• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 ///////////////////////////////////////////////////////////////////////////////
3 //  Copyright 2013 Nikhar Agrawal
4 //  Copyright 2013 Christopher Kormanyos
5 //  Copyright 2014 John Maddock
6 //  Copyright 2013 Paul Bristow
7 //  Distributed under the Boost
8 //  Software License, Version 1.0. (See accompanying file
9 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
10 
11 #ifndef _BOOST_POLYGAMMA_DETAIL_2013_07_30_HPP_
12   #define _BOOST_POLYGAMMA_DETAIL_2013_07_30_HPP_
13 
14 #include <cmath>
15   #include <limits>
16   #include <boost/cstdint.hpp>
17   #include <boost/math/policies/policy.hpp>
18   #include <boost/math/special_functions/bernoulli.hpp>
19   #include <boost/math/special_functions/trunc.hpp>
20   #include <boost/math/special_functions/zeta.hpp>
21   #include <boost/math/special_functions/digamma.hpp>
22   #include <boost/math/special_functions/sin_pi.hpp>
23   #include <boost/math/special_functions/cos_pi.hpp>
24   #include <boost/math/special_functions/pow.hpp>
25   #include <boost/mpl/if.hpp>
26   #include <boost/mpl/int.hpp>
27   #include <boost/static_assert.hpp>
28   #include <boost/type_traits/is_convertible.hpp>
29 
30 #ifdef _MSC_VER
31 #pragma once
32 #pragma warning(push)
33 #pragma warning(disable:4702) // Unreachable code (release mode only warning)
34 #endif
35 
36 namespace boost { namespace math { namespace detail{
37 
38   template<class T, class Policy>
polygamma_atinfinityplus(const int n,const T & x,const Policy & pol,const char * function)39   T polygamma_atinfinityplus(const int n, const T& x, const Policy& pol, const char* function) // for large values of x such as for x> 400
40   {
41      // See http://functions.wolfram.com/GammaBetaErf/PolyGamma2/06/02/0001/
42      BOOST_MATH_STD_USING
43      //
44      // sum       == current value of accumulated sum.
45      // term      == value of current term to be added to sum.
46      // part_term == value of current term excluding the Bernoulli number part
47      //
48      if(n + x == x)
49      {
50         // x is crazy large, just concentrate on the first part of the expression and use logs:
51         if(n == 1) return 1 / x;
52         T nlx = n * log(x);
53         if((nlx < tools::log_max_value<T>()) && (n < (int)max_factorial<T>::value))
54            return ((n & 1) ? 1 : -1) * boost::math::factorial<T>(n - 1) * pow(x, -n);
55         else
56          return ((n & 1) ? 1 : -1) * exp(boost::math::lgamma(T(n), pol) - n * log(x));
57      }
58      T term, sum, part_term;
59      T x_squared = x * x;
60      //
61      // Start by setting part_term to:
62      //
63      // (n-1)! / x^(n+1)
64      //
65      // which is common to both the first term of the series (with k = 1)
66      // and to the leading part.
67      // We can then get to the leading term by:
68      //
69      // part_term * (n + 2 * x) / 2
70      //
71      // and to the first term in the series
72      // (excluding the Bernoulli number) by:
73      //
74      // part_term n * (n + 1) / (2x)
75      //
76      // If either the factorial would overflow,
77      // or the power term underflows, this just gets set to 0 and then we
78      // know that we have to use logs for the initial terms:
79      //
80      part_term = ((n > (int)boost::math::max_factorial<T>::value) && (T(n) * n > tools::log_max_value<T>()))
81         ? T(0) : static_cast<T>(boost::math::factorial<T>(n - 1, pol) * pow(x, -n - 1));
82      if(part_term == 0)
83      {
84         // Either n is very large, or the power term underflows,
85         // set the initial values of part_term, term and sum via logs:
86         part_term = static_cast<T>(boost::math::lgamma(n, pol) - (n + 1) * log(x));
87         sum = exp(part_term + log(n + 2 * x) - boost::math::constants::ln_two<T>());
88         part_term += log(T(n) * (n + 1)) - boost::math::constants::ln_two<T>() - log(x);
89         part_term = exp(part_term);
90      }
91      else
92      {
93         sum = part_term * (n + 2 * x) / 2;
94         part_term *= (T(n) * (n + 1)) / 2;
95         part_term /= x;
96      }
97      //
98      // If the leading term is 0, so is the result:
99      //
100      if(sum == 0)
101         return sum;
102 
103      for(unsigned k = 1;;)
104      {
105         term = part_term * boost::math::bernoulli_b2n<T>(k, pol);
106         sum += term;
107         //
108         // Normal termination condition:
109         //
110         if(fabs(term / sum) < tools::epsilon<T>())
111            break;
112         //
113         // Increment our counter, and move part_term on to the next value:
114         //
115         ++k;
116         part_term *= T(n + 2 * k - 2) * (n - 1 + 2 * k);
117         part_term /= (2 * k - 1) * 2 * k;
118         part_term /= x_squared;
119         //
120         // Emergency get out termination condition:
121         //
122         if(k > policies::get_max_series_iterations<Policy>())
123         {
124            return policies::raise_evaluation_error(function, "Series did not converge, closest value was %1%", sum, pol);
125         }
126      }
127 
128      if((n - 1) & 1)
129         sum = -sum;
130 
131      return sum;
132   }
133 
134   template<class T, class Policy>
polygamma_attransitionplus(const int n,const T & x,const Policy & pol,const char * function)135   T polygamma_attransitionplus(const int n, const T& x, const Policy& pol, const char* function)
136   {
137     // See: http://functions.wolfram.com/GammaBetaErf/PolyGamma2/16/01/01/0017/
138 
139     // Use N = (0.4 * digits) + (4 * n) for target value for x:
140     BOOST_MATH_STD_USING
141     const int d4d  = static_cast<int>(0.4F * policies::digits_base10<T, Policy>());
142     const int N = d4d + (4 * n);
143     const int m    = n;
144     const int iter = N - itrunc(x);
145 
146     if(iter > (int)policies::get_max_series_iterations<Policy>())
147        return policies::raise_evaluation_error<T>(function, ("Exceeded maximum series evaluations evaluating at n = " + boost::lexical_cast<std::string>(n) + " and x = %1%").c_str(), x, pol);
148 
149     const int minus_m_minus_one = -m - 1;
150 
151     T z(x);
152     T sum0(0);
153     T z_plus_k_pow_minus_m_minus_one(0);
154 
155     // Forward recursion to larger x, need to check for overflow first though:
156     if(log(z + iter) * minus_m_minus_one > -tools::log_max_value<T>())
157     {
158        for(int k = 1; k <= iter; ++k)
159        {
160           z_plus_k_pow_minus_m_minus_one = pow(z, minus_m_minus_one);
161           sum0 += z_plus_k_pow_minus_m_minus_one;
162           z += 1;
163        }
164        sum0 *= boost::math::factorial<T>(n);
165     }
166     else
167     {
168        for(int k = 1; k <= iter; ++k)
169        {
170           T log_term = log(z) * minus_m_minus_one + boost::math::lgamma(T(n + 1), pol);
171           sum0 += exp(log_term);
172           z += 1;
173        }
174     }
175     if((n - 1) & 1)
176        sum0 = -sum0;
177 
178     return sum0 + polygamma_atinfinityplus(n, z, pol, function);
179   }
180 
181   template <class T, class Policy>
polygamma_nearzero(int n,T x,const Policy & pol,const char * function)182   T polygamma_nearzero(int n, T x, const Policy& pol, const char* function)
183   {
184      BOOST_MATH_STD_USING
185      //
186      // If we take this expansion for polygamma: http://functions.wolfram.com/06.15.06.0003.02
187      // and substitute in this expression for polygamma(n, 1): http://functions.wolfram.com/06.15.03.0009.01
188      // we get an alternating series for polygamma when x is small in terms of zeta functions of
189      // integer arguments (which are easy to evaluate, at least when the integer is even).
190      //
191      // In order to avoid spurious overflow, save the n! term for later, and rescale at the end:
192      //
193      T scale = boost::math::factorial<T>(n, pol);
194      //
195      // "factorial_part" contains everything except the zeta function
196      // evaluations in each term:
197      //
198      T factorial_part = 1;
199      //
200      // "prefix" is what we'll be adding the accumulated sum to, it will
201      // be n! / z^(n+1), but since we're scaling by n! it's just
202      // 1 / z^(n+1) for now:
203      //
204      T prefix = pow(x, n + 1);
205      if(prefix == 0)
206         return boost::math::policies::raise_overflow_error<T>(function, 0, pol);
207      prefix = 1 / prefix;
208      //
209      // First term in the series is necessarily < zeta(2) < 2, so
210      // ignore the sum if it will have no effect on the result anyway:
211      //
212      if(prefix > 2 / policies::get_epsilon<T, Policy>())
213         return ((n & 1) ? 1 : -1) *
214          (tools::max_value<T>() / prefix < scale ? policies::raise_overflow_error<T>(function, 0, pol) : prefix * scale);
215      //
216      // As this is an alternating series we could accelerate it using
217      // "Convergence Acceleration of Alternating Series",
218      // Henri Cohen, Fernando Rodriguez Villegas, and Don Zagier, Experimental Mathematics, 1999.
219      // In practice however, it appears not to make any difference to the number of terms
220      // required except in some edge cases which are filtered out anyway before we get here.
221      //
222      T sum = prefix;
223      for(unsigned k = 0;;)
224      {
225         // Get the k'th term:
226         T term = factorial_part * boost::math::zeta(T(k + n + 1), pol);
227         sum += term;
228         // Termination condition:
229         if(fabs(term) < fabs(sum * boost::math::policies::get_epsilon<T, Policy>()))
230            break;
231         //
232         // Move on k and factorial_part:
233         //
234         ++k;
235         factorial_part *= (-x * (n + k)) / k;
236         //
237         // Last chance exit:
238         //
239         if(k > policies::get_max_series_iterations<Policy>())
240            return policies::raise_evaluation_error<T>(function, "Series did not converge, best value is %1%", sum, pol);
241      }
242      //
243      // We need to multiply by the scale, at each stage checking for overflow:
244      //
245      if(boost::math::tools::max_value<T>() / scale < sum)
246         return boost::math::policies::raise_overflow_error<T>(function, 0, pol);
247      sum *= scale;
248      return n & 1 ? sum : T(-sum);
249   }
250 
251   //
252   // Helper function which figures out which slot our coefficient is in
253   // given an angle multiplier for the cosine term of power:
254   //
255   template <class Table>
dereference_table(Table & table,unsigned row,unsigned power)256   typename Table::value_type::reference dereference_table(Table& table, unsigned row, unsigned power)
257   {
258      return table[row][power / 2];
259   }
260 
261 
262 
263   template <class T, class Policy>
poly_cot_pi(int n,T x,T xc,const Policy & pol,const char * function)264   T poly_cot_pi(int n, T x, T xc, const Policy& pol, const char* function)
265   {
266      BOOST_MATH_STD_USING
267      // Return n'th derivative of cot(pi*x) at x, these are simply
268      // tabulated for up to n = 9, beyond that it is possible to
269      // calculate coefficients as follows:
270      //
271      // The general form of each derivative is:
272      //
273      // pi^n * SUM{k=0, n} C[k,n] * cos^k(pi * x) * csc^(n+1)(pi * x)
274      //
275      // With constant C[0,1] = -1 and all other C[k,n] = 0;
276      // Then for each k < n+1:
277      // C[k-1, n+1]  -= k * C[k, n];
278      // C[k+1, n+1]  += (k-n-1) * C[k, n];
279      //
280      // Note that there are many different ways of representing this derivative thanks to
281      // the many trigonometric identies available.  In particular, the sum of powers of
282      // cosines could be replaced by a sum of cosine multiple angles, and indeed if you
283      // plug the derivative into Mathematica this is the form it will give.  The two
284      // forms are related via the Chebeshev polynomials of the first kind and
285      // T_n(cos(x)) = cos(n x).  The polynomial form has the great advantage that
286      // all the cosine terms are zero at half integer arguments - right where this
287      // function has it's minimum - thus avoiding cancellation error in this region.
288      //
289      // And finally, since every other term in the polynomials is zero, we can save
290      // space by only storing the non-zero terms.  This greatly complexifies
291      // subscripting the tables in the calculation, but halves the storage space
292      // (and complexity for that matter).
293      //
294      T s = fabs(x) < fabs(xc) ? boost::math::sin_pi(x, pol) : boost::math::sin_pi(xc, pol);
295      T c = boost::math::cos_pi(x, pol);
296      switch(n)
297      {
298      case 1:
299         return -constants::pi<T, Policy>() / (s * s);
300      case 2:
301      {
302         return 2 * constants::pi<T, Policy>() * constants::pi<T, Policy>() * c / boost::math::pow<3>(s, pol);
303      }
304      case 3:
305      {
306         int P[] = { -2, -4 };
307         return boost::math::pow<3>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<4>(s, pol);
308      }
309      case 4:
310      {
311         int P[] = { 16, 8 };
312         return boost::math::pow<4>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<5>(s, pol);
313      }
314      case 5:
315      {
316         int P[] = { -16, -88, -16 };
317         return boost::math::pow<5>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<6>(s, pol);
318      }
319      case 6:
320      {
321         int P[] = { 272, 416, 32 };
322         return boost::math::pow<6>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<7>(s, pol);
323      }
324      case 7:
325      {
326         int P[] = { -272, -2880, -1824, -64 };
327         return boost::math::pow<7>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<8>(s, pol);
328      }
329      case 8:
330      {
331         int P[] = { 7936, 24576, 7680, 128 };
332         return boost::math::pow<8>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<9>(s, pol);
333      }
334      case 9:
335      {
336         int P[] = { -7936, -137216, -185856, -31616, -256 };
337         return boost::math::pow<9>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<10>(s, pol);
338      }
339      case 10:
340      {
341         int P[] = { 353792, 1841152, 1304832, 128512, 512 };
342         return boost::math::pow<10>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<11>(s, pol);
343      }
344      case 11:
345      {
346         int P[] = { -353792, -9061376, -21253376, -8728576, -518656, -1024};
347         return boost::math::pow<11>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<12>(s, pol);
348      }
349      case 12:
350      {
351         int P[] = { 22368256, 175627264, 222398464, 56520704, 2084864, 2048 };
352         return boost::math::pow<12>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<13>(s, pol);
353      }
354 #ifndef BOOST_NO_LONG_LONG
355      case 13:
356      {
357         long long P[] = { -22368256LL, -795300864LL, -2868264960LL, -2174832640LL, -357888000LL, -8361984LL, -4096 };
358         return boost::math::pow<13>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<14>(s, pol);
359      }
360      case 14:
361      {
362         long long P[] = { 1903757312LL, 21016670208LL, 41731645440LL, 20261765120LL, 2230947840LL, 33497088LL, 8192 };
363         return boost::math::pow<14>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<15>(s, pol);
364      }
365      case 15:
366      {
367         long long P[] = { -1903757312LL, -89702612992LL, -460858269696LL, -559148810240LL, -182172651520LL, -13754155008LL, -134094848LL, -16384 };
368         return boost::math::pow<15>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<16>(s, pol);
369      }
370      case 16:
371      {
372         long long P[] = { 209865342976LL, 3099269660672LL, 8885192097792LL, 7048869314560LL, 1594922762240LL, 84134068224LL, 536608768LL, 32768 };
373         return boost::math::pow<16>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<17>(s, pol);
374      }
375      case 17:
376      {
377         long long P[] = { -209865342976LL, -12655654469632LL, -87815735738368LL, -155964390375424LL, -84842998005760LL, -13684856848384LL, -511780323328LL, -2146926592LL, -65536 };
378         return boost::math::pow<17>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<18>(s, pol);
379      }
380      case 18:
381      {
382         long long P[] = { 29088885112832LL, 553753414467584LL, 2165206642589696LL, 2550316668551168LL, 985278548541440LL, 115620218667008LL, 3100738912256LL, 8588754944LL, 131072 };
383         return boost::math::pow<18>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<19>(s, pol);
384      }
385      case 19:
386      {
387         long long P[] = { -29088885112832LL, -2184860175433728LL, -19686087844429824LL, -48165109676113920LL, -39471306959486976LL, -11124607890751488LL, -965271355195392LL, -18733264797696LL, -34357248000LL, -262144 };
388         return boost::math::pow<19>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<20>(s, pol);
389      }
390      case 20:
391      {
392         long long P[] = { 4951498053124096LL, 118071834535526400LL, 603968063567560704LL, 990081991141490688LL, 584901762421358592LL, 122829335169859584LL, 7984436548730880LL, 112949304754176LL, 137433710592LL, 524288 };
393         return boost::math::pow<20>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<21>(s, pol);
394      }
395 #endif
396      }
397 
398      //
399      // We'll have to compute the coefficients up to n,
400      // complexity is O(n^2) which we don't worry about for now
401      // as the values are computed once and then cached.
402      // However, if the final evaluation would have too many
403      // terms just bail out right away:
404      //
405      if((unsigned)n / 2u > policies::get_max_series_iterations<Policy>())
406         return policies::raise_evaluation_error<T>(function, "The value of n is so large that we're unable to compute the result in reasonable time, best guess is %1%", 0, pol);
407 #ifdef BOOST_HAS_THREADS
408      static boost::detail::lightweight_mutex m;
409      boost::detail::lightweight_mutex::scoped_lock l(m);
410 #endif
411      static int digits = tools::digits<T>();
412      static std::vector<std::vector<T> > table(1, std::vector<T>(1, T(-1)));
413 
414      int current_digits = tools::digits<T>();
415 
416      if(digits != current_digits)
417      {
418         // Oh my... our precision has changed!
419         table = std::vector<std::vector<T> >(1, std::vector<T>(1, T(-1)));
420         digits = current_digits;
421      }
422 
423      int index = n - 1;
424 
425      if(index >= (int)table.size())
426      {
427         for(int i = (int)table.size() - 1; i < index; ++i)
428         {
429            int offset = i & 1; // 1 if the first cos power is 0, otherwise 0.
430            int sin_order = i + 2;  // order of the sin term
431            int max_cos_order = sin_order - 1;  // largest order of the polynomial of cos terms
432            int max_columns = (max_cos_order - offset) / 2;  // How many entries there are in the current row.
433            int next_offset = offset ? 0 : 1;
434            int next_max_columns = (max_cos_order + 1 - next_offset) / 2;  // How many entries there will be in the next row
435            table.push_back(std::vector<T>(next_max_columns + 1, T(0)));
436 
437            for(int column = 0; column <= max_columns; ++column)
438            {
439               int cos_order = 2 * column + offset;  // order of the cosine term in entry "column"
440               BOOST_ASSERT(column < (int)table[i].size());
441               BOOST_ASSERT((cos_order + 1) / 2 < (int)table[i + 1].size());
442               table[i + 1][(cos_order + 1) / 2] += ((cos_order - sin_order) * table[i][column]) / (sin_order - 1);
443               if(cos_order)
444                 table[i + 1][(cos_order - 1) / 2] += (-cos_order * table[i][column]) / (sin_order - 1);
445            }
446         }
447 
448      }
449      T sum = boost::math::tools::evaluate_even_polynomial(&table[index][0], c, table[index].size());
450      if(index & 1)
451         sum *= c;  // First coefficient is order 1, and really an odd polynomial.
452      if(sum == 0)
453         return sum;
454      //
455      // The remaining terms are computed using logs since the powers and factorials
456      // get real large real quick:
457      //
458      T power_terms = n * log(boost::math::constants::pi<T>());
459      if(s == 0)
460         return sum * boost::math::policies::raise_overflow_error<T>(function, 0, pol);
461      power_terms -= log(fabs(s)) * (n + 1);
462      power_terms += boost::math::lgamma(T(n));
463      power_terms += log(fabs(sum));
464 
465      if(power_terms > boost::math::tools::log_max_value<T>())
466         return sum * boost::math::policies::raise_overflow_error<T>(function, 0, pol);
467 
468      return exp(power_terms) * ((s < 0) && ((n + 1) & 1) ? -1 : 1) * boost::math::sign(sum);
469   }
470 
471   template <class T, class Policy>
472   struct polygamma_initializer
473   {
474      struct init
475      {
initboost::math::detail::polygamma_initializer::init476         init()
477         {
478            // Forces initialization of our table of coefficients and mutex:
479            boost::math::polygamma(30, T(-2.5f), Policy());
480         }
force_instantiateboost::math::detail::polygamma_initializer::init481         void force_instantiate()const{}
482      };
483      static const init initializer;
force_instantiateboost::math::detail::polygamma_initializer484      static void force_instantiate()
485      {
486         initializer.force_instantiate();
487      }
488   };
489 
490   template <class T, class Policy>
491   const typename polygamma_initializer<T, Policy>::init polygamma_initializer<T, Policy>::initializer;
492 
493   template<class T, class Policy>
polygamma_imp(const int n,T x,const Policy & pol)494   inline T polygamma_imp(const int n, T x, const Policy &pol)
495   {
496     BOOST_MATH_STD_USING
497     static const char* function = "boost::math::polygamma<%1%>(int, %1%)";
498     polygamma_initializer<T, Policy>::initializer.force_instantiate();
499     if(n < 0)
500        return policies::raise_domain_error<T>(function, "Order must be >= 0, but got %1%", static_cast<T>(n), pol);
501     if(x < 0)
502     {
503        if(floor(x) == x)
504        {
505           //
506           // Result is infinity if x is odd, and a pole error if x is even.
507           //
508           if(lltrunc(x) & 1)
509              return policies::raise_overflow_error<T>(function, 0, pol);
510           else
511              return policies::raise_pole_error<T>(function, "Evaluation at negative integer %1%", x, pol);
512        }
513        T z = 1 - x;
514        T result = polygamma_imp(n, z, pol) + constants::pi<T, Policy>() * poly_cot_pi(n, z, x, pol, function);
515        return n & 1 ? T(-result) : result;
516     }
517     //
518     // Limit for use of small-x-series is chosen
519     // so that the series doesn't go too divergent
520     // in the first few terms.  Ordinarily this
521     // would mean setting the limit to ~ 1 / n,
522     // but we can tolerate a small amount of divergence:
523     //
524     T small_x_limit = (std::min)(T(T(5) / n), T(0.25f));
525     if(x < small_x_limit)
526     {
527       return polygamma_nearzero(n, x, pol, function);
528     }
529     else if(x > 0.4F * policies::digits_base10<T, Policy>() + 4.0f * n)
530     {
531       return polygamma_atinfinityplus(n, x, pol, function);
532     }
533     else if(x == 1)
534     {
535        return (n & 1 ? 1 : -1) * boost::math::factorial<T>(n, pol) * boost::math::zeta(T(n + 1), pol);
536     }
537     else if(x == 0.5f)
538     {
539        T result = (n & 1 ? 1 : -1) * boost::math::factorial<T>(n, pol) * boost::math::zeta(T(n + 1), pol);
540        if(fabs(result) >= ldexp(tools::max_value<T>(), -n - 1))
541           return boost::math::sign(result) * policies::raise_overflow_error<T>(function, 0, pol);
542        result *= ldexp(T(1), n + 1) - 1;
543        return result;
544     }
545     else
546     {
547       return polygamma_attransitionplus(n, x, pol, function);
548     }
549   }
550 
551 } } } // namespace boost::math::detail
552 
553 #ifdef _MSC_VER
554 #pragma warning(pop)
555 #endif
556 
557 #endif // _BOOST_POLYGAMMA_DETAIL_2013_07_30_HPP_
558 
559