1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282
283 struct percpu_counter tcp_orphan_count;
284 EXPORT_SYMBOL_GPL(tcp_orphan_count);
285
286 long sysctl_tcp_mem[3] __read_mostly;
287 EXPORT_SYMBOL(sysctl_tcp_mem);
288
289 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
290 EXPORT_SYMBOL(tcp_memory_allocated);
291
292 #if IS_ENABLED(CONFIG_SMC)
293 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
294 EXPORT_SYMBOL(tcp_have_smc);
295 #endif
296
297 /*
298 * Current number of TCP sockets.
299 */
300 struct percpu_counter tcp_sockets_allocated;
301 EXPORT_SYMBOL(tcp_sockets_allocated);
302
303 /*
304 * TCP splice context
305 */
306 struct tcp_splice_state {
307 struct pipe_inode_info *pipe;
308 size_t len;
309 unsigned int flags;
310 };
311
312 /*
313 * Pressure flag: try to collapse.
314 * Technical note: it is used by multiple contexts non atomically.
315 * All the __sk_mem_schedule() is of this nature: accounting
316 * is strict, actions are advisory and have some latency.
317 */
318 unsigned long tcp_memory_pressure __read_mostly;
319 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
320
321 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
322 EXPORT_SYMBOL(tcp_rx_skb_cache_key);
323
324 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
325
tcp_enter_memory_pressure(struct sock * sk)326 void tcp_enter_memory_pressure(struct sock *sk)
327 {
328 unsigned long val;
329
330 if (READ_ONCE(tcp_memory_pressure))
331 return;
332 val = jiffies;
333
334 if (!val)
335 val--;
336 if (!cmpxchg(&tcp_memory_pressure, 0, val))
337 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
338 }
339 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
340
tcp_leave_memory_pressure(struct sock * sk)341 void tcp_leave_memory_pressure(struct sock *sk)
342 {
343 unsigned long val;
344
345 if (!READ_ONCE(tcp_memory_pressure))
346 return;
347 val = xchg(&tcp_memory_pressure, 0);
348 if (val)
349 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
350 jiffies_to_msecs(jiffies - val));
351 }
352 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
353
354 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)355 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
356 {
357 u8 res = 0;
358
359 if (seconds > 0) {
360 int period = timeout;
361
362 res = 1;
363 while (seconds > period && res < 255) {
364 res++;
365 timeout <<= 1;
366 if (timeout > rto_max)
367 timeout = rto_max;
368 period += timeout;
369 }
370 }
371 return res;
372 }
373
374 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)375 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
376 {
377 int period = 0;
378
379 if (retrans > 0) {
380 period = timeout;
381 while (--retrans) {
382 timeout <<= 1;
383 if (timeout > rto_max)
384 timeout = rto_max;
385 period += timeout;
386 }
387 }
388 return period;
389 }
390
tcp_compute_delivery_rate(const struct tcp_sock * tp)391 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
392 {
393 u32 rate = READ_ONCE(tp->rate_delivered);
394 u32 intv = READ_ONCE(tp->rate_interval_us);
395 u64 rate64 = 0;
396
397 if (rate && intv) {
398 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
399 do_div(rate64, intv);
400 }
401 return rate64;
402 }
403
404 /* Address-family independent initialization for a tcp_sock.
405 *
406 * NOTE: A lot of things set to zero explicitly by call to
407 * sk_alloc() so need not be done here.
408 */
tcp_init_sock(struct sock * sk)409 void tcp_init_sock(struct sock *sk)
410 {
411 struct inet_connection_sock *icsk = inet_csk(sk);
412 struct tcp_sock *tp = tcp_sk(sk);
413
414 tp->out_of_order_queue = RB_ROOT;
415 sk->tcp_rtx_queue = RB_ROOT;
416 tcp_init_xmit_timers(sk);
417 INIT_LIST_HEAD(&tp->tsq_node);
418 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
419
420 icsk->icsk_rto = TCP_TIMEOUT_INIT;
421 icsk->icsk_rto_min = TCP_RTO_MIN;
422 icsk->icsk_delack_max = TCP_DELACK_MAX;
423 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
424 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
425
426 /* So many TCP implementations out there (incorrectly) count the
427 * initial SYN frame in their delayed-ACK and congestion control
428 * algorithms that we must have the following bandaid to talk
429 * efficiently to them. -DaveM
430 */
431 tp->snd_cwnd = TCP_INIT_CWND;
432
433 /* There's a bubble in the pipe until at least the first ACK. */
434 tp->app_limited = ~0U;
435
436 /* See draft-stevens-tcpca-spec-01 for discussion of the
437 * initialization of these values.
438 */
439 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
440 tp->snd_cwnd_clamp = ~0;
441 tp->mss_cache = TCP_MSS_DEFAULT;
442
443 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
444 tcp_assign_congestion_control(sk);
445
446 tp->tsoffset = 0;
447 tp->rack.reo_wnd_steps = 1;
448
449 sk->sk_write_space = sk_stream_write_space;
450 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
451
452 icsk->icsk_sync_mss = tcp_sync_mss;
453
454 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
455 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
456
457 sk_sockets_allocated_inc(sk);
458 sk->sk_route_forced_caps = NETIF_F_GSO;
459 }
460 EXPORT_SYMBOL(tcp_init_sock);
461
tcp_tx_timestamp(struct sock * sk,u16 tsflags)462 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
463 {
464 struct sk_buff *skb = tcp_write_queue_tail(sk);
465
466 if (tsflags && skb) {
467 struct skb_shared_info *shinfo = skb_shinfo(skb);
468 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
469
470 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
471 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
472 tcb->txstamp_ack = 1;
473 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
474 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
475 }
476 }
477
tcp_stream_is_readable(const struct tcp_sock * tp,int target,struct sock * sk)478 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
479 int target, struct sock *sk)
480 {
481 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
482
483 if (avail > 0) {
484 if (avail >= target)
485 return true;
486 if (tcp_rmem_pressure(sk))
487 return true;
488 if (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss)
489 return true;
490 }
491 if (sk->sk_prot->stream_memory_read)
492 return sk->sk_prot->stream_memory_read(sk);
493 return false;
494 }
495
496 /*
497 * Wait for a TCP event.
498 *
499 * Note that we don't need to lock the socket, as the upper poll layers
500 * take care of normal races (between the test and the event) and we don't
501 * go look at any of the socket buffers directly.
502 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)503 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
504 {
505 __poll_t mask;
506 struct sock *sk = sock->sk;
507 const struct tcp_sock *tp = tcp_sk(sk);
508 int state;
509
510 sock_poll_wait(file, sock, wait);
511
512 state = inet_sk_state_load(sk);
513 if (state == TCP_LISTEN)
514 return inet_csk_listen_poll(sk);
515
516 /* Socket is not locked. We are protected from async events
517 * by poll logic and correct handling of state changes
518 * made by other threads is impossible in any case.
519 */
520
521 mask = 0;
522
523 /*
524 * EPOLLHUP is certainly not done right. But poll() doesn't
525 * have a notion of HUP in just one direction, and for a
526 * socket the read side is more interesting.
527 *
528 * Some poll() documentation says that EPOLLHUP is incompatible
529 * with the EPOLLOUT/POLLWR flags, so somebody should check this
530 * all. But careful, it tends to be safer to return too many
531 * bits than too few, and you can easily break real applications
532 * if you don't tell them that something has hung up!
533 *
534 * Check-me.
535 *
536 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
537 * our fs/select.c). It means that after we received EOF,
538 * poll always returns immediately, making impossible poll() on write()
539 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
540 * if and only if shutdown has been made in both directions.
541 * Actually, it is interesting to look how Solaris and DUX
542 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
543 * then we could set it on SND_SHUTDOWN. BTW examples given
544 * in Stevens' books assume exactly this behaviour, it explains
545 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
546 *
547 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
548 * blocking on fresh not-connected or disconnected socket. --ANK
549 */
550 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
551 mask |= EPOLLHUP;
552 if (sk->sk_shutdown & RCV_SHUTDOWN)
553 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
554
555 /* Connected or passive Fast Open socket? */
556 if (state != TCP_SYN_SENT &&
557 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
558 int target = sock_rcvlowat(sk, 0, INT_MAX);
559
560 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
561 !sock_flag(sk, SOCK_URGINLINE) &&
562 tp->urg_data)
563 target++;
564
565 if (tcp_stream_is_readable(tp, target, sk))
566 mask |= EPOLLIN | EPOLLRDNORM;
567
568 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
569 if (__sk_stream_is_writeable(sk, 1)) {
570 mask |= EPOLLOUT | EPOLLWRNORM;
571 } else { /* send SIGIO later */
572 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
573 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
574
575 /* Race breaker. If space is freed after
576 * wspace test but before the flags are set,
577 * IO signal will be lost. Memory barrier
578 * pairs with the input side.
579 */
580 smp_mb__after_atomic();
581 if (__sk_stream_is_writeable(sk, 1))
582 mask |= EPOLLOUT | EPOLLWRNORM;
583 }
584 } else
585 mask |= EPOLLOUT | EPOLLWRNORM;
586
587 if (tp->urg_data & TCP_URG_VALID)
588 mask |= EPOLLPRI;
589 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
590 /* Active TCP fastopen socket with defer_connect
591 * Return EPOLLOUT so application can call write()
592 * in order for kernel to generate SYN+data
593 */
594 mask |= EPOLLOUT | EPOLLWRNORM;
595 }
596 /* This barrier is coupled with smp_wmb() in tcp_reset() */
597 smp_rmb();
598 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
599 mask |= EPOLLERR;
600
601 return mask;
602 }
603 EXPORT_SYMBOL(tcp_poll);
604
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)605 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
606 {
607 struct tcp_sock *tp = tcp_sk(sk);
608 int answ;
609 bool slow;
610
611 switch (cmd) {
612 case SIOCINQ:
613 if (sk->sk_state == TCP_LISTEN)
614 return -EINVAL;
615
616 slow = lock_sock_fast(sk);
617 answ = tcp_inq(sk);
618 unlock_sock_fast(sk, slow);
619 break;
620 case SIOCATMARK:
621 answ = tp->urg_data &&
622 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
623 break;
624 case SIOCOUTQ:
625 if (sk->sk_state == TCP_LISTEN)
626 return -EINVAL;
627
628 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
629 answ = 0;
630 else
631 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
632 break;
633 case SIOCOUTQNSD:
634 if (sk->sk_state == TCP_LISTEN)
635 return -EINVAL;
636
637 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
638 answ = 0;
639 else
640 answ = READ_ONCE(tp->write_seq) -
641 READ_ONCE(tp->snd_nxt);
642 break;
643 default:
644 return -ENOIOCTLCMD;
645 }
646
647 return put_user(answ, (int __user *)arg);
648 }
649 EXPORT_SYMBOL(tcp_ioctl);
650
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)651 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
652 {
653 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
654 tp->pushed_seq = tp->write_seq;
655 }
656
forced_push(const struct tcp_sock * tp)657 static inline bool forced_push(const struct tcp_sock *tp)
658 {
659 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
660 }
661
skb_entail(struct sock * sk,struct sk_buff * skb)662 static void skb_entail(struct sock *sk, struct sk_buff *skb)
663 {
664 struct tcp_sock *tp = tcp_sk(sk);
665 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
666
667 skb->csum = 0;
668 tcb->seq = tcb->end_seq = tp->write_seq;
669 tcb->tcp_flags = TCPHDR_ACK;
670 tcb->sacked = 0;
671 __skb_header_release(skb);
672 tcp_add_write_queue_tail(sk, skb);
673 sk_wmem_queued_add(sk, skb->truesize);
674 sk_mem_charge(sk, skb->truesize);
675 if (tp->nonagle & TCP_NAGLE_PUSH)
676 tp->nonagle &= ~TCP_NAGLE_PUSH;
677
678 tcp_slow_start_after_idle_check(sk);
679 }
680
tcp_mark_urg(struct tcp_sock * tp,int flags)681 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
682 {
683 if (flags & MSG_OOB)
684 tp->snd_up = tp->write_seq;
685 }
686
687 /* If a not yet filled skb is pushed, do not send it if
688 * we have data packets in Qdisc or NIC queues :
689 * Because TX completion will happen shortly, it gives a chance
690 * to coalesce future sendmsg() payload into this skb, without
691 * need for a timer, and with no latency trade off.
692 * As packets containing data payload have a bigger truesize
693 * than pure acks (dataless) packets, the last checks prevent
694 * autocorking if we only have an ACK in Qdisc/NIC queues,
695 * or if TX completion was delayed after we processed ACK packet.
696 */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)697 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
698 int size_goal)
699 {
700 return skb->len < size_goal &&
701 sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
702 !tcp_rtx_queue_empty(sk) &&
703 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
704 }
705
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)706 void tcp_push(struct sock *sk, int flags, int mss_now,
707 int nonagle, int size_goal)
708 {
709 struct tcp_sock *tp = tcp_sk(sk);
710 struct sk_buff *skb;
711
712 skb = tcp_write_queue_tail(sk);
713 if (!skb)
714 return;
715 if (!(flags & MSG_MORE) || forced_push(tp))
716 tcp_mark_push(tp, skb);
717
718 tcp_mark_urg(tp, flags);
719
720 if (tcp_should_autocork(sk, skb, size_goal)) {
721
722 /* avoid atomic op if TSQ_THROTTLED bit is already set */
723 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
724 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
725 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
726 }
727 /* It is possible TX completion already happened
728 * before we set TSQ_THROTTLED.
729 */
730 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
731 return;
732 }
733
734 if (flags & MSG_MORE)
735 nonagle = TCP_NAGLE_CORK;
736
737 __tcp_push_pending_frames(sk, mss_now, nonagle);
738 }
739
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)740 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
741 unsigned int offset, size_t len)
742 {
743 struct tcp_splice_state *tss = rd_desc->arg.data;
744 int ret;
745
746 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
747 min(rd_desc->count, len), tss->flags);
748 if (ret > 0)
749 rd_desc->count -= ret;
750 return ret;
751 }
752
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)753 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
754 {
755 /* Store TCP splice context information in read_descriptor_t. */
756 read_descriptor_t rd_desc = {
757 .arg.data = tss,
758 .count = tss->len,
759 };
760
761 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
762 }
763
764 /**
765 * tcp_splice_read - splice data from TCP socket to a pipe
766 * @sock: socket to splice from
767 * @ppos: position (not valid)
768 * @pipe: pipe to splice to
769 * @len: number of bytes to splice
770 * @flags: splice modifier flags
771 *
772 * Description:
773 * Will read pages from given socket and fill them into a pipe.
774 *
775 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)776 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
777 struct pipe_inode_info *pipe, size_t len,
778 unsigned int flags)
779 {
780 struct sock *sk = sock->sk;
781 struct tcp_splice_state tss = {
782 .pipe = pipe,
783 .len = len,
784 .flags = flags,
785 };
786 long timeo;
787 ssize_t spliced;
788 int ret;
789
790 sock_rps_record_flow(sk);
791 /*
792 * We can't seek on a socket input
793 */
794 if (unlikely(*ppos))
795 return -ESPIPE;
796
797 ret = spliced = 0;
798
799 lock_sock(sk);
800
801 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
802 while (tss.len) {
803 ret = __tcp_splice_read(sk, &tss);
804 if (ret < 0)
805 break;
806 else if (!ret) {
807 if (spliced)
808 break;
809 if (sock_flag(sk, SOCK_DONE))
810 break;
811 if (sk->sk_err) {
812 ret = sock_error(sk);
813 break;
814 }
815 if (sk->sk_shutdown & RCV_SHUTDOWN)
816 break;
817 if (sk->sk_state == TCP_CLOSE) {
818 /*
819 * This occurs when user tries to read
820 * from never connected socket.
821 */
822 ret = -ENOTCONN;
823 break;
824 }
825 if (!timeo) {
826 ret = -EAGAIN;
827 break;
828 }
829 /* if __tcp_splice_read() got nothing while we have
830 * an skb in receive queue, we do not want to loop.
831 * This might happen with URG data.
832 */
833 if (!skb_queue_empty(&sk->sk_receive_queue))
834 break;
835 sk_wait_data(sk, &timeo, NULL);
836 if (signal_pending(current)) {
837 ret = sock_intr_errno(timeo);
838 break;
839 }
840 continue;
841 }
842 tss.len -= ret;
843 spliced += ret;
844
845 if (!timeo)
846 break;
847 release_sock(sk);
848 lock_sock(sk);
849
850 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
851 (sk->sk_shutdown & RCV_SHUTDOWN) ||
852 signal_pending(current))
853 break;
854 }
855
856 release_sock(sk);
857
858 if (spliced)
859 return spliced;
860
861 return ret;
862 }
863 EXPORT_SYMBOL(tcp_splice_read);
864
sk_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp,bool force_schedule)865 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
866 bool force_schedule)
867 {
868 struct sk_buff *skb;
869
870 if (likely(!size)) {
871 skb = sk->sk_tx_skb_cache;
872 if (skb) {
873 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
874 sk->sk_tx_skb_cache = NULL;
875 pskb_trim(skb, 0);
876 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
877 skb_shinfo(skb)->tx_flags = 0;
878 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
879 return skb;
880 }
881 }
882 /* The TCP header must be at least 32-bit aligned. */
883 size = ALIGN(size, 4);
884
885 if (unlikely(tcp_under_memory_pressure(sk)))
886 sk_mem_reclaim_partial(sk);
887
888 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
889 if (likely(skb)) {
890 bool mem_scheduled;
891
892 if (force_schedule) {
893 mem_scheduled = true;
894 sk_forced_mem_schedule(sk, skb->truesize);
895 } else {
896 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
897 }
898 if (likely(mem_scheduled)) {
899 skb_reserve(skb, sk->sk_prot->max_header);
900 /*
901 * Make sure that we have exactly size bytes
902 * available to the caller, no more, no less.
903 */
904 skb->reserved_tailroom = skb->end - skb->tail - size;
905 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
906 return skb;
907 }
908 __kfree_skb(skb);
909 } else {
910 sk->sk_prot->enter_memory_pressure(sk);
911 sk_stream_moderate_sndbuf(sk);
912 }
913 return NULL;
914 }
915
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)916 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
917 int large_allowed)
918 {
919 struct tcp_sock *tp = tcp_sk(sk);
920 u32 new_size_goal, size_goal;
921
922 if (!large_allowed)
923 return mss_now;
924
925 /* Note : tcp_tso_autosize() will eventually split this later */
926 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
927 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
928
929 /* We try hard to avoid divides here */
930 size_goal = tp->gso_segs * mss_now;
931 if (unlikely(new_size_goal < size_goal ||
932 new_size_goal >= size_goal + mss_now)) {
933 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
934 sk->sk_gso_max_segs);
935 size_goal = tp->gso_segs * mss_now;
936 }
937
938 return max(size_goal, mss_now);
939 }
940
tcp_send_mss(struct sock * sk,int * size_goal,int flags)941 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
942 {
943 int mss_now;
944
945 mss_now = tcp_current_mss(sk);
946 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
947
948 return mss_now;
949 }
950
951 /* In some cases, both sendpage() and sendmsg() could have added
952 * an skb to the write queue, but failed adding payload on it.
953 * We need to remove it to consume less memory, but more
954 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
955 * users.
956 */
tcp_remove_empty_skb(struct sock * sk,struct sk_buff * skb)957 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
958 {
959 if (skb && !skb->len) {
960 tcp_unlink_write_queue(skb, sk);
961 if (tcp_write_queue_empty(sk))
962 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
963 sk_wmem_free_skb(sk, skb);
964 }
965 }
966
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)967 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
968 size_t size, int flags)
969 {
970 struct tcp_sock *tp = tcp_sk(sk);
971 int mss_now, size_goal;
972 int err;
973 ssize_t copied;
974 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
975
976 if (IS_ENABLED(CONFIG_DEBUG_VM) &&
977 WARN_ONCE(!sendpage_ok(page),
978 "page must not be a Slab one and have page_count > 0"))
979 return -EINVAL;
980
981 /* Wait for a connection to finish. One exception is TCP Fast Open
982 * (passive side) where data is allowed to be sent before a connection
983 * is fully established.
984 */
985 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
986 !tcp_passive_fastopen(sk)) {
987 err = sk_stream_wait_connect(sk, &timeo);
988 if (err != 0)
989 goto out_err;
990 }
991
992 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
993
994 mss_now = tcp_send_mss(sk, &size_goal, flags);
995 copied = 0;
996
997 err = -EPIPE;
998 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
999 goto out_err;
1000
1001 while (size > 0) {
1002 struct sk_buff *skb = tcp_write_queue_tail(sk);
1003 int copy, i;
1004 bool can_coalesce;
1005
1006 if (!skb || (copy = size_goal - skb->len) <= 0 ||
1007 !tcp_skb_can_collapse_to(skb)) {
1008 new_segment:
1009 if (!sk_stream_memory_free(sk))
1010 goto wait_for_space;
1011
1012 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1013 tcp_rtx_and_write_queues_empty(sk));
1014 if (!skb)
1015 goto wait_for_space;
1016
1017 #ifdef CONFIG_TLS_DEVICE
1018 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1019 #endif
1020 skb_entail(sk, skb);
1021 copy = size_goal;
1022 }
1023
1024 if (copy > size)
1025 copy = size;
1026
1027 i = skb_shinfo(skb)->nr_frags;
1028 can_coalesce = skb_can_coalesce(skb, i, page, offset);
1029 if (!can_coalesce && i >= sysctl_max_skb_frags) {
1030 tcp_mark_push(tp, skb);
1031 goto new_segment;
1032 }
1033 if (!sk_wmem_schedule(sk, copy))
1034 goto wait_for_space;
1035
1036 if (can_coalesce) {
1037 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1038 } else {
1039 get_page(page);
1040 skb_fill_page_desc(skb, i, page, offset, copy);
1041 }
1042
1043 if (!(flags & MSG_NO_SHARED_FRAGS))
1044 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1045
1046 skb->len += copy;
1047 skb->data_len += copy;
1048 skb->truesize += copy;
1049 sk_wmem_queued_add(sk, copy);
1050 sk_mem_charge(sk, copy);
1051 skb->ip_summed = CHECKSUM_PARTIAL;
1052 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1053 TCP_SKB_CB(skb)->end_seq += copy;
1054 tcp_skb_pcount_set(skb, 0);
1055
1056 if (!copied)
1057 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1058
1059 copied += copy;
1060 offset += copy;
1061 size -= copy;
1062 if (!size)
1063 goto out;
1064
1065 if (skb->len < size_goal || (flags & MSG_OOB))
1066 continue;
1067
1068 if (forced_push(tp)) {
1069 tcp_mark_push(tp, skb);
1070 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1071 } else if (skb == tcp_send_head(sk))
1072 tcp_push_one(sk, mss_now);
1073 continue;
1074
1075 wait_for_space:
1076 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1077 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1078 TCP_NAGLE_PUSH, size_goal);
1079
1080 err = sk_stream_wait_memory(sk, &timeo);
1081 if (err != 0)
1082 goto do_error;
1083
1084 mss_now = tcp_send_mss(sk, &size_goal, flags);
1085 }
1086
1087 out:
1088 if (copied) {
1089 tcp_tx_timestamp(sk, sk->sk_tsflags);
1090 if (!(flags & MSG_SENDPAGE_NOTLAST))
1091 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1092 }
1093 return copied;
1094
1095 do_error:
1096 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1097 if (copied)
1098 goto out;
1099 out_err:
1100 /* make sure we wake any epoll edge trigger waiter */
1101 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1102 sk->sk_write_space(sk);
1103 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1104 }
1105 return sk_stream_error(sk, flags, err);
1106 }
1107 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1108
tcp_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1109 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1110 size_t size, int flags)
1111 {
1112 if (!(sk->sk_route_caps & NETIF_F_SG))
1113 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1114
1115 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1116
1117 return do_tcp_sendpages(sk, page, offset, size, flags);
1118 }
1119 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1120
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1121 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1122 size_t size, int flags)
1123 {
1124 int ret;
1125
1126 lock_sock(sk);
1127 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1128 release_sock(sk);
1129
1130 return ret;
1131 }
1132 EXPORT_SYMBOL(tcp_sendpage);
1133
tcp_free_fastopen_req(struct tcp_sock * tp)1134 void tcp_free_fastopen_req(struct tcp_sock *tp)
1135 {
1136 if (tp->fastopen_req) {
1137 kfree(tp->fastopen_req);
1138 tp->fastopen_req = NULL;
1139 }
1140 }
1141
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1142 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1143 int *copied, size_t size,
1144 struct ubuf_info *uarg)
1145 {
1146 struct tcp_sock *tp = tcp_sk(sk);
1147 struct inet_sock *inet = inet_sk(sk);
1148 struct sockaddr *uaddr = msg->msg_name;
1149 int err, flags;
1150
1151 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1152 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1153 uaddr->sa_family == AF_UNSPEC))
1154 return -EOPNOTSUPP;
1155 if (tp->fastopen_req)
1156 return -EALREADY; /* Another Fast Open is in progress */
1157
1158 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1159 sk->sk_allocation);
1160 if (unlikely(!tp->fastopen_req))
1161 return -ENOBUFS;
1162 tp->fastopen_req->data = msg;
1163 tp->fastopen_req->size = size;
1164 tp->fastopen_req->uarg = uarg;
1165
1166 if (inet->defer_connect) {
1167 err = tcp_connect(sk);
1168 /* Same failure procedure as in tcp_v4/6_connect */
1169 if (err) {
1170 tcp_set_state(sk, TCP_CLOSE);
1171 inet->inet_dport = 0;
1172 sk->sk_route_caps = 0;
1173 }
1174 }
1175 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1176 err = __inet_stream_connect(sk->sk_socket, uaddr,
1177 msg->msg_namelen, flags, 1);
1178 /* fastopen_req could already be freed in __inet_stream_connect
1179 * if the connection times out or gets rst
1180 */
1181 if (tp->fastopen_req) {
1182 *copied = tp->fastopen_req->copied;
1183 tcp_free_fastopen_req(tp);
1184 inet->defer_connect = 0;
1185 }
1186 return err;
1187 }
1188
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1189 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1190 {
1191 struct tcp_sock *tp = tcp_sk(sk);
1192 struct ubuf_info *uarg = NULL;
1193 struct sk_buff *skb;
1194 struct sockcm_cookie sockc;
1195 int flags, err, copied = 0;
1196 int mss_now = 0, size_goal, copied_syn = 0;
1197 int process_backlog = 0;
1198 bool zc = false;
1199 long timeo;
1200
1201 flags = msg->msg_flags;
1202
1203 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1204 skb = tcp_write_queue_tail(sk);
1205 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1206 if (!uarg) {
1207 err = -ENOBUFS;
1208 goto out_err;
1209 }
1210
1211 zc = sk->sk_route_caps & NETIF_F_SG;
1212 if (!zc)
1213 uarg->zerocopy = 0;
1214 }
1215
1216 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1217 !tp->repair) {
1218 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1219 if (err == -EINPROGRESS && copied_syn > 0)
1220 goto out;
1221 else if (err)
1222 goto out_err;
1223 }
1224
1225 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1226
1227 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1228
1229 /* Wait for a connection to finish. One exception is TCP Fast Open
1230 * (passive side) where data is allowed to be sent before a connection
1231 * is fully established.
1232 */
1233 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1234 !tcp_passive_fastopen(sk)) {
1235 err = sk_stream_wait_connect(sk, &timeo);
1236 if (err != 0)
1237 goto do_error;
1238 }
1239
1240 if (unlikely(tp->repair)) {
1241 if (tp->repair_queue == TCP_RECV_QUEUE) {
1242 copied = tcp_send_rcvq(sk, msg, size);
1243 goto out_nopush;
1244 }
1245
1246 err = -EINVAL;
1247 if (tp->repair_queue == TCP_NO_QUEUE)
1248 goto out_err;
1249
1250 /* 'common' sending to sendq */
1251 }
1252
1253 sockcm_init(&sockc, sk);
1254 if (msg->msg_controllen) {
1255 err = sock_cmsg_send(sk, msg, &sockc);
1256 if (unlikely(err)) {
1257 err = -EINVAL;
1258 goto out_err;
1259 }
1260 }
1261
1262 /* This should be in poll */
1263 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1264
1265 /* Ok commence sending. */
1266 copied = 0;
1267
1268 restart:
1269 mss_now = tcp_send_mss(sk, &size_goal, flags);
1270
1271 err = -EPIPE;
1272 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1273 goto do_error;
1274
1275 while (msg_data_left(msg)) {
1276 int copy = 0;
1277
1278 skb = tcp_write_queue_tail(sk);
1279 if (skb)
1280 copy = size_goal - skb->len;
1281
1282 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1283 bool first_skb;
1284
1285 new_segment:
1286 if (!sk_stream_memory_free(sk))
1287 goto wait_for_space;
1288
1289 if (unlikely(process_backlog >= 16)) {
1290 process_backlog = 0;
1291 if (sk_flush_backlog(sk))
1292 goto restart;
1293 }
1294 first_skb = tcp_rtx_and_write_queues_empty(sk);
1295 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1296 first_skb);
1297 if (!skb)
1298 goto wait_for_space;
1299
1300 process_backlog++;
1301 skb->ip_summed = CHECKSUM_PARTIAL;
1302
1303 skb_entail(sk, skb);
1304 copy = size_goal;
1305
1306 /* All packets are restored as if they have
1307 * already been sent. skb_mstamp_ns isn't set to
1308 * avoid wrong rtt estimation.
1309 */
1310 if (tp->repair)
1311 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1312 }
1313
1314 /* Try to append data to the end of skb. */
1315 if (copy > msg_data_left(msg))
1316 copy = msg_data_left(msg);
1317
1318 /* Where to copy to? */
1319 if (skb_availroom(skb) > 0 && !zc) {
1320 /* We have some space in skb head. Superb! */
1321 copy = min_t(int, copy, skb_availroom(skb));
1322 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1323 if (err)
1324 goto do_fault;
1325 } else if (!zc) {
1326 bool merge = true;
1327 int i = skb_shinfo(skb)->nr_frags;
1328 struct page_frag *pfrag = sk_page_frag(sk);
1329
1330 if (!sk_page_frag_refill(sk, pfrag))
1331 goto wait_for_space;
1332
1333 if (!skb_can_coalesce(skb, i, pfrag->page,
1334 pfrag->offset)) {
1335 if (i >= sysctl_max_skb_frags) {
1336 tcp_mark_push(tp, skb);
1337 goto new_segment;
1338 }
1339 merge = false;
1340 }
1341
1342 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1343
1344 if (!sk_wmem_schedule(sk, copy))
1345 goto wait_for_space;
1346
1347 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1348 pfrag->page,
1349 pfrag->offset,
1350 copy);
1351 if (err)
1352 goto do_error;
1353
1354 /* Update the skb. */
1355 if (merge) {
1356 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1357 } else {
1358 skb_fill_page_desc(skb, i, pfrag->page,
1359 pfrag->offset, copy);
1360 page_ref_inc(pfrag->page);
1361 }
1362 pfrag->offset += copy;
1363 } else {
1364 if (!sk_wmem_schedule(sk, copy))
1365 goto wait_for_space;
1366
1367 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1368 if (err == -EMSGSIZE || err == -EEXIST) {
1369 tcp_mark_push(tp, skb);
1370 goto new_segment;
1371 }
1372 if (err < 0)
1373 goto do_error;
1374 copy = err;
1375 }
1376
1377 if (!copied)
1378 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1379
1380 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1381 TCP_SKB_CB(skb)->end_seq += copy;
1382 tcp_skb_pcount_set(skb, 0);
1383
1384 copied += copy;
1385 if (!msg_data_left(msg)) {
1386 if (unlikely(flags & MSG_EOR))
1387 TCP_SKB_CB(skb)->eor = 1;
1388 goto out;
1389 }
1390
1391 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1392 continue;
1393
1394 if (forced_push(tp)) {
1395 tcp_mark_push(tp, skb);
1396 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1397 } else if (skb == tcp_send_head(sk))
1398 tcp_push_one(sk, mss_now);
1399 continue;
1400
1401 wait_for_space:
1402 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1403 if (copied)
1404 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1405 TCP_NAGLE_PUSH, size_goal);
1406
1407 err = sk_stream_wait_memory(sk, &timeo);
1408 if (err != 0)
1409 goto do_error;
1410
1411 mss_now = tcp_send_mss(sk, &size_goal, flags);
1412 }
1413
1414 out:
1415 if (copied) {
1416 tcp_tx_timestamp(sk, sockc.tsflags);
1417 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1418 }
1419 out_nopush:
1420 sock_zerocopy_put(uarg);
1421 return copied + copied_syn;
1422
1423 do_error:
1424 skb = tcp_write_queue_tail(sk);
1425 do_fault:
1426 tcp_remove_empty_skb(sk, skb);
1427
1428 if (copied + copied_syn)
1429 goto out;
1430 out_err:
1431 sock_zerocopy_put_abort(uarg, true);
1432 err = sk_stream_error(sk, flags, err);
1433 /* make sure we wake any epoll edge trigger waiter */
1434 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1435 sk->sk_write_space(sk);
1436 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1437 }
1438 return err;
1439 }
1440 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1441
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1442 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1443 {
1444 int ret;
1445
1446 lock_sock(sk);
1447 ret = tcp_sendmsg_locked(sk, msg, size);
1448 release_sock(sk);
1449
1450 return ret;
1451 }
1452 EXPORT_SYMBOL(tcp_sendmsg);
1453
1454 /*
1455 * Handle reading urgent data. BSD has very simple semantics for
1456 * this, no blocking and very strange errors 8)
1457 */
1458
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1459 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1460 {
1461 struct tcp_sock *tp = tcp_sk(sk);
1462
1463 /* No URG data to read. */
1464 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1465 tp->urg_data == TCP_URG_READ)
1466 return -EINVAL; /* Yes this is right ! */
1467
1468 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1469 return -ENOTCONN;
1470
1471 if (tp->urg_data & TCP_URG_VALID) {
1472 int err = 0;
1473 char c = tp->urg_data;
1474
1475 if (!(flags & MSG_PEEK))
1476 tp->urg_data = TCP_URG_READ;
1477
1478 /* Read urgent data. */
1479 msg->msg_flags |= MSG_OOB;
1480
1481 if (len > 0) {
1482 if (!(flags & MSG_TRUNC))
1483 err = memcpy_to_msg(msg, &c, 1);
1484 len = 1;
1485 } else
1486 msg->msg_flags |= MSG_TRUNC;
1487
1488 return err ? -EFAULT : len;
1489 }
1490
1491 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1492 return 0;
1493
1494 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1495 * the available implementations agree in this case:
1496 * this call should never block, independent of the
1497 * blocking state of the socket.
1498 * Mike <pall@rz.uni-karlsruhe.de>
1499 */
1500 return -EAGAIN;
1501 }
1502
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1503 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1504 {
1505 struct sk_buff *skb;
1506 int copied = 0, err = 0;
1507
1508 /* XXX -- need to support SO_PEEK_OFF */
1509
1510 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1511 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1512 if (err)
1513 return err;
1514 copied += skb->len;
1515 }
1516
1517 skb_queue_walk(&sk->sk_write_queue, skb) {
1518 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1519 if (err)
1520 break;
1521
1522 copied += skb->len;
1523 }
1524
1525 return err ?: copied;
1526 }
1527
1528 /* Clean up the receive buffer for full frames taken by the user,
1529 * then send an ACK if necessary. COPIED is the number of bytes
1530 * tcp_recvmsg has given to the user so far, it speeds up the
1531 * calculation of whether or not we must ACK for the sake of
1532 * a window update.
1533 */
tcp_cleanup_rbuf(struct sock * sk,int copied)1534 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1535 {
1536 struct tcp_sock *tp = tcp_sk(sk);
1537 bool time_to_ack = false;
1538
1539 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1540
1541 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1542 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1543 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1544
1545 if (inet_csk_ack_scheduled(sk)) {
1546 const struct inet_connection_sock *icsk = inet_csk(sk);
1547
1548 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1549 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1550 /*
1551 * If this read emptied read buffer, we send ACK, if
1552 * connection is not bidirectional, user drained
1553 * receive buffer and there was a small segment
1554 * in queue.
1555 */
1556 (copied > 0 &&
1557 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1558 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1559 !inet_csk_in_pingpong_mode(sk))) &&
1560 !atomic_read(&sk->sk_rmem_alloc)))
1561 time_to_ack = true;
1562 }
1563
1564 /* We send an ACK if we can now advertise a non-zero window
1565 * which has been raised "significantly".
1566 *
1567 * Even if window raised up to infinity, do not send window open ACK
1568 * in states, where we will not receive more. It is useless.
1569 */
1570 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1571 __u32 rcv_window_now = tcp_receive_window(tp);
1572
1573 /* Optimize, __tcp_select_window() is not cheap. */
1574 if (2*rcv_window_now <= tp->window_clamp) {
1575 __u32 new_window = __tcp_select_window(sk);
1576
1577 /* Send ACK now, if this read freed lots of space
1578 * in our buffer. Certainly, new_window is new window.
1579 * We can advertise it now, if it is not less than current one.
1580 * "Lots" means "at least twice" here.
1581 */
1582 if (new_window && new_window >= 2 * rcv_window_now)
1583 time_to_ack = true;
1584 }
1585 }
1586 if (time_to_ack)
1587 tcp_send_ack(sk);
1588 }
1589
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1590 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1591 {
1592 struct sk_buff *skb;
1593 u32 offset;
1594
1595 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1596 offset = seq - TCP_SKB_CB(skb)->seq;
1597 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1598 pr_err_once("%s: found a SYN, please report !\n", __func__);
1599 offset--;
1600 }
1601 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1602 *off = offset;
1603 return skb;
1604 }
1605 /* This looks weird, but this can happen if TCP collapsing
1606 * splitted a fat GRO packet, while we released socket lock
1607 * in skb_splice_bits()
1608 */
1609 sk_eat_skb(sk, skb);
1610 }
1611 return NULL;
1612 }
1613
1614 /*
1615 * This routine provides an alternative to tcp_recvmsg() for routines
1616 * that would like to handle copying from skbuffs directly in 'sendfile'
1617 * fashion.
1618 * Note:
1619 * - It is assumed that the socket was locked by the caller.
1620 * - The routine does not block.
1621 * - At present, there is no support for reading OOB data
1622 * or for 'peeking' the socket using this routine
1623 * (although both would be easy to implement).
1624 */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1625 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1626 sk_read_actor_t recv_actor)
1627 {
1628 struct sk_buff *skb;
1629 struct tcp_sock *tp = tcp_sk(sk);
1630 u32 seq = tp->copied_seq;
1631 u32 offset;
1632 int copied = 0;
1633
1634 if (sk->sk_state == TCP_LISTEN)
1635 return -ENOTCONN;
1636 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1637 if (offset < skb->len) {
1638 int used;
1639 size_t len;
1640
1641 len = skb->len - offset;
1642 /* Stop reading if we hit a patch of urgent data */
1643 if (tp->urg_data) {
1644 u32 urg_offset = tp->urg_seq - seq;
1645 if (urg_offset < len)
1646 len = urg_offset;
1647 if (!len)
1648 break;
1649 }
1650 used = recv_actor(desc, skb, offset, len);
1651 if (used <= 0) {
1652 if (!copied)
1653 copied = used;
1654 break;
1655 } else if (used <= len) {
1656 seq += used;
1657 copied += used;
1658 offset += used;
1659 }
1660 /* If recv_actor drops the lock (e.g. TCP splice
1661 * receive) the skb pointer might be invalid when
1662 * getting here: tcp_collapse might have deleted it
1663 * while aggregating skbs from the socket queue.
1664 */
1665 skb = tcp_recv_skb(sk, seq - 1, &offset);
1666 if (!skb)
1667 break;
1668 /* TCP coalescing might have appended data to the skb.
1669 * Try to splice more frags
1670 */
1671 if (offset + 1 != skb->len)
1672 continue;
1673 }
1674 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1675 sk_eat_skb(sk, skb);
1676 ++seq;
1677 break;
1678 }
1679 sk_eat_skb(sk, skb);
1680 if (!desc->count)
1681 break;
1682 WRITE_ONCE(tp->copied_seq, seq);
1683 }
1684 WRITE_ONCE(tp->copied_seq, seq);
1685
1686 tcp_rcv_space_adjust(sk);
1687
1688 /* Clean up data we have read: This will do ACK frames. */
1689 if (copied > 0) {
1690 tcp_recv_skb(sk, seq, &offset);
1691 tcp_cleanup_rbuf(sk, copied);
1692 }
1693 return copied;
1694 }
1695 EXPORT_SYMBOL(tcp_read_sock);
1696
tcp_peek_len(struct socket * sock)1697 int tcp_peek_len(struct socket *sock)
1698 {
1699 return tcp_inq(sock->sk);
1700 }
1701 EXPORT_SYMBOL(tcp_peek_len);
1702
1703 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1704 int tcp_set_rcvlowat(struct sock *sk, int val)
1705 {
1706 int cap;
1707
1708 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1709 cap = sk->sk_rcvbuf >> 1;
1710 else
1711 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1712 val = min(val, cap);
1713 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1714
1715 /* Check if we need to signal EPOLLIN right now */
1716 tcp_data_ready(sk);
1717
1718 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1719 return 0;
1720
1721 val <<= 1;
1722 if (val > sk->sk_rcvbuf) {
1723 WRITE_ONCE(sk->sk_rcvbuf, val);
1724 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1725 }
1726 return 0;
1727 }
1728 EXPORT_SYMBOL(tcp_set_rcvlowat);
1729
1730 #ifdef CONFIG_MMU
1731 static const struct vm_operations_struct tcp_vm_ops = {
1732 };
1733
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1734 int tcp_mmap(struct file *file, struct socket *sock,
1735 struct vm_area_struct *vma)
1736 {
1737 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1738 return -EPERM;
1739 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1740
1741 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1742 vma->vm_flags |= VM_MIXEDMAP;
1743
1744 vma->vm_ops = &tcp_vm_ops;
1745 return 0;
1746 }
1747 EXPORT_SYMBOL(tcp_mmap);
1748
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned long pages_to_map,unsigned long * insert_addr,u32 * length_with_pending,u32 * seq,struct tcp_zerocopy_receive * zc)1749 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1750 struct page **pages,
1751 unsigned long pages_to_map,
1752 unsigned long *insert_addr,
1753 u32 *length_with_pending,
1754 u32 *seq,
1755 struct tcp_zerocopy_receive *zc)
1756 {
1757 unsigned long pages_remaining = pages_to_map;
1758 int bytes_mapped;
1759 int ret;
1760
1761 ret = vm_insert_pages(vma, *insert_addr, pages, &pages_remaining);
1762 bytes_mapped = PAGE_SIZE * (pages_to_map - pages_remaining);
1763 /* Even if vm_insert_pages fails, it may have partially succeeded in
1764 * mapping (some but not all of the pages).
1765 */
1766 *seq += bytes_mapped;
1767 *insert_addr += bytes_mapped;
1768 if (ret) {
1769 /* But if vm_insert_pages did fail, we have to unroll some state
1770 * we speculatively touched before.
1771 */
1772 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1773 *length_with_pending -= bytes_not_mapped;
1774 zc->recv_skip_hint += bytes_not_mapped;
1775 }
1776 return ret;
1777 }
1778
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc)1779 static int tcp_zerocopy_receive(struct sock *sk,
1780 struct tcp_zerocopy_receive *zc)
1781 {
1782 unsigned long address = (unsigned long)zc->address;
1783 u32 length = 0, seq, offset, zap_len;
1784 #define PAGE_BATCH_SIZE 8
1785 struct page *pages[PAGE_BATCH_SIZE];
1786 const skb_frag_t *frags = NULL;
1787 struct vm_area_struct *vma;
1788 struct sk_buff *skb = NULL;
1789 unsigned long pg_idx = 0;
1790 unsigned long curr_addr;
1791 struct tcp_sock *tp;
1792 int inq;
1793 int ret;
1794
1795 if (address & (PAGE_SIZE - 1) || address != zc->address)
1796 return -EINVAL;
1797
1798 if (sk->sk_state == TCP_LISTEN)
1799 return -ENOTCONN;
1800
1801 sock_rps_record_flow(sk);
1802
1803 tp = tcp_sk(sk);
1804
1805 mmap_read_lock(current->mm);
1806
1807 vma = find_vma(current->mm, address);
1808 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) {
1809 mmap_read_unlock(current->mm);
1810 return -EINVAL;
1811 }
1812 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address);
1813
1814 seq = tp->copied_seq;
1815 inq = tcp_inq(sk);
1816 zc->length = min_t(u32, zc->length, inq);
1817 zap_len = zc->length & ~(PAGE_SIZE - 1);
1818 if (zap_len) {
1819 zap_page_range(vma, address, zap_len);
1820 zc->recv_skip_hint = 0;
1821 } else {
1822 zc->recv_skip_hint = zc->length;
1823 }
1824 ret = 0;
1825 curr_addr = address;
1826 while (length + PAGE_SIZE <= zc->length) {
1827 if (zc->recv_skip_hint < PAGE_SIZE) {
1828 /* If we're here, finish the current batch. */
1829 if (pg_idx) {
1830 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
1831 pg_idx,
1832 &curr_addr,
1833 &length,
1834 &seq, zc);
1835 if (ret)
1836 goto out;
1837 pg_idx = 0;
1838 }
1839 if (skb) {
1840 if (zc->recv_skip_hint > 0)
1841 break;
1842 skb = skb->next;
1843 offset = seq - TCP_SKB_CB(skb)->seq;
1844 } else {
1845 skb = tcp_recv_skb(sk, seq, &offset);
1846 }
1847 zc->recv_skip_hint = skb->len - offset;
1848 offset -= skb_headlen(skb);
1849 if ((int)offset < 0 || skb_has_frag_list(skb))
1850 break;
1851 frags = skb_shinfo(skb)->frags;
1852 while (offset) {
1853 if (skb_frag_size(frags) > offset)
1854 goto out;
1855 offset -= skb_frag_size(frags);
1856 frags++;
1857 }
1858 }
1859 if (skb_frag_size(frags) != PAGE_SIZE || skb_frag_off(frags)) {
1860 int remaining = zc->recv_skip_hint;
1861
1862 while (remaining && (skb_frag_size(frags) != PAGE_SIZE ||
1863 skb_frag_off(frags))) {
1864 remaining -= skb_frag_size(frags);
1865 frags++;
1866 }
1867 zc->recv_skip_hint -= remaining;
1868 break;
1869 }
1870 pages[pg_idx] = skb_frag_page(frags);
1871 pg_idx++;
1872 length += PAGE_SIZE;
1873 zc->recv_skip_hint -= PAGE_SIZE;
1874 frags++;
1875 if (pg_idx == PAGE_BATCH_SIZE) {
1876 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
1877 &curr_addr, &length,
1878 &seq, zc);
1879 if (ret)
1880 goto out;
1881 pg_idx = 0;
1882 }
1883 }
1884 if (pg_idx) {
1885 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
1886 &curr_addr, &length, &seq,
1887 zc);
1888 }
1889 out:
1890 mmap_read_unlock(current->mm);
1891 if (length) {
1892 WRITE_ONCE(tp->copied_seq, seq);
1893 tcp_rcv_space_adjust(sk);
1894
1895 /* Clean up data we have read: This will do ACK frames. */
1896 tcp_recv_skb(sk, seq, &offset);
1897 tcp_cleanup_rbuf(sk, length);
1898 ret = 0;
1899 if (length == zc->length)
1900 zc->recv_skip_hint = 0;
1901 } else {
1902 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
1903 ret = -EIO;
1904 }
1905 zc->length = length;
1906 return ret;
1907 }
1908 #endif
1909
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1910 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1911 struct scm_timestamping_internal *tss)
1912 {
1913 if (skb->tstamp)
1914 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1915 else
1916 tss->ts[0] = (struct timespec64) {0};
1917
1918 if (skb_hwtstamps(skb)->hwtstamp)
1919 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1920 else
1921 tss->ts[2] = (struct timespec64) {0};
1922 }
1923
1924 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)1925 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1926 struct scm_timestamping_internal *tss)
1927 {
1928 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
1929 bool has_timestamping = false;
1930
1931 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1932 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1933 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1934 if (new_tstamp) {
1935 struct __kernel_timespec kts = {
1936 .tv_sec = tss->ts[0].tv_sec,
1937 .tv_nsec = tss->ts[0].tv_nsec,
1938 };
1939 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
1940 sizeof(kts), &kts);
1941 } else {
1942 struct __kernel_old_timespec ts_old = {
1943 .tv_sec = tss->ts[0].tv_sec,
1944 .tv_nsec = tss->ts[0].tv_nsec,
1945 };
1946 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
1947 sizeof(ts_old), &ts_old);
1948 }
1949 } else {
1950 if (new_tstamp) {
1951 struct __kernel_sock_timeval stv = {
1952 .tv_sec = tss->ts[0].tv_sec,
1953 .tv_usec = tss->ts[0].tv_nsec / 1000,
1954 };
1955 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
1956 sizeof(stv), &stv);
1957 } else {
1958 struct __kernel_old_timeval tv = {
1959 .tv_sec = tss->ts[0].tv_sec,
1960 .tv_usec = tss->ts[0].tv_nsec / 1000,
1961 };
1962 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
1963 sizeof(tv), &tv);
1964 }
1965 }
1966 }
1967
1968 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1969 has_timestamping = true;
1970 else
1971 tss->ts[0] = (struct timespec64) {0};
1972 }
1973
1974 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1975 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1976 has_timestamping = true;
1977 else
1978 tss->ts[2] = (struct timespec64) {0};
1979 }
1980
1981 if (has_timestamping) {
1982 tss->ts[1] = (struct timespec64) {0};
1983 if (sock_flag(sk, SOCK_TSTAMP_NEW))
1984 put_cmsg_scm_timestamping64(msg, tss);
1985 else
1986 put_cmsg_scm_timestamping(msg, tss);
1987 }
1988 }
1989
tcp_inq_hint(struct sock * sk)1990 static int tcp_inq_hint(struct sock *sk)
1991 {
1992 const struct tcp_sock *tp = tcp_sk(sk);
1993 u32 copied_seq = READ_ONCE(tp->copied_seq);
1994 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
1995 int inq;
1996
1997 inq = rcv_nxt - copied_seq;
1998 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
1999 lock_sock(sk);
2000 inq = tp->rcv_nxt - tp->copied_seq;
2001 release_sock(sk);
2002 }
2003 /* After receiving a FIN, tell the user-space to continue reading
2004 * by returning a non-zero inq.
2005 */
2006 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2007 inq = 1;
2008 return inq;
2009 }
2010
2011 /*
2012 * This routine copies from a sock struct into the user buffer.
2013 *
2014 * Technical note: in 2.3 we work on _locked_ socket, so that
2015 * tricks with *seq access order and skb->users are not required.
2016 * Probably, code can be easily improved even more.
2017 */
2018
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)2019 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
2020 int flags, int *addr_len)
2021 {
2022 struct tcp_sock *tp = tcp_sk(sk);
2023 int copied = 0;
2024 u32 peek_seq;
2025 u32 *seq;
2026 unsigned long used;
2027 int err, inq;
2028 int target; /* Read at least this many bytes */
2029 long timeo;
2030 struct sk_buff *skb, *last;
2031 u32 urg_hole = 0;
2032 struct scm_timestamping_internal tss;
2033 int cmsg_flags;
2034
2035 if (unlikely(flags & MSG_ERRQUEUE))
2036 return inet_recv_error(sk, msg, len, addr_len);
2037
2038 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2039 (sk->sk_state == TCP_ESTABLISHED))
2040 sk_busy_loop(sk, nonblock);
2041
2042 lock_sock(sk);
2043
2044 err = -ENOTCONN;
2045 if (sk->sk_state == TCP_LISTEN)
2046 goto out;
2047
2048 cmsg_flags = tp->recvmsg_inq ? 1 : 0;
2049 timeo = sock_rcvtimeo(sk, nonblock);
2050
2051 /* Urgent data needs to be handled specially. */
2052 if (flags & MSG_OOB)
2053 goto recv_urg;
2054
2055 if (unlikely(tp->repair)) {
2056 err = -EPERM;
2057 if (!(flags & MSG_PEEK))
2058 goto out;
2059
2060 if (tp->repair_queue == TCP_SEND_QUEUE)
2061 goto recv_sndq;
2062
2063 err = -EINVAL;
2064 if (tp->repair_queue == TCP_NO_QUEUE)
2065 goto out;
2066
2067 /* 'common' recv queue MSG_PEEK-ing */
2068 }
2069
2070 seq = &tp->copied_seq;
2071 if (flags & MSG_PEEK) {
2072 peek_seq = tp->copied_seq;
2073 seq = &peek_seq;
2074 }
2075
2076 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2077
2078 do {
2079 u32 offset;
2080
2081 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2082 if (tp->urg_data && tp->urg_seq == *seq) {
2083 if (copied)
2084 break;
2085 if (signal_pending(current)) {
2086 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2087 break;
2088 }
2089 }
2090
2091 /* Next get a buffer. */
2092
2093 last = skb_peek_tail(&sk->sk_receive_queue);
2094 skb_queue_walk(&sk->sk_receive_queue, skb) {
2095 last = skb;
2096 /* Now that we have two receive queues this
2097 * shouldn't happen.
2098 */
2099 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2100 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2101 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2102 flags))
2103 break;
2104
2105 offset = *seq - TCP_SKB_CB(skb)->seq;
2106 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2107 pr_err_once("%s: found a SYN, please report !\n", __func__);
2108 offset--;
2109 }
2110 if (offset < skb->len)
2111 goto found_ok_skb;
2112 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2113 goto found_fin_ok;
2114 WARN(!(flags & MSG_PEEK),
2115 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2116 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2117 }
2118
2119 /* Well, if we have backlog, try to process it now yet. */
2120
2121 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2122 break;
2123
2124 if (copied) {
2125 if (sk->sk_err ||
2126 sk->sk_state == TCP_CLOSE ||
2127 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2128 !timeo ||
2129 signal_pending(current))
2130 break;
2131 } else {
2132 if (sock_flag(sk, SOCK_DONE))
2133 break;
2134
2135 if (sk->sk_err) {
2136 copied = sock_error(sk);
2137 break;
2138 }
2139
2140 if (sk->sk_shutdown & RCV_SHUTDOWN)
2141 break;
2142
2143 if (sk->sk_state == TCP_CLOSE) {
2144 /* This occurs when user tries to read
2145 * from never connected socket.
2146 */
2147 copied = -ENOTCONN;
2148 break;
2149 }
2150
2151 if (!timeo) {
2152 copied = -EAGAIN;
2153 break;
2154 }
2155
2156 if (signal_pending(current)) {
2157 copied = sock_intr_errno(timeo);
2158 break;
2159 }
2160 }
2161
2162 tcp_cleanup_rbuf(sk, copied);
2163
2164 if (copied >= target) {
2165 /* Do not sleep, just process backlog. */
2166 release_sock(sk);
2167 lock_sock(sk);
2168 } else {
2169 sk_wait_data(sk, &timeo, last);
2170 }
2171
2172 if ((flags & MSG_PEEK) &&
2173 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2174 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2175 current->comm,
2176 task_pid_nr(current));
2177 peek_seq = tp->copied_seq;
2178 }
2179 continue;
2180
2181 found_ok_skb:
2182 /* Ok so how much can we use? */
2183 used = skb->len - offset;
2184 if (len < used)
2185 used = len;
2186
2187 /* Do we have urgent data here? */
2188 if (tp->urg_data) {
2189 u32 urg_offset = tp->urg_seq - *seq;
2190 if (urg_offset < used) {
2191 if (!urg_offset) {
2192 if (!sock_flag(sk, SOCK_URGINLINE)) {
2193 WRITE_ONCE(*seq, *seq + 1);
2194 urg_hole++;
2195 offset++;
2196 used--;
2197 if (!used)
2198 goto skip_copy;
2199 }
2200 } else
2201 used = urg_offset;
2202 }
2203 }
2204
2205 if (!(flags & MSG_TRUNC)) {
2206 err = skb_copy_datagram_msg(skb, offset, msg, used);
2207 if (err) {
2208 /* Exception. Bailout! */
2209 if (!copied)
2210 copied = -EFAULT;
2211 break;
2212 }
2213 }
2214
2215 WRITE_ONCE(*seq, *seq + used);
2216 copied += used;
2217 len -= used;
2218
2219 tcp_rcv_space_adjust(sk);
2220
2221 skip_copy:
2222 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2223 tp->urg_data = 0;
2224 tcp_fast_path_check(sk);
2225 }
2226
2227 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2228 tcp_update_recv_tstamps(skb, &tss);
2229 cmsg_flags |= 2;
2230 }
2231
2232 if (used + offset < skb->len)
2233 continue;
2234
2235 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2236 goto found_fin_ok;
2237 if (!(flags & MSG_PEEK))
2238 sk_eat_skb(sk, skb);
2239 continue;
2240
2241 found_fin_ok:
2242 /* Process the FIN. */
2243 WRITE_ONCE(*seq, *seq + 1);
2244 if (!(flags & MSG_PEEK))
2245 sk_eat_skb(sk, skb);
2246 break;
2247 } while (len > 0);
2248
2249 /* According to UNIX98, msg_name/msg_namelen are ignored
2250 * on connected socket. I was just happy when found this 8) --ANK
2251 */
2252
2253 /* Clean up data we have read: This will do ACK frames. */
2254 tcp_cleanup_rbuf(sk, copied);
2255
2256 release_sock(sk);
2257
2258 if (cmsg_flags) {
2259 if (cmsg_flags & 2)
2260 tcp_recv_timestamp(msg, sk, &tss);
2261 if (cmsg_flags & 1) {
2262 inq = tcp_inq_hint(sk);
2263 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2264 }
2265 }
2266
2267 return copied;
2268
2269 out:
2270 release_sock(sk);
2271 return err;
2272
2273 recv_urg:
2274 err = tcp_recv_urg(sk, msg, len, flags);
2275 goto out;
2276
2277 recv_sndq:
2278 err = tcp_peek_sndq(sk, msg, len);
2279 goto out;
2280 }
2281 EXPORT_SYMBOL(tcp_recvmsg);
2282
tcp_set_state(struct sock * sk,int state)2283 void tcp_set_state(struct sock *sk, int state)
2284 {
2285 int oldstate = sk->sk_state;
2286
2287 /* We defined a new enum for TCP states that are exported in BPF
2288 * so as not force the internal TCP states to be frozen. The
2289 * following checks will detect if an internal state value ever
2290 * differs from the BPF value. If this ever happens, then we will
2291 * need to remap the internal value to the BPF value before calling
2292 * tcp_call_bpf_2arg.
2293 */
2294 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2295 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2296 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2297 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2298 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2299 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2300 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2301 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2302 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2303 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2304 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2305 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2306 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2307
2308 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2309 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2310
2311 switch (state) {
2312 case TCP_ESTABLISHED:
2313 if (oldstate != TCP_ESTABLISHED)
2314 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2315 break;
2316
2317 case TCP_CLOSE:
2318 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2319 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2320
2321 sk->sk_prot->unhash(sk);
2322 if (inet_csk(sk)->icsk_bind_hash &&
2323 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2324 inet_put_port(sk);
2325 fallthrough;
2326 default:
2327 if (oldstate == TCP_ESTABLISHED)
2328 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2329 }
2330
2331 /* Change state AFTER socket is unhashed to avoid closed
2332 * socket sitting in hash tables.
2333 */
2334 inet_sk_state_store(sk, state);
2335 }
2336 EXPORT_SYMBOL_GPL(tcp_set_state);
2337
2338 /*
2339 * State processing on a close. This implements the state shift for
2340 * sending our FIN frame. Note that we only send a FIN for some
2341 * states. A shutdown() may have already sent the FIN, or we may be
2342 * closed.
2343 */
2344
2345 static const unsigned char new_state[16] = {
2346 /* current state: new state: action: */
2347 [0 /* (Invalid) */] = TCP_CLOSE,
2348 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2349 [TCP_SYN_SENT] = TCP_CLOSE,
2350 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2351 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2352 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2353 [TCP_TIME_WAIT] = TCP_CLOSE,
2354 [TCP_CLOSE] = TCP_CLOSE,
2355 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2356 [TCP_LAST_ACK] = TCP_LAST_ACK,
2357 [TCP_LISTEN] = TCP_CLOSE,
2358 [TCP_CLOSING] = TCP_CLOSING,
2359 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2360 };
2361
tcp_close_state(struct sock * sk)2362 static int tcp_close_state(struct sock *sk)
2363 {
2364 int next = (int)new_state[sk->sk_state];
2365 int ns = next & TCP_STATE_MASK;
2366
2367 tcp_set_state(sk, ns);
2368
2369 return next & TCP_ACTION_FIN;
2370 }
2371
2372 /*
2373 * Shutdown the sending side of a connection. Much like close except
2374 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2375 */
2376
tcp_shutdown(struct sock * sk,int how)2377 void tcp_shutdown(struct sock *sk, int how)
2378 {
2379 /* We need to grab some memory, and put together a FIN,
2380 * and then put it into the queue to be sent.
2381 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2382 */
2383 if (!(how & SEND_SHUTDOWN))
2384 return;
2385
2386 /* If we've already sent a FIN, or it's a closed state, skip this. */
2387 if ((1 << sk->sk_state) &
2388 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2389 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2390 /* Clear out any half completed packets. FIN if needed. */
2391 if (tcp_close_state(sk))
2392 tcp_send_fin(sk);
2393 }
2394 }
2395 EXPORT_SYMBOL(tcp_shutdown);
2396
tcp_check_oom(struct sock * sk,int shift)2397 bool tcp_check_oom(struct sock *sk, int shift)
2398 {
2399 bool too_many_orphans, out_of_socket_memory;
2400
2401 too_many_orphans = tcp_too_many_orphans(sk, shift);
2402 out_of_socket_memory = tcp_out_of_memory(sk);
2403
2404 if (too_many_orphans)
2405 net_info_ratelimited("too many orphaned sockets\n");
2406 if (out_of_socket_memory)
2407 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2408 return too_many_orphans || out_of_socket_memory;
2409 }
2410
tcp_close(struct sock * sk,long timeout)2411 void tcp_close(struct sock *sk, long timeout)
2412 {
2413 struct sk_buff *skb;
2414 int data_was_unread = 0;
2415 int state;
2416
2417 lock_sock(sk);
2418 sk->sk_shutdown = SHUTDOWN_MASK;
2419
2420 if (sk->sk_state == TCP_LISTEN) {
2421 tcp_set_state(sk, TCP_CLOSE);
2422
2423 /* Special case. */
2424 inet_csk_listen_stop(sk);
2425
2426 goto adjudge_to_death;
2427 }
2428
2429 /* We need to flush the recv. buffs. We do this only on the
2430 * descriptor close, not protocol-sourced closes, because the
2431 * reader process may not have drained the data yet!
2432 */
2433 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2434 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2435
2436 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2437 len--;
2438 data_was_unread += len;
2439 __kfree_skb(skb);
2440 }
2441
2442 sk_mem_reclaim(sk);
2443
2444 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2445 if (sk->sk_state == TCP_CLOSE)
2446 goto adjudge_to_death;
2447
2448 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2449 * data was lost. To witness the awful effects of the old behavior of
2450 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2451 * GET in an FTP client, suspend the process, wait for the client to
2452 * advertise a zero window, then kill -9 the FTP client, wheee...
2453 * Note: timeout is always zero in such a case.
2454 */
2455 if (unlikely(tcp_sk(sk)->repair)) {
2456 sk->sk_prot->disconnect(sk, 0);
2457 } else if (data_was_unread) {
2458 /* Unread data was tossed, zap the connection. */
2459 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2460 tcp_set_state(sk, TCP_CLOSE);
2461 tcp_send_active_reset(sk, sk->sk_allocation);
2462 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2463 /* Check zero linger _after_ checking for unread data. */
2464 sk->sk_prot->disconnect(sk, 0);
2465 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2466 } else if (tcp_close_state(sk)) {
2467 /* We FIN if the application ate all the data before
2468 * zapping the connection.
2469 */
2470
2471 /* RED-PEN. Formally speaking, we have broken TCP state
2472 * machine. State transitions:
2473 *
2474 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2475 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2476 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2477 *
2478 * are legal only when FIN has been sent (i.e. in window),
2479 * rather than queued out of window. Purists blame.
2480 *
2481 * F.e. "RFC state" is ESTABLISHED,
2482 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2483 *
2484 * The visible declinations are that sometimes
2485 * we enter time-wait state, when it is not required really
2486 * (harmless), do not send active resets, when they are
2487 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2488 * they look as CLOSING or LAST_ACK for Linux)
2489 * Probably, I missed some more holelets.
2490 * --ANK
2491 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2492 * in a single packet! (May consider it later but will
2493 * probably need API support or TCP_CORK SYN-ACK until
2494 * data is written and socket is closed.)
2495 */
2496 tcp_send_fin(sk);
2497 }
2498
2499 sk_stream_wait_close(sk, timeout);
2500
2501 adjudge_to_death:
2502 state = sk->sk_state;
2503 sock_hold(sk);
2504 sock_orphan(sk);
2505
2506 local_bh_disable();
2507 bh_lock_sock(sk);
2508 /* remove backlog if any, without releasing ownership. */
2509 __release_sock(sk);
2510
2511 percpu_counter_inc(sk->sk_prot->orphan_count);
2512
2513 /* Have we already been destroyed by a softirq or backlog? */
2514 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2515 goto out;
2516
2517 /* This is a (useful) BSD violating of the RFC. There is a
2518 * problem with TCP as specified in that the other end could
2519 * keep a socket open forever with no application left this end.
2520 * We use a 1 minute timeout (about the same as BSD) then kill
2521 * our end. If they send after that then tough - BUT: long enough
2522 * that we won't make the old 4*rto = almost no time - whoops
2523 * reset mistake.
2524 *
2525 * Nope, it was not mistake. It is really desired behaviour
2526 * f.e. on http servers, when such sockets are useless, but
2527 * consume significant resources. Let's do it with special
2528 * linger2 option. --ANK
2529 */
2530
2531 if (sk->sk_state == TCP_FIN_WAIT2) {
2532 struct tcp_sock *tp = tcp_sk(sk);
2533 if (tp->linger2 < 0) {
2534 tcp_set_state(sk, TCP_CLOSE);
2535 tcp_send_active_reset(sk, GFP_ATOMIC);
2536 __NET_INC_STATS(sock_net(sk),
2537 LINUX_MIB_TCPABORTONLINGER);
2538 } else {
2539 const int tmo = tcp_fin_time(sk);
2540
2541 if (tmo > TCP_TIMEWAIT_LEN) {
2542 inet_csk_reset_keepalive_timer(sk,
2543 tmo - TCP_TIMEWAIT_LEN);
2544 } else {
2545 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2546 goto out;
2547 }
2548 }
2549 }
2550 if (sk->sk_state != TCP_CLOSE) {
2551 sk_mem_reclaim(sk);
2552 if (tcp_check_oom(sk, 0)) {
2553 tcp_set_state(sk, TCP_CLOSE);
2554 tcp_send_active_reset(sk, GFP_ATOMIC);
2555 __NET_INC_STATS(sock_net(sk),
2556 LINUX_MIB_TCPABORTONMEMORY);
2557 } else if (!check_net(sock_net(sk))) {
2558 /* Not possible to send reset; just close */
2559 tcp_set_state(sk, TCP_CLOSE);
2560 }
2561 }
2562
2563 if (sk->sk_state == TCP_CLOSE) {
2564 struct request_sock *req;
2565
2566 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2567 lockdep_sock_is_held(sk));
2568 /* We could get here with a non-NULL req if the socket is
2569 * aborted (e.g., closed with unread data) before 3WHS
2570 * finishes.
2571 */
2572 if (req)
2573 reqsk_fastopen_remove(sk, req, false);
2574 inet_csk_destroy_sock(sk);
2575 }
2576 /* Otherwise, socket is reprieved until protocol close. */
2577
2578 out:
2579 bh_unlock_sock(sk);
2580 local_bh_enable();
2581 release_sock(sk);
2582 sock_put(sk);
2583 }
2584 EXPORT_SYMBOL(tcp_close);
2585
2586 /* These states need RST on ABORT according to RFC793 */
2587
tcp_need_reset(int state)2588 static inline bool tcp_need_reset(int state)
2589 {
2590 return (1 << state) &
2591 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2592 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2593 }
2594
tcp_rtx_queue_purge(struct sock * sk)2595 static void tcp_rtx_queue_purge(struct sock *sk)
2596 {
2597 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2598
2599 tcp_sk(sk)->highest_sack = NULL;
2600 while (p) {
2601 struct sk_buff *skb = rb_to_skb(p);
2602
2603 p = rb_next(p);
2604 /* Since we are deleting whole queue, no need to
2605 * list_del(&skb->tcp_tsorted_anchor)
2606 */
2607 tcp_rtx_queue_unlink(skb, sk);
2608 sk_wmem_free_skb(sk, skb);
2609 }
2610 }
2611
tcp_write_queue_purge(struct sock * sk)2612 void tcp_write_queue_purge(struct sock *sk)
2613 {
2614 struct sk_buff *skb;
2615
2616 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2617 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2618 tcp_skb_tsorted_anchor_cleanup(skb);
2619 sk_wmem_free_skb(sk, skb);
2620 }
2621 tcp_rtx_queue_purge(sk);
2622 skb = sk->sk_tx_skb_cache;
2623 if (skb) {
2624 __kfree_skb(skb);
2625 sk->sk_tx_skb_cache = NULL;
2626 }
2627 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2628 sk_mem_reclaim(sk);
2629 tcp_clear_all_retrans_hints(tcp_sk(sk));
2630 tcp_sk(sk)->packets_out = 0;
2631 inet_csk(sk)->icsk_backoff = 0;
2632 }
2633
tcp_disconnect(struct sock * sk,int flags)2634 int tcp_disconnect(struct sock *sk, int flags)
2635 {
2636 struct inet_sock *inet = inet_sk(sk);
2637 struct inet_connection_sock *icsk = inet_csk(sk);
2638 struct tcp_sock *tp = tcp_sk(sk);
2639 int old_state = sk->sk_state;
2640 u32 seq;
2641
2642 if (old_state != TCP_CLOSE)
2643 tcp_set_state(sk, TCP_CLOSE);
2644
2645 /* ABORT function of RFC793 */
2646 if (old_state == TCP_LISTEN) {
2647 inet_csk_listen_stop(sk);
2648 } else if (unlikely(tp->repair)) {
2649 sk->sk_err = ECONNABORTED;
2650 } else if (tcp_need_reset(old_state) ||
2651 (tp->snd_nxt != tp->write_seq &&
2652 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2653 /* The last check adjusts for discrepancy of Linux wrt. RFC
2654 * states
2655 */
2656 tcp_send_active_reset(sk, gfp_any());
2657 sk->sk_err = ECONNRESET;
2658 } else if (old_state == TCP_SYN_SENT)
2659 sk->sk_err = ECONNRESET;
2660
2661 tcp_clear_xmit_timers(sk);
2662 __skb_queue_purge(&sk->sk_receive_queue);
2663 if (sk->sk_rx_skb_cache) {
2664 __kfree_skb(sk->sk_rx_skb_cache);
2665 sk->sk_rx_skb_cache = NULL;
2666 }
2667 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2668 tp->urg_data = 0;
2669 tcp_write_queue_purge(sk);
2670 tcp_fastopen_active_disable_ofo_check(sk);
2671 skb_rbtree_purge(&tp->out_of_order_queue);
2672
2673 inet->inet_dport = 0;
2674
2675 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2676 inet_reset_saddr(sk);
2677
2678 sk->sk_shutdown = 0;
2679 sock_reset_flag(sk, SOCK_DONE);
2680 tp->srtt_us = 0;
2681 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2682 tp->rcv_rtt_last_tsecr = 0;
2683
2684 seq = tp->write_seq + tp->max_window + 2;
2685 if (!seq)
2686 seq = 1;
2687 WRITE_ONCE(tp->write_seq, seq);
2688
2689 icsk->icsk_backoff = 0;
2690 icsk->icsk_probes_out = 0;
2691 icsk->icsk_probes_tstamp = 0;
2692 icsk->icsk_rto = TCP_TIMEOUT_INIT;
2693 icsk->icsk_rto_min = TCP_RTO_MIN;
2694 icsk->icsk_delack_max = TCP_DELACK_MAX;
2695 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2696 tp->snd_cwnd = TCP_INIT_CWND;
2697 tp->snd_cwnd_cnt = 0;
2698 tp->window_clamp = 0;
2699 tp->delivered = 0;
2700 tp->delivered_ce = 0;
2701 if (icsk->icsk_ca_ops->release)
2702 icsk->icsk_ca_ops->release(sk);
2703 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
2704 icsk->icsk_ca_initialized = 0;
2705 tcp_set_ca_state(sk, TCP_CA_Open);
2706 tp->is_sack_reneg = 0;
2707 tcp_clear_retrans(tp);
2708 tp->total_retrans = 0;
2709 inet_csk_delack_init(sk);
2710 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2711 * issue in __tcp_select_window()
2712 */
2713 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2714 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2715 __sk_dst_reset(sk);
2716 dst_release(sk->sk_rx_dst);
2717 sk->sk_rx_dst = NULL;
2718 tcp_saved_syn_free(tp);
2719 tp->compressed_ack = 0;
2720 tp->segs_in = 0;
2721 tp->segs_out = 0;
2722 tp->bytes_sent = 0;
2723 tp->bytes_acked = 0;
2724 tp->bytes_received = 0;
2725 tp->bytes_retrans = 0;
2726 tp->data_segs_in = 0;
2727 tp->data_segs_out = 0;
2728 tp->duplicate_sack[0].start_seq = 0;
2729 tp->duplicate_sack[0].end_seq = 0;
2730 tp->dsack_dups = 0;
2731 tp->reord_seen = 0;
2732 tp->retrans_out = 0;
2733 tp->sacked_out = 0;
2734 tp->tlp_high_seq = 0;
2735 tp->last_oow_ack_time = 0;
2736 /* There's a bubble in the pipe until at least the first ACK. */
2737 tp->app_limited = ~0U;
2738 tp->rack.mstamp = 0;
2739 tp->rack.advanced = 0;
2740 tp->rack.reo_wnd_steps = 1;
2741 tp->rack.last_delivered = 0;
2742 tp->rack.reo_wnd_persist = 0;
2743 tp->rack.dsack_seen = 0;
2744 tp->syn_data_acked = 0;
2745 tp->rx_opt.saw_tstamp = 0;
2746 tp->rx_opt.dsack = 0;
2747 tp->rx_opt.num_sacks = 0;
2748 tp->rcv_ooopack = 0;
2749
2750
2751 /* Clean up fastopen related fields */
2752 tcp_free_fastopen_req(tp);
2753 inet->defer_connect = 0;
2754 tp->fastopen_client_fail = 0;
2755
2756 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2757
2758 if (sk->sk_frag.page) {
2759 put_page(sk->sk_frag.page);
2760 sk->sk_frag.page = NULL;
2761 sk->sk_frag.offset = 0;
2762 }
2763
2764 sk->sk_error_report(sk);
2765 return 0;
2766 }
2767 EXPORT_SYMBOL(tcp_disconnect);
2768
tcp_can_repair_sock(const struct sock * sk)2769 static inline bool tcp_can_repair_sock(const struct sock *sk)
2770 {
2771 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2772 (sk->sk_state != TCP_LISTEN);
2773 }
2774
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)2775 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
2776 {
2777 struct tcp_repair_window opt;
2778
2779 if (!tp->repair)
2780 return -EPERM;
2781
2782 if (len != sizeof(opt))
2783 return -EINVAL;
2784
2785 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
2786 return -EFAULT;
2787
2788 if (opt.max_window < opt.snd_wnd)
2789 return -EINVAL;
2790
2791 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2792 return -EINVAL;
2793
2794 if (after(opt.rcv_wup, tp->rcv_nxt))
2795 return -EINVAL;
2796
2797 tp->snd_wl1 = opt.snd_wl1;
2798 tp->snd_wnd = opt.snd_wnd;
2799 tp->max_window = opt.max_window;
2800
2801 tp->rcv_wnd = opt.rcv_wnd;
2802 tp->rcv_wup = opt.rcv_wup;
2803
2804 return 0;
2805 }
2806
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)2807 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
2808 unsigned int len)
2809 {
2810 struct tcp_sock *tp = tcp_sk(sk);
2811 struct tcp_repair_opt opt;
2812 size_t offset = 0;
2813
2814 while (len >= sizeof(opt)) {
2815 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
2816 return -EFAULT;
2817
2818 offset += sizeof(opt);
2819 len -= sizeof(opt);
2820
2821 switch (opt.opt_code) {
2822 case TCPOPT_MSS:
2823 tp->rx_opt.mss_clamp = opt.opt_val;
2824 tcp_mtup_init(sk);
2825 break;
2826 case TCPOPT_WINDOW:
2827 {
2828 u16 snd_wscale = opt.opt_val & 0xFFFF;
2829 u16 rcv_wscale = opt.opt_val >> 16;
2830
2831 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2832 return -EFBIG;
2833
2834 tp->rx_opt.snd_wscale = snd_wscale;
2835 tp->rx_opt.rcv_wscale = rcv_wscale;
2836 tp->rx_opt.wscale_ok = 1;
2837 }
2838 break;
2839 case TCPOPT_SACK_PERM:
2840 if (opt.opt_val != 0)
2841 return -EINVAL;
2842
2843 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2844 break;
2845 case TCPOPT_TIMESTAMP:
2846 if (opt.opt_val != 0)
2847 return -EINVAL;
2848
2849 tp->rx_opt.tstamp_ok = 1;
2850 break;
2851 }
2852 }
2853
2854 return 0;
2855 }
2856
2857 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2858 EXPORT_SYMBOL(tcp_tx_delay_enabled);
2859
tcp_enable_tx_delay(void)2860 static void tcp_enable_tx_delay(void)
2861 {
2862 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
2863 static int __tcp_tx_delay_enabled = 0;
2864
2865 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
2866 static_branch_enable(&tcp_tx_delay_enabled);
2867 pr_info("TCP_TX_DELAY enabled\n");
2868 }
2869 }
2870 }
2871
2872 /* When set indicates to always queue non-full frames. Later the user clears
2873 * this option and we transmit any pending partial frames in the queue. This is
2874 * meant to be used alongside sendfile() to get properly filled frames when the
2875 * user (for example) must write out headers with a write() call first and then
2876 * use sendfile to send out the data parts.
2877 *
2878 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
2879 * TCP_NODELAY.
2880 */
__tcp_sock_set_cork(struct sock * sk,bool on)2881 static void __tcp_sock_set_cork(struct sock *sk, bool on)
2882 {
2883 struct tcp_sock *tp = tcp_sk(sk);
2884
2885 if (on) {
2886 tp->nonagle |= TCP_NAGLE_CORK;
2887 } else {
2888 tp->nonagle &= ~TCP_NAGLE_CORK;
2889 if (tp->nonagle & TCP_NAGLE_OFF)
2890 tp->nonagle |= TCP_NAGLE_PUSH;
2891 tcp_push_pending_frames(sk);
2892 }
2893 }
2894
tcp_sock_set_cork(struct sock * sk,bool on)2895 void tcp_sock_set_cork(struct sock *sk, bool on)
2896 {
2897 lock_sock(sk);
2898 __tcp_sock_set_cork(sk, on);
2899 release_sock(sk);
2900 }
2901 EXPORT_SYMBOL(tcp_sock_set_cork);
2902
2903 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
2904 * remembered, but it is not activated until cork is cleared.
2905 *
2906 * However, when TCP_NODELAY is set we make an explicit push, which overrides
2907 * even TCP_CORK for currently queued segments.
2908 */
__tcp_sock_set_nodelay(struct sock * sk,bool on)2909 static void __tcp_sock_set_nodelay(struct sock *sk, bool on)
2910 {
2911 if (on) {
2912 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2913 tcp_push_pending_frames(sk);
2914 } else {
2915 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
2916 }
2917 }
2918
tcp_sock_set_nodelay(struct sock * sk)2919 void tcp_sock_set_nodelay(struct sock *sk)
2920 {
2921 lock_sock(sk);
2922 __tcp_sock_set_nodelay(sk, true);
2923 release_sock(sk);
2924 }
2925 EXPORT_SYMBOL(tcp_sock_set_nodelay);
2926
__tcp_sock_set_quickack(struct sock * sk,int val)2927 static void __tcp_sock_set_quickack(struct sock *sk, int val)
2928 {
2929 if (!val) {
2930 inet_csk_enter_pingpong_mode(sk);
2931 return;
2932 }
2933
2934 inet_csk_exit_pingpong_mode(sk);
2935 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2936 inet_csk_ack_scheduled(sk)) {
2937 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
2938 tcp_cleanup_rbuf(sk, 1);
2939 if (!(val & 1))
2940 inet_csk_enter_pingpong_mode(sk);
2941 }
2942 }
2943
tcp_sock_set_quickack(struct sock * sk,int val)2944 void tcp_sock_set_quickack(struct sock *sk, int val)
2945 {
2946 lock_sock(sk);
2947 __tcp_sock_set_quickack(sk, val);
2948 release_sock(sk);
2949 }
2950 EXPORT_SYMBOL(tcp_sock_set_quickack);
2951
tcp_sock_set_syncnt(struct sock * sk,int val)2952 int tcp_sock_set_syncnt(struct sock *sk, int val)
2953 {
2954 if (val < 1 || val > MAX_TCP_SYNCNT)
2955 return -EINVAL;
2956
2957 lock_sock(sk);
2958 inet_csk(sk)->icsk_syn_retries = val;
2959 release_sock(sk);
2960 return 0;
2961 }
2962 EXPORT_SYMBOL(tcp_sock_set_syncnt);
2963
tcp_sock_set_user_timeout(struct sock * sk,u32 val)2964 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
2965 {
2966 lock_sock(sk);
2967 inet_csk(sk)->icsk_user_timeout = val;
2968 release_sock(sk);
2969 }
2970 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
2971
tcp_sock_set_keepidle_locked(struct sock * sk,int val)2972 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
2973 {
2974 struct tcp_sock *tp = tcp_sk(sk);
2975
2976 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2977 return -EINVAL;
2978
2979 tp->keepalive_time = val * HZ;
2980 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2981 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
2982 u32 elapsed = keepalive_time_elapsed(tp);
2983
2984 if (tp->keepalive_time > elapsed)
2985 elapsed = tp->keepalive_time - elapsed;
2986 else
2987 elapsed = 0;
2988 inet_csk_reset_keepalive_timer(sk, elapsed);
2989 }
2990
2991 return 0;
2992 }
2993
tcp_sock_set_keepidle(struct sock * sk,int val)2994 int tcp_sock_set_keepidle(struct sock *sk, int val)
2995 {
2996 int err;
2997
2998 lock_sock(sk);
2999 err = tcp_sock_set_keepidle_locked(sk, val);
3000 release_sock(sk);
3001 return err;
3002 }
3003 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3004
tcp_sock_set_keepintvl(struct sock * sk,int val)3005 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3006 {
3007 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3008 return -EINVAL;
3009
3010 lock_sock(sk);
3011 tcp_sk(sk)->keepalive_intvl = val * HZ;
3012 release_sock(sk);
3013 return 0;
3014 }
3015 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3016
tcp_sock_set_keepcnt(struct sock * sk,int val)3017 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3018 {
3019 if (val < 1 || val > MAX_TCP_KEEPCNT)
3020 return -EINVAL;
3021
3022 lock_sock(sk);
3023 tcp_sk(sk)->keepalive_probes = val;
3024 release_sock(sk);
3025 return 0;
3026 }
3027 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3028
3029 /*
3030 * Socket option code for TCP.
3031 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3032 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3033 sockptr_t optval, unsigned int optlen)
3034 {
3035 struct tcp_sock *tp = tcp_sk(sk);
3036 struct inet_connection_sock *icsk = inet_csk(sk);
3037 struct net *net = sock_net(sk);
3038 int val;
3039 int err = 0;
3040
3041 /* These are data/string values, all the others are ints */
3042 switch (optname) {
3043 case TCP_CONGESTION: {
3044 char name[TCP_CA_NAME_MAX];
3045
3046 if (optlen < 1)
3047 return -EINVAL;
3048
3049 val = strncpy_from_sockptr(name, optval,
3050 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3051 if (val < 0)
3052 return -EFAULT;
3053 name[val] = 0;
3054
3055 lock_sock(sk);
3056 err = tcp_set_congestion_control(sk, name, true,
3057 ns_capable(sock_net(sk)->user_ns,
3058 CAP_NET_ADMIN));
3059 release_sock(sk);
3060 return err;
3061 }
3062 case TCP_ULP: {
3063 char name[TCP_ULP_NAME_MAX];
3064
3065 if (optlen < 1)
3066 return -EINVAL;
3067
3068 val = strncpy_from_sockptr(name, optval,
3069 min_t(long, TCP_ULP_NAME_MAX - 1,
3070 optlen));
3071 if (val < 0)
3072 return -EFAULT;
3073 name[val] = 0;
3074
3075 lock_sock(sk);
3076 err = tcp_set_ulp(sk, name);
3077 release_sock(sk);
3078 return err;
3079 }
3080 case TCP_FASTOPEN_KEY: {
3081 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3082 __u8 *backup_key = NULL;
3083
3084 /* Allow a backup key as well to facilitate key rotation
3085 * First key is the active one.
3086 */
3087 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3088 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3089 return -EINVAL;
3090
3091 if (copy_from_sockptr(key, optval, optlen))
3092 return -EFAULT;
3093
3094 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3095 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3096
3097 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3098 }
3099 default:
3100 /* fallthru */
3101 break;
3102 }
3103
3104 if (optlen < sizeof(int))
3105 return -EINVAL;
3106
3107 if (copy_from_sockptr(&val, optval, sizeof(val)))
3108 return -EFAULT;
3109
3110 lock_sock(sk);
3111
3112 switch (optname) {
3113 case TCP_MAXSEG:
3114 /* Values greater than interface MTU won't take effect. However
3115 * at the point when this call is done we typically don't yet
3116 * know which interface is going to be used
3117 */
3118 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3119 err = -EINVAL;
3120 break;
3121 }
3122 tp->rx_opt.user_mss = val;
3123 break;
3124
3125 case TCP_NODELAY:
3126 __tcp_sock_set_nodelay(sk, val);
3127 break;
3128
3129 case TCP_THIN_LINEAR_TIMEOUTS:
3130 if (val < 0 || val > 1)
3131 err = -EINVAL;
3132 else
3133 tp->thin_lto = val;
3134 break;
3135
3136 case TCP_THIN_DUPACK:
3137 if (val < 0 || val > 1)
3138 err = -EINVAL;
3139 break;
3140
3141 case TCP_REPAIR:
3142 if (!tcp_can_repair_sock(sk))
3143 err = -EPERM;
3144 else if (val == TCP_REPAIR_ON) {
3145 tp->repair = 1;
3146 sk->sk_reuse = SK_FORCE_REUSE;
3147 tp->repair_queue = TCP_NO_QUEUE;
3148 } else if (val == TCP_REPAIR_OFF) {
3149 tp->repair = 0;
3150 sk->sk_reuse = SK_NO_REUSE;
3151 tcp_send_window_probe(sk);
3152 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3153 tp->repair = 0;
3154 sk->sk_reuse = SK_NO_REUSE;
3155 } else
3156 err = -EINVAL;
3157
3158 break;
3159
3160 case TCP_REPAIR_QUEUE:
3161 if (!tp->repair)
3162 err = -EPERM;
3163 else if ((unsigned int)val < TCP_QUEUES_NR)
3164 tp->repair_queue = val;
3165 else
3166 err = -EINVAL;
3167 break;
3168
3169 case TCP_QUEUE_SEQ:
3170 if (sk->sk_state != TCP_CLOSE) {
3171 err = -EPERM;
3172 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3173 if (!tcp_rtx_queue_empty(sk))
3174 err = -EPERM;
3175 else
3176 WRITE_ONCE(tp->write_seq, val);
3177 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3178 if (tp->rcv_nxt != tp->copied_seq) {
3179 err = -EPERM;
3180 } else {
3181 WRITE_ONCE(tp->rcv_nxt, val);
3182 WRITE_ONCE(tp->copied_seq, val);
3183 }
3184 } else {
3185 err = -EINVAL;
3186 }
3187 break;
3188
3189 case TCP_REPAIR_OPTIONS:
3190 if (!tp->repair)
3191 err = -EINVAL;
3192 else if (sk->sk_state == TCP_ESTABLISHED)
3193 err = tcp_repair_options_est(sk, optval, optlen);
3194 else
3195 err = -EPERM;
3196 break;
3197
3198 case TCP_CORK:
3199 __tcp_sock_set_cork(sk, val);
3200 break;
3201
3202 case TCP_KEEPIDLE:
3203 err = tcp_sock_set_keepidle_locked(sk, val);
3204 break;
3205 case TCP_KEEPINTVL:
3206 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3207 err = -EINVAL;
3208 else
3209 tp->keepalive_intvl = val * HZ;
3210 break;
3211 case TCP_KEEPCNT:
3212 if (val < 1 || val > MAX_TCP_KEEPCNT)
3213 err = -EINVAL;
3214 else
3215 tp->keepalive_probes = val;
3216 break;
3217 case TCP_SYNCNT:
3218 if (val < 1 || val > MAX_TCP_SYNCNT)
3219 err = -EINVAL;
3220 else
3221 icsk->icsk_syn_retries = val;
3222 break;
3223
3224 case TCP_SAVE_SYN:
3225 /* 0: disable, 1: enable, 2: start from ether_header */
3226 if (val < 0 || val > 2)
3227 err = -EINVAL;
3228 else
3229 tp->save_syn = val;
3230 break;
3231
3232 case TCP_LINGER2:
3233 if (val < 0)
3234 tp->linger2 = -1;
3235 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3236 tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3237 else
3238 tp->linger2 = val * HZ;
3239 break;
3240
3241 case TCP_DEFER_ACCEPT:
3242 /* Translate value in seconds to number of retransmits */
3243 icsk->icsk_accept_queue.rskq_defer_accept =
3244 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3245 TCP_RTO_MAX / HZ);
3246 break;
3247
3248 case TCP_WINDOW_CLAMP:
3249 if (!val) {
3250 if (sk->sk_state != TCP_CLOSE) {
3251 err = -EINVAL;
3252 break;
3253 }
3254 tp->window_clamp = 0;
3255 } else
3256 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3257 SOCK_MIN_RCVBUF / 2 : val;
3258 break;
3259
3260 case TCP_QUICKACK:
3261 __tcp_sock_set_quickack(sk, val);
3262 break;
3263
3264 #ifdef CONFIG_TCP_MD5SIG
3265 case TCP_MD5SIG:
3266 case TCP_MD5SIG_EXT:
3267 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3268 break;
3269 #endif
3270 case TCP_USER_TIMEOUT:
3271 /* Cap the max time in ms TCP will retry or probe the window
3272 * before giving up and aborting (ETIMEDOUT) a connection.
3273 */
3274 if (val < 0)
3275 err = -EINVAL;
3276 else
3277 icsk->icsk_user_timeout = val;
3278 break;
3279
3280 case TCP_FASTOPEN:
3281 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3282 TCPF_LISTEN))) {
3283 tcp_fastopen_init_key_once(net);
3284
3285 fastopen_queue_tune(sk, val);
3286 } else {
3287 err = -EINVAL;
3288 }
3289 break;
3290 case TCP_FASTOPEN_CONNECT:
3291 if (val > 1 || val < 0) {
3292 err = -EINVAL;
3293 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3294 if (sk->sk_state == TCP_CLOSE)
3295 tp->fastopen_connect = val;
3296 else
3297 err = -EINVAL;
3298 } else {
3299 err = -EOPNOTSUPP;
3300 }
3301 break;
3302 case TCP_FASTOPEN_NO_COOKIE:
3303 if (val > 1 || val < 0)
3304 err = -EINVAL;
3305 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3306 err = -EINVAL;
3307 else
3308 tp->fastopen_no_cookie = val;
3309 break;
3310 case TCP_TIMESTAMP:
3311 if (!tp->repair)
3312 err = -EPERM;
3313 else
3314 tp->tsoffset = val - tcp_time_stamp_raw();
3315 break;
3316 case TCP_REPAIR_WINDOW:
3317 err = tcp_repair_set_window(tp, optval, optlen);
3318 break;
3319 case TCP_NOTSENT_LOWAT:
3320 tp->notsent_lowat = val;
3321 sk->sk_write_space(sk);
3322 break;
3323 case TCP_INQ:
3324 if (val > 1 || val < 0)
3325 err = -EINVAL;
3326 else
3327 tp->recvmsg_inq = val;
3328 break;
3329 case TCP_TX_DELAY:
3330 if (val)
3331 tcp_enable_tx_delay();
3332 tp->tcp_tx_delay = val;
3333 break;
3334 default:
3335 err = -ENOPROTOOPT;
3336 break;
3337 }
3338
3339 release_sock(sk);
3340 return err;
3341 }
3342
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3343 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3344 unsigned int optlen)
3345 {
3346 const struct inet_connection_sock *icsk = inet_csk(sk);
3347
3348 if (level != SOL_TCP)
3349 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3350 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3351 optval, optlen);
3352 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3353 }
3354 EXPORT_SYMBOL(tcp_setsockopt);
3355
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3356 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3357 struct tcp_info *info)
3358 {
3359 u64 stats[__TCP_CHRONO_MAX], total = 0;
3360 enum tcp_chrono i;
3361
3362 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3363 stats[i] = tp->chrono_stat[i - 1];
3364 if (i == tp->chrono_type)
3365 stats[i] += tcp_jiffies32 - tp->chrono_start;
3366 stats[i] *= USEC_PER_SEC / HZ;
3367 total += stats[i];
3368 }
3369
3370 info->tcpi_busy_time = total;
3371 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3372 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3373 }
3374
3375 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3376 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3377 {
3378 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3379 const struct inet_connection_sock *icsk = inet_csk(sk);
3380 unsigned long rate;
3381 u32 now;
3382 u64 rate64;
3383 bool slow;
3384
3385 memset(info, 0, sizeof(*info));
3386 if (sk->sk_type != SOCK_STREAM)
3387 return;
3388
3389 info->tcpi_state = inet_sk_state_load(sk);
3390
3391 /* Report meaningful fields for all TCP states, including listeners */
3392 rate = READ_ONCE(sk->sk_pacing_rate);
3393 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3394 info->tcpi_pacing_rate = rate64;
3395
3396 rate = READ_ONCE(sk->sk_max_pacing_rate);
3397 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3398 info->tcpi_max_pacing_rate = rate64;
3399
3400 info->tcpi_reordering = tp->reordering;
3401 info->tcpi_snd_cwnd = tp->snd_cwnd;
3402
3403 if (info->tcpi_state == TCP_LISTEN) {
3404 /* listeners aliased fields :
3405 * tcpi_unacked -> Number of children ready for accept()
3406 * tcpi_sacked -> max backlog
3407 */
3408 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3409 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3410 return;
3411 }
3412
3413 slow = lock_sock_fast(sk);
3414
3415 info->tcpi_ca_state = icsk->icsk_ca_state;
3416 info->tcpi_retransmits = icsk->icsk_retransmits;
3417 info->tcpi_probes = icsk->icsk_probes_out;
3418 info->tcpi_backoff = icsk->icsk_backoff;
3419
3420 if (tp->rx_opt.tstamp_ok)
3421 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3422 if (tcp_is_sack(tp))
3423 info->tcpi_options |= TCPI_OPT_SACK;
3424 if (tp->rx_opt.wscale_ok) {
3425 info->tcpi_options |= TCPI_OPT_WSCALE;
3426 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3427 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3428 }
3429
3430 if (tp->ecn_flags & TCP_ECN_OK)
3431 info->tcpi_options |= TCPI_OPT_ECN;
3432 if (tp->ecn_flags & TCP_ECN_SEEN)
3433 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3434 if (tp->syn_data_acked)
3435 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3436
3437 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3438 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3439 info->tcpi_snd_mss = tp->mss_cache;
3440 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3441
3442 info->tcpi_unacked = tp->packets_out;
3443 info->tcpi_sacked = tp->sacked_out;
3444
3445 info->tcpi_lost = tp->lost_out;
3446 info->tcpi_retrans = tp->retrans_out;
3447
3448 now = tcp_jiffies32;
3449 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3450 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3451 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3452
3453 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3454 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3455 info->tcpi_rtt = tp->srtt_us >> 3;
3456 info->tcpi_rttvar = tp->mdev_us >> 2;
3457 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3458 info->tcpi_advmss = tp->advmss;
3459
3460 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3461 info->tcpi_rcv_space = tp->rcvq_space.space;
3462
3463 info->tcpi_total_retrans = tp->total_retrans;
3464
3465 info->tcpi_bytes_acked = tp->bytes_acked;
3466 info->tcpi_bytes_received = tp->bytes_received;
3467 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3468 tcp_get_info_chrono_stats(tp, info);
3469
3470 info->tcpi_segs_out = tp->segs_out;
3471 info->tcpi_segs_in = tp->segs_in;
3472
3473 info->tcpi_min_rtt = tcp_min_rtt(tp);
3474 info->tcpi_data_segs_in = tp->data_segs_in;
3475 info->tcpi_data_segs_out = tp->data_segs_out;
3476
3477 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3478 rate64 = tcp_compute_delivery_rate(tp);
3479 if (rate64)
3480 info->tcpi_delivery_rate = rate64;
3481 info->tcpi_delivered = tp->delivered;
3482 info->tcpi_delivered_ce = tp->delivered_ce;
3483 info->tcpi_bytes_sent = tp->bytes_sent;
3484 info->tcpi_bytes_retrans = tp->bytes_retrans;
3485 info->tcpi_dsack_dups = tp->dsack_dups;
3486 info->tcpi_reord_seen = tp->reord_seen;
3487 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3488 info->tcpi_snd_wnd = tp->snd_wnd;
3489 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3490 unlock_sock_fast(sk, slow);
3491 }
3492 EXPORT_SYMBOL_GPL(tcp_get_info);
3493
tcp_opt_stats_get_size(void)3494 static size_t tcp_opt_stats_get_size(void)
3495 {
3496 return
3497 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3498 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3499 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3500 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3501 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3502 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3503 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3504 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3505 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3506 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3507 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3508 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3509 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3510 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3511 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3512 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3513 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3514 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3515 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3516 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3517 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3518 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3519 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3520 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3521 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3522 0;
3523 }
3524
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb)3525 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3526 const struct sk_buff *orig_skb)
3527 {
3528 const struct tcp_sock *tp = tcp_sk(sk);
3529 struct sk_buff *stats;
3530 struct tcp_info info;
3531 unsigned long rate;
3532 u64 rate64;
3533
3534 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3535 if (!stats)
3536 return NULL;
3537
3538 tcp_get_info_chrono_stats(tp, &info);
3539 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3540 info.tcpi_busy_time, TCP_NLA_PAD);
3541 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3542 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3543 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3544 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3545 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3546 tp->data_segs_out, TCP_NLA_PAD);
3547 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3548 tp->total_retrans, TCP_NLA_PAD);
3549
3550 rate = READ_ONCE(sk->sk_pacing_rate);
3551 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3552 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3553
3554 rate64 = tcp_compute_delivery_rate(tp);
3555 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3556
3557 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3558 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3559 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3560
3561 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3562 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3563 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3564 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3565 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3566
3567 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3568 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3569
3570 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3571 TCP_NLA_PAD);
3572 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3573 TCP_NLA_PAD);
3574 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3575 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3576 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3577 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3578 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3579 max_t(int, 0, tp->write_seq - tp->snd_nxt));
3580 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3581 TCP_NLA_PAD);
3582
3583 return stats;
3584 }
3585
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3586 static int do_tcp_getsockopt(struct sock *sk, int level,
3587 int optname, char __user *optval, int __user *optlen)
3588 {
3589 struct inet_connection_sock *icsk = inet_csk(sk);
3590 struct tcp_sock *tp = tcp_sk(sk);
3591 struct net *net = sock_net(sk);
3592 int val, len;
3593
3594 if (get_user(len, optlen))
3595 return -EFAULT;
3596
3597 len = min_t(unsigned int, len, sizeof(int));
3598
3599 if (len < 0)
3600 return -EINVAL;
3601
3602 switch (optname) {
3603 case TCP_MAXSEG:
3604 val = tp->mss_cache;
3605 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3606 val = tp->rx_opt.user_mss;
3607 if (tp->repair)
3608 val = tp->rx_opt.mss_clamp;
3609 break;
3610 case TCP_NODELAY:
3611 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3612 break;
3613 case TCP_CORK:
3614 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3615 break;
3616 case TCP_KEEPIDLE:
3617 val = keepalive_time_when(tp) / HZ;
3618 break;
3619 case TCP_KEEPINTVL:
3620 val = keepalive_intvl_when(tp) / HZ;
3621 break;
3622 case TCP_KEEPCNT:
3623 val = keepalive_probes(tp);
3624 break;
3625 case TCP_SYNCNT:
3626 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3627 break;
3628 case TCP_LINGER2:
3629 val = tp->linger2;
3630 if (val >= 0)
3631 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3632 break;
3633 case TCP_DEFER_ACCEPT:
3634 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3635 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3636 break;
3637 case TCP_WINDOW_CLAMP:
3638 val = tp->window_clamp;
3639 break;
3640 case TCP_INFO: {
3641 struct tcp_info info;
3642
3643 if (get_user(len, optlen))
3644 return -EFAULT;
3645
3646 tcp_get_info(sk, &info);
3647
3648 len = min_t(unsigned int, len, sizeof(info));
3649 if (put_user(len, optlen))
3650 return -EFAULT;
3651 if (copy_to_user(optval, &info, len))
3652 return -EFAULT;
3653 return 0;
3654 }
3655 case TCP_CC_INFO: {
3656 const struct tcp_congestion_ops *ca_ops;
3657 union tcp_cc_info info;
3658 size_t sz = 0;
3659 int attr;
3660
3661 if (get_user(len, optlen))
3662 return -EFAULT;
3663
3664 ca_ops = icsk->icsk_ca_ops;
3665 if (ca_ops && ca_ops->get_info)
3666 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3667
3668 len = min_t(unsigned int, len, sz);
3669 if (put_user(len, optlen))
3670 return -EFAULT;
3671 if (copy_to_user(optval, &info, len))
3672 return -EFAULT;
3673 return 0;
3674 }
3675 case TCP_QUICKACK:
3676 val = !inet_csk_in_pingpong_mode(sk);
3677 break;
3678
3679 case TCP_CONGESTION:
3680 if (get_user(len, optlen))
3681 return -EFAULT;
3682 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3683 if (put_user(len, optlen))
3684 return -EFAULT;
3685 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3686 return -EFAULT;
3687 return 0;
3688
3689 case TCP_ULP:
3690 if (get_user(len, optlen))
3691 return -EFAULT;
3692 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3693 if (!icsk->icsk_ulp_ops) {
3694 if (put_user(0, optlen))
3695 return -EFAULT;
3696 return 0;
3697 }
3698 if (put_user(len, optlen))
3699 return -EFAULT;
3700 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3701 return -EFAULT;
3702 return 0;
3703
3704 case TCP_FASTOPEN_KEY: {
3705 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
3706 unsigned int key_len;
3707
3708 if (get_user(len, optlen))
3709 return -EFAULT;
3710
3711 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
3712 TCP_FASTOPEN_KEY_LENGTH;
3713 len = min_t(unsigned int, len, key_len);
3714 if (put_user(len, optlen))
3715 return -EFAULT;
3716 if (copy_to_user(optval, key, len))
3717 return -EFAULT;
3718 return 0;
3719 }
3720 case TCP_THIN_LINEAR_TIMEOUTS:
3721 val = tp->thin_lto;
3722 break;
3723
3724 case TCP_THIN_DUPACK:
3725 val = 0;
3726 break;
3727
3728 case TCP_REPAIR:
3729 val = tp->repair;
3730 break;
3731
3732 case TCP_REPAIR_QUEUE:
3733 if (tp->repair)
3734 val = tp->repair_queue;
3735 else
3736 return -EINVAL;
3737 break;
3738
3739 case TCP_REPAIR_WINDOW: {
3740 struct tcp_repair_window opt;
3741
3742 if (get_user(len, optlen))
3743 return -EFAULT;
3744
3745 if (len != sizeof(opt))
3746 return -EINVAL;
3747
3748 if (!tp->repair)
3749 return -EPERM;
3750
3751 opt.snd_wl1 = tp->snd_wl1;
3752 opt.snd_wnd = tp->snd_wnd;
3753 opt.max_window = tp->max_window;
3754 opt.rcv_wnd = tp->rcv_wnd;
3755 opt.rcv_wup = tp->rcv_wup;
3756
3757 if (copy_to_user(optval, &opt, len))
3758 return -EFAULT;
3759 return 0;
3760 }
3761 case TCP_QUEUE_SEQ:
3762 if (tp->repair_queue == TCP_SEND_QUEUE)
3763 val = tp->write_seq;
3764 else if (tp->repair_queue == TCP_RECV_QUEUE)
3765 val = tp->rcv_nxt;
3766 else
3767 return -EINVAL;
3768 break;
3769
3770 case TCP_USER_TIMEOUT:
3771 val = icsk->icsk_user_timeout;
3772 break;
3773
3774 case TCP_FASTOPEN:
3775 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3776 break;
3777
3778 case TCP_FASTOPEN_CONNECT:
3779 val = tp->fastopen_connect;
3780 break;
3781
3782 case TCP_FASTOPEN_NO_COOKIE:
3783 val = tp->fastopen_no_cookie;
3784 break;
3785
3786 case TCP_TX_DELAY:
3787 val = tp->tcp_tx_delay;
3788 break;
3789
3790 case TCP_TIMESTAMP:
3791 val = tcp_time_stamp_raw() + tp->tsoffset;
3792 break;
3793 case TCP_NOTSENT_LOWAT:
3794 val = tp->notsent_lowat;
3795 break;
3796 case TCP_INQ:
3797 val = tp->recvmsg_inq;
3798 break;
3799 case TCP_SAVE_SYN:
3800 val = tp->save_syn;
3801 break;
3802 case TCP_SAVED_SYN: {
3803 if (get_user(len, optlen))
3804 return -EFAULT;
3805
3806 lock_sock(sk);
3807 if (tp->saved_syn) {
3808 if (len < tcp_saved_syn_len(tp->saved_syn)) {
3809 if (put_user(tcp_saved_syn_len(tp->saved_syn),
3810 optlen)) {
3811 release_sock(sk);
3812 return -EFAULT;
3813 }
3814 release_sock(sk);
3815 return -EINVAL;
3816 }
3817 len = tcp_saved_syn_len(tp->saved_syn);
3818 if (put_user(len, optlen)) {
3819 release_sock(sk);
3820 return -EFAULT;
3821 }
3822 if (copy_to_user(optval, tp->saved_syn->data, len)) {
3823 release_sock(sk);
3824 return -EFAULT;
3825 }
3826 tcp_saved_syn_free(tp);
3827 release_sock(sk);
3828 } else {
3829 release_sock(sk);
3830 len = 0;
3831 if (put_user(len, optlen))
3832 return -EFAULT;
3833 }
3834 return 0;
3835 }
3836 #ifdef CONFIG_MMU
3837 case TCP_ZEROCOPY_RECEIVE: {
3838 struct tcp_zerocopy_receive zc;
3839 int err;
3840
3841 if (get_user(len, optlen))
3842 return -EFAULT;
3843 if (len < 0 ||
3844 len < offsetofend(struct tcp_zerocopy_receive, length))
3845 return -EINVAL;
3846 if (len > sizeof(zc)) {
3847 len = sizeof(zc);
3848 if (put_user(len, optlen))
3849 return -EFAULT;
3850 }
3851 if (copy_from_user(&zc, optval, len))
3852 return -EFAULT;
3853 lock_sock(sk);
3854 err = tcp_zerocopy_receive(sk, &zc);
3855 release_sock(sk);
3856 if (len == sizeof(zc))
3857 goto zerocopy_rcv_sk_err;
3858 switch (len) {
3859 case offsetofend(struct tcp_zerocopy_receive, err):
3860 goto zerocopy_rcv_sk_err;
3861 case offsetofend(struct tcp_zerocopy_receive, inq):
3862 goto zerocopy_rcv_inq;
3863 case offsetofend(struct tcp_zerocopy_receive, length):
3864 default:
3865 goto zerocopy_rcv_out;
3866 }
3867 zerocopy_rcv_sk_err:
3868 if (!err)
3869 zc.err = sock_error(sk);
3870 zerocopy_rcv_inq:
3871 zc.inq = tcp_inq_hint(sk);
3872 zerocopy_rcv_out:
3873 if (!err && copy_to_user(optval, &zc, len))
3874 err = -EFAULT;
3875 return err;
3876 }
3877 #endif
3878 default:
3879 return -ENOPROTOOPT;
3880 }
3881
3882 if (put_user(len, optlen))
3883 return -EFAULT;
3884 if (copy_to_user(optval, &val, len))
3885 return -EFAULT;
3886 return 0;
3887 }
3888
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3889 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3890 int __user *optlen)
3891 {
3892 struct inet_connection_sock *icsk = inet_csk(sk);
3893
3894 if (level != SOL_TCP)
3895 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3896 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
3897 optval, optlen);
3898 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3899 }
3900 EXPORT_SYMBOL(tcp_getsockopt);
3901
3902 #ifdef CONFIG_TCP_MD5SIG
3903 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3904 static DEFINE_MUTEX(tcp_md5sig_mutex);
3905 static bool tcp_md5sig_pool_populated = false;
3906
__tcp_alloc_md5sig_pool(void)3907 static void __tcp_alloc_md5sig_pool(void)
3908 {
3909 struct crypto_ahash *hash;
3910 int cpu;
3911
3912 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3913 if (IS_ERR(hash))
3914 return;
3915
3916 for_each_possible_cpu(cpu) {
3917 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3918 struct ahash_request *req;
3919
3920 if (!scratch) {
3921 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3922 sizeof(struct tcphdr),
3923 GFP_KERNEL,
3924 cpu_to_node(cpu));
3925 if (!scratch)
3926 return;
3927 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3928 }
3929 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3930 continue;
3931
3932 req = ahash_request_alloc(hash, GFP_KERNEL);
3933 if (!req)
3934 return;
3935
3936 ahash_request_set_callback(req, 0, NULL, NULL);
3937
3938 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3939 }
3940 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3941 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3942 */
3943 smp_wmb();
3944 tcp_md5sig_pool_populated = true;
3945 }
3946
tcp_alloc_md5sig_pool(void)3947 bool tcp_alloc_md5sig_pool(void)
3948 {
3949 if (unlikely(!tcp_md5sig_pool_populated)) {
3950 mutex_lock(&tcp_md5sig_mutex);
3951
3952 if (!tcp_md5sig_pool_populated) {
3953 __tcp_alloc_md5sig_pool();
3954 if (tcp_md5sig_pool_populated)
3955 static_branch_inc(&tcp_md5_needed);
3956 }
3957
3958 mutex_unlock(&tcp_md5sig_mutex);
3959 }
3960 return tcp_md5sig_pool_populated;
3961 }
3962 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3963
3964
3965 /**
3966 * tcp_get_md5sig_pool - get md5sig_pool for this user
3967 *
3968 * We use percpu structure, so if we succeed, we exit with preemption
3969 * and BH disabled, to make sure another thread or softirq handling
3970 * wont try to get same context.
3971 */
tcp_get_md5sig_pool(void)3972 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3973 {
3974 local_bh_disable();
3975
3976 if (tcp_md5sig_pool_populated) {
3977 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3978 smp_rmb();
3979 return this_cpu_ptr(&tcp_md5sig_pool);
3980 }
3981 local_bh_enable();
3982 return NULL;
3983 }
3984 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3985
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)3986 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3987 const struct sk_buff *skb, unsigned int header_len)
3988 {
3989 struct scatterlist sg;
3990 const struct tcphdr *tp = tcp_hdr(skb);
3991 struct ahash_request *req = hp->md5_req;
3992 unsigned int i;
3993 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3994 skb_headlen(skb) - header_len : 0;
3995 const struct skb_shared_info *shi = skb_shinfo(skb);
3996 struct sk_buff *frag_iter;
3997
3998 sg_init_table(&sg, 1);
3999
4000 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4001 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4002 if (crypto_ahash_update(req))
4003 return 1;
4004
4005 for (i = 0; i < shi->nr_frags; ++i) {
4006 const skb_frag_t *f = &shi->frags[i];
4007 unsigned int offset = skb_frag_off(f);
4008 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4009
4010 sg_set_page(&sg, page, skb_frag_size(f),
4011 offset_in_page(offset));
4012 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4013 if (crypto_ahash_update(req))
4014 return 1;
4015 }
4016
4017 skb_walk_frags(skb, frag_iter)
4018 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4019 return 1;
4020
4021 return 0;
4022 }
4023 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4024
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)4025 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4026 {
4027 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4028 struct scatterlist sg;
4029
4030 sg_init_one(&sg, key->key, keylen);
4031 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4032
4033 /* We use data_race() because tcp_md5_do_add() might change key->key under us */
4034 return data_race(crypto_ahash_update(hp->md5_req));
4035 }
4036 EXPORT_SYMBOL(tcp_md5_hash_key);
4037
4038 #endif
4039
tcp_done(struct sock * sk)4040 void tcp_done(struct sock *sk)
4041 {
4042 struct request_sock *req;
4043
4044 /* We might be called with a new socket, after
4045 * inet_csk_prepare_forced_close() has been called
4046 * so we can not use lockdep_sock_is_held(sk)
4047 */
4048 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4049
4050 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4051 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4052
4053 tcp_set_state(sk, TCP_CLOSE);
4054 tcp_clear_xmit_timers(sk);
4055 if (req)
4056 reqsk_fastopen_remove(sk, req, false);
4057
4058 sk->sk_shutdown = SHUTDOWN_MASK;
4059
4060 if (!sock_flag(sk, SOCK_DEAD))
4061 sk->sk_state_change(sk);
4062 else
4063 inet_csk_destroy_sock(sk);
4064 }
4065 EXPORT_SYMBOL_GPL(tcp_done);
4066
tcp_abort(struct sock * sk,int err)4067 int tcp_abort(struct sock *sk, int err)
4068 {
4069 if (!sk_fullsock(sk)) {
4070 if (sk->sk_state == TCP_NEW_SYN_RECV) {
4071 struct request_sock *req = inet_reqsk(sk);
4072
4073 local_bh_disable();
4074 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4075 local_bh_enable();
4076 return 0;
4077 }
4078 return -EOPNOTSUPP;
4079 }
4080
4081 /* Don't race with userspace socket closes such as tcp_close. */
4082 lock_sock(sk);
4083
4084 if (sk->sk_state == TCP_LISTEN) {
4085 tcp_set_state(sk, TCP_CLOSE);
4086 inet_csk_listen_stop(sk);
4087 }
4088
4089 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4090 local_bh_disable();
4091 bh_lock_sock(sk);
4092
4093 if (!sock_flag(sk, SOCK_DEAD)) {
4094 sk->sk_err = err;
4095 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4096 smp_wmb();
4097 sk->sk_error_report(sk);
4098 if (tcp_need_reset(sk->sk_state))
4099 tcp_send_active_reset(sk, GFP_ATOMIC);
4100 tcp_done(sk);
4101 }
4102
4103 bh_unlock_sock(sk);
4104 local_bh_enable();
4105 tcp_write_queue_purge(sk);
4106 release_sock(sk);
4107 return 0;
4108 }
4109 EXPORT_SYMBOL_GPL(tcp_abort);
4110
4111 extern struct tcp_congestion_ops tcp_reno;
4112
4113 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4114 static int __init set_thash_entries(char *str)
4115 {
4116 ssize_t ret;
4117
4118 if (!str)
4119 return 0;
4120
4121 ret = kstrtoul(str, 0, &thash_entries);
4122 if (ret)
4123 return 0;
4124
4125 return 1;
4126 }
4127 __setup("thash_entries=", set_thash_entries);
4128
tcp_init_mem(void)4129 static void __init tcp_init_mem(void)
4130 {
4131 unsigned long limit = nr_free_buffer_pages() / 16;
4132
4133 limit = max(limit, 128UL);
4134 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
4135 sysctl_tcp_mem[1] = limit; /* 6.25 % */
4136 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
4137 }
4138
tcp_init(void)4139 void __init tcp_init(void)
4140 {
4141 int max_rshare, max_wshare, cnt;
4142 unsigned long limit;
4143 unsigned int i;
4144
4145 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4146 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4147 sizeof_field(struct sk_buff, cb));
4148
4149 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4150 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
4151 inet_hashinfo_init(&tcp_hashinfo);
4152 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4153 thash_entries, 21, /* one slot per 2 MB*/
4154 0, 64 * 1024);
4155 tcp_hashinfo.bind_bucket_cachep =
4156 kmem_cache_create("tcp_bind_bucket",
4157 sizeof(struct inet_bind_bucket), 0,
4158 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
4159
4160 /* Size and allocate the main established and bind bucket
4161 * hash tables.
4162 *
4163 * The methodology is similar to that of the buffer cache.
4164 */
4165 tcp_hashinfo.ehash =
4166 alloc_large_system_hash("TCP established",
4167 sizeof(struct inet_ehash_bucket),
4168 thash_entries,
4169 17, /* one slot per 128 KB of memory */
4170 0,
4171 NULL,
4172 &tcp_hashinfo.ehash_mask,
4173 0,
4174 thash_entries ? 0 : 512 * 1024);
4175 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4176 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4177
4178 if (inet_ehash_locks_alloc(&tcp_hashinfo))
4179 panic("TCP: failed to alloc ehash_locks");
4180 tcp_hashinfo.bhash =
4181 alloc_large_system_hash("TCP bind",
4182 sizeof(struct inet_bind_hashbucket),
4183 tcp_hashinfo.ehash_mask + 1,
4184 17, /* one slot per 128 KB of memory */
4185 0,
4186 &tcp_hashinfo.bhash_size,
4187 NULL,
4188 0,
4189 64 * 1024);
4190 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4191 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4192 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4193 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4194 }
4195
4196
4197 cnt = tcp_hashinfo.ehash_mask + 1;
4198 sysctl_tcp_max_orphans = cnt / 2;
4199
4200 tcp_init_mem();
4201 /* Set per-socket limits to no more than 1/128 the pressure threshold */
4202 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4203 max_wshare = min(4UL*1024*1024, limit);
4204 max_rshare = min(6UL*1024*1024, limit);
4205
4206 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4207 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4208 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4209
4210 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4211 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4212 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4213
4214 pr_info("Hash tables configured (established %u bind %u)\n",
4215 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4216
4217 tcp_v4_init();
4218 tcp_metrics_init();
4219 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4220 tcp_tasklet_init();
4221 mptcp_init();
4222 }
4223