• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2004 The Trustees of Indiana University.
2 
3 // Distributed under the Boost Software License, Version 1.0.
4 // (See accompanying file LICENSE_1_0.txt or copy at
5 // http://www.boost.org/LICENSE_1_0.txt)
6 
7 //  Authors: Douglas Gregor
8 //           Andrew Lumsdaine
9 #ifndef BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP
10 #define BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP
11 
12 #include <boost/graph/betweenness_centrality.hpp>
13 #include <boost/graph/graph_traits.hpp>
14 #include <boost/graph/graph_utility.hpp>
15 #include <boost/pending/indirect_cmp.hpp>
16 #include <algorithm>
17 #include <vector>
18 #include <boost/property_map/property_map.hpp>
19 
20 namespace boost
21 {
22 
23 /** Threshold termination function for the betweenness centrality
24  * clustering algorithm.
25  */
26 template < typename T > struct bc_clustering_threshold
27 {
28     typedef T centrality_type;
29 
30     /// Terminate clustering when maximum absolute edge centrality is
31     /// below the given threshold.
bc_clustering_thresholdboost::bc_clustering_threshold32     explicit bc_clustering_threshold(T threshold)
33     : threshold(threshold), dividend(1.0)
34     {
35     }
36 
37     /**
38      * Terminate clustering when the maximum edge centrality is below
39      * the given threshold.
40      *
41      * @param threshold the threshold value
42      *
43      * @param g the graph on which the threshold will be calculated
44      *
45      * @param normalize when true, the threshold is compared against the
46      * normalized edge centrality based on the input graph; otherwise,
47      * the threshold is compared against the absolute edge centrality.
48      */
49     template < typename Graph >
bc_clustering_thresholdboost::bc_clustering_threshold50     bc_clustering_threshold(T threshold, const Graph& g, bool normalize = true)
51     : threshold(threshold), dividend(1.0)
52     {
53         if (normalize)
54         {
55             typename graph_traits< Graph >::vertices_size_type n
56                 = num_vertices(g);
57             dividend = T((n - 1) * (n - 2)) / T(2);
58         }
59     }
60 
61     /** Returns true when the given maximum edge centrality (potentially
62      * normalized) falls below the threshold.
63      */
64     template < typename Graph, typename Edge >
operator ()boost::bc_clustering_threshold65     bool operator()(T max_centrality, Edge, const Graph&)
66     {
67         return (max_centrality / dividend) < threshold;
68     }
69 
70 protected:
71     T threshold;
72     T dividend;
73 };
74 
75 /** Graph clustering based on edge betweenness centrality.
76  *
77  * This algorithm implements graph clustering based on edge
78  * betweenness centrality. It is an iterative algorithm, where in each
79  * step it compute the edge betweenness centrality (via @ref
80  * brandes_betweenness_centrality) and removes the edge with the
81  * maximum betweenness centrality. The @p done function object
82  * determines when the algorithm terminates (the edge found when the
83  * algorithm terminates will not be removed).
84  *
85  * @param g The graph on which clustering will be performed. The type
86  * of this parameter (@c MutableGraph) must be a model of the
87  * VertexListGraph, IncidenceGraph, EdgeListGraph, and Mutable Graph
88  * concepts.
89  *
90  * @param done The function object that indicates termination of the
91  * algorithm. It must be a ternary function object thats accepts the
92  * maximum centrality, the descriptor of the edge that will be
93  * removed, and the graph @p g.
94  *
95  * @param edge_centrality (UTIL/OUT) The property map that will store
96  * the betweenness centrality for each edge. When the algorithm
97  * terminates, it will contain the edge centralities for the
98  * graph. The type of this property map must model the
99  * ReadWritePropertyMap concept. Defaults to an @c
100  * iterator_property_map whose value type is
101  * @c Done::centrality_type and using @c get(edge_index, g) for the
102  * index map.
103  *
104  * @param vertex_index (IN) The property map that maps vertices to
105  * indices in the range @c [0, num_vertices(g)). This type of this
106  * property map must model the ReadablePropertyMap concept and its
107  * value type must be an integral type. Defaults to
108  * @c get(vertex_index, g).
109  */
110 template < typename MutableGraph, typename Done, typename EdgeCentralityMap,
111     typename VertexIndexMap >
betweenness_centrality_clustering(MutableGraph & g,Done done,EdgeCentralityMap edge_centrality,VertexIndexMap vertex_index)112 void betweenness_centrality_clustering(MutableGraph& g, Done done,
113     EdgeCentralityMap edge_centrality, VertexIndexMap vertex_index)
114 {
115     typedef typename property_traits< EdgeCentralityMap >::value_type
116         centrality_type;
117     typedef typename graph_traits< MutableGraph >::edge_iterator edge_iterator;
118     typedef
119         typename graph_traits< MutableGraph >::edge_descriptor edge_descriptor;
120 
121     if (has_no_edges(g))
122         return;
123 
124     // Function object that compares the centrality of edges
125     indirect_cmp< EdgeCentralityMap, std::less< centrality_type > > cmp(
126         edge_centrality);
127 
128     bool is_done;
129     do
130     {
131         brandes_betweenness_centrality(g,
132             edge_centrality_map(edge_centrality)
133                 .vertex_index_map(vertex_index));
134         std::pair< edge_iterator, edge_iterator > edges_iters = edges(g);
135         edge_descriptor e
136             = *max_element(edges_iters.first, edges_iters.second, cmp);
137         is_done = done(get(edge_centrality, e), e, g);
138         if (!is_done)
139             remove_edge(e, g);
140     } while (!is_done && !has_no_edges(g));
141 }
142 
143 /**
144  * \overload
145  */
146 template < typename MutableGraph, typename Done, typename EdgeCentralityMap >
betweenness_centrality_clustering(MutableGraph & g,Done done,EdgeCentralityMap edge_centrality)147 void betweenness_centrality_clustering(
148     MutableGraph& g, Done done, EdgeCentralityMap edge_centrality)
149 {
150     betweenness_centrality_clustering(
151         g, done, edge_centrality, get(vertex_index, g));
152 }
153 
154 /**
155  * \overload
156  */
157 template < typename MutableGraph, typename Done >
betweenness_centrality_clustering(MutableGraph & g,Done done)158 void betweenness_centrality_clustering(MutableGraph& g, Done done)
159 {
160     typedef typename Done::centrality_type centrality_type;
161     std::vector< centrality_type > edge_centrality(num_edges(g));
162     betweenness_centrality_clustering(g, done,
163         make_iterator_property_map(edge_centrality.begin(), get(edge_index, g)),
164         get(vertex_index, g));
165 }
166 
167 } // end namespace boost
168 
169 #endif // BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP
170