• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Boost.Geometry (aka GGL, Generic Geometry Library)
2 //
3 // Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.
4 // Copyright (c) 2008-2012 Bruno Lalande, Paris, France.
5 // Use, modification and distribution is subject to the Boost Software License,
6 // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
7 // http://www.boost.org/LICENSE_1_0.txt)
8 
9 #ifndef _DOXYGEN_EXAMPLES_HPP
10 #define _DOXYGEN_EXAMPLES_HPP
11 
12 
13 /*!
14 
15 
16 \example 01_point_example.cpp
17 In most cases the documentation gives small examples of how to use the algorithms or classes.
18 The point example is a slightly larger example giving an idea of how to use different
19 algorithms from the library, related to points. It shows
20 - the usage of include files
21 - how to declare points, using different coordinate types
22 - how to construct points, specifying coordinates, initializing to zero or to infinite
23 - how to compare points to each other
24 - how points can be streamed as OGC text
25 - calculating the distance from point to point
26 
27 
28 */
29 
30 
31 //---------------------------------------------------------------------------------------------------
32 
33 /*!
34 \example 02_linestring_example.cpp
35 The linestring example shows how linestrings can be declared and used and shows some more algorithms.
36 One of the important concepts of the Generic Geometry Library is that it is totally built upon the standard
37 library, using the standard containers such as std::vector.
38 
39 A linestring is, as explained elsewhere in this documentation, not much more than a vector of points.
40 Most algorithms run on linestrings, but can also run on any iterator pair. And all algorithms
41 on std::vector can be used on geometry::linestring.
42 
43 The sample shows this, shows some algorithms:
44 - geometry::envelope
45 - geometry::length
46 - geometry::distance
47 - geometry::simplify
48 - geometry::for_each
49 - geometry::intersection
50 
51 This documentation illustrates the simplify algorithm and the intersection algorithm with some pictures.
52 
53 The simplify algorithm simplifies a linestring. Simplification means that the less important points
54 are removed from the line and that the points that are most important for the shape of a line are
55 kept. Simplification is done using the well known Douglas Peucker algorithm. The library user can
56 specify the distance or tolerance, which indicates how much the linestring should be simplified.
57 
58 The image below shows the original and simplified linestring:
59 \image html simplify_linestring.png
60 The blue line is the original linestring; the red line is the simplified line which has one point less.
61 In geographical applications simplification can reduce a linestring to its basic form containing only
62 10% of its original points.
63 
64 The intersection algorithm intersects two geometries which each other, delivering a third geometry.
65 In the case of the example a linestring is intersected with a box. Intersection with a box is often
66 called a clip. The image below illustrates the intersection.
67 \image html clip_linestring.png
68 The yellow line is intersected with the blue box.
69 The intersection result, painted in red, contains three linestrings.
70 */
71 
72 //---------------------------------------------------------------------------------------------------
73 
74 /*!
75 \example 03_polygon_example.cpp
76 The polygon example shows some examples of what can be done with polygons in the Generic Geometry Library:
77 * the outer ring and the inner rings
78 * how to calculate the area of a polygon
79 * how to get the centroid, and how to get an often more interesting label point
80 * how to correct the polygon such that it is clockwise and closed
81 * within: the well-known point in polygon algorithm
82 * how to use polygons which use another container, or which use different containers for points and for inner rings
83 * how polygons can be intersected, or clipped, using a clipping box
84 
85 The illustrations below show the usage of the within algorithm and the intersection algorithm.
86 
87 The within algorithm results in true if a point lies completly within a polygon. If it lies exactly
88 on a border it is not considered as within and if it is inside a hole it is also not within the
89 polygon. This is illustrated below, where only the point in the middle is within the polygon.
90 
91 \image html within_polygon.png
92 
93 The clipping algorithm, called intersection, is illustrated below:
94 
95 \image html clip_polygon.png
96 
97 The yellow polygon, containing a hole, is clipped with the blue rectangle, resulting in a
98 multi_polygon of three polygons, drawn in red. The hole is vanished.
99 
100 include polygon_example.cpp
101 */
102 
103 
104 //---------------------------------------------------------------------------------------------------
105  /*!
106 \example 06_a_transformation_example.cpp
107 This sample demonstrates the usage of transformations in the Generic Geometry Library.
108 Behind the screens this is done using with the uBLAS matrix/vector library.
109 
110 \example 06_b_transformation_example.cpp
111 
112 */
113 
114 //---------------------------------------------------------------------------------------------------
115 
116 /*!
117 \example 07_a_graph_route_example.cpp
118 The graph route example shows how GGL can be combined with Boost.Graph. The sample does the following things:
119 - it reads roads (included in the distribution, stored on disk in the form of a text file containing geometries and names)
120 - it reads cities
121 - it creates a graph from the roads
122 - it connects each city to the nearest vertex in the graph
123 - it calculates the shortest route between each pair of cities
124 - it outputs the distance over the road, and also of the air
125 - it creates an SVG image with the roads, the cities, and the first calculated route
126 
127 Note that this example is useful, but it is only an example. It could be built in many different ways.
128 For example:
129 - the roads/cities could be read from a database using SOCI, or from a shapefile using shapelib
130 - it could support oneway roads and roads on different levels (disconnected bridges)
131 - it currently uses tuples but that could be anything
132 - etc
133 
134 The SVG looks like:
135 \image html 07_graph_route_example_svg.png
136 
137 The output screen looks like:
138 \image html 07_graph_route_example_text.png
139 
140 \example 07_b_graph_route_example.cpp
141 
142 
143 */
144 
145 
146 //---------------------------------------------------------------------------------------------------
147  /*!
148 \example c01_custom_point_example.cpp
149 This sample demonstrates that custom points can be made as well. This sample contains many points, derived
150 from boost::tuple, created from scratch, read only points, legacy points, etc.
151 */
152 
153 //---------------------------------------------------------------------------------------------------
154  /*!
155 \example c02_custom_box_example.cpp
156 Besides custom points, custom boxes are possible as shown in this example.
157 */
158 
159 //---------------------------------------------------------------------------------------------------
160 /*
161 \example c03_custom_linestring_example.cpp
162 GPS tracks are shown in this example: a custom linestring with GPS points
163 */
164 
165 //---------------------------------------------------------------------------------------------------
166  /*!
167 \example c04_a_custom_triangle_example.cpp
168 The \b custom triangle \b example goes even further and implements a custom ring, where the area calculation
169 algorithm is optimized for a triangle
170 */
171 
172 //---------------------------------------------------------------------------------------------------
173  /*!
174 \example c04_b_custom_triangle_example.cpp
175 This second custom triangle example shows an alternative implementation for a custom shape, showing a
176 partial specialization for the area calculation.
177 */
178 
179 //---------------------------------------------------------------------------------------------------
180  /*!
181 \example c05_custom_point_pointer_example.cpp
182 This example shows how GGL can be used to adapt a pointer-to-a-point, used e.g. in a linestring
183 */
184 
185 //---------------------------------------------------------------------------------------------------
186  /*!
187 \example c06_custom_polygon_example.cpp
188 Showing a custom polygon (asked on the list during Formal Review)
189 */
190 
191 
192 
193 //---------------------------------------------------------------------------------------------------
194  /*!
195 \example x01_qt_example.cpp
196 This sample demonstrates that by usage of concepts, external geometries can be handled
197 by GGL, just calling by a one-line registration macro. In this case for the Qt Widget Library.
198 
199 The example, code shown below, results in this window-output:
200 \image html x01_qt_example_output.png
201 */
202 
203 
204 
205 
206 
207 //---------------------------------------------------------------------------------------------------
208  /*!
209 \example x03_a_soci_example.cpp
210 First example showing how to get spatial data from a database using SOCI and put them into GGL
211 */
212 
213 
214 //---------------------------------------------------------------------------------------------------
215  /*!
216 \example x03_b_soci_example.cpp
217 Second example showing how to get polygons from a database using SOCI and put them into GGL, using WKT.
218 */
219 
220 
221 //---------------------------------------------------------------------------------------------------
222  /*
223 \example x03_c_soci_example.cpp
224 Example showing how to get polygons from PostGIS using SOCI and use them in GGL through WKB
225 */
226 
227 
228 //---------------------------------------------------------------------------------------------------
229  /*
230 \example x03_d_soci_example.cpp
231 Example showing how to get polygons from PostGIS using SOCI and use them in GGL through WKB
232 
233 */
234 
235 #endif // _DOXYGEN_EXAMPLES_HPP
236