• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<HTML>
2<!--
3     Copyright (c) Jeremy Siek 2000
4
5     Distributed under the Boost Software License, Version 1.0.
6     (See accompanying file LICENSE_1_0.txt or copy at
7     http://www.boost.org/LICENSE_1_0.txt)
8  -->
9<Head>
10<Title>Bellman Ford Shortest Paths</Title>
11<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
12        ALINK="#ff0000">
13<IMG SRC="../../../boost.png"
14     ALT="C++ Boost" width="277" height="86">
15
16<BR Clear>
17
18
19<H1><A NAME="sec:bellman-ford"></A><img src="figs/python.gif" alt="(Python)"/>
20<TT>bellman_ford_shortest_paths</TT>
21</H1>
22
23<P>
24<PRE>
25<i>// named paramter version</i>
26template &lt;class <a href="./EdgeListGraph.html">EdgeListGraph</a>, class Size, class P, class T, class R&gt;
27bool bellman_ford_shortest_paths(const EdgeListGraph&amp; g, Size N,
28  const bgl_named_params&lt;P, T, R&gt;&amp; params = <i>all defaults</i>);
29
30template &lt;class <a href="./VertexAndEdgeListGraph.html">VertexAndEdgeListGraph</a>, class P, class T, class R&gt;
31bool bellman_ford_shortest_paths(const VertexAndEdgeListGraph&amp; g,
32  const bgl_named_params&lt;P, T, R&gt;&amp; params = <i>all defaults</i>);
33
34<i>// non-named parameter version</i>
35template &lt;class <a href="./EdgeListGraph.html">EdgeListGraph</a>, class Size, class WeightMap,
36	  class PredecessorMap, class DistanceMap,
37	  class <a href="http://www.boost.org/sgi/stl/BinaryFunction.html">BinaryFunction</a>, class <a href="http://www.boost.org/sgi/stl/BinaryPredicate.html">BinaryPredicate</a>,
38	  class <a href="./BellmanFordVisitor.html">BellmanFordVisitor</a>&gt;
39bool bellman_ford_shortest_paths(EdgeListGraph&amp; g, Size N,
40  WeightMap weight, PredecessorMap pred, DistanceMap distance,
41  BinaryFunction combine, BinaryPredicate compare, BellmanFordVisitor v)
42</PRE>
43
44<P>
45The Bellman-Ford algorithm&nbsp;[<A
46HREF="bibliography.html#bellman58">4</A>,<A
47HREF="bibliography.html#ford62:_flows">11</A>,<A
48HREF="bibliography.html#lawler76:_comb_opt">20</A>,<A
49HREF="bibliography.html#clr90">8</A>] solves the single-source
50shortest paths problem for a graph with both positive and negative
51edge weights. For the definition of the shortest paths problem see
52Section <A
53HREF="./graph_theory_review.html#sec:shortest-paths-algorithms">Shortest-Paths
54Algorithms</A>.
55If you only need to solve the shortest paths problem for positive edge
56weights, Dijkstra's algorithm provides a more efficient
57alternative. If all the edge weights are all equal to one then breadth-first
58search provides an even more efficient alternative.
59</p>
60
61<p>
62Before calling the <tt>bellman_ford_shortest_paths()</tt> function,
63the user must assign the source vertex a distance of zero and all
64other vertices a distance of infinity <i>unless</i> you are providing
65a starting vertex. The Bellman-Ford algorithm
66proceeds by looping through all of the edges in the graph, applying
67the relaxation operation to each edge. In the following pseudo-code,
68<i>v</i> is a vertex adjacent to <i>u</i>, <i>w</i> maps edges to
69their weight, and <i>d</i> is a distance map that records the length
70of the shortest path to each vertex seen so far. <i>p</i> is a
71predecessor map which records the parent of each vertex, which will
72ultimately be the parent in the shortest paths tree
73</p>
74
75<table>
76<tr>
77<td valign="top">
78<pre>
79RELAX(<i>u</i>, <i>v</i>, <i>w</i>, <i>d</i>, <i>p</i>)
80  <b>if</b> (<i>w(u,v) + d[u] < d[v]</i>)
81    <i>d[v] := w(u,v) + d[u]</i>
82    <i>p[v] := u</i>
83  <b>else</b>
84    ...
85</pre>
86</td>
87<td valign="top">
88<pre>
89
90
91relax edge <i>(u,v)</i>
92
93
94edge <i>(u,v)</i> is not relaxed
95</pre>
96</td>
97</tr>
98</table>
99
100<p>
101The algorithm repeats this loop <i>|V|</i> times after which it is
102guaranteed that the distances to each vertex have been reduced to the
103minimum possible unless there is a negative cycle in the graph. If
104there is a negative cycle, then there will be edges in the graph that
105were not properly minimized. That is, there will be edges <i>(u,v)</i> such
106that <i>w(u,v) + d[u] < d[v]</i>.  The algorithm loops over the edges in
107the graph one final time to check if all the edges were minimized,
108returning <tt>true</tt> if they were and returning <tt>false</tt>
109otherwise.
110</p>
111
112<table>
113<tr>
114<td valign="top">
115<pre>
116BELLMAN-FORD(<i>G</i>)
117  <i>// Optional initialization</i>
118  <b>for</b> each vertex <i>u in V</i>
119    <i>d[u] := infinity</i>
120    <i>p[u] := u</i>
121  <b>end for</b>
122  <b>for</b> <i>i := 1</i> <b>to</b> <i>|V|-1</i>
123    <b>for</b> each edge <i>(u,v) in E</i>
124      RELAX(<i>u</i>, <i>v</i>, <i>w</i>, <i>d</i>, <i>p</i>)
125    <b>end for</b>
126  <b>end for</b>
127  <b>for</b> each edge <i>(u,v) in E</i>
128    <b>if</b> (<i>w(u,v) + d[u] < d[v]</i>)
129      <b>return</b> (false, , )
130    <b>else</b>
131      ...
132  <b>end for</b>
133  <b>return</b> (true, <i>p</i>, <i>d</i>)
134</pre>
135</td>
136<td valign="top">
137<pre>
138
139
140
141
142
143
144
145examine edge <i>(u,v)</i>
146
147
148
149
150
151edge <i>(u,v)</i> was not minimized
152
153edge <i>(u,v)</i> was minimized
154</pre>
155</td>
156</tr>
157</table>
158
159There are two main options for obtaining output from the
160<tt>bellman_ford_shortest_paths()</tt> function. If the user provides
161a distance property map through the <tt>distance_map()</tt> parameter
162then the shortest distance from the source vertex to every other
163vertex in the graph will be recorded in the distance map (provided the
164function returns <tt>true</tt>). The second option is recording the
165shortest paths tree in the <tt>predecessor_map()</tt>. For each vertex
166<i>u in V</i>, <i>p[u]</i> will be the predecessor of <i>u</i> in the
167shortest paths tree (unless <i>p[u] = u</i>, in which case <i>u</i> is
168either the source vertex or a vertex unreachable from the source).  In
169addition to these two options, the user can provide her own
170custom-made visitor that can take actions at any of the
171algorithm's event points.
172
173<P>
174
175<h3>Parameters</h3>
176
177
178IN: <tt>EdgeListGraph&amp; g</tt>
179<blockquote>
180  A directed or undirected graph whose type must be a model of
181  <a href="./EdgeListGraph.html">Edge List Graph</a>. If a root vertex is
182  provided, then the graph must also model
183  <a href="./VertexListGraph.html">Vertex List Graph</a>.<br>
184
185  <b>Python</b>: The parameter is named <tt>graph</tt>.
186</blockquote>
187
188IN: <tt>Size N</tt>
189<blockquote>
190  The number of vertices in the graph. The type <tt>Size</tt> must
191  be an integer type.<br>
192  <b>Default:</b> <tt>num_vertices(g)</tt>.<br>
193
194  <b>Python</b>: Unsupported parameter.
195</blockquote>
196
197
198<h3>Named Parameters</h3>
199
200IN: <tt>weight_map(WeightMap w)</tt>
201<blockquote>
202  The weight (also know as ``length'' or ``cost'') of each edge in the
203  graph.  The <tt>WeightMap</tt> type must be a model of <a
204  href="../../property_map/doc/ReadablePropertyMap.html">Readable Property
205  Map</a>.  The key type for this property map must be the edge
206  descriptor of the graph.  The value type for the weight map must be
207  <i>Addable</i> with the distance map's value type. <br>
208  <b>Default:</b> <tt>get(edge_weight, g)</tt><br>
209
210  <b>Python</b>: Must be an <tt>edge_double_map</tt> for the graph.<br>
211  <b>Python default</b>: <tt>graph.get_edge_double_map("weight")</tt>
212</blockquote>
213
214OUT: <tt>predecessor_map(PredecessorMap p_map)</tt>
215<blockquote>
216  The predecessor map records the edges in the minimum spanning
217  tree. Upon completion of the algorithm, the edges <i>(p[u],u)</i>
218  for all <i>u in V</i> are in the minimum spanning tree. If <i>p[u] =
219  u</i> then <i>u</i> is either the source vertex or a vertex that is
220  not reachable from the source.  The <tt>PredecessorMap</tt> type
221  must be a <a
222  href="../../property_map/doc/ReadWritePropertyMap.html">Read/Write
223  Property Map</a> which key and vertex types the same as the vertex
224  descriptor type of the graph.<br>
225  <b>Default:</b> <tt>dummy_property_map</tt><br>
226
227  <b>Python</b>: Must be a <tt>vertex_vertex_map</tt> for the graph.<br>
228</blockquote>
229
230IN/OUT: <tt>distance_map(DistanceMap d)</tt>
231<blockquote>
232  The shortest path weight from the source vertex to each vertex in
233  the graph <tt>g</tt> is recorded in this property map.  The type
234  <tt>DistanceMap</tt> must be a model of <a
235  href="../../property_map/doc/ReadWritePropertyMap.html">Read/Write
236  Property Map</a>. The key type of the property map must be the
237  vertex descriptor type of the graph, and the value type of the
238  distance map must be <a
239  href="http://www.boost.org/sgi/stl/LessThanComparable.html"> Less
240  Than Comparable</a>.<br> <b>Default:</b> <tt>get(vertex_distance,
241  g)</tt><br>
242  <b>Python</b>: Must be a <tt>vertex_double_map</tt> for the graph.<br>
243</blockquote>
244
245IN: <tt>root_vertex(Vertex s)</tt>
246<blockquote>
247  The starting (or "root") vertex from which shortest paths will be
248  computed. When provided, the distance map need not be initialized
249  (the algorithm will perform the initialization itself). However, the
250  graph must model <a href="./VertexListGraph.html">Vertex List
251  Graph</a> when this parameter is provided.<br>
252  <b>Default:</b> None; if omitted, the user must initialize the
253  distance map.
254</blockquote>
255
256IN: <tt>visitor(BellmanFordVisitor v)</tt>
257<blockquote>
258  The visitor object, whose type must be a model of
259  <a href="./BellmanFordVisitor.html">Bellman-Ford Visitor</a>.
260  The visitor object is passed by value <a
261  href="#1">[1]</a>.
262<br>
263  <b>Default:</b> <tt>bellman_visitor&lt;null_visitor&gt;</tt><br>
264
265  <b>Python</b>: The parameter should be an object that derives from
266  the <a
267  href="BellmanFordVisitor.html#python"><tt>BellmanFordVisitor</tt></a> type
268  of the graph.
269
270</blockquote>
271
272IN: <tt>distance_combine(BinaryFunction combine)</tt>
273<blockquote>
274  This function object replaces the role of addition in the relaxation
275  step. The first argument type must match the distance map's value
276  type and the second argument type must match the weight map's value
277  type.  The result type must be the same as the distance map's value
278  type.<br>
279  <b>Default:</b><tt>std::plus&lt;D&gt;</tt>
280  with <tt>D=typename&nbsp;property_traits&lt;DistanceMap&gt;::value_type</tt>.<br>
281
282  <b>Python</b>: Unsupported parameter.
283</blockquote>
284
285IN: <tt>distance_compare(BinaryPredicate compare)</tt>
286<blockquote>
287  This function object replaces the role of the less-than operator
288  that compares distances in the relaxation step. The argument types
289  must match the distance map's value type.<br>
290  <b>Default:</b> <tt>std::less&lt;D&gt;</tt>
291  with <tt>D=typename&nbsp;property_traits&lt;DistanceMap&gt;::value_type</tt>.<br>
292
293  <b>Python</b>: Unsupported parameter.
294</blockquote>
295
296<P>
297
298<H3>Complexity</H3>
299
300<P>
301The time complexity is <i>O(V E)</i>.
302
303
304<h3>Visitor Event Points</h3>
305
306<ul>
307<li><b><tt>vis.examine_edge(e, g)</tt></b>  is invoked on every edge in
308  the graph <i>|V|</i> times.
309<li><b><tt>vis.edge_relaxed(e, g)</tt></b>  is invoked when the distance
310  label for the target vertex is decreased. The edge <i>(u,v)</i> that
311  participated in the last relaxation for vertex <i>v</i> is an edge in the
312  shortest paths tree.
313<li><b><tt>vis.edge_not_relaxed(e, g)</tt></b>  is invoked if the distance label
314  for the target vertex is not decreased.
315<li><b><tt>vis.edge_minimized(e, g)</tt></b>  is invoked during the
316  second stage of the algorithm, during the test of whether each edge
317  was minimized. If the edge is minimized then this function
318  is invoked.
319<li><b><tt>vis.edge_not_minimized(e, g)</tt></b>  is also invoked during the
320  second stage of the algorithm, during the test of whether each edge
321  was minimized.  If the edge was not minimized, this function is
322  invoked.  This happens when there is a negative cycle in the graph.
323</ul>
324
325<H3>Example</H3>
326
327<P>
328An example of using the Bellman-Ford algorithm is in <a
329href="../example/bellman-example.cpp"><TT>examples/bellman-example.cpp</TT></a>.
330
331<h3>Notes</h3>
332
333<p><a name="1">[1]</a>
334  Since the visitor parameter is passed by value, if your visitor
335  contains state then any changes to the state during the algorithm
336  will be made to a copy of the visitor object, not the visitor object
337  passed in. Therefore you may want the visitor to hold this state by
338  pointer or reference.
339
340<br>
341<HR>
342<TABLE>
343<TR valign=top>
344<TD nowrap>Copyright &copy; 2000</TD><TD>
345<A HREF="http://www.boost.org/people/jeremy_siek.htm">Jeremy Siek</A>, Indiana University (<A HREF="mailto:jsiek@osl.iu.edu">jsiek@osl.iu.edu</A>)
346</TD></TR></TABLE>
347
348</BODY>
349</HTML>
350