• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // Copyright Paul A. Bristow 2017
2  // Copyright John Z. Maddock 2017
3  
4  // Distributed under the Boost Software License, Version 1.0.
5  // (See accompanying file LICENSE_1_0.txt or
6  //  copy at http ://www.boost.org/LICENSE_1_0.txt).
7  
8  /*! \brief Graph showing use of Lambert W function.
9  
10  \details
11  
12  Both Lambert W0 and W-1 branches can be shown on one graph.
13  But useful to have another graph for larger values of argument z.
14  Need two separate graphs for Lambert W0 and -1 prime because
15  the sensible ranges and axes are too different.
16  
17  One would get too small LambertW0 in top right and W-1 in bottom left.
18  
19  */
20  
21  #include <boost/math/special_functions/lambert_w.hpp>
22  using boost::math::lambert_w0;
23  using boost::math::lambert_wm1;
24  using boost::math::lambert_w0_prime;
25  using boost::math::lambert_wm1_prime;
26  
27  #include <boost/math/special_functions.hpp>
28  using boost::math::isfinite;
29  #include <boost/svg_plot/svg_2d_plot.hpp>
30  using namespace boost::svg;
31  #include <boost/svg_plot/show_2d_settings.hpp>
32  using boost::svg::show_2d_plot_settings;
33  
34  #include <iostream>
35  // using std::cout;
36  // using std::endl;
37  #include <exception>
38  #include <stdexcept>
39  #include <string>
40  #include <array>
41  #include <vector>
42  #include <utility>
43  using std::pair;
44  #include <map>
45  using std::map;
46  #include <set>
47  using std::multiset;
48  #include <limits>
49  using std::numeric_limits;
50  #include <cmath> //
51  
52    /*!
53    */
main()54  int main()
55  {
56    try
57    {
58      std::cout << "Lambert W graph example." << std::endl;
59  
60  //[lambert_w_graph_1
61  //] [/lambert_w_graph_1]
62      {
63        std::map<const double, double> wm1s;   // Lambert W-1 branch values.
64        std::map<const double, double> w0s;   // Lambert W0 branch values.
65  
66        std::cout.precision(std::numeric_limits<double>::max_digits10);
67  
68        int count = 0;
69        for (double z = -0.36787944117144232159552377016146086744581113103176804; z < 2.8; z += 0.001)
70        {
71          double w0 = lambert_w0(z);
72          w0s[z] = w0;
73     //     std::cout << "z " << z << ", w = " << w0 << std::endl;
74          count++;
75        }
76        std::cout << "points " << count << std::endl;
77  
78        count = 0;
79        for (double z = -0.3678794411714423215955237701614608727; z < -0.001; z += 0.001)
80        {
81          double wm1 = lambert_wm1(z);
82          wm1s[z] = wm1;
83          count++;
84        }
85        std::cout << "points " << count << std::endl;
86  
87        svg_2d_plot data_plot;
88        data_plot.title("Lambert W function.")
89          .x_size(400)
90          .y_size(300)
91          .legend_on(true)
92          .legend_lines(true)
93          .x_label("z")
94          .y_label("W")
95          .x_range(-1, 3.)
96          .y_range(-4., +1.)
97          .x_major_interval(1.)
98          .y_major_interval(1.)
99          .x_major_grid_on(true)
100          .y_major_grid_on(true)
101          //.x_values_on(true)
102          //.y_values_on(true)
103          .y_values_rotation(horizontal)
104          //.plot_window_on(true)
105          .x_values_precision(3)
106          .y_values_precision(3)
107          .coord_precision(4) // Needed to avoid stepping on curves.
108          .copyright_holder("Paul A. Bristow")
109          .copyright_date("2018")
110          //.background_border_color(black);
111          ;
112        data_plot.plot(w0s, "W0 branch").line_color(red).shape(none).line_on(true).bezier_on(false).line_width(1);
113        data_plot.plot(wm1s, "W-1 branch").line_color(blue).shape(none).line_on(true).bezier_on(false).line_width(1);
114        data_plot.write("./lambert_w_graph");
115  
116        show_2d_plot_settings(data_plot); // For plot diagnosis only.
117  
118      } // small z Lambert W
119  
120      {  // bigger argument z Lambert W
121  
122        std::map<const double, double> w0s_big;   // Lambert W0 branch values for large z and W.
123        std::map<const double, double> wm1s_big;   // Lambert W-1 branch values for small z and large -W.
124        int count = 0;
125        for (double z = -0.3678794411714423215955237701614608727; z < 10000.; z += 50.)
126        {
127          double w0 = lambert_w0(z);
128          w0s_big[z] = w0;
129          count++;
130        }
131        std::cout << "points " << count << std::endl;
132  
133        count = 0;
134        for (double z = -0.3678794411714423215955237701614608727; z < -0.001; z += 0.001)
135        {
136          double wm1 = lambert_wm1(z);
137          wm1s_big[z] = wm1;
138          count++;
139        }
140       std::cout << "Lambert W0 large z argument points = " << count << std::endl;
141  
142       svg_2d_plot data_plot2;
143       data_plot2.title("Lambert W0 function for larger z.")
144        .x_size(400)
145        .y_size(300)
146        .legend_on(false)
147        .x_label("z")
148        .y_label("W")
149        //.x_label_on(true)
150        //.y_label_on(true)
151        //.xy_values_on(false)
152        .x_range(-1, 10000.)
153        .y_range(-1., +8.)
154        .x_major_interval(2000.)
155        .y_major_interval(1.)
156        .x_major_grid_on(true)
157        .y_major_grid_on(true)
158        //.x_values_on(true)
159        //.y_values_on(true)
160        .y_values_rotation(horizontal)
161        //.plot_window_on(true)
162        .x_values_precision(3)
163        .y_values_precision(3)
164        .coord_precision(4) // Needed to avoid stepping on curves.
165        .copyright_holder("Paul A. Bristow")
166        .copyright_date("2018")
167        //.background_border_color(black);
168      ;
169  
170      data_plot2.plot(w0s_big, "W0 branch").line_color(red).shape(none).line_on(true).bezier_on(false).line_width(1);
171      // data_plot2.plot(wm1s_big, "W-1 branch").line_color(blue).shape(none).line_on(true).bezier_on(false).line_width(1);
172      // This wouldn't show anything useful.
173      data_plot2.write("./lambert_w_graph_big_w");
174     } // Big argument z Lambert W
175  
176      { //  Lambert W0 Derivative plots
177  
178      //  std::map<const double, double> wm1ps;   // Lambert W-1 prime branch values.
179        std::map<const double, double> w0ps;   // Lambert W0 prime branch values.
180  
181        std::cout.precision(std::numeric_limits<double>::max_digits10);
182  
183        int count = 0;
184        for (double z = -0.36; z < 3.; z += 0.001)
185        {
186          double w0p = lambert_w0_prime(z);
187          w0ps[z] = w0p;
188          // std::cout << "z " << z << ", w0 = " << w0 << std::endl;
189          count++;
190        }
191        std::cout << "points " << count << std::endl;
192  
193        //count = 0;
194        //for (double z = -0.36; z < -0.1; z += 0.001)
195        //{
196        //  double wm1p = lambert_wm1_prime(z);
197        //  std::cout << "z " << z << ", w-1 = " << wm1p << std::endl;
198        //  wm1ps[z] = wm1p;
199        //  count++;
200        //}
201        //std::cout << "points " << count << std::endl;
202  
203        svg_2d_plot data_plotp;
204        data_plotp.title("Lambert W0 prime function.")
205          .x_size(400)
206          .y_size(300)
207          .legend_on(false)
208          .x_label("z")
209          .y_label("W0'")
210          .x_range(-0.3, +1.)
211          .y_range(0., +5.)
212          .x_major_interval(0.2)
213          .y_major_interval(2.)
214          .x_major_grid_on(true)
215          .y_major_grid_on(true)
216          .y_values_rotation(horizontal)
217          .x_values_precision(3)
218          .y_values_precision(3)
219          .coord_precision(4) // Needed to avoid stepping on curves.
220          .copyright_holder("Paul A. Bristow")
221          .copyright_date("2018")
222          ;
223  
224        // derivative of N[productlog(0, x), 55]  at x=0 to 10
225        // Plot[D[N[ProductLog[0, x], 55], x], {x, 0, 10}]
226        // Plot[ProductLog[x]/(x + x ProductLog[x]), {x, 0, 10}]
227        data_plotp.plot(w0ps, "W0 prime branch").line_color(red).shape(none).line_on(true).bezier_on(false).line_width(1);
228        data_plotp.write("./lambert_w0_prime_graph");
229    } // Lambert W0 Derivative plots
230  
231      { //  Lambert Wm1 Derivative plots
232  
233      std::map<const double, double> wm1ps;   // Lambert W-1 prime branch values.
234  
235      std::cout.precision(std::numeric_limits<double>::max_digits10);
236  
237      int count = 0;
238      for (double z = -0.3678; z < -0.00001; z += 0.001)
239      {
240        double wm1p = lambert_wm1_prime(z);
241        // std::cout << "z " << z << ", w-1 = " << wm1p << std::endl;
242        wm1ps[z] = wm1p;
243        count++;
244      }
245      std::cout << "Lambert W-1 prime points = " << count << std::endl;
246  
247      svg_2d_plot data_plotp;
248      data_plotp.title("Lambert W-1 prime function.")
249        .x_size(400)
250        .y_size(300)
251        .legend_on(false)
252        .x_label("z")
253        .y_label("W-1'")
254        .x_range(-0.4, +0.01)
255        .x_major_interval(0.1)
256        .y_range(-20., -5.)
257        .y_major_interval(5.)
258        .x_major_grid_on(true)
259        .y_major_grid_on(true)
260        .y_values_rotation(horizontal)
261        .x_values_precision(3)
262        .y_values_precision(3)
263        .coord_precision(4) // Needed to avoid stepping on curves.
264        .copyright_holder("Paul A. Bristow")
265        .copyright_date("2018")
266        ;
267  
268        // derivative of N[productlog(0, x), 55]  at x=0 to 10
269        // Plot[D[N[ProductLog[0, x], 55], x], {x, 0, 10}]
270        // Plot[ProductLog[x]/(x + x ProductLog[x]), {x, 0, 10}]
271        data_plotp.plot(wm1ps, "W-1 prime branch").line_color(blue).shape(none).line_on(true).bezier_on(false).line_width(1);
272        data_plotp.write("./lambert_wm1_prime_graph");
273      } // Lambert W-1 prime graph
274   } // try
275    catch (std::exception& ex)
276    {
277      std::cout << ex.what() << std::endl;
278    }
279  }  // int main()
280  
281     /*
282  
283     //[lambert_w_graph_1_output
284  
285     //] [/lambert_w_graph_1_output]
286     */
287