• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1[/license
2
3Boost.Bimap
4
5Copyright (c) 2006-2007 Matias Capeletto
6
7Distributed under the Boost Software License, Version 1.0.
8(See accompanying file LICENSE_1_0.txt or copy at
9http://www.boost.org/LICENSE_1_0.txt)
10
11]
12
13[/ QuickBook Document version 1.4 ]
14
15[section set_of Reference]
16
17[section Header "boost/bimap/set_of.hpp" synopsis]
18
19    namespace boost {
20    namespace bimaps {
21
22
23    template
24    <
25        class KeyType,
26        class KeyCompare = std::less< KeyType >
27    >
28    struct set_of;
29
30
31    template
32    <
33        class KeyCompare = std::less< _relation >
34    >
35    struct set_of_relation;
36
37
38    } // namespace bimap
39    } // namespace boost
40
41
42[endsect]
43
44[section Header "boost/bimap/multiset_of.hpp" synopsis]
45
46
47    namespace boost {
48    namespace bimaps {
49
50
51    template
52    <
53        class KeyType,
54        class KeyCompare = std::less< KeyType >
55    >
56    struct multiset_of;
57
58
59    template
60    <
61        class KeyCompare = std::less< _relation >
62    >
63    struct multiset_of_relation;
64
65
66    } // namespace bimap
67    } // namespace boost
68
69
70[endsect]
71
72
73[section Collection type specifiers set_of and multiset_of]
74
75These collection type specifiers allow for insertion of sets disallowing or
76allowing duplicate elements, respectively. The syntaxes of `set_of` and
77`multiset_of` coincide, so they are described together.
78
79[endsect]
80
81
82[section \[multi\]set_of Views]
83
84A \[multi\]set_of set view is a std::\[multi\]set signature-compatible
85interface to the underlying heap of elements contained in a `bimap`.
86
87There are two variants: set_of, which does not allow duplicate elements
88(with respect to its associated comparison predicate) and multiset_of,
89which does accept those duplicates. The interface of these two variants
90is largely the same, so they are documented together with their
91differences explicitly noted where they exist.
92
93If you look the bimap from a side, you will use a map view, and if you
94look at it as a whole, you will be using a set view.
95
96
97
98    namespace boost {
99    namespace bimaps {
100    namespace views {
101
102    template< ``['-implementation defined parameter list-]`` >
103    class ``['-implementation defined view name-]``
104    {
105        public:
106
107        typedef ``['-unspecified-]`` key_type;
108		typedef ``['-unspecified-]`` value_type;
109        typedef ``['-unspecified-]`` key_compare;
110        typedef ``['-unspecified-]`` value_compare;
111        typedef ``['-unspecified-]`` allocator_type;
112        typedef ``['-unspecified-]`` reference;
113        typedef ``['-unspecified-]`` const_reference;
114        typedef ``['-unspecified-]`` iterator;
115        typedef ``['-unspecified-]`` const_iterator;
116        typedef ``['-unspecified-]`` size_type;
117        typedef ``['-unspecified-]`` difference_type;
118        typedef ``['-unspecified-]`` pointer;
119        typedef ``['-unspecified-]`` const_pointer;
120        typedef ``['-unspecified-]`` reverse_iterator;
121        typedef ``['-unspecified-]`` const_reverse_iterator;
122
123        typedef ``['-unspecified-]`` info_type;
124
125        this_type & operator=(const this_type & x);
126
127        allocator_type get_allocator() const;
128
129        // iterators
130
131        iterator               begin();
132        const_iterator         begin() const;
133
134        iterator               end();
135        const_iterator         end() const;
136
137        reverse_iterator       rbegin();
138        const_reverse_iterator rbegin() const;
139
140        reverse_iterator       rend();
141        const_reverse_iterator rend() const;
142
143        // capacity
144
145        bool      empty() const;
146
147        size_type size() const;
148
149        size_type max_size() const;
150
151        // modifiers
152
153        std::pair<iterator,bool> ``[link reference_set_of_insert_value insert]``(const value_type & x);
154
155        iterator ``[link reference_set_of_insert_iterator_value insert]``(iterator position, const value_type & x);
156
157        template< class InputIterator>
158        void ``[link reference_set_of_insert_iterator_iterator insert]``(InputIterator first,  InputIterator last);
159
160        iterator ``[link reference_set_of_erase_iterator erase]``(iterator position);
161
162        template< class CompatibleKey >
163        size_type ``[link reference_set_of_erase_key erase]``(const CompatibleKey & x);
164
165        iterator ``[link reference_set_of_erase_iterator_iterator erase]``(iterator first,  iterator last);
166
167        bool ``[link reference_set_of_replace_iterator_value replace]``(iterator position, const value_type& x);
168
169        // Only in map views
170        // {
171
172          template< class CompatibleKey >
173          bool ``[link reference_set_of_replace_key_iterator_key replace_key]``(iterator position, const CompatibleKey & x);
174
175          template< class CompatibleData >
176          bool ``[link reference_set_of_replace_data_iterator_data replace_data]``(iterator position, const CompatibleData & x);
177
178          template< class KeyModifier >
179          bool ``[link reference_set_of_modify_key_iterator_modifier modify_key]``(iterator position, KeyModifier mod);
180
181          template< class DataModifier >
182          bool ``[link reference_set_of_modify_data_iterator_modifier modify_data]``(iterator position, DataModifier mod);
183
184        // }
185
186        void swap(this_type & x);
187
188        void clear();
189
190        // observers
191
192        key_compare    key_comp() const;
193
194        value_compare  value_comp() const;
195
196        // set operations
197
198        template< class CompatibleKey >
199        iterator ``[link reference_set_of_find_key find]``(const CompatibleKey & x);
200
201        template< class CompatibleKey >
202        const_iterator ``[link reference_set_of_find_key find]``(const CompatibleKey & x) const;
203
204
205        template< class CompatibleKey >
206        size_type ``[link reference_set_of_count_key count]``(const CompatibleKey & x) const;
207
208
209        template< class CompatibleKey >
210        iterator ``[link reference_set_of_lower_bound_key lower_bound]``(const CompatibleKey & x);
211
212        template< class CompatibleKey >
213        const_iterator ``[link reference_set_of_lower_bound_key lower_bound]``(const CompatibleKey & x) const;
214
215
216        template< class CompatibleKey >
217        iterator ``[link reference_set_of_upper_bound_key upper_bound]``(const CompatibleKey & x);
218
219        template< class CompatibleKey >
220        const_iterator ``[link reference_set_of_upper_bound_key upper_bound]``(const CompatibleKey & x) const;
221
222
223        template< class CompatibleKey >
224        std::pair<iterator,iterator>
225            ``[link reference_set_of_equal_range_key equal_range]``(const CompatibleKey & x);
226
227        template< class CompatibleKey >
228        std::pair<const_iterator,const_iterator>
229            ``[link reference_set_of_equal_range_key equal_range]``(const CompatibleKey & x) const;
230
231        // Only in maps views
232        // {
233
234        template< class LowerBounder, class UpperBounder>
235        std::pair<iterator,iterator> ``[link reference_set_of_range_lower_upper range]``(
236            LowerBounder lower, UpperBounder upper);
237
238        template< class LowerBounder, class UpperBounder>
239        std::pair<const_iterator,const_iterator> ``[link reference_set_of_range_lower_upper range]``(
240            LowerBounder lower, UpperBounder upper) const;
241
242        typedef ``['-unspecified-]`` mapped_type;
243        typedef ``['-unspecified-]`` data_type; // Equal to mapped_type
244
245          // Only in for `set_of` collection type
246          // {
247
248          template< class CompatibleKey >
249          const mapped_type & ``[link reference_set_of_at_key_const at]``(const CompatibleKey & k) const;
250
251            // Only if the other collection type is mutable
252            // {
253
254            template< class CompatibleKey >
255            mapped_type & ``[link reference_set_of_operator_bracket_key operator\[\]]``(const CompatibleKey & k);
256
257            template< class CompatibleKey >
258            mapped_type & ``[link reference_set_of_at_key at]``(const CompatibleKey & k);
259
260            // }
261
262            // Only if info_hook is used
263            // {
264
265            template< class CompatibleKey >
266            info_type & ``[link reference_set_of_info_at_key info_at]``(const CompatibleKey & k);
267
268            template< class CompatibleKey >
269            const info_type & ``[link reference_set_of_info_at_key info_at]``(const CompatibleKey & k) const;
270
271            // }
272
273          // }
274
275        // }
276    };
277
278    // view comparison
279
280    bool operator==(const this_type & v1, const this_type & v2 );
281    bool operator< (const this_type & v1, const this_type & v2 );
282    bool operator!=(const this_type & v1, const this_type & v2 );
283    bool operator> (const this_type & v1, const this_type & v2 );
284    bool operator>=(const this_type & v1, const this_type & v2 );
285    bool operator<=(const this_type & v1, const this_type & v2 );
286
287    } // namespace views
288    } // namespace bimap
289    } // namespace boost
290
291
292
293[/ Functions that may be implemented some day
294
295        template< class Modifier>
296        bool ``[link reference_set_of_modify_iterator_modifier modify]``(iterator position, Modifier mod);
297
298        template< class CompatibleKey, class CompatibleCompare >
299        iterator find(const CompatibleKey & x,
300                      const CompatibleCompare & comp);
301
302        template< class CompatibleKey, class CompatibleCompare >
303        const_iterator find(const CompatibleKey & x,
304                            const CompatibleCompare & comp) const;
305
306        template< class CompatibleKey, class CompatibleCompare >
307        size_type count(const CompatibleKey & x,
308                        const CompatibleCompare & comp) const;
309
310        template< class CompatibleKey, class CompatibleCompare >
311        iterator lower_bound(const CompatibleKey & x,
312                             const CompatibleCompare & comp);
313
314        template< class CompatibleKey, class CompatibleCompare >
315        const_iterator lower_bound(const CompatibleKey & x,
316                                   const CompatibleCompare & comp) const;
317
318        template< class CompatibleKey, class CompatibleCompare >
319        iterator upper_bound(const CompatibleKey & x,
320                             const CompatibleCompare & comp);
321
322        template< class CompatibleKey, class CompatibleCompare >
323        const_iterator upper_bound(const CompatibleKey & x,
324                                   const CompatibleCompare & comp) const;
325
326        template< class CompatibleKey, class CompatibleCompare >
327        std::pair<iterator,iterator> equal_range(
328            const CompatibleKey & x, const CompatibleCompare & comp);
329
330        template< class CompatibleKey, class CompatibleCompare >
331        std::pair<const_iterator,const_iterator> equal_range(
332            const CompatibleKey & x, const CompatibleCompare & comp) const;
333
334]
335
336
337In the case of a `bimap< {multi}set_of<Left>, ... >`
338
339In the set view:
340
341    typedef signature-compatible with relation<       Left, ... > key_type;
342    typedef signature-compatible with relation< const Left, ... > value_type;
343
344In the left map view:
345
346    typedef  Left  key_type;
347    typedef  ...   mapped_type;
348
349    typedef signature-compatible with std::pair< const Left, ... > value_type;
350
351In the right map view:
352
353    typedef  ...  key_type;
354    typedef  Left mapped_type;
355
356    typedef signature-compatible with std::pair< ... ,const Left > value_type;
357
358
359[#set_of_complexity_signature]
360
361[section Complexity signature]
362
363Here and in the descriptions of operations of this view, we adopt the
364scheme outlined in the [link complexity_signature_explanation complexity signature section].
365The complexity signature of \[multi\]set_of view is:
366
367* copying: `c(n) = n * log(n)`,
368* insertion: `i(n) = log(n)`,
369* hinted insertion: `h(n) = 1` (constant) if the hint element precedes the point of
370insertion, `h(n) = log(n)` otherwise,
371* deletion: `d(n) = 1` (amortized constant),
372* replacement: `r(n) = 1` (constant) if the element position does not change,
373`r(n) = log(n)` otherwise,
374* modifying: `m(n) = 1` (constant) if the element position does not change,
375`m(n) = log(n)` otherwise.
376
377[endsect]
378
379[section Instantiation types]
380
381Set views are instantiated internally to a `bimap`.
382Instantiations are dependent on the following types:
383
384* `Value` from the set specifier,
385* `Allocator` from `bimap`,
386* `Compare` from the set specifier.
387
388`Compare` is a __SGI_STRICT_WEAK_ORDERING__ on elements of `Value`.
389
390[endsect]
391
392[section Constructors, copy and assignment]
393
394Set views do not have public constructors or destructors.
395Assignment, on the other hand, is provided.
396
397    this_type & operator=(const this_type & x);
398
399* [*Effects: ] `a = b;`
400where a and b are the `bimap` objects to which `*this` and x
401belong, respectively.
402* [*Returns: ] `*this`.
403
404
405
406[endsect]
407
408[section Modifiers]
409
410[#reference_set_of_insert_value]
411
412    std::pair<iterator,bool> insert(const value_type & x);
413
414* [*Effects:] Inserts `x` into the `bimap` to which the set view belongs if
415    * the set view is non-unique OR no other element with equivalent key exists,
416    * AND insertion is allowed by the other set specifications the `bimap`.
417* [*Returns:] The return value is a pair `p`. `p.second` is `true` if and only if insertion
418took place. On successful insertion, `p.first` points to the element inserted;
419otherwise, `p.first` points to an element that caused the insertion to be banned.
420Note that more than one element can be causing insertion not to be allowed.
421* [link set_of_complexity_signature
422[*Complexity:]] O(I(n)).
423* [*Exception safety:] Strong.
424
425
426[#reference_set_of_insert_iterator_value]
427
428    iterator insert(iterator position, const value_type & x);
429
430* [*Requires: ] `position` is a valid iterator of the view.
431* [*Effects: ] `position` is used as a hint to improve the efficiency of the operation. Inserts `x` into the `bimap` to which the view belongs if
432    * the set view is non-unique OR no other element with equivalent key exists,
433    * AND insertion is allowed by all other views of the `bimap`.
434* [*Returns:] On successful insertion, an iterator to the newly inserted
435element. Otherwise, an iterator to an element that caused the insertion to be
436banned. Note that more than one element can be causing insertion not to be allowed.
437* [link set_of_complexity_signature
438[*Complexity:]] O(H(n)).
439* [*Exception safety:] Strong.
440
441
442[#reference_set_of_insert_iterator_iterator]
443
444    template< class InputIterator >
445    void insert(InputIterator first, InputIterator last);
446
447* [*Requires: ] `InputIterator` is a model of __SGI_INPUT_ITERATOR__ over elements of
448type `value_type` or a type convertible to value_type. `first` and `last` are not
449iterators into any view of the `bimap` to which this index
450belongs. `last` is reachable from `first`.
451* [*Effects: ]
452`iterator hint = end()`;
453`while( first != last ) hint = insert( hint, *first++ );`
454* [link set_of_complexity_signature
455[*Complexity:]] O(m*H(n+m)), where m is the number of elements in
456`[first, last)`.
457* [*Exception safety:] Basic.
458
459
460[#reference_set_of_erase_iterator]
461
462    iterator erase(iterator position);
463
464* [*Requires: ] `position` is a valid dereferenceable iterator if the set view.
465* [*Effects:] Deletes the element pointed to by `position`.
466* [*Returns:] An iterator pointing to the element immediately following
467the one that was deleted, or `end()` if no such element exists.
468* [link set_of_complexity_signature
469[*Complexity:]] O(D(n)).
470* [*Exception safety:] nothrow.
471
472
473[#reference_set_of_erase_key]
474
475    template< class CompatibleKey >
476    size_type erase(const CompatibleKey & x);
477
478* [*Requires: ] `CompatibleKey` is a compatible key of `key_compare`.
479* [*Effects:] Deletes the elements with key equivalent to `x`.
480* [*Returns:] Number of elements deleted.
481* [link set_of_complexity_signature
482[*Complexity:]] O(log(n) + m*D(n)), where m is the number of elements deleted.
483* [*Exception safety:] Basic.
484
485
486[#reference_set_of_erase_iterator_iterator]
487
488    iterator erase(iterator first, iterator last);
489
490* [*Requires: ] `[first,last)` is a valid range of the view.
491* [*Effects:] Deletes the elements in `[first,last)`.
492* [*Returns:] last.
493* [link set_of_complexity_signature
494[*Complexity:]] O(log(n) + m*D(n)), where m is the number of elements
495in `[first,last)`.
496* [*Exception safety:] nothrow.
497
498
499[#reference_set_of_replace_iterator_value]
500
501    bool replace(iterator position, const value_type& x);
502
503* [*Requires: ] `position` is a valid dereferenceable iterator of the set view.
504* [*Effects:] Assigns the value `x` to the element pointed to by `position` into
505the `bimap` to which the set view belongs if, for the value `x`
506    * the set view is non-unique OR no other element with equivalent key exists
507(except possibly `*position`),
508    * AND replacing is allowed by all other views of the `bimap`.
509* [*Postconditions:] Validity of position is preserved in all cases.
510* [*Returns: ] `true` if the replacement took place, `false` otherwise.
511* [link set_of_complexity_signature
512[*Complexity:]] O(R(n)).
513* [*Exception safety:] Strong. If an exception is thrown by some user-provided
514operation, the `bimap` to which the set view belongs remains in
515its original state.
516
517
518[#reference_set_of_replace_key_iterator_key]
519
520    template< class CompatibleKey >
521    bool replace_key(iterator position, const CompatibleKey & x);
522
523* [*Requires: ] `position` is a valid dereferenceable iterator of the set view.
524`CompatibleKey` can be assigned to `key_type`.
525* [*Effects:] Assigns the value `x` to `e.first`, where `e` is the element pointed
526to by `position` into the `bimap` to which the set view belongs if,
527    * the map view is non-unique OR no other element with equivalent key exists
528(except possibly `*position`),
529    * AND replacing is allowed by all other views of the `bimap`.
530* [*Postconditions:] Validity of position is preserved in all cases.
531* [*Returns: ] `true` if the replacement took place, `false` otherwise.
532* [link set_of_complexity_signature
533[*Complexity:]] O(R(n)).
534* [*Exception safety:] Strong. If an exception is thrown by some user-provided
535operation, the `bimap` to which the set view belongs remains in
536its original state.
537
538
539[#reference_set_of_replace_data_iterator_data]
540
541    template< class CompatibleData >
542    bool replace_data(iterator position, const CompatibleData & x);
543
544* [*Requires: ] `position` is a valid dereferenceable iterator of the set view.
545`CompatibleKey` can be assigned to `mapped_type`.
546* [*Effects:] Assigns the value `x` to `e.second`, where `e` is the element pointed
547to by `position` into the `bimap` to which the set view belongs if,
548    * the map view is non-unique OR no other element with equivalent key exists
549(except possibly `*position`),
550    * AND replacing is allowed by all other views of the `bimap`.
551* [*Postconditions:] Validity of position is preserved in all cases.
552* [*Returns: ] `true` if the replacement took place, `false` otherwise.
553* [link set_of_complexity_signature
554[*Complexity:]] O(R(n)).
555* [*Exception safety:] Strong. If an exception is thrown by some user-provided
556operation, the `bimap` to which the set view belongs remains in
557its original state.
558
559
560[#reference_set_of_modify_key_iterator_modifier]
561
562    template< class KeyModifier >
563    bool modify_key(iterator position, KeyModifier mod);
564
565* [*Requires: ] `KeyModifier` is a model of __SGI_UNARY_FUNCTION__ accepting arguments of
566type: `key_type&`; `position` is a valid dereferenceable iterator of the view.
567* [*Effects:] Calls `mod(e.first)` where e is the element pointed to by position and
568rearranges `*position` into all the views of the `bimap`.
569If the rearrangement fails, the element is erased.
570Rearrangement is successful if
571    * the map view is non-unique OR no other element with equivalent key exists,
572    * AND rearrangement is allowed by all other views of the `bimap`.
573* [*Postconditions:] Validity of `position` is preserved if the operation succeeds.
574* [*Returns: ] `true` if the operation succeeded, `false` otherwise.
575* [link set_of_complexity_signature
576[*Complexity:]] O(M(n)).
577* [*Exception safety:] Basic. If an exception is thrown by some user-provided
578operation (except possibly mod), then the element pointed to by position is erased.
579* [*Note:] Only provided for map views.
580
581
582[#reference_set_of_modify_data_iterator_modifier]
583
584    template< class DataModifier >
585    bool modify_data(iterator position, DataModifier mod);
586
587* [*Requires: ] `DataModifier` is a model of __SGI_UNARY_FUNCTION__ accepting arguments of
588type: `mapped_type&`; `position` is a valid dereferenceable iterator of the view.
589* [*Effects:] Calls `mod(e.second)` where e is the element pointed to by position and
590rearranges `*position` into all the views of the `bimap`.
591If the rearrangement fails, the element is erased.
592Rearrangement is successful if
593    * the oppositte map view is non-unique OR no other element with equivalent key in that
594view exists,
595    * AND rearrangement is allowed by all other views of the `bimap`.
596* [*Postconditions:] Validity of `position` is preserved if the operation succeeds.
597* [*Returns: ] `true` if the operation succeeded, `false` otherwise.
598* [link set_of_complexity_signature
599[*Complexity:]] O(M(n)).
600* [*Exception safety:] Basic. If an exception is thrown by some user-provided
601operation (except possibly mod), then the element pointed to by position is erased.
602* [*Note:] Only provided for map views.
603
604[/
605
606[#reference_set_of_modify_iterator_modifier]
607
608    template< class Modifier >
609    bool modify(iterator position, Modifier mod);
610
611* [*Requires: ] `Modifier` is a model of __SGI_BINARY_FUNCTION__ accepting arguments of
612type: `first_type&` and `second_type&` for ['Map View] or `left_type&` and `right_type&`
613['Set View]; `position` is a valid dereferenceable iterator of the view.
614* [*Effects:] Calls `mod(e.first,e.second)` for ['Map View] or Calls `mod(e.left,e.right)`
615for ['Set View] where e is the element pointed to by position and rearranges `*position`
616into all the views of the `bimap`.
617If the rearrangement fails, the element is erased.
618Rearrangement is successful if
619    * the view is non-unique OR no other element with equivalent key exists,
620    * AND rearrangement is allowed by all other views of the `bimap`.
621* [*Postconditions:] Validity of `position` is preserved if the operation succeeds.
622* [*Returns: ] `true` if the operation succeeded, `false` otherwise.
623* [link set_of_complexity_signature
624[*Complexity:]] O(M(n)).
625* [*Exception safety:] Basic. If an exception is thrown by some user-provided
626operation (except possibly mod), then the element pointed to by position is erased.
627
628]
629
630[endsect]
631
632[section Set operations]
633
634`[multi]set_of` views provide the full lookup functionality required by
635__SGI_SORTED_ASSOCIATIVE_CONTAINER__ and __SGI_UNIQUE_ASSOCIATIVE_CONTAINER__,
636namely `find`, `count`, `lower_bound`, `upper_bound` and `equal_range`.
637Additionally, these member functions are templatized to allow for non-standard
638arguments, so extending the types of search operations allowed.
639
640[/
641The kinds of arguments permissible when invoking the lookup member functions
642are defined by the following concept.
643
644Consider a __SGI_STRICT_WEAK_ORDERING__ `Compare` over values of type `Key`. A pair of
645types `(CompatibleKey, CompatibleCompare)` is said to be a ['compatible extension]
646of Compare if
647
648* `CompatibleCompare` is a __SGI_BINARY_PREDICATE__ over `(Key, CompatibleKey)`,
649* `CompatibleCompare` is a __SGI_BINARY_PREDICATE__ over `(CompatibleKey, Key)`,
650* if `c_comp(ck,k1)` then `!c_comp(k1,ck)`,
651* if `!c_comp(ck,k1)` and `!comp(k1,k2)` then `!c_comp(ck,k2)`,
652* if `!c_comp(k1,ck)` and `!comp(k2,k1)` then `!c_comp(k2,ck)`,
653
654for every `c_comp` of type `CompatibleCompare`, `comp` of type `Compare`, `ck` of type
655`CompatibleKey` and `k1`, `k2` of type `Key`.
656]
657A type `CompatibleKey` is said to be a ['compatible key] of `Compare`
658if `(CompatibleKey, Compare)` is a compatible extension of `Compare`. This implies
659that `Compare`, as well as being a strict weak ordering, accepts arguments of type
660`CompatibleKey`, which usually means it has several overloads of `operator()`.
661
662[/
663In the context of a compatible extension or a compatible key, the expressions
664"equivalent", "less than" and "greater than" take on their obvious interpretations.
665]
666
667[#reference_set_of_find_key]
668
669    template< class CompatibleKey >
670    iterator find(const CompatibleKey & x);
671
672    template< class CompatibleKey >
673    const_iterator find(const CompatibleKey & x) const;
674
675* [*Requires: ] `CompatibleKey` is a compatible key of `key_compare`.
676* [*Effects:] Returns a pointer to an element whose key is equivalent to `x`, or
677`end()` if such an element does not exist.
678* [*Complexity:] O(log(n)).
679
680[/
681    template< class CompatibleKey, class CompatibleCompare >
682    iterator find(const CompatibleKey & x,
683                  const CompatibleCompare & comp);
684
685    template< class CompatibleKey, class CompatibleCompare >
686    const_iterator find(const CompatibleKey & x,
687                        const CompatibleCompare & comp) const;
688
689* [*Requires: ] `(CompatibleKey, CompatibleCompare)` is a compatible extension of
690`key_compare.`
691* [*Effects:] Returns a pointer to an element whose key is
692equivalent to `x`, or `end()` if such an element does not exist.
693* [*Complexity:] O(log(n)).
694]
695
696[#reference_set_of_count_key]
697
698    template< class CompatibleKey >
699    size_type count(const key_type & x) const;
700
701* [*Requires: ] `CompatibleKey` is a compatible key of `key_compare`.
702* [*Effects:] Returns the number of elements with key equivalent to `x`.
703* [*Complexity:] O(log(n) + count(x)).
704
705[/
706    template< class CompatibleKey, class CompatibleCompare >
707    size_type count(const CompatibleKey & x,
708                    const CompatibleCompare & comp) const;
709
710* [*Requires: ] `(CompatibleKey, CompatibleCompare)` is a compatible extension of
711`key_compare.`
712* [*Effects:] Returns the number of elements with key equivalent to `x`.
713* [*Complexity:] O(log(n) + count(x)).
714]
715
716[#reference_set_of_lower_bound_key]
717
718    template< class CompatibleKey >
719    iterator lower_bound(const key_type & x);
720
721    template< class CompatibleKey >
722    const_iterator lower_bound(const key_type & x) const;
723
724* [*Requires: ] `CompatibleKey` is a compatible key of `key_compare`.
725* [*Effects:] Returns an iterator pointing to the first element with key not
726less than `x`, or `end()` if such an element does not exist.
727* [*Complexity:] O(log(n)).
728
729
730[#reference_set_of_upper_bound_key]
731
732    template< class CompatibleKey >
733    iterator upper_bound(const key_type & x);
734
735    template< class CompatibleKey >
736    const_iterator upper_bound(const key_type & x) const;
737
738* [*Requires: ] `CompatibleKey` is a compatible key of `key_compare`.
739* [*Effects:] Returns an iterator pointing to the first element with key greater
740than `x`, or `end()` if such an element does not exist.
741* [*Complexity:] O(log(n)).
742
743
744[#reference_set_of_equal_range_key]
745
746    template< class CompatibleKey >
747    std::pair<iterator,iterator>
748        equal_range(const key_type & x);
749
750    template< class CompatibleKey >
751    std::pair<const_iterator,const_iterator>
752        equal_range(const key_type & x) const;
753
754* [*Requires: ] `CompatibleKey` is a compatible key of `key_compare`.
755* [*Effects:] Equivalent to `make_pair(lower_bound(x),upper_bound(x))`.
756* [*Complexity:] O(log(n)).
757
758
759
760[endsect]
761
762[section Range operations]
763
764The member function range is not defined for sorted associative
765containers, but `[multi]set_of` map views provide it as a convenient utility.
766A range or interval is defined by two conditions for the lower and upper
767bounds, which are modelled after the following concepts.
768
769Consider a __SGI_STRICT_WEAK_ORDERING__ `Compare` over values of type Key.
770A type `LowerBounder` is said to be a lower bounder of `Compare` if
771
772* `LowerBounder` is a `Predicate` over `Key`,
773* if `lower(k1)` and `!comp(k2,k1)` then `lower(k2)`,
774
775for every `lower` of type `LowerBounder`, `comp` of type `Compare`, and `k1`, `k2`
776of type `Key`.
777Similarly, an upper bounder is a type `UpperBounder` such that
778
779* `UpperBounder` is a `Predicate` over `Key`,
780* if `upper(k1)` and `!comp(k1,k2)` then `upper(k2)`,
781
782for every `upper` of type `UpperBounder`, `comp` of type `Compare`, and `k1`, `k2`
783of type `Key`.
784
785[#reference_set_of_range_lower_upper]
786
787    template< class LowerBounder, class UpperBounder>
788    std::pair<const_iterator,const_iterator> range(
789        LowerBounder lower, UpperBounder upper) const;
790
791* [*Requires: ] `LowerBounder` and `UpperBounder` are a lower and upper bounder of
792`key_compare`, respectively.
793* [*Effects:] Returns a pair of iterators pointing to
794the beginning and one past the end of the subsequence of elements satisfying
795lower and upper simultaneously. If no such elements exist, the iterators both
796point to the first element satisfying lower, or else are equal to `end()` if this
797latter element does not exist.
798* [*Complexity:] O(log(n)).
799* [*Variants:] In place of lower or upper (or both), the singular value
800`boost::bimap::unbounded` can be provided. This acts as a predicate which
801all values of type `key_type` satisfy.
802* [*Note:] Only provided for map views.
803
804[endsect]
805
806[section at(), info_at() and operator\[\] - set_of only]
807
808[#reference_set_of_at_key_const]
809
810    template< class CompatibleKey >
811    const mapped_type & at(const CompatibleKey & k) const;
812
813* [*Requires: ] `CompatibleKey` is a compatible key of `key_compare`.
814* [*Effects:] Returns the `mapped_type` reference that is associated with `k`, or
815throws `std::out_of_range` if such key does not exist.
816* [*Complexity:] O(log(n)).
817* [*Note:] Only provided when `set_of` is used.
818
819The symmetry of bimap imposes some constraints on `operator[]` and the
820non constant version of at() that are not found in `std::maps`.
821They are only provided if the other collection type is mutable
822(`list_of`, `vector_of` and `unconstrained_set_of`).
823
824[#reference_set_of_operator_bracket_key]
825
826    template< class CompatibleKey >
827    mapped_type & operator[](const CompatibleKey & k);
828
829* [*Requires: ] `CompatibleKey` is a compatible key of `key_compare`.
830* [*Effects: ] `return insert(value_type(k,mapped_type()))->second;`
831* [*Complexity:] O(log(n)).
832* [*Note:] Only provided when `set_of` is used and the other collection
833type is mutable.
834
835[#reference_set_of_at_key]
836
837    template< class CompatibleKey >
838    mapped_type & at(const CompatibleKey & k);
839
840* [*Requires: ] `CompatibleKey` is a compatible key of `key_compare`.
841* [*Effects: ] Returns the `mapped_type` reference that is associated with `k`, or
842throws `std::out_of_range` if such key does not exist.
843* [*Complexity:] O(log(n)).
844* [*Note:] Only provided when `set_of` is used and the other collection
845type is mutable.
846
847[/
848The symmetry of bimap imposes some constraints on `operator[]` that are
849not found in `std::maps`. If other views are unique,
850`bimap::duplicate_value` is thrown whenever an assignment is attempted to
851a value that is already a key in these views. As for
852`bimap::value_not_found`, this exception is thrown while trying to access
853a non-existent key: this behaviour differs from that of `std::map`, which
854automatically assigns a default value to non-existent keys referred to
855by `operator[]`.
856
857    const mapped_type & operator[](const typename key_type & k) const;
858
859* [*Effects:] Returns the `mapped_type` reference that is associated with `k`, or
860throws `bimap::value_not_found` if such an element does not exist.
861* [*Complexity:] O(log(n)).
862
863
864    ``['-unspecified mapped_type proxy-]`` operator[](const typename key_type & k);
865
866* [*Effects:] Returns a proxy to a `mapped_type` associated with `k` and the
867bimap. The proxy behaves as a reference to the `mapped_type` object. If this
868proxy is read and `k` was not in the bimap, the bimap::value_not_found is
869thrown. If it is written then `bimap::duplicate_value` is thrown if the
870assignment is not allowed by one of the other views of the `bimap`.
871* [link set_of_complexity_signature
872[*Complexity:]] If the assignment operator of the proxy is not used, then
873the order is O(log(n)). If it is used, the order is O(I(n)) if `k` was not
874in the bimap and O(R(n)) if it existed in the bimap.
875]
876
877
878[#reference_set_of_info_at_key]
879
880    template< class CompatibleKey >
881    info_type & info_at(const CompatibleKey & k);
882
883    template< class CompatibleKey >
884    const info_type & info_at(const CompatibleKey & k) const;
885
886* [*Requires: ] `CompatibleKey` is a compatible key of `key_compare`.
887* [*Effects:] Returns the `info_type` reference that is associated with `k`, or
888throws `std::out_of_range` if such key does not exist.
889* [*Complexity:] O(log(n)).
890* [*Note:] Only provided when `set_of` and `info_hook` are used
891
892
893[endsect]
894
895[section Serialization]
896
897Views cannot be serialized on their own, but only as part of the `bimap`
898into which they are embedded. In describing the additional preconditions and guarantees
899associated to `[multi]set_of` views with respect to serialization of their embedding containers,
900we use the concepts defined in the `bimap` serialization section.
901
902[blurb  [*Operation:] saving of a `bimap` m to an output archive (XML archive) ar.]
903
904* [*Requires:] No additional requirements to those imposed by the container.
905
906
907[blurb [*Operation:] loading of a `bimap` m' from an input archive (XML archive) ar.]
908
909* [*Requires:] In addition to the general requirements, `value_comp()` must be
910serialization-compatible with `m.get<i>().value_comp()`, where i is the position
911of the ordered view in the container.
912* [*Postconditions:] On successful loading, each of the elements of `[begin(), end())`
913is a restored copy of the corresponding element in `[m.get<i>().begin(), m.get<i>().end())`.
914
915
916
917[blurb [*Operation:] saving of an iterator or `const_iterator` it to an output archive
918(XML archive) ar.]
919
920* [*Requires: ] `it` is a valid iterator of the view. The associated `bimap`
921has been previously saved.
922
923
924[blurb [*Operation:] loading of an `iterator` or `const_iterator` `it`' from an input archive (
925XML archive) ar.]
926
927* [*Postconditions:] On successful loading, if it was dereferenceable then `*it`' is the
928restored copy of `*it`, otherwise `it`'` == end()`.
929* [*Note:] It is allowed that it be a `const_iterator` and the restored `it`' an iterator,
930or viceversa.
931
932
933[endsect]
934[endsect]
935
936[endsect]