1 /*
2 * Copyright Nick Thompson, 2017
3 * Use, modification and distribution are subject to the
4 * Boost Software License, Version 1.0. (See accompanying file
5 * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
6 */
7 #define BOOST_TEST_MODULE catmull_rom_test
8
9 #include <array>
10 #include <random>
11 #include <boost/cstdfloat.hpp>
12 #include <boost/type_index.hpp>
13 #include <boost/test/included/unit_test.hpp>
14 #include <boost/test/tools/floating_point_comparison.hpp>
15 #include <boost/math/constants/constants.hpp>
16 #include <boost/math/interpolators/catmull_rom.hpp>
17 #include <boost/multiprecision/cpp_bin_float.hpp>
18 #include <boost/multiprecision/cpp_dec_float.hpp>
19 #include <boost/numeric/ublas/vector.hpp>
20
21 using std::abs;
22 using boost::multiprecision::cpp_bin_float_50;
23 using boost::math::catmull_rom;
24
25 template<class Real>
test_alpha_distance()26 void test_alpha_distance()
27 {
28 Real tol = std::numeric_limits<Real>::epsilon();
29 std::array<Real, 3> v1 = {0,0,0};
30 std::array<Real, 3> v2 = {1,0,0};
31 Real alpha = 0.5;
32 Real d = boost::math::detail::alpha_distance<std::array<Real, 3>>(v1, v2, alpha);
33 BOOST_CHECK_CLOSE_FRACTION(d, 1, tol);
34
35 d = boost::math::detail::alpha_distance<std::array<Real, 3>>(v1, v2, 0.0);
36 BOOST_CHECK_CLOSE_FRACTION(d, 1, tol);
37
38 d = boost::math::detail::alpha_distance<std::array<Real, 3>>(v1, v2, 1.0);
39 BOOST_CHECK_CLOSE_FRACTION(d, 1, tol);
40
41 v2[0] = 2;
42 d = boost::math::detail::alpha_distance<std::array<Real, 3>>(v1, v2, alpha);
43 BOOST_CHECK_CLOSE_FRACTION(d, pow(2, (Real)1/ (Real) 2), tol);
44
45 d = boost::math::detail::alpha_distance<std::array<Real, 3>>(v1, v2, 0.0);
46 BOOST_CHECK_CLOSE_FRACTION(d, 1, tol);
47
48 d = boost::math::detail::alpha_distance<std::array<Real, 3>>(v1, v2, 1.0);
49 BOOST_CHECK_CLOSE_FRACTION(d, 2, tol);
50 }
51
52
53 template<class Real>
test_linear()54 void test_linear()
55 {
56 std::cout << "Testing that the Catmull-Rom spline interpolates linear functions correctly on type "
57 << boost::typeindex::type_id<Real>().pretty_name() << "\n";
58
59 Real tol = 10*std::numeric_limits<Real>::epsilon();
60 std::vector<std::array<Real, 3>> v(4);
61 v[0] = {0,0,0};
62 v[1] = {1,0,0};
63 v[2] = {2,0,0};
64 v[3] = {3,0,0};
65 catmull_rom<std::array<Real, 3>> cr(std::move(v));
66
67 // Test that the interpolation condition is obeyed:
68 BOOST_CHECK_CLOSE_FRACTION(cr.max_parameter(), 3, tol);
69 auto p0 = cr(0.0);
70 BOOST_CHECK_SMALL(p0[0], tol);
71 BOOST_CHECK_SMALL(p0[1], tol);
72 BOOST_CHECK_SMALL(p0[2], tol);
73 auto p1 = cr(1.0);
74 BOOST_CHECK_CLOSE_FRACTION(p1[0], 1, tol);
75 BOOST_CHECK_SMALL(p1[1], tol);
76 BOOST_CHECK_SMALL(p1[2], tol);
77
78 auto p2 = cr(2.0);
79 BOOST_CHECK_CLOSE_FRACTION(p2[0], 2, tol);
80 BOOST_CHECK_SMALL(p2[1], tol);
81 BOOST_CHECK_SMALL(p2[2], tol);
82
83
84 auto p3 = cr(3.0);
85 BOOST_CHECK_CLOSE_FRACTION(p3[0], 3, tol);
86 BOOST_CHECK_SMALL(p3[1], tol);
87 BOOST_CHECK_SMALL(p3[2], tol);
88
89 Real s = cr.parameter_at_point(0);
90 BOOST_CHECK_SMALL(s, tol);
91
92 s = cr.parameter_at_point(1);
93 BOOST_CHECK_CLOSE_FRACTION(s, 1, tol);
94
95 s = cr.parameter_at_point(2);
96 BOOST_CHECK_CLOSE_FRACTION(s, 2, tol);
97
98 s = cr.parameter_at_point(3);
99 BOOST_CHECK_CLOSE_FRACTION(s, 3, tol);
100
101 // Test that the function is linear on the interval [1,2]:
102 for (double s = 1; s < 2; s += 0.01)
103 {
104 auto p = cr(s);
105 BOOST_CHECK_CLOSE_FRACTION(p[0], s, tol);
106 BOOST_CHECK_SMALL(p[1], tol);
107 BOOST_CHECK_SMALL(p[2], tol);
108
109 auto tangent = cr.prime(s);
110 BOOST_CHECK_CLOSE_FRACTION(tangent[0], 1, tol);
111 BOOST_CHECK_SMALL(tangent[1], tol);
112 BOOST_CHECK_SMALL(tangent[2], tol);
113 }
114
115 }
116
117 template<class Real>
test_circle()118 void test_circle()
119 {
120 using boost::math::constants::pi;
121 using std::cos;
122 using std::sin;
123
124 std::cout << "Testing that the Catmull-Rom spline interpolates circles correctly on type "
125 << boost::typeindex::type_id<Real>().pretty_name() << "\n";
126
127 Real tol = 10*std::numeric_limits<Real>::epsilon();
128 std::vector<std::array<Real, 2>> v(20*sizeof(Real));
129 std::vector<std::array<Real, 2>> u(20*sizeof(Real));
130 for (size_t i = 0; i < v.size(); ++i)
131 {
132 Real theta = ((Real) i/ (Real) v.size())*2*pi<Real>();
133 v[i] = {cos(theta), sin(theta)};
134 u[i] = v[i];
135 }
136 catmull_rom<std::array<Real, 2>> circle(std::move(v), true);
137
138 // Interpolation condition:
139 for (size_t i = 0; i < v.size(); ++i)
140 {
141 Real s = circle.parameter_at_point(i);
142 auto p = circle(s);
143 Real x = p[0];
144 Real y = p[1];
145 if (abs(x) < std::numeric_limits<Real>::epsilon())
146 {
147 BOOST_CHECK_SMALL(u[i][0], tol);
148 }
149 if (abs(y) < std::numeric_limits<Real>::epsilon())
150 {
151 BOOST_CHECK_SMALL(u[i][1], tol);
152 }
153 else
154 {
155 BOOST_CHECK_CLOSE_FRACTION(x, u[i][0], tol);
156 BOOST_CHECK_CLOSE_FRACTION(y, u[i][1], tol);
157 }
158 }
159
160 Real max_s = circle.max_parameter();
161 for(Real s = 0; s < max_s; s += 0.01)
162 {
163 auto p = circle(s);
164 Real x = p[0];
165 Real y = p[1];
166 BOOST_CHECK_CLOSE_FRACTION(x*x+y*y, 1, 0.001);
167 }
168 }
169
170
171 template<class Real, size_t dimension>
test_affine_invariance()172 void test_affine_invariance()
173 {
174 std::cout << "Testing that the Catmull-Rom spline is affine invariant in dimension "
175 << dimension << " on type "
176 << boost::typeindex::type_id<Real>().pretty_name() << "\n";
177
178 Real tol = 1000*std::numeric_limits<Real>::epsilon();
179 std::vector<std::array<Real, dimension>> v(100);
180 std::vector<std::array<Real, dimension>> u(100);
181 std::mt19937_64 gen(438232);
182 Real inv_denom = (Real) 100/( (Real) (gen.max)() + (Real) 2);
183 for(size_t j = 0; j < dimension; ++j)
184 {
185 v[0][j] = gen()*inv_denom;
186 u[0][j] = v[0][j];
187 }
188
189 for (size_t i = 1; i < v.size(); ++i)
190 {
191 for(size_t j = 0; j < dimension; ++j)
192 {
193 v[i][j] = v[i-1][j] + gen()*inv_denom;
194 u[i][j] = v[i][j];
195 }
196 }
197 std::array<Real, dimension> affine_shift;
198 for (size_t j = 0; j < dimension; ++j)
199 {
200 affine_shift[j] = gen()*inv_denom;
201 }
202
203 catmull_rom<std::array<Real, dimension>> cr1(std::move(v));
204
205 for(size_t i = 0; i< u.size(); ++i)
206 {
207 for(size_t j = 0; j < dimension; ++j)
208 {
209 u[i][j] += affine_shift[j];
210 }
211 }
212
213 catmull_rom<std::array<Real, dimension>> cr2(std::move(u));
214
215 BOOST_CHECK_CLOSE_FRACTION(cr1.max_parameter(), cr2.max_parameter(), tol);
216
217 Real ds = cr1.max_parameter()/1024;
218 for (Real s = 0; s < cr1.max_parameter(); s += ds)
219 {
220 auto p0 = cr1(s);
221 auto p1 = cr2(s);
222 auto tangent0 = cr1.prime(s);
223 auto tangent1 = cr2.prime(s);
224 for (size_t j = 0; j < dimension; ++j)
225 {
226 BOOST_CHECK_CLOSE_FRACTION(p0[j] + affine_shift[j], p1[j], tol);
227 if (abs(tangent0[j]) > 5000*tol)
228 {
229 BOOST_CHECK_CLOSE_FRACTION(tangent0[j], tangent1[j], 5000*tol);
230 }
231 }
232 }
233 }
234
235 template<class Real>
test_helix()236 void test_helix()
237 {
238 using boost::math::constants::pi;
239 std::cout << "Testing that the Catmull-Rom spline interpolates helices correctly on type "
240 << boost::typeindex::type_id<Real>().pretty_name() << "\n";
241
242 Real tol = 0.001;
243 std::vector<std::array<Real, 3>> v(400*sizeof(Real));
244 for (size_t i = 0; i < v.size(); ++i)
245 {
246 Real theta = ((Real) i/ (Real) v.size())*2*pi<Real>();
247 v[i] = {cos(theta), sin(theta), theta};
248 }
249 catmull_rom<std::array<Real, 3>> helix(std::move(v));
250
251 // Interpolation condition:
252 for (size_t i = 0; i < v.size(); ++i)
253 {
254 Real s = helix.parameter_at_point(i);
255 auto p = helix(s);
256 Real t = p[2];
257
258 Real x = p[0];
259 Real y = p[1];
260 if (abs(x) < tol)
261 {
262 BOOST_CHECK_SMALL(cos(t), tol);
263 }
264 if (abs(y) < tol)
265 {
266 BOOST_CHECK_SMALL(sin(t), tol);
267 }
268 else
269 {
270 BOOST_CHECK_CLOSE_FRACTION(x, cos(t), tol);
271 BOOST_CHECK_CLOSE_FRACTION(y, sin(t), tol);
272 }
273 }
274
275 Real max_s = helix.max_parameter();
276 for(Real s = helix.parameter_at_point(1); s < max_s; s += 0.01)
277 {
278 auto p = helix(s);
279 Real x = p[0];
280 Real y = p[1];
281 Real t = p[2];
282 BOOST_CHECK_CLOSE_FRACTION(x*x+y*y, (Real) 1, (Real) 0.01);
283 if (abs(x) < 0.01)
284 {
285 BOOST_CHECK_SMALL(cos(t), (Real) 0.05);
286 }
287 if (abs(y) < 0.01)
288 {
289 BOOST_CHECK_SMALL(sin(t), (Real) 0.05);
290 }
291 else
292 {
293 BOOST_CHECK_CLOSE_FRACTION(x, cos(t), (Real) 0.05);
294 BOOST_CHECK_CLOSE_FRACTION(y, sin(t), (Real) 0.05);
295 }
296 }
297 }
298
299
300 template<class Real>
301 class mypoint3d
302 {
303 public:
304 // Must define a value_type:
305 typedef Real value_type;
306
307 // Regular constructor:
mypoint3d(Real x,Real y,Real z)308 mypoint3d(Real x, Real y, Real z)
309 {
310 m_vec[0] = x;
311 m_vec[1] = y;
312 m_vec[2] = z;
313 }
314
315 // Must define a default constructor:
mypoint3d()316 mypoint3d() {}
317
318 // Must define array access:
operator [](size_t i) const319 Real operator[](size_t i) const
320 {
321 return m_vec[i];
322 }
323
324 // Array element assignment:
operator [](size_t i)325 Real& operator[](size_t i)
326 {
327 return m_vec[i];
328 }
329
330
331 private:
332 std::array<Real, 3> m_vec;
333 };
334
335
336 // Must define the free function "size()":
337 template<class Real>
size(const mypoint3d<Real> & c)338 BOOST_CONSTEXPR std::size_t size(const mypoint3d<Real>& c)
339 {
340 return 3;
341 }
342
343 template<class Real>
test_data_representations()344 void test_data_representations()
345 {
346 std::cout << "Testing that the Catmull-Rom spline works with multiple data representations.\n";
347 mypoint3d<Real> p0(0.1, 0.2, 0.3);
348 mypoint3d<Real> p1(0.2, 0.3, 0.4);
349 mypoint3d<Real> p2(0.3, 0.4, 0.5);
350 mypoint3d<Real> p3(0.4, 0.5, 0.6);
351 mypoint3d<Real> p4(0.5, 0.6, 0.7);
352 mypoint3d<Real> p5(0.6, 0.7, 0.8);
353
354
355 // Tests initializer_list:
356 catmull_rom<mypoint3d<Real>> cat({p0, p1, p2, p3, p4, p5});
357
358 Real tol = 0.001;
359 auto p = cat(cat.parameter_at_point(0));
360 BOOST_CHECK_CLOSE_FRACTION(p[0], p0[0], tol);
361 BOOST_CHECK_CLOSE_FRACTION(p[1], p0[1], tol);
362 BOOST_CHECK_CLOSE_FRACTION(p[2], p0[2], tol);
363 p = cat(cat.parameter_at_point(1));
364 BOOST_CHECK_CLOSE_FRACTION(p[0], p1[0], tol);
365 BOOST_CHECK_CLOSE_FRACTION(p[1], p1[1], tol);
366 BOOST_CHECK_CLOSE_FRACTION(p[2], p1[2], tol);
367 }
368
369 template<class Real>
test_random_access_container()370 void test_random_access_container()
371 {
372 std::cout << "Testing that the Catmull-Rom spline works with multiple data representations.\n";
373 mypoint3d<Real> p0(0.1, 0.2, 0.3);
374 mypoint3d<Real> p1(0.2, 0.3, 0.4);
375 mypoint3d<Real> p2(0.3, 0.4, 0.5);
376 mypoint3d<Real> p3(0.4, 0.5, 0.6);
377 mypoint3d<Real> p4(0.5, 0.6, 0.7);
378 mypoint3d<Real> p5(0.6, 0.7, 0.8);
379
380 boost::numeric::ublas::vector<mypoint3d<Real>> u(6);
381 u[0] = p0;
382 u[1] = p1;
383 u[2] = p2;
384 u[3] = p3;
385 u[4] = p4;
386 u[5] = p5;
387
388 // Tests initializer_list:
389 catmull_rom<mypoint3d<Real>, decltype(u)> cat(std::move(u));
390
391 Real tol = 0.001;
392 auto p = cat(cat.parameter_at_point(0));
393 BOOST_CHECK_CLOSE_FRACTION(p[0], p0[0], tol);
394 BOOST_CHECK_CLOSE_FRACTION(p[1], p0[1], tol);
395 BOOST_CHECK_CLOSE_FRACTION(p[2], p0[2], tol);
396 p = cat(cat.parameter_at_point(1));
397 BOOST_CHECK_CLOSE_FRACTION(p[0], p1[0], tol);
398 BOOST_CHECK_CLOSE_FRACTION(p[1], p1[1], tol);
399 BOOST_CHECK_CLOSE_FRACTION(p[2], p1[2], tol);
400 }
401
BOOST_AUTO_TEST_CASE(catmull_rom_test)402 BOOST_AUTO_TEST_CASE(catmull_rom_test)
403 {
404 #if !defined(TEST) || (TEST == 1)
405 test_data_representations<float>();
406 test_alpha_distance<double>();
407
408 test_linear<double>();
409 test_linear<long double>();
410
411 test_circle<float>();
412 test_circle<double>();
413 #endif
414 #if !defined(TEST) || (TEST == 2)
415 test_helix<double>();
416
417 test_affine_invariance<double, 1>();
418 test_affine_invariance<double, 2>();
419 test_affine_invariance<double, 3>();
420 test_affine_invariance<double, 4>();
421
422 test_random_access_container<double>();
423 #endif
424 #if !defined(TEST) || (TEST == 3)
425 test_affine_invariance<cpp_bin_float_50, 4>();
426 #endif
427 }
428