
3412 }
3413 #else
assign_proto_idx(struct proto * prot)3414 static inline int assign_proto_idx(struct proto *prot)
3415 {
3416 return 0;
3417 }
3418
release_proto_idx(struct proto * prot)3419 static inline void release_proto_idx(struct proto *prot)
3420 {
3421 }
3422
sock_inuse_add(struct net * net,int val)3423 static void sock_inuse_add(struct net *net, int val)
3424 {
3425 }
3426 #endif
3427
tw_prot_cleanup(struct timewait_sock_ops * twsk_prot)3428 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3429 {
3430 if (!twsk_prot)
3431 return;
3432 kfree(twsk_prot->twsk_slab_name);
3433 twsk_prot->twsk_slab_name = NULL;
3434 kmem_cache_destroy(twsk_prot->twsk_slab);
3435 twsk_prot->twsk_slab = NULL;
3436 }
3437
req_prot_cleanup(struct request_sock_ops * rsk_prot)3438 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3439 {
3440 if (!rsk_prot)
3441 return;
3442 kfree(rsk_prot->slab_name);
3443 rsk_prot->slab_name = NULL;
3444 kmem_cache_destroy(rsk_prot->slab);
3445 rsk_prot->slab = NULL;
3446 }
3447
req_prot_init(const struct proto * prot)3448 static int req_prot_init(const struct proto *prot)
3449 {
3450 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3451
3452 if (!rsk_prot)
3453 return 0;
3454
3455 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3456 prot->name);
3457 if (!rsk_prot->slab_name)
3458 return -ENOMEM;
3459
3460 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3461 rsk_prot->obj_size, 0,
3462 SLAB_ACCOUNT | prot->slab_flags,
3463 NULL);
3464
3465 if (!rsk_prot->slab) {
3466 pr_crit("%s: Can't create request sock SLAB cache!\n",
3467 prot->name);
3468 return -ENOMEM;
3469 }
3470 return 0;
3471 }
3472
proto_register(struct proto * prot,int alloc_slab)3473 int proto_register(struct proto *prot, int alloc_slab)
3474 {
3475 int ret = -ENOBUFS;
3476
3477 if (alloc_slab) {
3478 prot->slab = kmem_cache_create_usercopy(prot->name,
3479 prot->obj_size, 0,
3480 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3481 prot->slab_flags,
3482 prot->useroffset, prot->usersize,
3483 NULL);
3484
3485 if (prot->slab == NULL) {
3486 pr_crit("%s: Can't create sock SLAB cache!\n",
3487 prot->name);
3488 goto out;
3489 }
3490
3491 if (req_prot_init(prot))
3492 goto out_free_request_sock_slab;
3493
3494 if (prot->twsk_prot != NULL) {
3495 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3496
3497 if (prot->twsk_prot->twsk_slab_name == NULL)
3498 goto out_free_request_sock_slab;
3499
3500 prot->twsk_prot->twsk_slab =
3501 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3502 prot->twsk_prot->twsk_obj_size,
3503 0,
3504 SLAB_ACCOUNT |
3505 prot->slab_flags,
3506 NULL);
3507 if (prot->twsk_prot->twsk_slab == NULL)
3508 goto out_free_timewait_sock_slab;
3509 }
3510 }
3511
3512 mutex_lock(&proto_list_mutex);
3513 ret = assign_proto_idx(prot);
3514 if (ret) {
3515 mutex_unlock(&proto_list_mutex);
3516 goto out_free_timewait_sock_slab;
3517 }
3518 list_add(&prot->node, &proto_list);
3519 mutex_unlock(&proto_list_mutex);
3520 return ret;
3521
3522 out_free_timewait_sock_slab:
3523 if (alloc_slab && prot->twsk_prot)
3524 tw_prot_cleanup(prot->twsk_prot);
3525 out_free_request_sock_slab:
3526 if (alloc_slab) {
3527 req_prot_cleanup(prot->rsk_prot);
3528
3529 kmem_cache_destroy(prot->slab);
3530 prot->slab = NULL;
3531 }
3532 out:
3533 return ret;
3534 }
3535 EXPORT_SYMBOL(proto_register);
3536
proto_unregister(struct proto * prot)3537 void proto_unregister(struct proto *prot)
3538 {
3539 mutex_lock(&proto_list_mutex);
3540 release_proto_idx(prot);
3541 list_del(&prot->node);
3542 mutex_unlock(&proto_list_mutex);
3543
3544 kmem_cache_destroy(prot->slab);
3545 prot->slab = NULL;
3546
3547 req_prot_cleanup(prot->rsk_prot);
3548 tw_prot_cleanup(prot->twsk_prot);
3549 }
3550 EXPORT_SYMBOL(proto_unregister);
3551
sock_load_diag_module(int family,int protocol)3552 int sock_load_diag_module(int family, int protocol)
3553 {
3554 if (!protocol) {
3555 if (!sock_is_registered(family))
3556 return -ENOENT;
3557
3558 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3559 NETLINK_SOCK_DIAG, family);
3560 }
3561
3562 #ifdef CONFIG_INET
3563 if (family == AF_INET &&
3564 protocol != IPPROTO_RAW &&
3565 protocol < MAX_INET_PROTOS &&
3566 !rcu_access_pointer(inet_protos[protocol]))
3567 return -ENOENT;
3568 #endif
3569
3570 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3571 NETLINK_SOCK_DIAG, family, protocol);
3572 }
3573 EXPORT_SYMBOL(sock_load_diag_module);
3574
3575 #ifdef CONFIG_PROC_FS
proto_seq_start(struct seq_file * seq,loff_t * pos)3576 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3577 __acquires(proto_list_mutex)
3578 {
3579 mutex_lock(&proto_list_mutex);
3580 return seq_list_start_head(&proto_list, *pos);
3581 }
3582
proto_seq_next(struct seq_file * seq,void * v,loff_t * pos)3583 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3584 {
3585 return seq_list_next(v, &proto_list, pos);
3586 }
3587
proto_seq_stop(struct seq_file * seq,void * v)3588 static void proto_seq_stop(struct seq_file *seq, void *v)
3589 __releases(proto_list_mutex)
3590 {
3591 mutex_unlock(&proto_list_mutex);
3592 }
3593
proto_method_implemented(const void * method)3594 static char proto_method_implemented(const void *method)
3595 {
3596 return method == NULL ? 'n' : 'y';
3597 }
sock_prot_memory_allocated(struct proto * proto)3598 static long sock_prot_memory_allocated(struct proto *proto)
3599 {
3600 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3601 }
3602
sock_prot_memory_pressure(struct proto * proto)3603 static const char *sock_prot_memory_pressure(struct proto *proto)
3604 {
3605 return proto->memory_pressure != NULL ?
3606 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3607 }
3608
proto_seq_printf(struct seq_file * seq,struct proto * proto)3609 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3610 {
3611
3612 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3613 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3614 proto->name,
3615 proto->obj_size,
3616 sock_prot_inuse_get(seq_file_net(seq), proto),
3617 sock_prot_memory_allocated(proto),
3618 sock_prot_memory_pressure(proto),
3619 proto->max_header,
3620 proto->slab == NULL ? "no" : "yes",
3621 module_name(proto->owner),
3622 proto_method_implemented(proto->close),
3623 proto_method_implemented(proto->connect),
3624 proto_method_implemented(proto->disconnect),
3625 proto_method_implemented(proto->accept),
3626 proto_method_implemented(proto->ioctl),
3627 proto_method_implemented(proto->init),
3628 proto_method_implemented(proto->destroy),
3629 proto_method_implemented(proto->shutdown),
3630 proto_method_implemented(proto->setsockopt),
3631 proto_method_implemented(proto->getsockopt),
3632 proto_method_implemented(proto->sendmsg),
3633 proto_method_implemented(proto->recvmsg),
3634 proto_method_implemented(proto->sendpage),
3635 proto_method_implemented(proto->bind),
3636 proto_method_implemented(proto->backlog_rcv),
3637 proto_method_implemented(proto->hash),
3638 proto_method_implemented(proto->unhash),
3639 proto_method_implemented(proto->get_port),
3640 proto_method_implemented(proto->enter_memory_pressure));
3641 }
3642
proto_seq_show(struct seq_file * seq,void * v)3643 static int proto_seq_show(struct seq_file *seq, void *v)
3644 {
3645 if (v == &proto_list)
3646 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3647 "protocol",
3648 "size",
3649 "sockets",
3650 "memory",
3651 "press",
3652 "maxhdr",
3653 "slab",
3654 "module",
3655 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3656 else
3657 proto_seq_printf(seq, list_entry(v, struct proto, node));
3658 return 0;
3659 }
3660
3661 static const struct seq_operations proto_seq_ops = {
3662 .start = proto_seq_start,
3663 .next = proto_seq_next,
3664 .stop = proto_seq_stop,
3665 .show = proto_seq_show,
3666 };
3667
proto_init_net(struct net * net)3668 static __net_init int proto_init_net(struct net *net)
3669 {
3670 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3671 sizeof(struct seq_net_private)))
3672 return -ENOMEM;
3673
3674 return 0;
3675 }
3676
proto_exit_net(struct net * net)3677 static __net_exit void proto_exit_net(struct net *net)
3678 {
3679 remove_proc_entry("protocols", net->proc_net);
3680 }
3681
3682
3683 static __net_initdata struct pernet_operations proto_net_ops = {
3684 .init = proto_init_net,
3685 .exit = proto_exit_net,
3686 };
3687
proto_init(void)3688 static int __init proto_init(void)
3689 {
3690 return register_pernet_subsys(&proto_net_ops);
3691 }
3692
3693 subsys_initcall(proto_init);
3694
3695 #endif /* PROC_FS */
3696
3697 #ifdef CONFIG_NET_RX_BUSY_POLL
sk_busy_loop_end(void * p,unsigned long start_time)3698 bool sk_busy_loop_end(void *p, unsigned long start_time)
3699 {
3700 struct sock *sk = p;
3701
3702 return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3703 sk_busy_loop_timeout(sk, start_time);
3704 }
3705 EXPORT_SYMBOL(sk_busy_loop_end);
3706 #endif /* CONFIG_NET_RX_BUSY_POLL */
3707
sock_bind_add(struct sock * sk,struct sockaddr * addr,int addr_len)3708 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
3709 {
3710 if (!sk->sk_prot->bind_add)
3711 return -EOPNOTSUPP;
3712 return sk->sk_prot->bind_add(sk, addr, addr_len);
3713 }
3714 EXPORT_SYMBOL(sock_bind_add);
3715