• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * INET		An implementation of the TCP/IP protocol suite for the LINUX
4   *		operating system.  INET is implemented using the  BSD Socket
5   *		interface as the means of communication with the user level.
6   *
7   *		Implementation of the Transmission Control Protocol(TCP).
8   *
9   * Authors:	Ross Biro
10   *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11   *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12   *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13   *		Florian La Roche, <flla@stud.uni-sb.de>
14   *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15   *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16   *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17   *		Matthew Dillon, <dillon@apollo.west.oic.com>
18   *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19   *		Jorge Cwik, <jorge@laser.satlink.net>
20   */
21  
22  /*
23   * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24   *				:	Fragmentation on mtu decrease
25   *				:	Segment collapse on retransmit
26   *				:	AF independence
27   *
28   *		Linus Torvalds	:	send_delayed_ack
29   *		David S. Miller	:	Charge memory using the right skb
30   *					during syn/ack processing.
31   *		David S. Miller :	Output engine completely rewritten.
32   *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33   *		Cacophonix Gaul :	draft-minshall-nagle-01
34   *		J Hadi Salim	:	ECN support
35   *
36   */
37  
38  #define pr_fmt(fmt) "TCP: " fmt
39  
40  #include <net/tcp.h>
41  #include <net/mptcp.h>
42  
43  #include <linux/compiler.h>
44  #include <linux/gfp.h>
45  #include <linux/module.h>
46  #include <linux/static_key.h>
47  
48  #include <trace/events/tcp.h>
49  
50  /* Refresh clocks of a TCP socket,
51   * ensuring monotically increasing values.
52   */
tcp_mstamp_refresh(struct tcp_sock * tp)53  void tcp_mstamp_refresh(struct tcp_sock *tp)
54  {
55  	u64 val = tcp_clock_ns();
56  
57  	tp->tcp_clock_cache = val;
58  	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59  }
60  
61  static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62  			   int push_one, gfp_t gfp);
63  
64  /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,struct sk_buff * skb)65  static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66  {
67  	struct inet_connection_sock *icsk = inet_csk(sk);
68  	struct tcp_sock *tp = tcp_sk(sk);
69  	unsigned int prior_packets = tp->packets_out;
70  
71  	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72  
73  	__skb_unlink(skb, &sk->sk_write_queue);
74  	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75  
76  	if (tp->highest_sack == NULL)
77  		tp->highest_sack = skb;
78  
79  	tp->packets_out += tcp_skb_pcount(skb);
80  	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81  		tcp_rearm_rto(sk);
82  
83  	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84  		      tcp_skb_pcount(skb));
85  }
86  
87  /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
88   * window scaling factor due to loss of precision.
89   * If window has been shrunk, what should we make? It is not clear at all.
90   * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91   * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92   * invalid. OK, let's make this for now:
93   */
tcp_acceptable_seq(const struct sock * sk)94  static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95  {
96  	const struct tcp_sock *tp = tcp_sk(sk);
97  
98  	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
99  	    (tp->rx_opt.wscale_ok &&
100  	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
101  		return tp->snd_nxt;
102  	else
103  		return tcp_wnd_end(tp);
104  }
105  
106  /* Calculate mss to advertise in SYN segment.
107   * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
108   *
109   * 1. It is independent of path mtu.
110   * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
111   * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
112   *    attached devices, because some buggy hosts are confused by
113   *    large MSS.
114   * 4. We do not make 3, we advertise MSS, calculated from first
115   *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
116   *    This may be overridden via information stored in routing table.
117   * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
118   *    probably even Jumbo".
119   */
tcp_advertise_mss(struct sock * sk)120  static __u16 tcp_advertise_mss(struct sock *sk)
121  {
122  	struct tcp_sock *tp = tcp_sk(sk);
123  	const struct dst_entry *dst = __sk_dst_get(sk);
124  	int mss = tp->advmss;
125  
126  	if (dst) {
127  		unsigned int metric = dst_metric_advmss(dst);
128  
129  		if (metric < mss) {
130  			mss = metric;
131  			tp->advmss = mss;
132  		}
133  	}
134  
135  	return (__u16)mss;
136  }
137  
138  /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
139   * This is the first part of cwnd validation mechanism.
140   */
tcp_cwnd_restart(struct sock * sk,s32 delta)141  void tcp_cwnd_restart(struct sock *sk, s32 delta)
142  {
143  	struct tcp_sock *tp = tcp_sk(sk);
144  	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
145  	u32 cwnd = tp->snd_cwnd;
146  
147  	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
148  
149  	tp->snd_ssthresh = tcp_current_ssthresh(sk);
150  	restart_cwnd = min(restart_cwnd, cwnd);
151  
152  	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
153  		cwnd >>= 1;
154  	tp->snd_cwnd = max(cwnd, restart_cwnd);
155  	tp->snd_cwnd_stamp = tcp_jiffies32;
156  	tp->snd_cwnd_used = 0;
157  }
158  
159  /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)160  static void tcp_event_data_sent(struct tcp_sock *tp,
161  				struct sock *sk)
162  {
163  	struct inet_connection_sock *icsk = inet_csk(sk);
164  	const u32 now = tcp_jiffies32;
165  
166  	if (tcp_packets_in_flight(tp) == 0)
167  		tcp_ca_event(sk, CA_EVENT_TX_START);
168  
169  	/* If this is the first data packet sent in response to the
170  	 * previous received data,
171  	 * and it is a reply for ato after last received packet,
172  	 * increase pingpong count.
173  	 */
174  	if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) &&
175  	    (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176  		inet_csk_inc_pingpong_cnt(sk);
177  
178  	tp->lsndtime = now;
179  }
180  
181  /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,unsigned int pkts,u32 rcv_nxt)182  static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
183  				      u32 rcv_nxt)
184  {
185  	struct tcp_sock *tp = tcp_sk(sk);
186  
187  	if (unlikely(tp->compressed_ack)) {
188  		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
189  			      tp->compressed_ack);
190  		tp->compressed_ack = 0;
191  		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
192  			__sock_put(sk);
193  	}
194  
195  	if (unlikely(rcv_nxt != tp->rcv_nxt))
196  		return;  /* Special ACK sent by DCTCP to reflect ECN */
197  	tcp_dec_quickack_mode(sk, pkts);
198  	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
199  }
200  
201  /* Determine a window scaling and initial window to offer.
202   * Based on the assumption that the given amount of space
203   * will be offered. Store the results in the tp structure.
204   * NOTE: for smooth operation initial space offering should
205   * be a multiple of mss if possible. We assume here that mss >= 1.
206   * This MUST be enforced by all callers.
207   */
tcp_select_initial_window(const struct sock * sk,int __space,__u32 mss,__u32 * rcv_wnd,__u32 * window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)208  void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
209  			       __u32 *rcv_wnd, __u32 *window_clamp,
210  			       int wscale_ok, __u8 *rcv_wscale,
211  			       __u32 init_rcv_wnd)
212  {
213  	unsigned int space = (__space < 0 ? 0 : __space);
214  
215  	/* If no clamp set the clamp to the max possible scaled window */
216  	if (*window_clamp == 0)
217  		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
218  	space = min(*window_clamp, space);
219  
220  	/* Quantize space offering to a multiple of mss if possible. */
221  	if (space > mss)
222  		space = rounddown(space, mss);
223  
224  	/* NOTE: offering an initial window larger than 32767
225  	 * will break some buggy TCP stacks. If the admin tells us
226  	 * it is likely we could be speaking with such a buggy stack
227  	 * we will truncate our initial window offering to 32K-1
228  	 * unless the remote has sent us a window scaling option,
229  	 * which we interpret as a sign the remote TCP is not
230  	 * misinterpreting the window field as a signed quantity.
231  	 */
232  	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
233  		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
234  	else
235  		(*rcv_wnd) = min_t(u32, space, U16_MAX);
236  
237  	if (init_rcv_wnd)
238  		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
239  
240  	*rcv_wscale = 0;
241  	if (wscale_ok) {
242  		/* Set window scaling on max possible window */
243  		space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
244  		space = max_t(u32, space, sysctl_rmem_max);
245  		space = min_t(u32, space, *window_clamp);
246  		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
247  				      0, TCP_MAX_WSCALE);
248  	}
249  	/* Set the clamp no higher than max representable value */
250  	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
251  }
252  EXPORT_SYMBOL(tcp_select_initial_window);
253  
254  /* Chose a new window to advertise, update state in tcp_sock for the
255   * socket, and return result with RFC1323 scaling applied.  The return
256   * value can be stuffed directly into th->window for an outgoing
257   * frame.
258   */
tcp_select_window(struct sock * sk)259  static u16 tcp_select_window(struct sock *sk)
260  {
261  	struct tcp_sock *tp = tcp_sk(sk);
262  	u32 old_win = tp->rcv_wnd;
263  	u32 cur_win = tcp_receive_window(tp);
264  	u32 new_win = __tcp_select_window(sk);
265  
266  	/* Never shrink the offered window */
267  	if (new_win < cur_win) {
268  		/* Danger Will Robinson!
269  		 * Don't update rcv_wup/rcv_wnd here or else
270  		 * we will not be able to advertise a zero
271  		 * window in time.  --DaveM
272  		 *
273  		 * Relax Will Robinson.
274  		 */
275  		if (new_win == 0)
276  			NET_INC_STATS(sock_net(sk),
277  				      LINUX_MIB_TCPWANTZEROWINDOWADV);
278  		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
279  	}
280  	tp->rcv_wnd = new_win;
281  	tp->rcv_wup = tp->rcv_nxt;
282  
283  	/* Make sure we do not exceed the maximum possible
284  	 * scaled window.
285  	 */
286  	if (!tp->rx_opt.rcv_wscale &&
287  	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
288  		new_win = min(new_win, MAX_TCP_WINDOW);
289  	else
290  		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
291  
292  	/* RFC1323 scaling applied */
293  	new_win >>= tp->rx_opt.rcv_wscale;
294  
295  	/* If we advertise zero window, disable fast path. */
296  	if (new_win == 0) {
297  		tp->pred_flags = 0;
298  		if (old_win)
299  			NET_INC_STATS(sock_net(sk),
300  				      LINUX_MIB_TCPTOZEROWINDOWADV);
301  	} else if (old_win == 0) {
302  		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
303  	}
304  
305  	return new_win;
306  }
307  
308  /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)309  static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
310  {
311  	const struct tcp_sock *tp = tcp_sk(sk);
312  
313  	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
314  	if (!(tp->ecn_flags & TCP_ECN_OK))
315  		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
316  	else if (tcp_ca_needs_ecn(sk) ||
317  		 tcp_bpf_ca_needs_ecn(sk))
318  		INET_ECN_xmit(sk);
319  }
320  
321  /* Packet ECN state for a SYN.  */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)322  static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
323  {
324  	struct tcp_sock *tp = tcp_sk(sk);
325  	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
326  	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
327  		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
328  
329  	if (!use_ecn) {
330  		const struct dst_entry *dst = __sk_dst_get(sk);
331  
332  		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
333  			use_ecn = true;
334  	}
335  
336  	tp->ecn_flags = 0;
337  
338  	if (use_ecn) {
339  		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
340  		tp->ecn_flags = TCP_ECN_OK;
341  		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
342  			INET_ECN_xmit(sk);
343  	}
344  }
345  
tcp_ecn_clear_syn(struct sock * sk,struct sk_buff * skb)346  static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
347  {
348  	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
349  		/* tp->ecn_flags are cleared at a later point in time when
350  		 * SYN ACK is ultimatively being received.
351  		 */
352  		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
353  }
354  
355  static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th)356  tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
357  {
358  	if (inet_rsk(req)->ecn_ok)
359  		th->ece = 1;
360  }
361  
362  /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
363   * be sent.
364   */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int tcp_header_len)365  static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
366  			 struct tcphdr *th, int tcp_header_len)
367  {
368  	struct tcp_sock *tp = tcp_sk(sk);
369  
370  	if (tp->ecn_flags & TCP_ECN_OK) {
371  		/* Not-retransmitted data segment: set ECT and inject CWR. */
372  		if (skb->len != tcp_header_len &&
373  		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
374  			INET_ECN_xmit(sk);
375  			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
376  				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
377  				th->cwr = 1;
378  				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
379  			}
380  		} else if (!tcp_ca_needs_ecn(sk)) {
381  			/* ACK or retransmitted segment: clear ECT|CE */
382  			INET_ECN_dontxmit(sk);
383  		}
384  		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
385  			th->ece = 1;
386  	}
387  }
388  
389  /* Constructs common control bits of non-data skb. If SYN/FIN is present,
390   * auto increment end seqno.
391   */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)392  static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
393  {
394  	skb->ip_summed = CHECKSUM_PARTIAL;
395  
396  	TCP_SKB_CB(skb)->tcp_flags = flags;
397  	TCP_SKB_CB(skb)->sacked = 0;
398  
399  	tcp_skb_pcount_set(skb, 1);
400  
401  	TCP_SKB_CB(skb)->seq = seq;
402  	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
403  		seq++;
404  	TCP_SKB_CB(skb)->end_seq = seq;
405  }
406  
tcp_urg_mode(const struct tcp_sock * tp)407  static inline bool tcp_urg_mode(const struct tcp_sock *tp)
408  {
409  	return tp->snd_una != tp->snd_up;
410  }
411  
412  #define OPTION_SACK_ADVERTISE	(1 << 0)
413  #define OPTION_TS		(1 << 1)
414  #define OPTION_MD5		(1 << 2)
415  #define OPTION_WSCALE		(1 << 3)
416  #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
417  #define OPTION_SMC		(1 << 9)
418  #define OPTION_MPTCP		(1 << 10)
419  
smc_options_write(__be32 * ptr,u16 * options)420  static void smc_options_write(__be32 *ptr, u16 *options)
421  {
422  #if IS_ENABLED(CONFIG_SMC)
423  	if (static_branch_unlikely(&tcp_have_smc)) {
424  		if (unlikely(OPTION_SMC & *options)) {
425  			*ptr++ = htonl((TCPOPT_NOP  << 24) |
426  				       (TCPOPT_NOP  << 16) |
427  				       (TCPOPT_EXP <<  8) |
428  				       (TCPOLEN_EXP_SMC_BASE));
429  			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
430  		}
431  	}
432  #endif
433  }
434  
435  struct tcp_out_options {
436  	u16 options;		/* bit field of OPTION_* */
437  	u16 mss;		/* 0 to disable */
438  	u8 ws;			/* window scale, 0 to disable */
439  	u8 num_sack_blocks;	/* number of SACK blocks to include */
440  	u8 hash_size;		/* bytes in hash_location */
441  	u8 bpf_opt_len;		/* length of BPF hdr option */
442  	__u8 *hash_location;	/* temporary pointer, overloaded */
443  	__u32 tsval, tsecr;	/* need to include OPTION_TS */
444  	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
445  	struct mptcp_out_options mptcp;
446  };
447  
mptcp_options_write(__be32 * ptr,struct tcp_out_options * opts)448  static void mptcp_options_write(__be32 *ptr, struct tcp_out_options *opts)
449  {
450  #if IS_ENABLED(CONFIG_MPTCP)
451  	if (unlikely(OPTION_MPTCP & opts->options))
452  		mptcp_write_options(ptr, &opts->mptcp);
453  #endif
454  }
455  
456  #ifdef CONFIG_CGROUP_BPF
bpf_skops_write_hdr_opt_arg0(struct sk_buff * skb,enum tcp_synack_type synack_type)457  static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
458  					enum tcp_synack_type synack_type)
459  {
460  	if (unlikely(!skb))
461  		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
462  
463  	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
464  		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
465  
466  	return 0;
467  }
468  
469  /* req, syn_skb and synack_type are used when writing synack */
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)470  static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
471  				  struct request_sock *req,
472  				  struct sk_buff *syn_skb,
473  				  enum tcp_synack_type synack_type,
474  				  struct tcp_out_options *opts,
475  				  unsigned int *remaining)
476  {
477  	struct bpf_sock_ops_kern sock_ops;
478  	int err;
479  
480  	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
481  					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
482  	    !*remaining)
483  		return;
484  
485  	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
486  
487  	/* init sock_ops */
488  	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
489  
490  	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
491  
492  	if (req) {
493  		/* The listen "sk" cannot be passed here because
494  		 * it is not locked.  It would not make too much
495  		 * sense to do bpf_setsockopt(listen_sk) based
496  		 * on individual connection request also.
497  		 *
498  		 * Thus, "req" is passed here and the cgroup-bpf-progs
499  		 * of the listen "sk" will be run.
500  		 *
501  		 * "req" is also used here for fastopen even the "sk" here is
502  		 * a fullsock "child" sk.  It is to keep the behavior
503  		 * consistent between fastopen and non-fastopen on
504  		 * the bpf programming side.
505  		 */
506  		sock_ops.sk = (struct sock *)req;
507  		sock_ops.syn_skb = syn_skb;
508  	} else {
509  		sock_owned_by_me(sk);
510  
511  		sock_ops.is_fullsock = 1;
512  		sock_ops.sk = sk;
513  	}
514  
515  	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
516  	sock_ops.remaining_opt_len = *remaining;
517  	/* tcp_current_mss() does not pass a skb */
518  	if (skb)
519  		bpf_skops_init_skb(&sock_ops, skb, 0);
520  
521  	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
522  
523  	if (err || sock_ops.remaining_opt_len == *remaining)
524  		return;
525  
526  	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
527  	/* round up to 4 bytes */
528  	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
529  
530  	*remaining -= opts->bpf_opt_len;
531  }
532  
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)533  static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
534  				    struct request_sock *req,
535  				    struct sk_buff *syn_skb,
536  				    enum tcp_synack_type synack_type,
537  				    struct tcp_out_options *opts)
538  {
539  	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
540  	struct bpf_sock_ops_kern sock_ops;
541  	int err;
542  
543  	if (likely(!max_opt_len))
544  		return;
545  
546  	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
547  
548  	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
549  
550  	if (req) {
551  		sock_ops.sk = (struct sock *)req;
552  		sock_ops.syn_skb = syn_skb;
553  	} else {
554  		sock_owned_by_me(sk);
555  
556  		sock_ops.is_fullsock = 1;
557  		sock_ops.sk = sk;
558  	}
559  
560  	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
561  	sock_ops.remaining_opt_len = max_opt_len;
562  	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
563  	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
564  
565  	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
566  
567  	if (err)
568  		nr_written = 0;
569  	else
570  		nr_written = max_opt_len - sock_ops.remaining_opt_len;
571  
572  	if (nr_written < max_opt_len)
573  		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
574  		       max_opt_len - nr_written);
575  }
576  #else
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)577  static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
578  				  struct request_sock *req,
579  				  struct sk_buff *syn_skb,
580  				  enum tcp_synack_type synack_type,
581  				  struct tcp_out_options *opts,
582  				  unsigned int *remaining)
583  {
584  }
585  
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)586  static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
587  				    struct request_sock *req,
588  				    struct sk_buff *syn_skb,
589  				    enum tcp_synack_type synack_type,
590  				    struct tcp_out_options *opts)
591  {
592  }
593  #endif
594  
595  /* Write previously computed TCP options to the packet.
596   *
597   * Beware: Something in the Internet is very sensitive to the ordering of
598   * TCP options, we learned this through the hard way, so be careful here.
599   * Luckily we can at least blame others for their non-compliance but from
600   * inter-operability perspective it seems that we're somewhat stuck with
601   * the ordering which we have been using if we want to keep working with
602   * those broken things (not that it currently hurts anybody as there isn't
603   * particular reason why the ordering would need to be changed).
604   *
605   * At least SACK_PERM as the first option is known to lead to a disaster
606   * (but it may well be that other scenarios fail similarly).
607   */
tcp_options_write(__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)608  static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
609  			      struct tcp_out_options *opts)
610  {
611  	u16 options = opts->options;	/* mungable copy */
612  
613  	if (unlikely(OPTION_MD5 & options)) {
614  		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
615  			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
616  		/* overload cookie hash location */
617  		opts->hash_location = (__u8 *)ptr;
618  		ptr += 4;
619  	}
620  
621  	if (unlikely(opts->mss)) {
622  		*ptr++ = htonl((TCPOPT_MSS << 24) |
623  			       (TCPOLEN_MSS << 16) |
624  			       opts->mss);
625  	}
626  
627  	if (likely(OPTION_TS & options)) {
628  		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
629  			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
630  				       (TCPOLEN_SACK_PERM << 16) |
631  				       (TCPOPT_TIMESTAMP << 8) |
632  				       TCPOLEN_TIMESTAMP);
633  			options &= ~OPTION_SACK_ADVERTISE;
634  		} else {
635  			*ptr++ = htonl((TCPOPT_NOP << 24) |
636  				       (TCPOPT_NOP << 16) |
637  				       (TCPOPT_TIMESTAMP << 8) |
638  				       TCPOLEN_TIMESTAMP);
639  		}
640  		*ptr++ = htonl(opts->tsval);
641  		*ptr++ = htonl(opts->tsecr);
642  	}
643  
644  	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
645  		*ptr++ = htonl((TCPOPT_NOP << 24) |
646  			       (TCPOPT_NOP << 16) |
647  			       (TCPOPT_SACK_PERM << 8) |
648  			       TCPOLEN_SACK_PERM);
649  	}
650  
651  	if (unlikely(OPTION_WSCALE & options)) {
652  		*ptr++ = htonl((TCPOPT_NOP << 24) |
653  			       (TCPOPT_WINDOW << 16) |
654  			       (TCPOLEN_WINDOW << 8) |
655  			       opts->ws);
656  	}
657  
658  	if (unlikely(opts->num_sack_blocks)) {
659  		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
660  			tp->duplicate_sack : tp->selective_acks;
661  		int this_sack;
662  
663  		*ptr++ = htonl((TCPOPT_NOP  << 24) |
664  			       (TCPOPT_NOP  << 16) |
665  			       (TCPOPT_SACK <<  8) |
666  			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
667  						     TCPOLEN_SACK_PERBLOCK)));
668  
669  		for (this_sack = 0; this_sack < opts->num_sack_blocks;
670  		     ++this_sack) {
671  			*ptr++ = htonl(sp[this_sack].start_seq);
672  			*ptr++ = htonl(sp[this_sack].end_seq);
673  		}
674  
675  		tp->rx_opt.dsack = 0;
676  	}
677  
678  	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
679  		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
680  		u8 *p = (u8 *)ptr;
681  		u32 len; /* Fast Open option length */
682  
683  		if (foc->exp) {
684  			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
685  			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
686  				     TCPOPT_FASTOPEN_MAGIC);
687  			p += TCPOLEN_EXP_FASTOPEN_BASE;
688  		} else {
689  			len = TCPOLEN_FASTOPEN_BASE + foc->len;
690  			*p++ = TCPOPT_FASTOPEN;
691  			*p++ = len;
692  		}
693  
694  		memcpy(p, foc->val, foc->len);
695  		if ((len & 3) == 2) {
696  			p[foc->len] = TCPOPT_NOP;
697  			p[foc->len + 1] = TCPOPT_NOP;
698  		}
699  		ptr += (len + 3) >> 2;
700  	}
701  
702  	smc_options_write(ptr, &options);
703  
704  	mptcp_options_write(ptr, opts);
705  }
706  
smc_set_option(const struct tcp_sock * tp,struct tcp_out_options * opts,unsigned int * remaining)707  static void smc_set_option(const struct tcp_sock *tp,
708  			   struct tcp_out_options *opts,
709  			   unsigned int *remaining)
710  {
711  #if IS_ENABLED(CONFIG_SMC)
712  	if (static_branch_unlikely(&tcp_have_smc)) {
713  		if (tp->syn_smc) {
714  			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
715  				opts->options |= OPTION_SMC;
716  				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
717  			}
718  		}
719  	}
720  #endif
721  }
722  
smc_set_option_cond(const struct tcp_sock * tp,const struct inet_request_sock * ireq,struct tcp_out_options * opts,unsigned int * remaining)723  static void smc_set_option_cond(const struct tcp_sock *tp,
724  				const struct inet_request_sock *ireq,
725  				struct tcp_out_options *opts,
726  				unsigned int *remaining)
727  {
728  #if IS_ENABLED(CONFIG_SMC)
729  	if (static_branch_unlikely(&tcp_have_smc)) {
730  		if (tp->syn_smc && ireq->smc_ok) {
731  			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
732  				opts->options |= OPTION_SMC;
733  				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
734  			}
735  		}
736  	}
737  #endif
738  }
739  
mptcp_set_option_cond(const struct request_sock * req,struct tcp_out_options * opts,unsigned int * remaining)740  static void mptcp_set_option_cond(const struct request_sock *req,
741  				  struct tcp_out_options *opts,
742  				  unsigned int *remaining)
743  {
744  	if (rsk_is_mptcp(req)) {
745  		unsigned int size;
746  
747  		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
748  			if (*remaining >= size) {
749  				opts->options |= OPTION_MPTCP;
750  				*remaining -= size;
751  			}
752  		}
753  	}
754  }
755  
756  /* Compute TCP options for SYN packets. This is not the final
757   * network wire format yet.
758   */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)759  static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
760  				struct tcp_out_options *opts,
761  				struct tcp_md5sig_key **md5)
762  {
763  	struct tcp_sock *tp = tcp_sk(sk);
764  	unsigned int remaining = MAX_TCP_OPTION_SPACE;
765  	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
766  
767  	*md5 = NULL;
768  #ifdef CONFIG_TCP_MD5SIG
769  	if (static_branch_unlikely(&tcp_md5_needed) &&
770  	    rcu_access_pointer(tp->md5sig_info)) {
771  		*md5 = tp->af_specific->md5_lookup(sk, sk);
772  		if (*md5) {
773  			opts->options |= OPTION_MD5;
774  			remaining -= TCPOLEN_MD5SIG_ALIGNED;
775  		}
776  	}
777  #endif
778  
779  	/* We always get an MSS option.  The option bytes which will be seen in
780  	 * normal data packets should timestamps be used, must be in the MSS
781  	 * advertised.  But we subtract them from tp->mss_cache so that
782  	 * calculations in tcp_sendmsg are simpler etc.  So account for this
783  	 * fact here if necessary.  If we don't do this correctly, as a
784  	 * receiver we won't recognize data packets as being full sized when we
785  	 * should, and thus we won't abide by the delayed ACK rules correctly.
786  	 * SACKs don't matter, we never delay an ACK when we have any of those
787  	 * going out.  */
788  	opts->mss = tcp_advertise_mss(sk);
789  	remaining -= TCPOLEN_MSS_ALIGNED;
790  
791  	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
792  		opts->options |= OPTION_TS;
793  		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
794  		opts->tsecr = tp->rx_opt.ts_recent;
795  		remaining -= TCPOLEN_TSTAMP_ALIGNED;
796  	}
797  	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
798  		opts->ws = tp->rx_opt.rcv_wscale;
799  		opts->options |= OPTION_WSCALE;
800  		remaining -= TCPOLEN_WSCALE_ALIGNED;
801  	}
802  	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
803  		opts->options |= OPTION_SACK_ADVERTISE;
804  		if (unlikely(!(OPTION_TS & opts->options)))
805  			remaining -= TCPOLEN_SACKPERM_ALIGNED;
806  	}
807  
808  	if (fastopen && fastopen->cookie.len >= 0) {
809  		u32 need = fastopen->cookie.len;
810  
811  		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
812  					       TCPOLEN_FASTOPEN_BASE;
813  		need = (need + 3) & ~3U;  /* Align to 32 bits */
814  		if (remaining >= need) {
815  			opts->options |= OPTION_FAST_OPEN_COOKIE;
816  			opts->fastopen_cookie = &fastopen->cookie;
817  			remaining -= need;
818  			tp->syn_fastopen = 1;
819  			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
820  		}
821  	}
822  
823  	smc_set_option(tp, opts, &remaining);
824  
825  	if (sk_is_mptcp(sk)) {
826  		unsigned int size;
827  
828  		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
829  			opts->options |= OPTION_MPTCP;
830  			remaining -= size;
831  		}
832  	}
833  
834  	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
835  
836  	return MAX_TCP_OPTION_SPACE - remaining;
837  }
838  
839  /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(const struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,const struct tcp_md5sig_key * md5,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)840  static unsigned int tcp_synack_options(const struct sock *sk,
841  				       struct request_sock *req,
842  				       unsigned int mss, struct sk_buff *skb,
843  				       struct tcp_out_options *opts,
844  				       const struct tcp_md5sig_key *md5,
845  				       struct tcp_fastopen_cookie *foc,
846  				       enum tcp_synack_type synack_type,
847  				       struct sk_buff *syn_skb)
848  {
849  	struct inet_request_sock *ireq = inet_rsk(req);
850  	unsigned int remaining = MAX_TCP_OPTION_SPACE;
851  
852  #ifdef CONFIG_TCP_MD5SIG
853  	if (md5) {
854  		opts->options |= OPTION_MD5;
855  		remaining -= TCPOLEN_MD5SIG_ALIGNED;
856  
857  		/* We can't fit any SACK blocks in a packet with MD5 + TS
858  		 * options. There was discussion about disabling SACK
859  		 * rather than TS in order to fit in better with old,
860  		 * buggy kernels, but that was deemed to be unnecessary.
861  		 */
862  		if (synack_type != TCP_SYNACK_COOKIE)
863  			ireq->tstamp_ok &= !ireq->sack_ok;
864  	}
865  #endif
866  
867  	/* We always send an MSS option. */
868  	opts->mss = mss;
869  	remaining -= TCPOLEN_MSS_ALIGNED;
870  
871  	if (likely(ireq->wscale_ok)) {
872  		opts->ws = ireq->rcv_wscale;
873  		opts->options |= OPTION_WSCALE;
874  		remaining -= TCPOLEN_WSCALE_ALIGNED;
875  	}
876  	if (likely(ireq->tstamp_ok)) {
877  		opts->options |= OPTION_TS;
878  		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
879  		opts->tsecr = req->ts_recent;
880  		remaining -= TCPOLEN_TSTAMP_ALIGNED;
881  	}
882  	if (likely(ireq->sack_ok)) {
883  		opts->options |= OPTION_SACK_ADVERTISE;
884  		if (unlikely(!ireq->tstamp_ok))
885  			remaining -= TCPOLEN_SACKPERM_ALIGNED;
886  	}
887  	if (foc != NULL && foc->len >= 0) {
888  		u32 need = foc->len;
889  
890  		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
891  				   TCPOLEN_FASTOPEN_BASE;
892  		need = (need + 3) & ~3U;  /* Align to 32 bits */
893  		if (remaining >= need) {
894  			opts->options |= OPTION_FAST_OPEN_COOKIE;
895  			opts->fastopen_cookie = foc;
896  			remaining -= need;
897  		}
898  	}
899  
900  	mptcp_set_option_cond(req, opts, &remaining);
901  
902  	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
903  
904  	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
905  			      synack_type, opts, &remaining);
906  
907  	return MAX_TCP_OPTION_SPACE - remaining;
908  }
909  
910  /* Compute TCP options for ESTABLISHED sockets. This is not the
911   * final wire format yet.
912   */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)913  static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
914  					struct tcp_out_options *opts,
915  					struct tcp_md5sig_key **md5)
916  {
917  	struct tcp_sock *tp = tcp_sk(sk);
918  	unsigned int size = 0;
919  	unsigned int eff_sacks;
920  
921  	opts->options = 0;
922  
923  	*md5 = NULL;
924  #ifdef CONFIG_TCP_MD5SIG
925  	if (static_branch_unlikely(&tcp_md5_needed) &&
926  	    rcu_access_pointer(tp->md5sig_info)) {
927  		*md5 = tp->af_specific->md5_lookup(sk, sk);
928  		if (*md5) {
929  			opts->options |= OPTION_MD5;
930  			size += TCPOLEN_MD5SIG_ALIGNED;
931  		}
932  	}
933  #endif
934  
935  	if (likely(tp->rx_opt.tstamp_ok)) {
936  		opts->options |= OPTION_TS;
937  		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
938  		opts->tsecr = tp->rx_opt.ts_recent;
939  		size += TCPOLEN_TSTAMP_ALIGNED;
940  	}
941  
942  	/* MPTCP options have precedence over SACK for the limited TCP
943  	 * option space because a MPTCP connection would be forced to
944  	 * fall back to regular TCP if a required multipath option is
945  	 * missing. SACK still gets a chance to use whatever space is
946  	 * left.
947  	 */
948  	if (sk_is_mptcp(sk)) {
949  		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
950  		unsigned int opt_size = 0;
951  
952  		if (mptcp_established_options(sk, skb, &opt_size, remaining,
953  					      &opts->mptcp)) {
954  			opts->options |= OPTION_MPTCP;
955  			size += opt_size;
956  		}
957  	}
958  
959  	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
960  	if (unlikely(eff_sacks)) {
961  		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
962  		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
963  					 TCPOLEN_SACK_PERBLOCK))
964  			return size;
965  
966  		opts->num_sack_blocks =
967  			min_t(unsigned int, eff_sacks,
968  			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
969  			      TCPOLEN_SACK_PERBLOCK);
970  
971  		size += TCPOLEN_SACK_BASE_ALIGNED +
972  			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
973  	}
974  
975  	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
976  					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
977  		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
978  
979  		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
980  
981  		size = MAX_TCP_OPTION_SPACE - remaining;
982  	}
983  
984  	return size;
985  }
986  
987  
988  /* TCP SMALL QUEUES (TSQ)
989   *
990   * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
991   * to reduce RTT and bufferbloat.
992   * We do this using a special skb destructor (tcp_wfree).
993   *
994   * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
995   * needs to be reallocated in a driver.
996   * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
997   *
998   * Since transmit from skb destructor is forbidden, we use a tasklet
999   * to process all sockets that eventually need to send more skbs.
1000   * We use one tasklet per cpu, with its own queue of sockets.
1001   */
1002  struct tsq_tasklet {
1003  	struct tasklet_struct	tasklet;
1004  	struct list_head	head; /* queue of tcp sockets */
1005  };
1006  static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1007  
tcp_tsq_write(struct sock * sk)1008  static void tcp_tsq_write(struct sock *sk)
1009  {
1010  	if ((1 << sk->sk_state) &
1011  	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1012  	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1013  		struct tcp_sock *tp = tcp_sk(sk);
1014  
1015  		if (tp->lost_out > tp->retrans_out &&
1016  		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
1017  			tcp_mstamp_refresh(tp);
1018  			tcp_xmit_retransmit_queue(sk);
1019  		}
1020  
1021  		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1022  			       0, GFP_ATOMIC);
1023  	}
1024  }
1025  
tcp_tsq_handler(struct sock * sk)1026  static void tcp_tsq_handler(struct sock *sk)
1027  {
1028  	bh_lock_sock(sk);
1029  	if (!sock_owned_by_user(sk))
1030  		tcp_tsq_write(sk);
1031  	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1032  		sock_hold(sk);
1033  	bh_unlock_sock(sk);
1034  }
1035  /*
1036   * One tasklet per cpu tries to send more skbs.
1037   * We run in tasklet context but need to disable irqs when
1038   * transferring tsq->head because tcp_wfree() might
1039   * interrupt us (non NAPI drivers)
1040   */
tcp_tasklet_func(unsigned long data)1041  static void tcp_tasklet_func(unsigned long data)
1042  {
1043  	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
1044  	LIST_HEAD(list);
1045  	unsigned long flags;
1046  	struct list_head *q, *n;
1047  	struct tcp_sock *tp;
1048  	struct sock *sk;
1049  
1050  	local_irq_save(flags);
1051  	list_splice_init(&tsq->head, &list);
1052  	local_irq_restore(flags);
1053  
1054  	list_for_each_safe(q, n, &list) {
1055  		tp = list_entry(q, struct tcp_sock, tsq_node);
1056  		list_del(&tp->tsq_node);
1057  
1058  		sk = (struct sock *)tp;
1059  		smp_mb__before_atomic();
1060  		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1061  
1062  		tcp_tsq_handler(sk);
1063  		sk_free(sk);
1064  	}
1065  }
1066  
1067  #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1068  			  TCPF_WRITE_TIMER_DEFERRED |	\
1069  			  TCPF_DELACK_TIMER_DEFERRED |	\
1070  			  TCPF_MTU_REDUCED_DEFERRED)
1071  /**
1072   * tcp_release_cb - tcp release_sock() callback
1073   * @sk: socket
1074   *
1075   * called from release_sock() to perform protocol dependent
1076   * actions before socket release.
1077   */
tcp_release_cb(struct sock * sk)1078  void tcp_release_cb(struct sock *sk)
1079  {
1080  	unsigned long flags, nflags;
1081  
1082  	/* perform an atomic operation only if at least one flag is set */
1083  	do {
1084  		flags = sk->sk_tsq_flags;
1085  		if (!(flags & TCP_DEFERRED_ALL))
1086  			return;
1087  		nflags = flags & ~TCP_DEFERRED_ALL;
1088  	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
1089  
1090  	if (flags & TCPF_TSQ_DEFERRED) {
1091  		tcp_tsq_write(sk);
1092  		__sock_put(sk);
1093  	}
1094  	/* Here begins the tricky part :
1095  	 * We are called from release_sock() with :
1096  	 * 1) BH disabled
1097  	 * 2) sk_lock.slock spinlock held
1098  	 * 3) socket owned by us (sk->sk_lock.owned == 1)
1099  	 *
1100  	 * But following code is meant to be called from BH handlers,
1101  	 * so we should keep BH disabled, but early release socket ownership
1102  	 */
1103  	sock_release_ownership(sk);
1104  
1105  	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1106  		tcp_write_timer_handler(sk);
1107  		__sock_put(sk);
1108  	}
1109  	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1110  		tcp_delack_timer_handler(sk);
1111  		__sock_put(sk);
1112  	}
1113  	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1114  		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1115  		__sock_put(sk);
1116  	}
1117  }
1118  EXPORT_SYMBOL(tcp_release_cb);
1119  
tcp_tasklet_init(void)1120  void __init tcp_tasklet_init(void)
1121  {
1122  	int i;
1123  
1124  	for_each_possible_cpu(i) {
1125  		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1126  
1127  		INIT_LIST_HEAD(&tsq->head);
1128  		tasklet_init(&tsq->tasklet,
1129  			     tcp_tasklet_func,
1130  			     (unsigned long)tsq);
1131  	}
1132  }
1133  
1134  /*
1135   * Write buffer destructor automatically called from kfree_skb.
1136   * We can't xmit new skbs from this context, as we might already
1137   * hold qdisc lock.
1138   */
tcp_wfree(struct sk_buff * skb)1139  void tcp_wfree(struct sk_buff *skb)
1140  {
1141  	struct sock *sk = skb->sk;
1142  	struct tcp_sock *tp = tcp_sk(sk);
1143  	unsigned long flags, nval, oval;
1144  
1145  	/* Keep one reference on sk_wmem_alloc.
1146  	 * Will be released by sk_free() from here or tcp_tasklet_func()
1147  	 */
1148  	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1149  
1150  	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1151  	 * Wait until our queues (qdisc + devices) are drained.
1152  	 * This gives :
1153  	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1154  	 * - chance for incoming ACK (processed by another cpu maybe)
1155  	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1156  	 */
1157  	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1158  		goto out;
1159  
1160  	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
1161  		struct tsq_tasklet *tsq;
1162  		bool empty;
1163  
1164  		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1165  			goto out;
1166  
1167  		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1168  		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
1169  		if (nval != oval)
1170  			continue;
1171  
1172  		/* queue this socket to tasklet queue */
1173  		local_irq_save(flags);
1174  		tsq = this_cpu_ptr(&tsq_tasklet);
1175  		empty = list_empty(&tsq->head);
1176  		list_add(&tp->tsq_node, &tsq->head);
1177  		if (empty)
1178  			tasklet_schedule(&tsq->tasklet);
1179  		local_irq_restore(flags);
1180  		return;
1181  	}
1182  out:
1183  	sk_free(sk);
1184  }
1185  
1186  /* Note: Called under soft irq.
1187   * We can call TCP stack right away, unless socket is owned by user.
1188   */
tcp_pace_kick(struct hrtimer * timer)1189  enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1190  {
1191  	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1192  	struct sock *sk = (struct sock *)tp;
1193  
1194  	tcp_tsq_handler(sk);
1195  	sock_put(sk);
1196  
1197  	return HRTIMER_NORESTART;
1198  }
1199  
tcp_update_skb_after_send(struct sock * sk,struct sk_buff * skb,u64 prior_wstamp)1200  static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1201  				      u64 prior_wstamp)
1202  {
1203  	struct tcp_sock *tp = tcp_sk(sk);
1204  
1205  	if (sk->sk_pacing_status != SK_PACING_NONE) {
1206  		unsigned long rate = sk->sk_pacing_rate;
1207  
1208  		/* Original sch_fq does not pace first 10 MSS
1209  		 * Note that tp->data_segs_out overflows after 2^32 packets,
1210  		 * this is a minor annoyance.
1211  		 */
1212  		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1213  			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1214  			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1215  
1216  			/* take into account OS jitter */
1217  			len_ns -= min_t(u64, len_ns / 2, credit);
1218  			tp->tcp_wstamp_ns += len_ns;
1219  		}
1220  	}
1221  	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1222  }
1223  
1224  INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1225  INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1226  INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1227  
1228  /* This routine actually transmits TCP packets queued in by
1229   * tcp_do_sendmsg().  This is used by both the initial
1230   * transmission and possible later retransmissions.
1231   * All SKB's seen here are completely headerless.  It is our
1232   * job to build the TCP header, and pass the packet down to
1233   * IP so it can do the same plus pass the packet off to the
1234   * device.
1235   *
1236   * We are working here with either a clone of the original
1237   * SKB, or a fresh unique copy made by the retransmit engine.
1238   */
__tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask,u32 rcv_nxt)1239  static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1240  			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1241  {
1242  	const struct inet_connection_sock *icsk = inet_csk(sk);
1243  	struct inet_sock *inet;
1244  	struct tcp_sock *tp;
1245  	struct tcp_skb_cb *tcb;
1246  	struct tcp_out_options opts;
1247  	unsigned int tcp_options_size, tcp_header_size;
1248  	struct sk_buff *oskb = NULL;
1249  	struct tcp_md5sig_key *md5;
1250  	struct tcphdr *th;
1251  	u64 prior_wstamp;
1252  	int err;
1253  
1254  	BUG_ON(!skb || !tcp_skb_pcount(skb));
1255  	tp = tcp_sk(sk);
1256  	prior_wstamp = tp->tcp_wstamp_ns;
1257  	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1258  	skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1259  	if (clone_it) {
1260  		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1261  			- tp->snd_una;
1262  		oskb = skb;
1263  
1264  		tcp_skb_tsorted_save(oskb) {
1265  			if (unlikely(skb_cloned(oskb)))
1266  				skb = pskb_copy(oskb, gfp_mask);
1267  			else
1268  				skb = skb_clone(oskb, gfp_mask);
1269  		} tcp_skb_tsorted_restore(oskb);
1270  
1271  		if (unlikely(!skb))
1272  			return -ENOBUFS;
1273  		/* retransmit skbs might have a non zero value in skb->dev
1274  		 * because skb->dev is aliased with skb->rbnode.rb_left
1275  		 */
1276  		skb->dev = NULL;
1277  	}
1278  
1279  	inet = inet_sk(sk);
1280  	tcb = TCP_SKB_CB(skb);
1281  	memset(&opts, 0, sizeof(opts));
1282  
1283  	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1284  		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1285  	} else {
1286  		tcp_options_size = tcp_established_options(sk, skb, &opts,
1287  							   &md5);
1288  		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1289  		 * at receiver : This slightly improve GRO performance.
1290  		 * Note that we do not force the PSH flag for non GSO packets,
1291  		 * because they might be sent under high congestion events,
1292  		 * and in this case it is better to delay the delivery of 1-MSS
1293  		 * packets and thus the corresponding ACK packet that would
1294  		 * release the following packet.
1295  		 */
1296  		if (tcp_skb_pcount(skb) > 1)
1297  			tcb->tcp_flags |= TCPHDR_PSH;
1298  	}
1299  	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1300  
1301  	/* if no packet is in qdisc/device queue, then allow XPS to select
1302  	 * another queue. We can be called from tcp_tsq_handler()
1303  	 * which holds one reference to sk.
1304  	 *
1305  	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1306  	 * One way to get this would be to set skb->truesize = 2 on them.
1307  	 */
1308  	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1309  
1310  	/* If we had to use memory reserve to allocate this skb,
1311  	 * this might cause drops if packet is looped back :
1312  	 * Other socket might not have SOCK_MEMALLOC.
1313  	 * Packets not looped back do not care about pfmemalloc.
1314  	 */
1315  	skb->pfmemalloc = 0;
1316  
1317  	skb_push(skb, tcp_header_size);
1318  	skb_reset_transport_header(skb);
1319  
1320  	skb_orphan(skb);
1321  	skb->sk = sk;
1322  	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1323  	skb_set_hash_from_sk(skb, sk);
1324  	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1325  
1326  	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1327  
1328  	/* Build TCP header and checksum it. */
1329  	th = (struct tcphdr *)skb->data;
1330  	th->source		= inet->inet_sport;
1331  	th->dest		= inet->inet_dport;
1332  	th->seq			= htonl(tcb->seq);
1333  	th->ack_seq		= htonl(rcv_nxt);
1334  	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1335  					tcb->tcp_flags);
1336  
1337  	th->check		= 0;
1338  	th->urg_ptr		= 0;
1339  
1340  	/* The urg_mode check is necessary during a below snd_una win probe */
1341  	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1342  		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1343  			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1344  			th->urg = 1;
1345  		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1346  			th->urg_ptr = htons(0xFFFF);
1347  			th->urg = 1;
1348  		}
1349  	}
1350  
1351  	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1352  	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1353  	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1354  		th->window      = htons(tcp_select_window(sk));
1355  		tcp_ecn_send(sk, skb, th, tcp_header_size);
1356  	} else {
1357  		/* RFC1323: The window in SYN & SYN/ACK segments
1358  		 * is never scaled.
1359  		 */
1360  		th->window	= htons(min(tp->rcv_wnd, 65535U));
1361  	}
1362  #ifdef CONFIG_TCP_MD5SIG
1363  	/* Calculate the MD5 hash, as we have all we need now */
1364  	if (md5) {
1365  		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1366  		tp->af_specific->calc_md5_hash(opts.hash_location,
1367  					       md5, sk, skb);
1368  	}
1369  #endif
1370  
1371  	/* BPF prog is the last one writing header option */
1372  	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1373  
1374  	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1375  			   tcp_v6_send_check, tcp_v4_send_check,
1376  			   sk, skb);
1377  
1378  	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1379  		tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1380  
1381  	if (skb->len != tcp_header_size) {
1382  		tcp_event_data_sent(tp, sk);
1383  		tp->data_segs_out += tcp_skb_pcount(skb);
1384  		tp->bytes_sent += skb->len - tcp_header_size;
1385  	}
1386  
1387  	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1388  		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1389  			      tcp_skb_pcount(skb));
1390  
1391  	tp->segs_out += tcp_skb_pcount(skb);
1392  	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1393  	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1394  	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1395  
1396  	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1397  
1398  	/* Cleanup our debris for IP stacks */
1399  	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1400  			       sizeof(struct inet6_skb_parm)));
1401  
1402  	tcp_add_tx_delay(skb, tp);
1403  
1404  	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1405  				 inet6_csk_xmit, ip_queue_xmit,
1406  				 sk, skb, &inet->cork.fl);
1407  
1408  	if (unlikely(err > 0)) {
1409  		tcp_enter_cwr(sk);
1410  		err = net_xmit_eval(err);
1411  	}
1412  	if (!err && oskb) {
1413  		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1414  		tcp_rate_skb_sent(sk, oskb);
1415  	}
1416  	return err;
1417  }
1418  
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)1419  static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1420  			    gfp_t gfp_mask)
1421  {
1422  	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1423  				  tcp_sk(sk)->rcv_nxt);
1424  }
1425  
1426  /* This routine just queues the buffer for sending.
1427   *
1428   * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1429   * otherwise socket can stall.
1430   */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1431  static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1432  {
1433  	struct tcp_sock *tp = tcp_sk(sk);
1434  
1435  	/* Advance write_seq and place onto the write_queue. */
1436  	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1437  	__skb_header_release(skb);
1438  	tcp_add_write_queue_tail(sk, skb);
1439  	sk_wmem_queued_add(sk, skb->truesize);
1440  	sk_mem_charge(sk, skb->truesize);
1441  }
1442  
1443  /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(struct sk_buff * skb,unsigned int mss_now)1444  static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1445  {
1446  	if (skb->len <= mss_now) {
1447  		/* Avoid the costly divide in the normal
1448  		 * non-TSO case.
1449  		 */
1450  		tcp_skb_pcount_set(skb, 1);
1451  		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1452  	} else {
1453  		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1454  		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1455  	}
1456  }
1457  
1458  /* Pcount in the middle of the write queue got changed, we need to do various
1459   * tweaks to fix counters
1460   */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1461  static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1462  {
1463  	struct tcp_sock *tp = tcp_sk(sk);
1464  
1465  	tp->packets_out -= decr;
1466  
1467  	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1468  		tp->sacked_out -= decr;
1469  	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1470  		tp->retrans_out -= decr;
1471  	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1472  		tp->lost_out -= decr;
1473  
1474  	/* Reno case is special. Sigh... */
1475  	if (tcp_is_reno(tp) && decr > 0)
1476  		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1477  
1478  	if (tp->lost_skb_hint &&
1479  	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1480  	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1481  		tp->lost_cnt_hint -= decr;
1482  
1483  	tcp_verify_left_out(tp);
1484  }
1485  
tcp_has_tx_tstamp(const struct sk_buff * skb)1486  static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1487  {
1488  	return TCP_SKB_CB(skb)->txstamp_ack ||
1489  		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1490  }
1491  
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1492  static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1493  {
1494  	struct skb_shared_info *shinfo = skb_shinfo(skb);
1495  
1496  	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1497  	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1498  		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1499  		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1500  
1501  		shinfo->tx_flags &= ~tsflags;
1502  		shinfo2->tx_flags |= tsflags;
1503  		swap(shinfo->tskey, shinfo2->tskey);
1504  		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1505  		TCP_SKB_CB(skb)->txstamp_ack = 0;
1506  	}
1507  }
1508  
tcp_skb_fragment_eor(struct sk_buff * skb,struct sk_buff * skb2)1509  static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1510  {
1511  	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1512  	TCP_SKB_CB(skb)->eor = 0;
1513  }
1514  
1515  /* Insert buff after skb on the write or rtx queue of sk.  */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk,enum tcp_queue tcp_queue)1516  static void tcp_insert_write_queue_after(struct sk_buff *skb,
1517  					 struct sk_buff *buff,
1518  					 struct sock *sk,
1519  					 enum tcp_queue tcp_queue)
1520  {
1521  	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1522  		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1523  	else
1524  		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1525  }
1526  
1527  /* Function to create two new TCP segments.  Shrinks the given segment
1528   * to the specified size and appends a new segment with the rest of the
1529   * packet to the list.  This won't be called frequently, I hope.
1530   * Remember, these are still headerless SKBs at this point.
1531   */
tcp_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1532  int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1533  		 struct sk_buff *skb, u32 len,
1534  		 unsigned int mss_now, gfp_t gfp)
1535  {
1536  	struct tcp_sock *tp = tcp_sk(sk);
1537  	struct sk_buff *buff;
1538  	int nsize, old_factor;
1539  	long limit;
1540  	int nlen;
1541  	u8 flags;
1542  
1543  	if (WARN_ON(len > skb->len))
1544  		return -EINVAL;
1545  
1546  	nsize = skb_headlen(skb) - len;
1547  	if (nsize < 0)
1548  		nsize = 0;
1549  
1550  	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1551  	 * We need some allowance to not penalize applications setting small
1552  	 * SO_SNDBUF values.
1553  	 * Also allow first and last skb in retransmit queue to be split.
1554  	 */
1555  	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1556  	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1557  		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1558  		     skb != tcp_rtx_queue_head(sk) &&
1559  		     skb != tcp_rtx_queue_tail(sk))) {
1560  		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1561  		return -ENOMEM;
1562  	}
1563  
1564  	if (skb_unclone(skb, gfp))
1565  		return -ENOMEM;
1566  
1567  	/* Get a new skb... force flag on. */
1568  	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1569  	if (!buff)
1570  		return -ENOMEM; /* We'll just try again later. */
1571  	skb_copy_decrypted(buff, skb);
1572  
1573  	sk_wmem_queued_add(sk, buff->truesize);
1574  	sk_mem_charge(sk, buff->truesize);
1575  	nlen = skb->len - len - nsize;
1576  	buff->truesize += nlen;
1577  	skb->truesize -= nlen;
1578  
1579  	/* Correct the sequence numbers. */
1580  	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1581  	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1582  	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1583  
1584  	/* PSH and FIN should only be set in the second packet. */
1585  	flags = TCP_SKB_CB(skb)->tcp_flags;
1586  	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1587  	TCP_SKB_CB(buff)->tcp_flags = flags;
1588  	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1589  	tcp_skb_fragment_eor(skb, buff);
1590  
1591  	skb_split(skb, buff, len);
1592  
1593  	buff->ip_summed = CHECKSUM_PARTIAL;
1594  
1595  	buff->tstamp = skb->tstamp;
1596  	tcp_fragment_tstamp(skb, buff);
1597  
1598  	old_factor = tcp_skb_pcount(skb);
1599  
1600  	/* Fix up tso_factor for both original and new SKB.  */
1601  	tcp_set_skb_tso_segs(skb, mss_now);
1602  	tcp_set_skb_tso_segs(buff, mss_now);
1603  
1604  	/* Update delivered info for the new segment */
1605  	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1606  
1607  	/* If this packet has been sent out already, we must
1608  	 * adjust the various packet counters.
1609  	 */
1610  	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1611  		int diff = old_factor - tcp_skb_pcount(skb) -
1612  			tcp_skb_pcount(buff);
1613  
1614  		if (diff)
1615  			tcp_adjust_pcount(sk, skb, diff);
1616  	}
1617  
1618  	/* Link BUFF into the send queue. */
1619  	__skb_header_release(buff);
1620  	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1621  	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1622  		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1623  
1624  	return 0;
1625  }
1626  
1627  /* This is similar to __pskb_pull_tail(). The difference is that pulled
1628   * data is not copied, but immediately discarded.
1629   */
__pskb_trim_head(struct sk_buff * skb,int len)1630  static int __pskb_trim_head(struct sk_buff *skb, int len)
1631  {
1632  	struct skb_shared_info *shinfo;
1633  	int i, k, eat;
1634  
1635  	eat = min_t(int, len, skb_headlen(skb));
1636  	if (eat) {
1637  		__skb_pull(skb, eat);
1638  		len -= eat;
1639  		if (!len)
1640  			return 0;
1641  	}
1642  	eat = len;
1643  	k = 0;
1644  	shinfo = skb_shinfo(skb);
1645  	for (i = 0; i < shinfo->nr_frags; i++) {
1646  		int size = skb_frag_size(&shinfo->frags[i]);
1647  
1648  		if (size <= eat) {
1649  			skb_frag_unref(skb, i);
1650  			eat -= size;
1651  		} else {
1652  			shinfo->frags[k] = shinfo->frags[i];
1653  			if (eat) {
1654  				skb_frag_off_add(&shinfo->frags[k], eat);
1655  				skb_frag_size_sub(&shinfo->frags[k], eat);
1656  				eat = 0;
1657  			}
1658  			k++;
1659  		}
1660  	}
1661  	shinfo->nr_frags = k;
1662  
1663  	skb->data_len -= len;
1664  	skb->len = skb->data_len;
1665  	return len;
1666  }
1667  
1668  /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1669  int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1670  {
1671  	u32 delta_truesize;
1672  
1673  	if (skb_unclone(skb, GFP_ATOMIC))
1674  		return -ENOMEM;
1675  
1676  	delta_truesize = __pskb_trim_head(skb, len);
1677  
1678  	TCP_SKB_CB(skb)->seq += len;
1679  	skb->ip_summed = CHECKSUM_PARTIAL;
1680  
1681  	if (delta_truesize) {
1682  		skb->truesize	   -= delta_truesize;
1683  		sk_wmem_queued_add(sk, -delta_truesize);
1684  		sk_mem_uncharge(sk, delta_truesize);
1685  	}
1686  
1687  	/* Any change of skb->len requires recalculation of tso factor. */
1688  	if (tcp_skb_pcount(skb) > 1)
1689  		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1690  
1691  	return 0;
1692  }
1693  
1694  /* Calculate MSS not accounting any TCP options.  */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1695  static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1696  {
1697  	const struct tcp_sock *tp = tcp_sk(sk);
1698  	const struct inet_connection_sock *icsk = inet_csk(sk);
1699  	int mss_now;
1700  
1701  	/* Calculate base mss without TCP options:
1702  	   It is MMS_S - sizeof(tcphdr) of rfc1122
1703  	 */
1704  	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1705  
1706  	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1707  	if (icsk->icsk_af_ops->net_frag_header_len) {
1708  		const struct dst_entry *dst = __sk_dst_get(sk);
1709  
1710  		if (dst && dst_allfrag(dst))
1711  			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1712  	}
1713  
1714  	/* Clamp it (mss_clamp does not include tcp options) */
1715  	if (mss_now > tp->rx_opt.mss_clamp)
1716  		mss_now = tp->rx_opt.mss_clamp;
1717  
1718  	/* Now subtract optional transport overhead */
1719  	mss_now -= icsk->icsk_ext_hdr_len;
1720  
1721  	/* Then reserve room for full set of TCP options and 8 bytes of data */
1722  	mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss);
1723  	return mss_now;
1724  }
1725  
1726  /* Calculate MSS. Not accounting for SACKs here.  */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1727  int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1728  {
1729  	/* Subtract TCP options size, not including SACKs */
1730  	return __tcp_mtu_to_mss(sk, pmtu) -
1731  	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1732  }
1733  EXPORT_SYMBOL(tcp_mtu_to_mss);
1734  
1735  /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1736  int tcp_mss_to_mtu(struct sock *sk, int mss)
1737  {
1738  	const struct tcp_sock *tp = tcp_sk(sk);
1739  	const struct inet_connection_sock *icsk = inet_csk(sk);
1740  	int mtu;
1741  
1742  	mtu = mss +
1743  	      tp->tcp_header_len +
1744  	      icsk->icsk_ext_hdr_len +
1745  	      icsk->icsk_af_ops->net_header_len;
1746  
1747  	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1748  	if (icsk->icsk_af_ops->net_frag_header_len) {
1749  		const struct dst_entry *dst = __sk_dst_get(sk);
1750  
1751  		if (dst && dst_allfrag(dst))
1752  			mtu += icsk->icsk_af_ops->net_frag_header_len;
1753  	}
1754  	return mtu;
1755  }
1756  EXPORT_SYMBOL(tcp_mss_to_mtu);
1757  
1758  /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1759  void tcp_mtup_init(struct sock *sk)
1760  {
1761  	struct tcp_sock *tp = tcp_sk(sk);
1762  	struct inet_connection_sock *icsk = inet_csk(sk);
1763  	struct net *net = sock_net(sk);
1764  
1765  	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1766  	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1767  			       icsk->icsk_af_ops->net_header_len;
1768  	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1769  	icsk->icsk_mtup.probe_size = 0;
1770  	if (icsk->icsk_mtup.enabled)
1771  		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1772  }
1773  EXPORT_SYMBOL(tcp_mtup_init);
1774  
1775  /* This function synchronize snd mss to current pmtu/exthdr set.
1776  
1777     tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1778     for TCP options, but includes only bare TCP header.
1779  
1780     tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1781     It is minimum of user_mss and mss received with SYN.
1782     It also does not include TCP options.
1783  
1784     inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1785  
1786     tp->mss_cache is current effective sending mss, including
1787     all tcp options except for SACKs. It is evaluated,
1788     taking into account current pmtu, but never exceeds
1789     tp->rx_opt.mss_clamp.
1790  
1791     NOTE1. rfc1122 clearly states that advertised MSS
1792     DOES NOT include either tcp or ip options.
1793  
1794     NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1795     are READ ONLY outside this function.		--ANK (980731)
1796   */
tcp_sync_mss(struct sock * sk,u32 pmtu)1797  unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1798  {
1799  	struct tcp_sock *tp = tcp_sk(sk);
1800  	struct inet_connection_sock *icsk = inet_csk(sk);
1801  	int mss_now;
1802  
1803  	if (icsk->icsk_mtup.search_high > pmtu)
1804  		icsk->icsk_mtup.search_high = pmtu;
1805  
1806  	mss_now = tcp_mtu_to_mss(sk, pmtu);
1807  	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1808  
1809  	/* And store cached results */
1810  	icsk->icsk_pmtu_cookie = pmtu;
1811  	if (icsk->icsk_mtup.enabled)
1812  		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1813  	tp->mss_cache = mss_now;
1814  
1815  	return mss_now;
1816  }
1817  EXPORT_SYMBOL(tcp_sync_mss);
1818  
1819  /* Compute the current effective MSS, taking SACKs and IP options,
1820   * and even PMTU discovery events into account.
1821   */
tcp_current_mss(struct sock * sk)1822  unsigned int tcp_current_mss(struct sock *sk)
1823  {
1824  	const struct tcp_sock *tp = tcp_sk(sk);
1825  	const struct dst_entry *dst = __sk_dst_get(sk);
1826  	u32 mss_now;
1827  	unsigned int header_len;
1828  	struct tcp_out_options opts;
1829  	struct tcp_md5sig_key *md5;
1830  
1831  	mss_now = tp->mss_cache;
1832  
1833  	if (dst) {
1834  		u32 mtu = dst_mtu(dst);
1835  		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1836  			mss_now = tcp_sync_mss(sk, mtu);
1837  	}
1838  
1839  	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1840  		     sizeof(struct tcphdr);
1841  	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1842  	 * some common options. If this is an odd packet (because we have SACK
1843  	 * blocks etc) then our calculated header_len will be different, and
1844  	 * we have to adjust mss_now correspondingly */
1845  	if (header_len != tp->tcp_header_len) {
1846  		int delta = (int) header_len - tp->tcp_header_len;
1847  		mss_now -= delta;
1848  	}
1849  
1850  	return mss_now;
1851  }
1852  
1853  /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1854   * As additional protections, we do not touch cwnd in retransmission phases,
1855   * and if application hit its sndbuf limit recently.
1856   */
tcp_cwnd_application_limited(struct sock * sk)1857  static void tcp_cwnd_application_limited(struct sock *sk)
1858  {
1859  	struct tcp_sock *tp = tcp_sk(sk);
1860  
1861  	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1862  	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1863  		/* Limited by application or receiver window. */
1864  		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1865  		u32 win_used = max(tp->snd_cwnd_used, init_win);
1866  		if (win_used < tp->snd_cwnd) {
1867  			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1868  			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1869  		}
1870  		tp->snd_cwnd_used = 0;
1871  	}
1872  	tp->snd_cwnd_stamp = tcp_jiffies32;
1873  }
1874  
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1875  static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1876  {
1877  	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1878  	struct tcp_sock *tp = tcp_sk(sk);
1879  
1880  	/* Track the maximum number of outstanding packets in each
1881  	 * window, and remember whether we were cwnd-limited then.
1882  	 */
1883  	if (!before(tp->snd_una, tp->max_packets_seq) ||
1884  	    tp->packets_out > tp->max_packets_out ||
1885  	    is_cwnd_limited) {
1886  		tp->max_packets_out = tp->packets_out;
1887  		tp->max_packets_seq = tp->snd_nxt;
1888  		tp->is_cwnd_limited = is_cwnd_limited;
1889  	}
1890  
1891  	if (tcp_is_cwnd_limited(sk)) {
1892  		/* Network is feed fully. */
1893  		tp->snd_cwnd_used = 0;
1894  		tp->snd_cwnd_stamp = tcp_jiffies32;
1895  	} else {
1896  		/* Network starves. */
1897  		if (tp->packets_out > tp->snd_cwnd_used)
1898  			tp->snd_cwnd_used = tp->packets_out;
1899  
1900  		if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1901  		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1902  		    !ca_ops->cong_control)
1903  			tcp_cwnd_application_limited(sk);
1904  
1905  		/* The following conditions together indicate the starvation
1906  		 * is caused by insufficient sender buffer:
1907  		 * 1) just sent some data (see tcp_write_xmit)
1908  		 * 2) not cwnd limited (this else condition)
1909  		 * 3) no more data to send (tcp_write_queue_empty())
1910  		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1911  		 */
1912  		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1913  		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1914  		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1915  			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1916  	}
1917  }
1918  
1919  /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1920  static bool tcp_minshall_check(const struct tcp_sock *tp)
1921  {
1922  	return after(tp->snd_sml, tp->snd_una) &&
1923  		!after(tp->snd_sml, tp->snd_nxt);
1924  }
1925  
1926  /* Update snd_sml if this skb is under mss
1927   * Note that a TSO packet might end with a sub-mss segment
1928   * The test is really :
1929   * if ((skb->len % mss) != 0)
1930   *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1931   * But we can avoid doing the divide again given we already have
1932   *  skb_pcount = skb->len / mss_now
1933   */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1934  static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1935  				const struct sk_buff *skb)
1936  {
1937  	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1938  		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1939  }
1940  
1941  /* Return false, if packet can be sent now without violation Nagle's rules:
1942   * 1. It is full sized. (provided by caller in %partial bool)
1943   * 2. Or it contains FIN. (already checked by caller)
1944   * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1945   * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1946   *    With Minshall's modification: all sent small packets are ACKed.
1947   */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)1948  static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1949  			    int nonagle)
1950  {
1951  	return partial &&
1952  		((nonagle & TCP_NAGLE_CORK) ||
1953  		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1954  }
1955  
1956  /* Return how many segs we'd like on a TSO packet,
1957   * to send one TSO packet per ms
1958   */
tcp_tso_autosize(const struct sock * sk,unsigned int mss_now,int min_tso_segs)1959  static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1960  			    int min_tso_segs)
1961  {
1962  	u32 bytes, segs;
1963  
1964  	bytes = min_t(unsigned long,
1965  		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
1966  		      sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1967  
1968  	/* Goal is to send at least one packet per ms,
1969  	 * not one big TSO packet every 100 ms.
1970  	 * This preserves ACK clocking and is consistent
1971  	 * with tcp_tso_should_defer() heuristic.
1972  	 */
1973  	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1974  
1975  	return segs;
1976  }
1977  
1978  /* Return the number of segments we want in the skb we are transmitting.
1979   * See if congestion control module wants to decide; otherwise, autosize.
1980   */
tcp_tso_segs(struct sock * sk,unsigned int mss_now)1981  static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1982  {
1983  	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1984  	u32 min_tso, tso_segs;
1985  
1986  	min_tso = ca_ops->min_tso_segs ?
1987  			ca_ops->min_tso_segs(sk) :
1988  			sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1989  
1990  	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1991  	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1992  }
1993  
1994  /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)1995  static unsigned int tcp_mss_split_point(const struct sock *sk,
1996  					const struct sk_buff *skb,
1997  					unsigned int mss_now,
1998  					unsigned int max_segs,
1999  					int nonagle)
2000  {
2001  	const struct tcp_sock *tp = tcp_sk(sk);
2002  	u32 partial, needed, window, max_len;
2003  
2004  	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2005  	max_len = mss_now * max_segs;
2006  
2007  	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2008  		return max_len;
2009  
2010  	needed = min(skb->len, window);
2011  
2012  	if (max_len <= needed)
2013  		return max_len;
2014  
2015  	partial = needed % mss_now;
2016  	/* If last segment is not a full MSS, check if Nagle rules allow us
2017  	 * to include this last segment in this skb.
2018  	 * Otherwise, we'll split the skb at last MSS boundary
2019  	 */
2020  	if (tcp_nagle_check(partial != 0, tp, nonagle))
2021  		return needed - partial;
2022  
2023  	return needed;
2024  }
2025  
2026  /* Can at least one segment of SKB be sent right now, according to the
2027   * congestion window rules?  If so, return how many segments are allowed.
2028   */
tcp_cwnd_test(const struct tcp_sock * tp,const struct sk_buff * skb)2029  static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2030  					 const struct sk_buff *skb)
2031  {
2032  	u32 in_flight, cwnd, halfcwnd;
2033  
2034  	/* Don't be strict about the congestion window for the final FIN.  */
2035  	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2036  	    tcp_skb_pcount(skb) == 1)
2037  		return 1;
2038  
2039  	in_flight = tcp_packets_in_flight(tp);
2040  	cwnd = tp->snd_cwnd;
2041  	if (in_flight >= cwnd)
2042  		return 0;
2043  
2044  	/* For better scheduling, ensure we have at least
2045  	 * 2 GSO packets in flight.
2046  	 */
2047  	halfcwnd = max(cwnd >> 1, 1U);
2048  	return min(halfcwnd, cwnd - in_flight);
2049  }
2050  
2051  /* Initialize TSO state of a skb.
2052   * This must be invoked the first time we consider transmitting
2053   * SKB onto the wire.
2054   */
tcp_init_tso_segs(struct sk_buff * skb,unsigned int mss_now)2055  static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2056  {
2057  	int tso_segs = tcp_skb_pcount(skb);
2058  
2059  	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2060  		tcp_set_skb_tso_segs(skb, mss_now);
2061  		tso_segs = tcp_skb_pcount(skb);
2062  	}
2063  	return tso_segs;
2064  }
2065  
2066  
2067  /* Return true if the Nagle test allows this packet to be
2068   * sent now.
2069   */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)2070  static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2071  				  unsigned int cur_mss, int nonagle)
2072  {
2073  	/* Nagle rule does not apply to frames, which sit in the middle of the
2074  	 * write_queue (they have no chances to get new data).
2075  	 *
2076  	 * This is implemented in the callers, where they modify the 'nonagle'
2077  	 * argument based upon the location of SKB in the send queue.
2078  	 */
2079  	if (nonagle & TCP_NAGLE_PUSH)
2080  		return true;
2081  
2082  	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2083  	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2084  		return true;
2085  
2086  	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2087  		return true;
2088  
2089  	return false;
2090  }
2091  
2092  /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)2093  static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2094  			     const struct sk_buff *skb,
2095  			     unsigned int cur_mss)
2096  {
2097  	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2098  
2099  	if (skb->len > cur_mss)
2100  		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2101  
2102  	return !after(end_seq, tcp_wnd_end(tp));
2103  }
2104  
2105  /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2106   * which is put after SKB on the list.  It is very much like
2107   * tcp_fragment() except that it may make several kinds of assumptions
2108   * in order to speed up the splitting operation.  In particular, we
2109   * know that all the data is in scatter-gather pages, and that the
2110   * packet has never been sent out before (and thus is not cloned).
2111   */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)2112  static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2113  			unsigned int mss_now, gfp_t gfp)
2114  {
2115  	int nlen = skb->len - len;
2116  	struct sk_buff *buff;
2117  	u8 flags;
2118  
2119  	/* All of a TSO frame must be composed of paged data.  */
2120  	if (skb->len != skb->data_len)
2121  		return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2122  				    skb, len, mss_now, gfp);
2123  
2124  	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
2125  	if (unlikely(!buff))
2126  		return -ENOMEM;
2127  	skb_copy_decrypted(buff, skb);
2128  
2129  	sk_wmem_queued_add(sk, buff->truesize);
2130  	sk_mem_charge(sk, buff->truesize);
2131  	buff->truesize += nlen;
2132  	skb->truesize -= nlen;
2133  
2134  	/* Correct the sequence numbers. */
2135  	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2136  	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2137  	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2138  
2139  	/* PSH and FIN should only be set in the second packet. */
2140  	flags = TCP_SKB_CB(skb)->tcp_flags;
2141  	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2142  	TCP_SKB_CB(buff)->tcp_flags = flags;
2143  
2144  	/* This packet was never sent out yet, so no SACK bits. */
2145  	TCP_SKB_CB(buff)->sacked = 0;
2146  
2147  	tcp_skb_fragment_eor(skb, buff);
2148  
2149  	buff->ip_summed = CHECKSUM_PARTIAL;
2150  	skb_split(skb, buff, len);
2151  	tcp_fragment_tstamp(skb, buff);
2152  
2153  	/* Fix up tso_factor for both original and new SKB.  */
2154  	tcp_set_skb_tso_segs(skb, mss_now);
2155  	tcp_set_skb_tso_segs(buff, mss_now);
2156  
2157  	/* Link BUFF into the send queue. */
2158  	__skb_header_release(buff);
2159  	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2160  
2161  	return 0;
2162  }
2163  
2164  /* Try to defer sending, if possible, in order to minimize the amount
2165   * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2166   *
2167   * This algorithm is from John Heffner.
2168   */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited,bool * is_rwnd_limited,u32 max_segs)2169  static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2170  				 bool *is_cwnd_limited,
2171  				 bool *is_rwnd_limited,
2172  				 u32 max_segs)
2173  {
2174  	const struct inet_connection_sock *icsk = inet_csk(sk);
2175  	u32 send_win, cong_win, limit, in_flight;
2176  	struct tcp_sock *tp = tcp_sk(sk);
2177  	struct sk_buff *head;
2178  	int win_divisor;
2179  	s64 delta;
2180  
2181  	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2182  		goto send_now;
2183  
2184  	/* Avoid bursty behavior by allowing defer
2185  	 * only if the last write was recent (1 ms).
2186  	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2187  	 * packets waiting in a qdisc or device for EDT delivery.
2188  	 */
2189  	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2190  	if (delta > 0)
2191  		goto send_now;
2192  
2193  	in_flight = tcp_packets_in_flight(tp);
2194  
2195  	BUG_ON(tcp_skb_pcount(skb) <= 1);
2196  	BUG_ON(tp->snd_cwnd <= in_flight);
2197  
2198  	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2199  
2200  	/* From in_flight test above, we know that cwnd > in_flight.  */
2201  	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
2202  
2203  	limit = min(send_win, cong_win);
2204  
2205  	/* If a full-sized TSO skb can be sent, do it. */
2206  	if (limit >= max_segs * tp->mss_cache)
2207  		goto send_now;
2208  
2209  	/* Middle in queue won't get any more data, full sendable already? */
2210  	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2211  		goto send_now;
2212  
2213  	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2214  	if (win_divisor) {
2215  		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
2216  
2217  		/* If at least some fraction of a window is available,
2218  		 * just use it.
2219  		 */
2220  		chunk /= win_divisor;
2221  		if (limit >= chunk)
2222  			goto send_now;
2223  	} else {
2224  		/* Different approach, try not to defer past a single
2225  		 * ACK.  Receiver should ACK every other full sized
2226  		 * frame, so if we have space for more than 3 frames
2227  		 * then send now.
2228  		 */
2229  		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2230  			goto send_now;
2231  	}
2232  
2233  	/* TODO : use tsorted_sent_queue ? */
2234  	head = tcp_rtx_queue_head(sk);
2235  	if (!head)
2236  		goto send_now;
2237  	delta = tp->tcp_clock_cache - head->tstamp;
2238  	/* If next ACK is likely to come too late (half srtt), do not defer */
2239  	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2240  		goto send_now;
2241  
2242  	/* Ok, it looks like it is advisable to defer.
2243  	 * Three cases are tracked :
2244  	 * 1) We are cwnd-limited
2245  	 * 2) We are rwnd-limited
2246  	 * 3) We are application limited.
2247  	 */
2248  	if (cong_win < send_win) {
2249  		if (cong_win <= skb->len) {
2250  			*is_cwnd_limited = true;
2251  			return true;
2252  		}
2253  	} else {
2254  		if (send_win <= skb->len) {
2255  			*is_rwnd_limited = true;
2256  			return true;
2257  		}
2258  	}
2259  
2260  	/* If this packet won't get more data, do not wait. */
2261  	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2262  	    TCP_SKB_CB(skb)->eor)
2263  		goto send_now;
2264  
2265  	return true;
2266  
2267  send_now:
2268  	return false;
2269  }
2270  
tcp_mtu_check_reprobe(struct sock * sk)2271  static inline void tcp_mtu_check_reprobe(struct sock *sk)
2272  {
2273  	struct inet_connection_sock *icsk = inet_csk(sk);
2274  	struct tcp_sock *tp = tcp_sk(sk);
2275  	struct net *net = sock_net(sk);
2276  	u32 interval;
2277  	s32 delta;
2278  
2279  	interval = net->ipv4.sysctl_tcp_probe_interval;
2280  	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2281  	if (unlikely(delta >= interval * HZ)) {
2282  		int mss = tcp_current_mss(sk);
2283  
2284  		/* Update current search range */
2285  		icsk->icsk_mtup.probe_size = 0;
2286  		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2287  			sizeof(struct tcphdr) +
2288  			icsk->icsk_af_ops->net_header_len;
2289  		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2290  
2291  		/* Update probe time stamp */
2292  		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2293  	}
2294  }
2295  
tcp_can_coalesce_send_queue_head(struct sock * sk,int len)2296  static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2297  {
2298  	struct sk_buff *skb, *next;
2299  
2300  	skb = tcp_send_head(sk);
2301  	tcp_for_write_queue_from_safe(skb, next, sk) {
2302  		if (len <= skb->len)
2303  			break;
2304  
2305  		if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
2306  			return false;
2307  
2308  		len -= skb->len;
2309  	}
2310  
2311  	return true;
2312  }
2313  
2314  /* Create a new MTU probe if we are ready.
2315   * MTU probe is regularly attempting to increase the path MTU by
2316   * deliberately sending larger packets.  This discovers routing
2317   * changes resulting in larger path MTUs.
2318   *
2319   * Returns 0 if we should wait to probe (no cwnd available),
2320   *         1 if a probe was sent,
2321   *         -1 otherwise
2322   */
tcp_mtu_probe(struct sock * sk)2323  static int tcp_mtu_probe(struct sock *sk)
2324  {
2325  	struct inet_connection_sock *icsk = inet_csk(sk);
2326  	struct tcp_sock *tp = tcp_sk(sk);
2327  	struct sk_buff *skb, *nskb, *next;
2328  	struct net *net = sock_net(sk);
2329  	int probe_size;
2330  	int size_needed;
2331  	int copy, len;
2332  	int mss_now;
2333  	int interval;
2334  
2335  	/* Not currently probing/verifying,
2336  	 * not in recovery,
2337  	 * have enough cwnd, and
2338  	 * not SACKing (the variable headers throw things off)
2339  	 */
2340  	if (likely(!icsk->icsk_mtup.enabled ||
2341  		   icsk->icsk_mtup.probe_size ||
2342  		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2343  		   tp->snd_cwnd < 11 ||
2344  		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2345  		return -1;
2346  
2347  	/* Use binary search for probe_size between tcp_mss_base,
2348  	 * and current mss_clamp. if (search_high - search_low)
2349  	 * smaller than a threshold, backoff from probing.
2350  	 */
2351  	mss_now = tcp_current_mss(sk);
2352  	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2353  				    icsk->icsk_mtup.search_low) >> 1);
2354  	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2355  	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2356  	/* When misfortune happens, we are reprobing actively,
2357  	 * and then reprobe timer has expired. We stick with current
2358  	 * probing process by not resetting search range to its orignal.
2359  	 */
2360  	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2361  		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2362  		/* Check whether enough time has elaplased for
2363  		 * another round of probing.
2364  		 */
2365  		tcp_mtu_check_reprobe(sk);
2366  		return -1;
2367  	}
2368  
2369  	/* Have enough data in the send queue to probe? */
2370  	if (tp->write_seq - tp->snd_nxt < size_needed)
2371  		return -1;
2372  
2373  	if (tp->snd_wnd < size_needed)
2374  		return -1;
2375  	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2376  		return 0;
2377  
2378  	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2379  	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2380  		if (!tcp_packets_in_flight(tp))
2381  			return -1;
2382  		else
2383  			return 0;
2384  	}
2385  
2386  	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2387  		return -1;
2388  
2389  	/* We're allowed to probe.  Build it now. */
2390  	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2391  	if (!nskb)
2392  		return -1;
2393  	sk_wmem_queued_add(sk, nskb->truesize);
2394  	sk_mem_charge(sk, nskb->truesize);
2395  
2396  	skb = tcp_send_head(sk);
2397  	skb_copy_decrypted(nskb, skb);
2398  
2399  	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2400  	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2401  	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2402  	TCP_SKB_CB(nskb)->sacked = 0;
2403  	nskb->csum = 0;
2404  	nskb->ip_summed = CHECKSUM_PARTIAL;
2405  
2406  	tcp_insert_write_queue_before(nskb, skb, sk);
2407  	tcp_highest_sack_replace(sk, skb, nskb);
2408  
2409  	len = 0;
2410  	tcp_for_write_queue_from_safe(skb, next, sk) {
2411  		copy = min_t(int, skb->len, probe_size - len);
2412  		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2413  
2414  		if (skb->len <= copy) {
2415  			/* We've eaten all the data from this skb.
2416  			 * Throw it away. */
2417  			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2418  			/* If this is the last SKB we copy and eor is set
2419  			 * we need to propagate it to the new skb.
2420  			 */
2421  			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2422  			tcp_skb_collapse_tstamp(nskb, skb);
2423  			tcp_unlink_write_queue(skb, sk);
2424  			sk_wmem_free_skb(sk, skb);
2425  		} else {
2426  			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2427  						   ~(TCPHDR_FIN|TCPHDR_PSH);
2428  			if (!skb_shinfo(skb)->nr_frags) {
2429  				skb_pull(skb, copy);
2430  			} else {
2431  				__pskb_trim_head(skb, copy);
2432  				tcp_set_skb_tso_segs(skb, mss_now);
2433  			}
2434  			TCP_SKB_CB(skb)->seq += copy;
2435  		}
2436  
2437  		len += copy;
2438  
2439  		if (len >= probe_size)
2440  			break;
2441  	}
2442  	tcp_init_tso_segs(nskb, nskb->len);
2443  
2444  	/* We're ready to send.  If this fails, the probe will
2445  	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2446  	 */
2447  	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2448  		/* Decrement cwnd here because we are sending
2449  		 * effectively two packets. */
2450  		tp->snd_cwnd--;
2451  		tcp_event_new_data_sent(sk, nskb);
2452  
2453  		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2454  		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2455  		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2456  
2457  		return 1;
2458  	}
2459  
2460  	return -1;
2461  }
2462  
tcp_pacing_check(struct sock * sk)2463  static bool tcp_pacing_check(struct sock *sk)
2464  {
2465  	struct tcp_sock *tp = tcp_sk(sk);
2466  
2467  	if (!tcp_needs_internal_pacing(sk))
2468  		return false;
2469  
2470  	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2471  		return false;
2472  
2473  	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2474  		hrtimer_start(&tp->pacing_timer,
2475  			      ns_to_ktime(tp->tcp_wstamp_ns),
2476  			      HRTIMER_MODE_ABS_PINNED_SOFT);
2477  		sock_hold(sk);
2478  	}
2479  	return true;
2480  }
2481  
2482  /* TCP Small Queues :
2483   * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2484   * (These limits are doubled for retransmits)
2485   * This allows for :
2486   *  - better RTT estimation and ACK scheduling
2487   *  - faster recovery
2488   *  - high rates
2489   * Alas, some drivers / subsystems require a fair amount
2490   * of queued bytes to ensure line rate.
2491   * One example is wifi aggregation (802.11 AMPDU)
2492   */
tcp_small_queue_check(struct sock * sk,const struct sk_buff * skb,unsigned int factor)2493  static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2494  				  unsigned int factor)
2495  {
2496  	unsigned long limit;
2497  
2498  	limit = max_t(unsigned long,
2499  		      2 * skb->truesize,
2500  		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2501  	if (sk->sk_pacing_status == SK_PACING_NONE)
2502  		limit = min_t(unsigned long, limit,
2503  			      sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2504  	limit <<= factor;
2505  
2506  	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2507  	    tcp_sk(sk)->tcp_tx_delay) {
2508  		u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2509  
2510  		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2511  		 * approximate our needs assuming an ~100% skb->truesize overhead.
2512  		 * USEC_PER_SEC is approximated by 2^20.
2513  		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2514  		 */
2515  		extra_bytes >>= (20 - 1);
2516  		limit += extra_bytes;
2517  	}
2518  	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2519  		/* Always send skb if rtx queue is empty.
2520  		 * No need to wait for TX completion to call us back,
2521  		 * after softirq/tasklet schedule.
2522  		 * This helps when TX completions are delayed too much.
2523  		 */
2524  		if (tcp_rtx_queue_empty(sk))
2525  			return false;
2526  
2527  		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2528  		/* It is possible TX completion already happened
2529  		 * before we set TSQ_THROTTLED, so we must
2530  		 * test again the condition.
2531  		 */
2532  		smp_mb__after_atomic();
2533  		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2534  			return true;
2535  	}
2536  	return false;
2537  }
2538  
tcp_chrono_set(struct tcp_sock * tp,const enum tcp_chrono new)2539  static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2540  {
2541  	const u32 now = tcp_jiffies32;
2542  	enum tcp_chrono old = tp->chrono_type;
2543  
2544  	if (old > TCP_CHRONO_UNSPEC)
2545  		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2546  	tp->chrono_start = now;
2547  	tp->chrono_type = new;
2548  }
2549  
tcp_chrono_start(struct sock * sk,const enum tcp_chrono type)2550  void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2551  {
2552  	struct tcp_sock *tp = tcp_sk(sk);
2553  
2554  	/* If there are multiple conditions worthy of tracking in a
2555  	 * chronograph then the highest priority enum takes precedence
2556  	 * over the other conditions. So that if something "more interesting"
2557  	 * starts happening, stop the previous chrono and start a new one.
2558  	 */
2559  	if (type > tp->chrono_type)
2560  		tcp_chrono_set(tp, type);
2561  }
2562  
tcp_chrono_stop(struct sock * sk,const enum tcp_chrono type)2563  void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2564  {
2565  	struct tcp_sock *tp = tcp_sk(sk);
2566  
2567  
2568  	/* There are multiple conditions worthy of tracking in a
2569  	 * chronograph, so that the highest priority enum takes
2570  	 * precedence over the other conditions (see tcp_chrono_start).
2571  	 * If a condition stops, we only stop chrono tracking if
2572  	 * it's the "most interesting" or current chrono we are
2573  	 * tracking and starts busy chrono if we have pending data.
2574  	 */
2575  	if (tcp_rtx_and_write_queues_empty(sk))
2576  		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2577  	else if (type == tp->chrono_type)
2578  		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2579  }
2580  
2581  /* This routine writes packets to the network.  It advances the
2582   * send_head.  This happens as incoming acks open up the remote
2583   * window for us.
2584   *
2585   * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2586   * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2587   * account rare use of URG, this is not a big flaw.
2588   *
2589   * Send at most one packet when push_one > 0. Temporarily ignore
2590   * cwnd limit to force at most one packet out when push_one == 2.
2591  
2592   * Returns true, if no segments are in flight and we have queued segments,
2593   * but cannot send anything now because of SWS or another problem.
2594   */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)2595  static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2596  			   int push_one, gfp_t gfp)
2597  {
2598  	struct tcp_sock *tp = tcp_sk(sk);
2599  	struct sk_buff *skb;
2600  	unsigned int tso_segs, sent_pkts;
2601  	int cwnd_quota;
2602  	int result;
2603  	bool is_cwnd_limited = false, is_rwnd_limited = false;
2604  	u32 max_segs;
2605  
2606  	sent_pkts = 0;
2607  
2608  	tcp_mstamp_refresh(tp);
2609  	if (!push_one) {
2610  		/* Do MTU probing. */
2611  		result = tcp_mtu_probe(sk);
2612  		if (!result) {
2613  			return false;
2614  		} else if (result > 0) {
2615  			sent_pkts = 1;
2616  		}
2617  	}
2618  
2619  	max_segs = tcp_tso_segs(sk, mss_now);
2620  	while ((skb = tcp_send_head(sk))) {
2621  		unsigned int limit;
2622  
2623  		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2624  			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2625  			skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2626  			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2627  			tcp_init_tso_segs(skb, mss_now);
2628  			goto repair; /* Skip network transmission */
2629  		}
2630  
2631  		if (tcp_pacing_check(sk))
2632  			break;
2633  
2634  		tso_segs = tcp_init_tso_segs(skb, mss_now);
2635  		BUG_ON(!tso_segs);
2636  
2637  		cwnd_quota = tcp_cwnd_test(tp, skb);
2638  		if (!cwnd_quota) {
2639  			if (push_one == 2)
2640  				/* Force out a loss probe pkt. */
2641  				cwnd_quota = 1;
2642  			else
2643  				break;
2644  		}
2645  
2646  		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2647  			is_rwnd_limited = true;
2648  			break;
2649  		}
2650  
2651  		if (tso_segs == 1) {
2652  			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2653  						     (tcp_skb_is_last(sk, skb) ?
2654  						      nonagle : TCP_NAGLE_PUSH))))
2655  				break;
2656  		} else {
2657  			if (!push_one &&
2658  			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2659  						 &is_rwnd_limited, max_segs))
2660  				break;
2661  		}
2662  
2663  		limit = mss_now;
2664  		if (tso_segs > 1 && !tcp_urg_mode(tp))
2665  			limit = tcp_mss_split_point(sk, skb, mss_now,
2666  						    min_t(unsigned int,
2667  							  cwnd_quota,
2668  							  max_segs),
2669  						    nonagle);
2670  
2671  		if (skb->len > limit &&
2672  		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2673  			break;
2674  
2675  		if (tcp_small_queue_check(sk, skb, 0))
2676  			break;
2677  
2678  		/* Argh, we hit an empty skb(), presumably a thread
2679  		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2680  		 * We do not want to send a pure-ack packet and have
2681  		 * a strange looking rtx queue with empty packet(s).
2682  		 */
2683  		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2684  			break;
2685  
2686  		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2687  			break;
2688  
2689  repair:
2690  		/* Advance the send_head.  This one is sent out.
2691  		 * This call will increment packets_out.
2692  		 */
2693  		tcp_event_new_data_sent(sk, skb);
2694  
2695  		tcp_minshall_update(tp, mss_now, skb);
2696  		sent_pkts += tcp_skb_pcount(skb);
2697  
2698  		if (push_one)
2699  			break;
2700  	}
2701  
2702  	if (is_rwnd_limited)
2703  		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2704  	else
2705  		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2706  
2707  	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2708  	if (likely(sent_pkts || is_cwnd_limited))
2709  		tcp_cwnd_validate(sk, is_cwnd_limited);
2710  
2711  	if (likely(sent_pkts)) {
2712  		if (tcp_in_cwnd_reduction(sk))
2713  			tp->prr_out += sent_pkts;
2714  
2715  		/* Send one loss probe per tail loss episode. */
2716  		if (push_one != 2)
2717  			tcp_schedule_loss_probe(sk, false);
2718  		return false;
2719  	}
2720  	return !tp->packets_out && !tcp_write_queue_empty(sk);
2721  }
2722  
tcp_schedule_loss_probe(struct sock * sk,bool advancing_rto)2723  bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2724  {
2725  	struct inet_connection_sock *icsk = inet_csk(sk);
2726  	struct tcp_sock *tp = tcp_sk(sk);
2727  	u32 timeout, rto_delta_us;
2728  	int early_retrans;
2729  
2730  	/* Don't do any loss probe on a Fast Open connection before 3WHS
2731  	 * finishes.
2732  	 */
2733  	if (rcu_access_pointer(tp->fastopen_rsk))
2734  		return false;
2735  
2736  	early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2737  	/* Schedule a loss probe in 2*RTT for SACK capable connections
2738  	 * not in loss recovery, that are either limited by cwnd or application.
2739  	 */
2740  	if ((early_retrans != 3 && early_retrans != 4) ||
2741  	    !tp->packets_out || !tcp_is_sack(tp) ||
2742  	    (icsk->icsk_ca_state != TCP_CA_Open &&
2743  	     icsk->icsk_ca_state != TCP_CA_CWR))
2744  		return false;
2745  
2746  	/* Probe timeout is 2*rtt. Add minimum RTO to account
2747  	 * for delayed ack when there's one outstanding packet. If no RTT
2748  	 * sample is available then probe after TCP_TIMEOUT_INIT.
2749  	 */
2750  	if (tp->srtt_us) {
2751  		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2752  		if (tp->packets_out == 1)
2753  			timeout += TCP_RTO_MIN;
2754  		else
2755  			timeout += TCP_TIMEOUT_MIN;
2756  	} else {
2757  		timeout = TCP_TIMEOUT_INIT;
2758  	}
2759  
2760  	/* If the RTO formula yields an earlier time, then use that time. */
2761  	rto_delta_us = advancing_rto ?
2762  			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2763  			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2764  	if (rto_delta_us > 0)
2765  		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2766  
2767  	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2768  	return true;
2769  }
2770  
2771  /* Thanks to skb fast clones, we can detect if a prior transmit of
2772   * a packet is still in a qdisc or driver queue.
2773   * In this case, there is very little point doing a retransmit !
2774   */
skb_still_in_host_queue(const struct sock * sk,const struct sk_buff * skb)2775  static bool skb_still_in_host_queue(const struct sock *sk,
2776  				    const struct sk_buff *skb)
2777  {
2778  	if (unlikely(skb_fclone_busy(sk, skb))) {
2779  		NET_INC_STATS(sock_net(sk),
2780  			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2781  		return true;
2782  	}
2783  	return false;
2784  }
2785  
2786  /* When probe timeout (PTO) fires, try send a new segment if possible, else
2787   * retransmit the last segment.
2788   */
tcp_send_loss_probe(struct sock * sk)2789  void tcp_send_loss_probe(struct sock *sk)
2790  {
2791  	struct tcp_sock *tp = tcp_sk(sk);
2792  	struct sk_buff *skb;
2793  	int pcount;
2794  	int mss = tcp_current_mss(sk);
2795  
2796  	/* At most one outstanding TLP */
2797  	if (tp->tlp_high_seq)
2798  		goto rearm_timer;
2799  
2800  	tp->tlp_retrans = 0;
2801  	skb = tcp_send_head(sk);
2802  	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2803  		pcount = tp->packets_out;
2804  		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2805  		if (tp->packets_out > pcount)
2806  			goto probe_sent;
2807  		goto rearm_timer;
2808  	}
2809  	skb = skb_rb_last(&sk->tcp_rtx_queue);
2810  	if (unlikely(!skb)) {
2811  		WARN_ONCE(tp->packets_out,
2812  			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2813  			  tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2814  		inet_csk(sk)->icsk_pending = 0;
2815  		return;
2816  	}
2817  
2818  	if (skb_still_in_host_queue(sk, skb))
2819  		goto rearm_timer;
2820  
2821  	pcount = tcp_skb_pcount(skb);
2822  	if (WARN_ON(!pcount))
2823  		goto rearm_timer;
2824  
2825  	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2826  		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2827  					  (pcount - 1) * mss, mss,
2828  					  GFP_ATOMIC)))
2829  			goto rearm_timer;
2830  		skb = skb_rb_next(skb);
2831  	}
2832  
2833  	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2834  		goto rearm_timer;
2835  
2836  	if (__tcp_retransmit_skb(sk, skb, 1))
2837  		goto rearm_timer;
2838  
2839  	tp->tlp_retrans = 1;
2840  
2841  probe_sent:
2842  	/* Record snd_nxt for loss detection. */
2843  	tp->tlp_high_seq = tp->snd_nxt;
2844  
2845  	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2846  	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2847  	inet_csk(sk)->icsk_pending = 0;
2848  rearm_timer:
2849  	tcp_rearm_rto(sk);
2850  }
2851  
2852  /* Push out any pending frames which were held back due to
2853   * TCP_CORK or attempt at coalescing tiny packets.
2854   * The socket must be locked by the caller.
2855   */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)2856  void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2857  			       int nonagle)
2858  {
2859  	/* If we are closed, the bytes will have to remain here.
2860  	 * In time closedown will finish, we empty the write queue and
2861  	 * all will be happy.
2862  	 */
2863  	if (unlikely(sk->sk_state == TCP_CLOSE))
2864  		return;
2865  
2866  	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2867  			   sk_gfp_mask(sk, GFP_ATOMIC)))
2868  		tcp_check_probe_timer(sk);
2869  }
2870  
2871  /* Send _single_ skb sitting at the send head. This function requires
2872   * true push pending frames to setup probe timer etc.
2873   */
tcp_push_one(struct sock * sk,unsigned int mss_now)2874  void tcp_push_one(struct sock *sk, unsigned int mss_now)
2875  {
2876  	struct sk_buff *skb = tcp_send_head(sk);
2877  
2878  	BUG_ON(!skb || skb->len < mss_now);
2879  
2880  	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2881  }
2882  
2883  /* This function returns the amount that we can raise the
2884   * usable window based on the following constraints
2885   *
2886   * 1. The window can never be shrunk once it is offered (RFC 793)
2887   * 2. We limit memory per socket
2888   *
2889   * RFC 1122:
2890   * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2891   *  RECV.NEXT + RCV.WIN fixed until:
2892   *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2893   *
2894   * i.e. don't raise the right edge of the window until you can raise
2895   * it at least MSS bytes.
2896   *
2897   * Unfortunately, the recommended algorithm breaks header prediction,
2898   * since header prediction assumes th->window stays fixed.
2899   *
2900   * Strictly speaking, keeping th->window fixed violates the receiver
2901   * side SWS prevention criteria. The problem is that under this rule
2902   * a stream of single byte packets will cause the right side of the
2903   * window to always advance by a single byte.
2904   *
2905   * Of course, if the sender implements sender side SWS prevention
2906   * then this will not be a problem.
2907   *
2908   * BSD seems to make the following compromise:
2909   *
2910   *	If the free space is less than the 1/4 of the maximum
2911   *	space available and the free space is less than 1/2 mss,
2912   *	then set the window to 0.
2913   *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2914   *	Otherwise, just prevent the window from shrinking
2915   *	and from being larger than the largest representable value.
2916   *
2917   * This prevents incremental opening of the window in the regime
2918   * where TCP is limited by the speed of the reader side taking
2919   * data out of the TCP receive queue. It does nothing about
2920   * those cases where the window is constrained on the sender side
2921   * because the pipeline is full.
2922   *
2923   * BSD also seems to "accidentally" limit itself to windows that are a
2924   * multiple of MSS, at least until the free space gets quite small.
2925   * This would appear to be a side effect of the mbuf implementation.
2926   * Combining these two algorithms results in the observed behavior
2927   * of having a fixed window size at almost all times.
2928   *
2929   * Below we obtain similar behavior by forcing the offered window to
2930   * a multiple of the mss when it is feasible to do so.
2931   *
2932   * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2933   * Regular options like TIMESTAMP are taken into account.
2934   */
__tcp_select_window(struct sock * sk)2935  u32 __tcp_select_window(struct sock *sk)
2936  {
2937  	struct inet_connection_sock *icsk = inet_csk(sk);
2938  	struct tcp_sock *tp = tcp_sk(sk);
2939  	/* MSS for the peer's data.  Previous versions used mss_clamp
2940  	 * here.  I don't know if the value based on our guesses
2941  	 * of peer's MSS is better for the performance.  It's more correct
2942  	 * but may be worse for the performance because of rcv_mss
2943  	 * fluctuations.  --SAW  1998/11/1
2944  	 */
2945  	int mss = icsk->icsk_ack.rcv_mss;
2946  	int free_space = tcp_space(sk);
2947  	int allowed_space = tcp_full_space(sk);
2948  	int full_space, window;
2949  
2950  	if (sk_is_mptcp(sk))
2951  		mptcp_space(sk, &free_space, &allowed_space);
2952  
2953  	full_space = min_t(int, tp->window_clamp, allowed_space);
2954  
2955  	if (unlikely(mss > full_space)) {
2956  		mss = full_space;
2957  		if (mss <= 0)
2958  			return 0;
2959  	}
2960  	if (free_space < (full_space >> 1)) {
2961  		icsk->icsk_ack.quick = 0;
2962  
2963  		if (tcp_under_memory_pressure(sk))
2964  			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2965  					       4U * tp->advmss);
2966  
2967  		/* free_space might become our new window, make sure we don't
2968  		 * increase it due to wscale.
2969  		 */
2970  		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2971  
2972  		/* if free space is less than mss estimate, or is below 1/16th
2973  		 * of the maximum allowed, try to move to zero-window, else
2974  		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2975  		 * new incoming data is dropped due to memory limits.
2976  		 * With large window, mss test triggers way too late in order
2977  		 * to announce zero window in time before rmem limit kicks in.
2978  		 */
2979  		if (free_space < (allowed_space >> 4) || free_space < mss)
2980  			return 0;
2981  	}
2982  
2983  	if (free_space > tp->rcv_ssthresh)
2984  		free_space = tp->rcv_ssthresh;
2985  
2986  	/* Don't do rounding if we are using window scaling, since the
2987  	 * scaled window will not line up with the MSS boundary anyway.
2988  	 */
2989  	if (tp->rx_opt.rcv_wscale) {
2990  		window = free_space;
2991  
2992  		/* Advertise enough space so that it won't get scaled away.
2993  		 * Import case: prevent zero window announcement if
2994  		 * 1<<rcv_wscale > mss.
2995  		 */
2996  		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2997  	} else {
2998  		window = tp->rcv_wnd;
2999  		/* Get the largest window that is a nice multiple of mss.
3000  		 * Window clamp already applied above.
3001  		 * If our current window offering is within 1 mss of the
3002  		 * free space we just keep it. This prevents the divide
3003  		 * and multiply from happening most of the time.
3004  		 * We also don't do any window rounding when the free space
3005  		 * is too small.
3006  		 */
3007  		if (window <= free_space - mss || window > free_space)
3008  			window = rounddown(free_space, mss);
3009  		else if (mss == full_space &&
3010  			 free_space > window + (full_space >> 1))
3011  			window = free_space;
3012  	}
3013  
3014  	return window;
3015  }
3016  
tcp_skb_collapse_tstamp(struct sk_buff * skb,const struct sk_buff * next_skb)3017  void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3018  			     const struct sk_buff *next_skb)
3019  {
3020  	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3021  		const struct skb_shared_info *next_shinfo =
3022  			skb_shinfo(next_skb);
3023  		struct skb_shared_info *shinfo = skb_shinfo(skb);
3024  
3025  		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3026  		shinfo->tskey = next_shinfo->tskey;
3027  		TCP_SKB_CB(skb)->txstamp_ack |=
3028  			TCP_SKB_CB(next_skb)->txstamp_ack;
3029  	}
3030  }
3031  
3032  /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)3033  static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3034  {
3035  	struct tcp_sock *tp = tcp_sk(sk);
3036  	struct sk_buff *next_skb = skb_rb_next(skb);
3037  	int next_skb_size;
3038  
3039  	next_skb_size = next_skb->len;
3040  
3041  	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3042  
3043  	if (next_skb_size) {
3044  		if (next_skb_size <= skb_availroom(skb))
3045  			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
3046  				      next_skb_size);
3047  		else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3048  			return false;
3049  	}
3050  	tcp_highest_sack_replace(sk, next_skb, skb);
3051  
3052  	/* Update sequence range on original skb. */
3053  	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3054  
3055  	/* Merge over control information. This moves PSH/FIN etc. over */
3056  	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3057  
3058  	/* All done, get rid of second SKB and account for it so
3059  	 * packet counting does not break.
3060  	 */
3061  	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3062  	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3063  
3064  	/* changed transmit queue under us so clear hints */
3065  	tcp_clear_retrans_hints_partial(tp);
3066  	if (next_skb == tp->retransmit_skb_hint)
3067  		tp->retransmit_skb_hint = skb;
3068  
3069  	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3070  
3071  	tcp_skb_collapse_tstamp(skb, next_skb);
3072  
3073  	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3074  	return true;
3075  }
3076  
3077  /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)3078  static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3079  {
3080  	if (tcp_skb_pcount(skb) > 1)
3081  		return false;
3082  	if (skb_cloned(skb))
3083  		return false;
3084  	/* Some heuristics for collapsing over SACK'd could be invented */
3085  	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3086  		return false;
3087  
3088  	return true;
3089  }
3090  
3091  /* Collapse packets in the retransmit queue to make to create
3092   * less packets on the wire. This is only done on retransmission.
3093   */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)3094  static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3095  				     int space)
3096  {
3097  	struct tcp_sock *tp = tcp_sk(sk);
3098  	struct sk_buff *skb = to, *tmp;
3099  	bool first = true;
3100  
3101  	if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
3102  		return;
3103  	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3104  		return;
3105  
3106  	skb_rbtree_walk_from_safe(skb, tmp) {
3107  		if (!tcp_can_collapse(sk, skb))
3108  			break;
3109  
3110  		if (!tcp_skb_can_collapse(to, skb))
3111  			break;
3112  
3113  		space -= skb->len;
3114  
3115  		if (first) {
3116  			first = false;
3117  			continue;
3118  		}
3119  
3120  		if (space < 0)
3121  			break;
3122  
3123  		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3124  			break;
3125  
3126  		if (!tcp_collapse_retrans(sk, to))
3127  			break;
3128  	}
3129  }
3130  
3131  /* This retransmits one SKB.  Policy decisions and retransmit queue
3132   * state updates are done by the caller.  Returns non-zero if an
3133   * error occurred which prevented the send.
3134   */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3135  int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3136  {
3137  	struct inet_connection_sock *icsk = inet_csk(sk);
3138  	struct tcp_sock *tp = tcp_sk(sk);
3139  	unsigned int cur_mss;
3140  	int diff, len, err;
3141  
3142  
3143  	/* Inconclusive MTU probe */
3144  	if (icsk->icsk_mtup.probe_size)
3145  		icsk->icsk_mtup.probe_size = 0;
3146  
3147  	/* Do not sent more than we queued. 1/4 is reserved for possible
3148  	 * copying overhead: fragmentation, tunneling, mangling etc.
3149  	 */
3150  	if (refcount_read(&sk->sk_wmem_alloc) >
3151  	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
3152  		  sk->sk_sndbuf))
3153  		return -EAGAIN;
3154  
3155  	if (skb_still_in_host_queue(sk, skb))
3156  		return -EBUSY;
3157  
3158  	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3159  		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3160  			WARN_ON_ONCE(1);
3161  			return -EINVAL;
3162  		}
3163  		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3164  			return -ENOMEM;
3165  	}
3166  
3167  	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3168  		return -EHOSTUNREACH; /* Routing failure or similar. */
3169  
3170  	cur_mss = tcp_current_mss(sk);
3171  
3172  	/* If receiver has shrunk his window, and skb is out of
3173  	 * new window, do not retransmit it. The exception is the
3174  	 * case, when window is shrunk to zero. In this case
3175  	 * our retransmit serves as a zero window probe.
3176  	 */
3177  	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
3178  	    TCP_SKB_CB(skb)->seq != tp->snd_una)
3179  		return -EAGAIN;
3180  
3181  	len = cur_mss * segs;
3182  	if (skb->len > len) {
3183  		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3184  				 cur_mss, GFP_ATOMIC))
3185  			return -ENOMEM; /* We'll try again later. */
3186  	} else {
3187  		if (skb_unclone(skb, GFP_ATOMIC))
3188  			return -ENOMEM;
3189  
3190  		diff = tcp_skb_pcount(skb);
3191  		tcp_set_skb_tso_segs(skb, cur_mss);
3192  		diff -= tcp_skb_pcount(skb);
3193  		if (diff)
3194  			tcp_adjust_pcount(sk, skb, diff);
3195  		if (skb->len < cur_mss)
3196  			tcp_retrans_try_collapse(sk, skb, cur_mss);
3197  	}
3198  
3199  	/* RFC3168, section 6.1.1.1. ECN fallback */
3200  	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3201  		tcp_ecn_clear_syn(sk, skb);
3202  
3203  	/* Update global and local TCP statistics. */
3204  	segs = tcp_skb_pcount(skb);
3205  	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3206  	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3207  		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3208  	tp->total_retrans += segs;
3209  	tp->bytes_retrans += skb->len;
3210  
3211  	/* make sure skb->data is aligned on arches that require it
3212  	 * and check if ack-trimming & collapsing extended the headroom
3213  	 * beyond what csum_start can cover.
3214  	 */
3215  	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3216  		     skb_headroom(skb) >= 0xFFFF)) {
3217  		struct sk_buff *nskb;
3218  
3219  		tcp_skb_tsorted_save(skb) {
3220  			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3221  			if (nskb) {
3222  				nskb->dev = NULL;
3223  				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3224  			} else {
3225  				err = -ENOBUFS;
3226  			}
3227  		} tcp_skb_tsorted_restore(skb);
3228  
3229  		if (!err) {
3230  			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3231  			tcp_rate_skb_sent(sk, skb);
3232  		}
3233  	} else {
3234  		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3235  	}
3236  
3237  	/* To avoid taking spuriously low RTT samples based on a timestamp
3238  	 * for a transmit that never happened, always mark EVER_RETRANS
3239  	 */
3240  	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3241  
3242  	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3243  		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3244  				  TCP_SKB_CB(skb)->seq, segs, err);
3245  
3246  	if (likely(!err)) {
3247  		trace_tcp_retransmit_skb(sk, skb);
3248  	} else if (err != -EBUSY) {
3249  		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3250  	}
3251  	return err;
3252  }
3253  
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3254  int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3255  {
3256  	struct tcp_sock *tp = tcp_sk(sk);
3257  	int err = __tcp_retransmit_skb(sk, skb, segs);
3258  
3259  	if (err == 0) {
3260  #if FASTRETRANS_DEBUG > 0
3261  		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3262  			net_dbg_ratelimited("retrans_out leaked\n");
3263  		}
3264  #endif
3265  		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3266  		tp->retrans_out += tcp_skb_pcount(skb);
3267  	}
3268  
3269  	/* Save stamp of the first (attempted) retransmit. */
3270  	if (!tp->retrans_stamp)
3271  		tp->retrans_stamp = tcp_skb_timestamp(skb);
3272  
3273  	if (tp->undo_retrans < 0)
3274  		tp->undo_retrans = 0;
3275  	tp->undo_retrans += tcp_skb_pcount(skb);
3276  	return err;
3277  }
3278  
3279  /* This gets called after a retransmit timeout, and the initially
3280   * retransmitted data is acknowledged.  It tries to continue
3281   * resending the rest of the retransmit queue, until either
3282   * we've sent it all or the congestion window limit is reached.
3283   */
tcp_xmit_retransmit_queue(struct sock * sk)3284  void tcp_xmit_retransmit_queue(struct sock *sk)
3285  {
3286  	const struct inet_connection_sock *icsk = inet_csk(sk);
3287  	struct sk_buff *skb, *rtx_head, *hole = NULL;
3288  	struct tcp_sock *tp = tcp_sk(sk);
3289  	bool rearm_timer = false;
3290  	u32 max_segs;
3291  	int mib_idx;
3292  
3293  	if (!tp->packets_out)
3294  		return;
3295  
3296  	rtx_head = tcp_rtx_queue_head(sk);
3297  	skb = tp->retransmit_skb_hint ?: rtx_head;
3298  	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3299  	skb_rbtree_walk_from(skb) {
3300  		__u8 sacked;
3301  		int segs;
3302  
3303  		if (tcp_pacing_check(sk))
3304  			break;
3305  
3306  		/* we could do better than to assign each time */
3307  		if (!hole)
3308  			tp->retransmit_skb_hint = skb;
3309  
3310  		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3311  		if (segs <= 0)
3312  			break;
3313  		sacked = TCP_SKB_CB(skb)->sacked;
3314  		/* In case tcp_shift_skb_data() have aggregated large skbs,
3315  		 * we need to make sure not sending too bigs TSO packets
3316  		 */
3317  		segs = min_t(int, segs, max_segs);
3318  
3319  		if (tp->retrans_out >= tp->lost_out) {
3320  			break;
3321  		} else if (!(sacked & TCPCB_LOST)) {
3322  			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3323  				hole = skb;
3324  			continue;
3325  
3326  		} else {
3327  			if (icsk->icsk_ca_state != TCP_CA_Loss)
3328  				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3329  			else
3330  				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3331  		}
3332  
3333  		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3334  			continue;
3335  
3336  		if (tcp_small_queue_check(sk, skb, 1))
3337  			break;
3338  
3339  		if (tcp_retransmit_skb(sk, skb, segs))
3340  			break;
3341  
3342  		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3343  
3344  		if (tcp_in_cwnd_reduction(sk))
3345  			tp->prr_out += tcp_skb_pcount(skb);
3346  
3347  		if (skb == rtx_head &&
3348  		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3349  			rearm_timer = true;
3350  
3351  	}
3352  	if (rearm_timer)
3353  		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3354  				     inet_csk(sk)->icsk_rto,
3355  				     TCP_RTO_MAX);
3356  }
3357  
3358  /* We allow to exceed memory limits for FIN packets to expedite
3359   * connection tear down and (memory) recovery.
3360   * Otherwise tcp_send_fin() could be tempted to either delay FIN
3361   * or even be forced to close flow without any FIN.
3362   * In general, we want to allow one skb per socket to avoid hangs
3363   * with edge trigger epoll()
3364   */
sk_forced_mem_schedule(struct sock * sk,int size)3365  void sk_forced_mem_schedule(struct sock *sk, int size)
3366  {
3367  	int amt;
3368  
3369  	if (size <= sk->sk_forward_alloc)
3370  		return;
3371  	amt = sk_mem_pages(size);
3372  	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3373  	sk_memory_allocated_add(sk, amt);
3374  
3375  	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3376  		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3377  }
3378  
3379  /* Send a FIN. The caller locks the socket for us.
3380   * We should try to send a FIN packet really hard, but eventually give up.
3381   */
tcp_send_fin(struct sock * sk)3382  void tcp_send_fin(struct sock *sk)
3383  {
3384  	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3385  	struct tcp_sock *tp = tcp_sk(sk);
3386  
3387  	/* Optimization, tack on the FIN if we have one skb in write queue and
3388  	 * this skb was not yet sent, or we are under memory pressure.
3389  	 * Note: in the latter case, FIN packet will be sent after a timeout,
3390  	 * as TCP stack thinks it has already been transmitted.
3391  	 */
3392  	tskb = tail;
3393  	if (!tskb && tcp_under_memory_pressure(sk))
3394  		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3395  
3396  	if (tskb) {
3397  		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3398  		TCP_SKB_CB(tskb)->end_seq++;
3399  		tp->write_seq++;
3400  		if (!tail) {
3401  			/* This means tskb was already sent.
3402  			 * Pretend we included the FIN on previous transmit.
3403  			 * We need to set tp->snd_nxt to the value it would have
3404  			 * if FIN had been sent. This is because retransmit path
3405  			 * does not change tp->snd_nxt.
3406  			 */
3407  			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3408  			return;
3409  		}
3410  	} else {
3411  		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3412  		if (unlikely(!skb))
3413  			return;
3414  
3415  		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3416  		skb_reserve(skb, MAX_TCP_HEADER);
3417  		sk_forced_mem_schedule(sk, skb->truesize);
3418  		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3419  		tcp_init_nondata_skb(skb, tp->write_seq,
3420  				     TCPHDR_ACK | TCPHDR_FIN);
3421  		tcp_queue_skb(sk, skb);
3422  	}
3423  	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3424  }
3425  
3426  /* We get here when a process closes a file descriptor (either due to
3427   * an explicit close() or as a byproduct of exit()'ing) and there
3428   * was unread data in the receive queue.  This behavior is recommended
3429   * by RFC 2525, section 2.17.  -DaveM
3430   */
tcp_send_active_reset(struct sock * sk,gfp_t priority)3431  void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3432  {
3433  	struct sk_buff *skb;
3434  
3435  	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3436  
3437  	/* NOTE: No TCP options attached and we never retransmit this. */
3438  	skb = alloc_skb(MAX_TCP_HEADER, priority);
3439  	if (!skb) {
3440  		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3441  		return;
3442  	}
3443  
3444  	/* Reserve space for headers and prepare control bits. */
3445  	skb_reserve(skb, MAX_TCP_HEADER);
3446  	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3447  			     TCPHDR_ACK | TCPHDR_RST);
3448  	tcp_mstamp_refresh(tcp_sk(sk));
3449  	/* Send it off. */
3450  	if (tcp_transmit_skb(sk, skb, 0, priority))
3451  		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3452  
3453  	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3454  	 * skb here is different to the troublesome skb, so use NULL
3455  	 */
3456  	trace_tcp_send_reset(sk, NULL);
3457  }
3458  
3459  /* Send a crossed SYN-ACK during socket establishment.
3460   * WARNING: This routine must only be called when we have already sent
3461   * a SYN packet that crossed the incoming SYN that caused this routine
3462   * to get called. If this assumption fails then the initial rcv_wnd
3463   * and rcv_wscale values will not be correct.
3464   */
tcp_send_synack(struct sock * sk)3465  int tcp_send_synack(struct sock *sk)
3466  {
3467  	struct sk_buff *skb;
3468  
3469  	skb = tcp_rtx_queue_head(sk);
3470  	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3471  		pr_err("%s: wrong queue state\n", __func__);
3472  		return -EFAULT;
3473  	}
3474  	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3475  		if (skb_cloned(skb)) {
3476  			struct sk_buff *nskb;
3477  
3478  			tcp_skb_tsorted_save(skb) {
3479  				nskb = skb_copy(skb, GFP_ATOMIC);
3480  			} tcp_skb_tsorted_restore(skb);
3481  			if (!nskb)
3482  				return -ENOMEM;
3483  			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3484  			tcp_highest_sack_replace(sk, skb, nskb);
3485  			tcp_rtx_queue_unlink_and_free(skb, sk);
3486  			__skb_header_release(nskb);
3487  			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3488  			sk_wmem_queued_add(sk, nskb->truesize);
3489  			sk_mem_charge(sk, nskb->truesize);
3490  			skb = nskb;
3491  		}
3492  
3493  		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3494  		tcp_ecn_send_synack(sk, skb);
3495  	}
3496  	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3497  }
3498  
3499  /**
3500   * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3501   * @sk: listener socket
3502   * @dst: dst entry attached to the SYNACK. It is consumed and caller
3503   *       should not use it again.
3504   * @req: request_sock pointer
3505   * @foc: cookie for tcp fast open
3506   * @synack_type: Type of synack to prepare
3507   * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3508   */
tcp_make_synack(const struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)3509  struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3510  				struct request_sock *req,
3511  				struct tcp_fastopen_cookie *foc,
3512  				enum tcp_synack_type synack_type,
3513  				struct sk_buff *syn_skb)
3514  {
3515  	struct inet_request_sock *ireq = inet_rsk(req);
3516  	const struct tcp_sock *tp = tcp_sk(sk);
3517  	struct tcp_md5sig_key *md5 = NULL;
3518  	struct tcp_out_options opts;
3519  	struct sk_buff *skb;
3520  	int tcp_header_size;
3521  	struct tcphdr *th;
3522  	int mss;
3523  	u64 now;
3524  
3525  	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3526  	if (unlikely(!skb)) {
3527  		dst_release(dst);
3528  		return NULL;
3529  	}
3530  	/* Reserve space for headers. */
3531  	skb_reserve(skb, MAX_TCP_HEADER);
3532  
3533  	switch (synack_type) {
3534  	case TCP_SYNACK_NORMAL:
3535  		skb_set_owner_w(skb, req_to_sk(req));
3536  		break;
3537  	case TCP_SYNACK_COOKIE:
3538  		/* Under synflood, we do not attach skb to a socket,
3539  		 * to avoid false sharing.
3540  		 */
3541  		break;
3542  	case TCP_SYNACK_FASTOPEN:
3543  		/* sk is a const pointer, because we want to express multiple
3544  		 * cpu might call us concurrently.
3545  		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3546  		 */
3547  		skb_set_owner_w(skb, (struct sock *)sk);
3548  		break;
3549  	}
3550  	skb_dst_set(skb, dst);
3551  
3552  	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3553  
3554  	memset(&opts, 0, sizeof(opts));
3555  	now = tcp_clock_ns();
3556  #ifdef CONFIG_SYN_COOKIES
3557  	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3558  		skb->skb_mstamp_ns = cookie_init_timestamp(req, now);
3559  	else
3560  #endif
3561  	{
3562  		skb->skb_mstamp_ns = now;
3563  		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3564  			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3565  	}
3566  
3567  #ifdef CONFIG_TCP_MD5SIG
3568  	rcu_read_lock();
3569  	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3570  #endif
3571  	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3572  	/* bpf program will be interested in the tcp_flags */
3573  	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3574  	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3575  					     foc, synack_type,
3576  					     syn_skb) + sizeof(*th);
3577  
3578  	skb_push(skb, tcp_header_size);
3579  	skb_reset_transport_header(skb);
3580  
3581  	th = (struct tcphdr *)skb->data;
3582  	memset(th, 0, sizeof(struct tcphdr));
3583  	th->syn = 1;
3584  	th->ack = 1;
3585  	tcp_ecn_make_synack(req, th);
3586  	th->source = htons(ireq->ir_num);
3587  	th->dest = ireq->ir_rmt_port;
3588  	skb->mark = ireq->ir_mark;
3589  	skb->ip_summed = CHECKSUM_PARTIAL;
3590  	th->seq = htonl(tcp_rsk(req)->snt_isn);
3591  	/* XXX data is queued and acked as is. No buffer/window check */
3592  	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3593  
3594  	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3595  	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3596  	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3597  	th->doff = (tcp_header_size >> 2);
3598  	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3599  
3600  #ifdef CONFIG_TCP_MD5SIG
3601  	/* Okay, we have all we need - do the md5 hash if needed */
3602  	if (md5)
3603  		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3604  					       md5, req_to_sk(req), skb);
3605  	rcu_read_unlock();
3606  #endif
3607  
3608  	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3609  				synack_type, &opts);
3610  
3611  	skb->skb_mstamp_ns = now;
3612  	tcp_add_tx_delay(skb, tp);
3613  
3614  	return skb;
3615  }
3616  EXPORT_SYMBOL(tcp_make_synack);
3617  
tcp_ca_dst_init(struct sock * sk,const struct dst_entry * dst)3618  static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3619  {
3620  	struct inet_connection_sock *icsk = inet_csk(sk);
3621  	const struct tcp_congestion_ops *ca;
3622  	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3623  
3624  	if (ca_key == TCP_CA_UNSPEC)
3625  		return;
3626  
3627  	rcu_read_lock();
3628  	ca = tcp_ca_find_key(ca_key);
3629  	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3630  		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3631  		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3632  		icsk->icsk_ca_ops = ca;
3633  	}
3634  	rcu_read_unlock();
3635  }
3636  
3637  /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)3638  static void tcp_connect_init(struct sock *sk)
3639  {
3640  	const struct dst_entry *dst = __sk_dst_get(sk);
3641  	struct tcp_sock *tp = tcp_sk(sk);
3642  	__u8 rcv_wscale;
3643  	u32 rcv_wnd;
3644  
3645  	/* We'll fix this up when we get a response from the other end.
3646  	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3647  	 */
3648  	tp->tcp_header_len = sizeof(struct tcphdr);
3649  	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3650  		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3651  
3652  #ifdef CONFIG_TCP_MD5SIG
3653  	if (tp->af_specific->md5_lookup(sk, sk))
3654  		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3655  #endif
3656  
3657  	/* If user gave his TCP_MAXSEG, record it to clamp */
3658  	if (tp->rx_opt.user_mss)
3659  		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3660  	tp->max_window = 0;
3661  	tcp_mtup_init(sk);
3662  	tcp_sync_mss(sk, dst_mtu(dst));
3663  
3664  	tcp_ca_dst_init(sk, dst);
3665  
3666  	if (!tp->window_clamp)
3667  		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3668  	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3669  
3670  	tcp_initialize_rcv_mss(sk);
3671  
3672  	/* limit the window selection if the user enforce a smaller rx buffer */
3673  	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3674  	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3675  		tp->window_clamp = tcp_full_space(sk);
3676  
3677  	rcv_wnd = tcp_rwnd_init_bpf(sk);
3678  	if (rcv_wnd == 0)
3679  		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3680  
3681  	tcp_select_initial_window(sk, tcp_full_space(sk),
3682  				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3683  				  &tp->rcv_wnd,
3684  				  &tp->window_clamp,
3685  				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3686  				  &rcv_wscale,
3687  				  rcv_wnd);
3688  
3689  	tp->rx_opt.rcv_wscale = rcv_wscale;
3690  	tp->rcv_ssthresh = tp->rcv_wnd;
3691  
3692  	sk->sk_err = 0;
3693  	sock_reset_flag(sk, SOCK_DONE);
3694  	tp->snd_wnd = 0;
3695  	tcp_init_wl(tp, 0);
3696  	tcp_write_queue_purge(sk);
3697  	tp->snd_una = tp->write_seq;
3698  	tp->snd_sml = tp->write_seq;
3699  	tp->snd_up = tp->write_seq;
3700  	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3701  
3702  	if (likely(!tp->repair))
3703  		tp->rcv_nxt = 0;
3704  	else
3705  		tp->rcv_tstamp = tcp_jiffies32;
3706  	tp->rcv_wup = tp->rcv_nxt;
3707  	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3708  
3709  	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3710  	inet_csk(sk)->icsk_retransmits = 0;
3711  	tcp_clear_retrans(tp);
3712  }
3713  
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3714  static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3715  {
3716  	struct tcp_sock *tp = tcp_sk(sk);
3717  	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3718  
3719  	tcb->end_seq += skb->len;
3720  	__skb_header_release(skb);
3721  	sk_wmem_queued_add(sk, skb->truesize);
3722  	sk_mem_charge(sk, skb->truesize);
3723  	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3724  	tp->packets_out += tcp_skb_pcount(skb);
3725  }
3726  
3727  /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3728   * queue a data-only packet after the regular SYN, such that regular SYNs
3729   * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3730   * only the SYN sequence, the data are retransmitted in the first ACK.
3731   * If cookie is not cached or other error occurs, falls back to send a
3732   * regular SYN with Fast Open cookie request option.
3733   */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3734  static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3735  {
3736  	struct tcp_sock *tp = tcp_sk(sk);
3737  	struct tcp_fastopen_request *fo = tp->fastopen_req;
3738  	int space, err = 0;
3739  	struct sk_buff *syn_data;
3740  
3741  	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3742  	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3743  		goto fallback;
3744  
3745  	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3746  	 * user-MSS. Reserve maximum option space for middleboxes that add
3747  	 * private TCP options. The cost is reduced data space in SYN :(
3748  	 */
3749  	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3750  
3751  	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3752  		MAX_TCP_OPTION_SPACE;
3753  
3754  	space = min_t(size_t, space, fo->size);
3755  
3756  	/* limit to order-0 allocations */
3757  	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3758  
3759  	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3760  	if (!syn_data)
3761  		goto fallback;
3762  	syn_data->ip_summed = CHECKSUM_PARTIAL;
3763  	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3764  	if (space) {
3765  		int copied = copy_from_iter(skb_put(syn_data, space), space,
3766  					    &fo->data->msg_iter);
3767  		if (unlikely(!copied)) {
3768  			tcp_skb_tsorted_anchor_cleanup(syn_data);
3769  			kfree_skb(syn_data);
3770  			goto fallback;
3771  		}
3772  		if (copied != space) {
3773  			skb_trim(syn_data, copied);
3774  			space = copied;
3775  		}
3776  		skb_zcopy_set(syn_data, fo->uarg, NULL);
3777  	}
3778  	/* No more data pending in inet_wait_for_connect() */
3779  	if (space == fo->size)
3780  		fo->data = NULL;
3781  	fo->copied = space;
3782  
3783  	tcp_connect_queue_skb(sk, syn_data);
3784  	if (syn_data->len)
3785  		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3786  
3787  	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3788  
3789  	syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3790  
3791  	/* Now full SYN+DATA was cloned and sent (or not),
3792  	 * remove the SYN from the original skb (syn_data)
3793  	 * we keep in write queue in case of a retransmit, as we
3794  	 * also have the SYN packet (with no data) in the same queue.
3795  	 */
3796  	TCP_SKB_CB(syn_data)->seq++;
3797  	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3798  	if (!err) {
3799  		tp->syn_data = (fo->copied > 0);
3800  		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3801  		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3802  		goto done;
3803  	}
3804  
3805  	/* data was not sent, put it in write_queue */
3806  	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3807  	tp->packets_out -= tcp_skb_pcount(syn_data);
3808  
3809  fallback:
3810  	/* Send a regular SYN with Fast Open cookie request option */
3811  	if (fo->cookie.len > 0)
3812  		fo->cookie.len = 0;
3813  	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3814  	if (err)
3815  		tp->syn_fastopen = 0;
3816  done:
3817  	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3818  	return err;
3819  }
3820  
3821  /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)3822  int tcp_connect(struct sock *sk)
3823  {
3824  	struct tcp_sock *tp = tcp_sk(sk);
3825  	struct sk_buff *buff;
3826  	int err;
3827  
3828  	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3829  
3830  	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3831  		return -EHOSTUNREACH; /* Routing failure or similar. */
3832  
3833  	tcp_connect_init(sk);
3834  
3835  	if (unlikely(tp->repair)) {
3836  		tcp_finish_connect(sk, NULL);
3837  		return 0;
3838  	}
3839  
3840  	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3841  	if (unlikely(!buff))
3842  		return -ENOBUFS;
3843  
3844  	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3845  	tcp_mstamp_refresh(tp);
3846  	tp->retrans_stamp = tcp_time_stamp(tp);
3847  	tcp_connect_queue_skb(sk, buff);
3848  	tcp_ecn_send_syn(sk, buff);
3849  	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3850  
3851  	/* Send off SYN; include data in Fast Open. */
3852  	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3853  	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3854  	if (err == -ECONNREFUSED)
3855  		return err;
3856  
3857  	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3858  	 * in order to make this packet get counted in tcpOutSegs.
3859  	 */
3860  	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3861  	tp->pushed_seq = tp->write_seq;
3862  	buff = tcp_send_head(sk);
3863  	if (unlikely(buff)) {
3864  		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3865  		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3866  	}
3867  	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3868  
3869  	/* Timer for repeating the SYN until an answer. */
3870  	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3871  				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3872  	return 0;
3873  }
3874  EXPORT_SYMBOL(tcp_connect);
3875  
3876  /* Send out a delayed ack, the caller does the policy checking
3877   * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3878   * for details.
3879   */
tcp_send_delayed_ack(struct sock * sk)3880  void tcp_send_delayed_ack(struct sock *sk)
3881  {
3882  	struct inet_connection_sock *icsk = inet_csk(sk);
3883  	int ato = icsk->icsk_ack.ato;
3884  	unsigned long timeout;
3885  
3886  	if (ato > TCP_DELACK_MIN) {
3887  		const struct tcp_sock *tp = tcp_sk(sk);
3888  		int max_ato = HZ / 2;
3889  
3890  		if (inet_csk_in_pingpong_mode(sk) ||
3891  		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3892  			max_ato = TCP_DELACK_MAX;
3893  
3894  		/* Slow path, intersegment interval is "high". */
3895  
3896  		/* If some rtt estimate is known, use it to bound delayed ack.
3897  		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3898  		 * directly.
3899  		 */
3900  		if (tp->srtt_us) {
3901  			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3902  					TCP_DELACK_MIN);
3903  
3904  			if (rtt < max_ato)
3905  				max_ato = rtt;
3906  		}
3907  
3908  		ato = min(ato, max_ato);
3909  	}
3910  
3911  	ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max);
3912  
3913  	/* Stay within the limit we were given */
3914  	timeout = jiffies + ato;
3915  
3916  	/* Use new timeout only if there wasn't a older one earlier. */
3917  	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3918  		/* If delack timer is about to expire, send ACK now. */
3919  		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3920  			tcp_send_ack(sk);
3921  			return;
3922  		}
3923  
3924  		if (!time_before(timeout, icsk->icsk_ack.timeout))
3925  			timeout = icsk->icsk_ack.timeout;
3926  	}
3927  	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3928  	icsk->icsk_ack.timeout = timeout;
3929  	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3930  }
3931  
3932  /* This routine sends an ack and also updates the window. */
__tcp_send_ack(struct sock * sk,u32 rcv_nxt)3933  void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3934  {
3935  	struct sk_buff *buff;
3936  
3937  	/* If we have been reset, we may not send again. */
3938  	if (sk->sk_state == TCP_CLOSE)
3939  		return;
3940  
3941  	/* We are not putting this on the write queue, so
3942  	 * tcp_transmit_skb() will set the ownership to this
3943  	 * sock.
3944  	 */
3945  	buff = alloc_skb(MAX_TCP_HEADER,
3946  			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3947  	if (unlikely(!buff)) {
3948  		struct inet_connection_sock *icsk = inet_csk(sk);
3949  		unsigned long delay;
3950  
3951  		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
3952  		if (delay < TCP_RTO_MAX)
3953  			icsk->icsk_ack.retry++;
3954  		inet_csk_schedule_ack(sk);
3955  		icsk->icsk_ack.ato = TCP_ATO_MIN;
3956  		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
3957  		return;
3958  	}
3959  
3960  	/* Reserve space for headers and prepare control bits. */
3961  	skb_reserve(buff, MAX_TCP_HEADER);
3962  	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3963  
3964  	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3965  	 * too much.
3966  	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3967  	 */
3968  	skb_set_tcp_pure_ack(buff);
3969  
3970  	/* Send it off, this clears delayed acks for us. */
3971  	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3972  }
3973  EXPORT_SYMBOL_GPL(__tcp_send_ack);
3974  
tcp_send_ack(struct sock * sk)3975  void tcp_send_ack(struct sock *sk)
3976  {
3977  	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3978  }
3979  
3980  /* This routine sends a packet with an out of date sequence
3981   * number. It assumes the other end will try to ack it.
3982   *
3983   * Question: what should we make while urgent mode?
3984   * 4.4BSD forces sending single byte of data. We cannot send
3985   * out of window data, because we have SND.NXT==SND.MAX...
3986   *
3987   * Current solution: to send TWO zero-length segments in urgent mode:
3988   * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3989   * out-of-date with SND.UNA-1 to probe window.
3990   */
tcp_xmit_probe_skb(struct sock * sk,int urgent,int mib)3991  static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3992  {
3993  	struct tcp_sock *tp = tcp_sk(sk);
3994  	struct sk_buff *skb;
3995  
3996  	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3997  	skb = alloc_skb(MAX_TCP_HEADER,
3998  			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3999  	if (!skb)
4000  		return -1;
4001  
4002  	/* Reserve space for headers and set control bits. */
4003  	skb_reserve(skb, MAX_TCP_HEADER);
4004  	/* Use a previous sequence.  This should cause the other
4005  	 * end to send an ack.  Don't queue or clone SKB, just
4006  	 * send it.
4007  	 */
4008  	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4009  	NET_INC_STATS(sock_net(sk), mib);
4010  	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4011  }
4012  
4013  /* Called from setsockopt( ... TCP_REPAIR ) */
tcp_send_window_probe(struct sock * sk)4014  void tcp_send_window_probe(struct sock *sk)
4015  {
4016  	if (sk->sk_state == TCP_ESTABLISHED) {
4017  		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4018  		tcp_mstamp_refresh(tcp_sk(sk));
4019  		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4020  	}
4021  }
4022  
4023  /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk,int mib)4024  int tcp_write_wakeup(struct sock *sk, int mib)
4025  {
4026  	struct tcp_sock *tp = tcp_sk(sk);
4027  	struct sk_buff *skb;
4028  
4029  	if (sk->sk_state == TCP_CLOSE)
4030  		return -1;
4031  
4032  	skb = tcp_send_head(sk);
4033  	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4034  		int err;
4035  		unsigned int mss = tcp_current_mss(sk);
4036  		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4037  
4038  		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4039  			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4040  
4041  		/* We are probing the opening of a window
4042  		 * but the window size is != 0
4043  		 * must have been a result SWS avoidance ( sender )
4044  		 */
4045  		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4046  		    skb->len > mss) {
4047  			seg_size = min(seg_size, mss);
4048  			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4049  			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4050  					 skb, seg_size, mss, GFP_ATOMIC))
4051  				return -1;
4052  		} else if (!tcp_skb_pcount(skb))
4053  			tcp_set_skb_tso_segs(skb, mss);
4054  
4055  		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4056  		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4057  		if (!err)
4058  			tcp_event_new_data_sent(sk, skb);
4059  		return err;
4060  	} else {
4061  		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4062  			tcp_xmit_probe_skb(sk, 1, mib);
4063  		return tcp_xmit_probe_skb(sk, 0, mib);
4064  	}
4065  }
4066  
4067  /* A window probe timeout has occurred.  If window is not closed send
4068   * a partial packet else a zero probe.
4069   */
tcp_send_probe0(struct sock * sk)4070  void tcp_send_probe0(struct sock *sk)
4071  {
4072  	struct inet_connection_sock *icsk = inet_csk(sk);
4073  	struct tcp_sock *tp = tcp_sk(sk);
4074  	struct net *net = sock_net(sk);
4075  	unsigned long timeout;
4076  	int err;
4077  
4078  	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4079  
4080  	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4081  		/* Cancel probe timer, if it is not required. */
4082  		icsk->icsk_probes_out = 0;
4083  		icsk->icsk_backoff = 0;
4084  		icsk->icsk_probes_tstamp = 0;
4085  		return;
4086  	}
4087  
4088  	icsk->icsk_probes_out++;
4089  	if (err <= 0) {
4090  		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
4091  			icsk->icsk_backoff++;
4092  		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4093  	} else {
4094  		/* If packet was not sent due to local congestion,
4095  		 * Let senders fight for local resources conservatively.
4096  		 */
4097  		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4098  	}
4099  
4100  	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4101  	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4102  }
4103  
tcp_rtx_synack(const struct sock * sk,struct request_sock * req)4104  int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4105  {
4106  	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4107  	struct flowi fl;
4108  	int res;
4109  
4110  	tcp_rsk(req)->txhash = net_tx_rndhash();
4111  	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4112  				  NULL);
4113  	if (!res) {
4114  		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4115  		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4116  		if (unlikely(tcp_passive_fastopen(sk)))
4117  			tcp_sk(sk)->total_retrans++;
4118  		trace_tcp_retransmit_synack(sk, req);
4119  	}
4120  	return res;
4121  }
4122  EXPORT_SYMBOL(tcp_rtx_synack);
4123