• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //---------------------------------------------------------------------------//
2 // Copyright (c) 2014 Kyle Lutz <kyle.r.lutz@gmail.com>
3 //
4 // Distributed under the Boost Software License, Version 1.0
5 // See accompanying file LICENSE_1_0.txt or copy at
6 // http://www.boost.org/LICENSE_1_0.txt
7 //
8 // See http://boostorg.github.com/compute for more information.
9 //---------------------------------------------------------------------------//
10 
11 #include <iostream>
12 #include <algorithm>
13 
14 #include <QtGlobal>
15 #if QT_VERSION >= 0x050000
16 #include <QtWidgets>
17 #else
18 #include <QtGui>
19 #endif
20 
21 #ifndef Q_MOC_RUN
22 #include <boost/compute/system.hpp>
23 #include <boost/compute/image/image2d.hpp>
24 #include <boost/compute/interop/qt.hpp>
25 #include <boost/compute/utility/dim.hpp>
26 #include <boost/compute/utility/source.hpp>
27 #endif // Q_MOC_RUN
28 
29 namespace compute = boost::compute;
30 
box_filter_image(const compute::image2d & input,compute::image2d & output,compute::uint_ box_height,compute::uint_ box_width,compute::command_queue & queue)31 inline void box_filter_image(const compute::image2d &input,
32                              compute::image2d &output,
33                              compute::uint_ box_height,
34                              compute::uint_ box_width,
35                              compute::command_queue &queue)
36 {
37     using compute::dim;
38 
39     const compute::context &context = queue.get_context();
40 
41     // simple box filter kernel source
42     const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE(
43         __kernel void box_filter(__read_only image2d_t input,
44                                  __write_only image2d_t output,
45                                  uint box_height,
46                                  uint box_width)
47         {
48             int x = get_global_id(0);
49             int y = get_global_id(1);
50             int h = get_image_height(input);
51             int w = get_image_width(input);
52             int k = box_width;
53             int l = box_height;
54 
55             if(x < k/2 || y < l/2 || x >= w-(k/2) || y >= h-(l/2)){
56                 write_imagef(output, (int2)(x, y), (float4)(0, 0, 0, 1));
57             }
58             else {
59                 const sampler_t sampler = CLK_ADDRESS_NONE | CLK_FILTER_NEAREST;
60 
61                 float4 sum = { 0, 0, 0, 0 };
62                 for(int i = 0; i < k; i++){
63                     for(int j = 0; j < l; j++){
64                         sum += read_imagef(input, sampler, (int2)(x+i-k, y+j-l));
65                     }
66                 }
67                 sum /= (float) k * l;
68                 float4 value = (float4)( sum.x, sum.y, sum.z, 1.f );
69                 write_imagef(output, (int2)(x, y), value);
70             }
71         }
72     );
73 
74     // build box filter program
75     compute::program program =
76         compute::program::create_with_source(source, context);
77     program.build();
78 
79     // setup box filter kernel
80     compute::kernel kernel(program, "box_filter");
81     kernel.set_arg(0, input);
82     kernel.set_arg(1, output);
83     kernel.set_arg(2, box_height);
84     kernel.set_arg(3, box_width);
85 
86     // execute the box filter kernel
87     queue.enqueue_nd_range_kernel(kernel, dim(0, 0), input.size(), dim(1, 1));
88 }
89 
90 // this example shows how to load an image using Qt, apply a simple
91 // box blur filter, and then display it in a Qt window.
main(int argc,char * argv[])92 int main(int argc, char *argv[])
93 {
94     QApplication app(argc, argv);
95 
96     // check command line
97     if(argc < 2){
98         std::cout << "usage: qimage_blur [FILENAME]" << std::endl;
99         return -1;
100     }
101 
102     // load image using Qt
103     QString fileName = argv[1];
104     QImage qimage(fileName);
105 
106     size_t height = qimage.height();
107     size_t width = qimage.width();
108     size_t bytes_per_line = qimage.bytesPerLine();
109 
110     qDebug() << "height:" << height
111              << "width:" << width
112              << "bytes per line:" << bytes_per_line
113              << "depth:" << qimage.depth()
114              << "format:" << qimage.format();
115 
116     // create compute context
117     compute::device gpu = compute::system::default_device();
118     compute::context context(gpu);
119     compute::command_queue queue(context, gpu);
120     std::cout << "device: " << gpu.name() << std::endl;
121 
122     // get the opencl image format for the qimage
123     compute::image_format format =
124         compute::qt_qimage_format_to_image_format(qimage.format());
125 
126     // create input and output images on the gpu
127     compute::image2d input_image(context, width, height, format);
128     compute::image2d output_image(context, width, height, format);
129 
130     // copy host qimage to gpu image
131     compute::qt_copy_qimage_to_image2d(qimage, input_image, queue);
132 
133     // apply box filter
134     box_filter_image(input_image, output_image, 7, 7, queue);
135 
136     // copy gpu blurred image from to host qimage
137     compute::qt_copy_image2d_to_qimage(output_image, qimage, queue);
138 
139     // show image as a pixmap
140     QLabel label;
141     label.setPixmap(QPixmap::fromImage(qimage));
142     label.show();
143 
144     return app.exec();
145 }
146