• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright Nick Thompson, 2017
3  * Use, modification and distribution are subject to the
4  * Boost Software License, Version 1.0. (See accompanying file
5  * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
6  */
7 #define BOOST_TEST_MODULE catmull_rom_test
8 
9 #include <array>
10 #include <random>
11 #include <boost/cstdfloat.hpp>
12 #include <boost/type_index.hpp>
13 #include <boost/test/included/unit_test.hpp>
14 #include <boost/test/tools/floating_point_comparison.hpp>
15 #include <boost/math/constants/constants.hpp>
16 #include <boost/math/interpolators/catmull_rom.hpp>
17 #include <boost/multiprecision/cpp_bin_float.hpp>
18 #include <boost/multiprecision/cpp_dec_float.hpp>
19 #include <boost/numeric/ublas/vector.hpp>
20 
21 using std::abs;
22 using boost::multiprecision::cpp_bin_float_50;
23 using boost::math::catmull_rom;
24 
25 template<class Real>
test_alpha_distance()26 void test_alpha_distance()
27 {
28     Real tol = std::numeric_limits<Real>::epsilon();
29     std::array<Real, 3> v1 = {0,0,0};
30     std::array<Real, 3> v2 = {1,0,0};
31     Real alpha = 0.5;
32     Real d = boost::math::detail::alpha_distance<std::array<Real, 3>>(v1, v2, alpha);
33     BOOST_CHECK_CLOSE_FRACTION(d, 1, tol);
34 
35     d = boost::math::detail::alpha_distance<std::array<Real, 3>>(v1, v2, 0.0);
36     BOOST_CHECK_CLOSE_FRACTION(d, 1, tol);
37 
38     d = boost::math::detail::alpha_distance<std::array<Real, 3>>(v1, v2, 1.0);
39     BOOST_CHECK_CLOSE_FRACTION(d, 1, tol);
40 
41     v2[0] = 2;
42     d = boost::math::detail::alpha_distance<std::array<Real, 3>>(v1, v2, alpha);
43     BOOST_CHECK_CLOSE_FRACTION(d, pow(2, (Real)1/ (Real) 2), tol);
44 
45     d = boost::math::detail::alpha_distance<std::array<Real, 3>>(v1, v2, 0.0);
46     BOOST_CHECK_CLOSE_FRACTION(d, 1, tol);
47 
48     d = boost::math::detail::alpha_distance<std::array<Real, 3>>(v1, v2, 1.0);
49     BOOST_CHECK_CLOSE_FRACTION(d, 2, tol);
50 }
51 
52 
53 template<class Real>
test_linear()54 void test_linear()
55 {
56     std::cout << "Testing that the Catmull-Rom spline interpolates linear functions correctly on type "
57               << boost::typeindex::type_id<Real>().pretty_name() << "\n";
58 
59     Real tol = 10*std::numeric_limits<Real>::epsilon();
60     std::vector<std::array<Real, 3>> v(4);
61     v[0] = {0,0,0};
62     v[1] = {1,0,0};
63     v[2] = {2,0,0};
64     v[3] = {3,0,0};
65     catmull_rom<std::array<Real, 3>> cr(std::move(v));
66 
67     // Test that the interpolation condition is obeyed:
68     BOOST_CHECK_CLOSE_FRACTION(cr.max_parameter(), 3, tol);
69     auto p0 = cr(0.0);
70     BOOST_CHECK_SMALL(p0[0], tol);
71     BOOST_CHECK_SMALL(p0[1], tol);
72     BOOST_CHECK_SMALL(p0[2], tol);
73     auto p1 = cr(1.0);
74     BOOST_CHECK_CLOSE_FRACTION(p1[0], 1, tol);
75     BOOST_CHECK_SMALL(p1[1], tol);
76     BOOST_CHECK_SMALL(p1[2], tol);
77 
78     auto p2 = cr(2.0);
79     BOOST_CHECK_CLOSE_FRACTION(p2[0], 2, tol);
80     BOOST_CHECK_SMALL(p2[1], tol);
81     BOOST_CHECK_SMALL(p2[2], tol);
82 
83 
84     auto p3 = cr(3.0);
85     BOOST_CHECK_CLOSE_FRACTION(p3[0], 3, tol);
86     BOOST_CHECK_SMALL(p3[1], tol);
87     BOOST_CHECK_SMALL(p3[2], tol);
88 
89     Real s = cr.parameter_at_point(0);
90     BOOST_CHECK_SMALL(s, tol);
91 
92     s = cr.parameter_at_point(1);
93     BOOST_CHECK_CLOSE_FRACTION(s, 1, tol);
94 
95     s = cr.parameter_at_point(2);
96     BOOST_CHECK_CLOSE_FRACTION(s, 2, tol);
97 
98     s = cr.parameter_at_point(3);
99     BOOST_CHECK_CLOSE_FRACTION(s, 3, tol);
100 
101     // Test that the function is linear on the interval [1,2]:
102     for (double s = 1; s < 2; s += 0.01)
103     {
104         auto p = cr(s);
105         BOOST_CHECK_CLOSE_FRACTION(p[0], s, tol);
106         BOOST_CHECK_SMALL(p[1], tol);
107         BOOST_CHECK_SMALL(p[2], tol);
108 
109         auto tangent = cr.prime(s);
110         BOOST_CHECK_CLOSE_FRACTION(tangent[0], 1, tol);
111         BOOST_CHECK_SMALL(tangent[1], tol);
112         BOOST_CHECK_SMALL(tangent[2], tol);
113     }
114 
115 }
116 
117 template<class Real>
test_circle()118 void test_circle()
119 {
120     using boost::math::constants::pi;
121     using std::cos;
122     using std::sin;
123 
124     std::cout << "Testing that the Catmull-Rom spline interpolates circles correctly on type "
125               << boost::typeindex::type_id<Real>().pretty_name() << "\n";
126 
127     Real tol = 10*std::numeric_limits<Real>::epsilon();
128     std::vector<std::array<Real, 2>> v(20*sizeof(Real));
129     std::vector<std::array<Real, 2>> u(20*sizeof(Real));
130     for (size_t i = 0; i < v.size(); ++i)
131     {
132         Real theta = ((Real) i/ (Real) v.size())*2*pi<Real>();
133         v[i] = {cos(theta), sin(theta)};
134         u[i] = v[i];
135     }
136     catmull_rom<std::array<Real, 2>> circle(std::move(v), true);
137 
138     // Interpolation condition:
139     for (size_t i = 0; i < v.size(); ++i)
140     {
141         Real s = circle.parameter_at_point(i);
142         auto p = circle(s);
143         Real x = p[0];
144         Real y = p[1];
145         if (abs(x) < std::numeric_limits<Real>::epsilon())
146         {
147             BOOST_CHECK_SMALL(u[i][0], tol);
148         }
149         if (abs(y) < std::numeric_limits<Real>::epsilon())
150         {
151             BOOST_CHECK_SMALL(u[i][1], tol);
152         }
153         else
154         {
155             BOOST_CHECK_CLOSE_FRACTION(x, u[i][0], tol);
156             BOOST_CHECK_CLOSE_FRACTION(y, u[i][1], tol);
157         }
158     }
159 
160     Real max_s = circle.max_parameter();
161     for(Real s = 0; s < max_s; s += 0.01)
162     {
163         auto p = circle(s);
164         Real x = p[0];
165         Real y = p[1];
166         BOOST_CHECK_CLOSE_FRACTION(x*x+y*y, 1, 0.001);
167     }
168 }
169 
170 
171 template<class Real, size_t dimension>
test_affine_invariance()172 void test_affine_invariance()
173 {
174     std::cout << "Testing that the Catmull-Rom spline is affine invariant in dimension "
175               << dimension << " on type "
176               << boost::typeindex::type_id<Real>().pretty_name() << "\n";
177 
178     Real tol = 1000*std::numeric_limits<Real>::epsilon();
179     std::vector<std::array<Real, dimension>> v(100);
180     std::vector<std::array<Real, dimension>> u(100);
181     std::mt19937_64 gen(438232);
182     Real inv_denom = (Real) 100/( (Real) (gen.max)() + (Real) 2);
183     for(size_t j = 0; j < dimension; ++j)
184     {
185         v[0][j] = gen()*inv_denom;
186         u[0][j] = v[0][j];
187     }
188 
189     for (size_t i = 1; i < v.size(); ++i)
190     {
191         for(size_t j = 0; j < dimension; ++j)
192         {
193             v[i][j] = v[i-1][j] + gen()*inv_denom;
194             u[i][j] = v[i][j];
195         }
196     }
197     std::array<Real, dimension> affine_shift;
198     for (size_t j = 0; j < dimension; ++j)
199     {
200         affine_shift[j] = gen()*inv_denom;
201     }
202 
203     catmull_rom<std::array<Real, dimension>> cr1(std::move(v));
204 
205     for(size_t i = 0; i< u.size(); ++i)
206     {
207         for(size_t j = 0; j < dimension; ++j)
208         {
209             u[i][j] += affine_shift[j];
210         }
211     }
212 
213     catmull_rom<std::array<Real, dimension>> cr2(std::move(u));
214 
215     BOOST_CHECK_CLOSE_FRACTION(cr1.max_parameter(), cr2.max_parameter(), tol);
216 
217     Real ds = cr1.max_parameter()/1024;
218     for (Real s = 0; s < cr1.max_parameter(); s += ds)
219     {
220         auto p0 = cr1(s);
221         auto p1 = cr2(s);
222         auto tangent0 = cr1.prime(s);
223         auto tangent1 = cr2.prime(s);
224         for (size_t j = 0; j < dimension; ++j)
225         {
226             BOOST_CHECK_CLOSE_FRACTION(p0[j] + affine_shift[j], p1[j], tol);
227             if (abs(tangent0[j]) > 5000*tol)
228             {
229                 BOOST_CHECK_CLOSE_FRACTION(tangent0[j], tangent1[j], 5000*tol);
230             }
231         }
232     }
233 }
234 
235 template<class Real>
test_helix()236 void test_helix()
237 {
238     using boost::math::constants::pi;
239     std::cout << "Testing that the Catmull-Rom spline interpolates helices correctly on type "
240               << boost::typeindex::type_id<Real>().pretty_name() << "\n";
241 
242     Real tol = 0.001;
243     std::vector<std::array<Real, 3>> v(400*sizeof(Real));
244     for (size_t i = 0; i < v.size(); ++i)
245     {
246         Real theta = ((Real) i/ (Real) v.size())*2*pi<Real>();
247         v[i] = {cos(theta), sin(theta), theta};
248     }
249     catmull_rom<std::array<Real, 3>> helix(std::move(v));
250 
251     // Interpolation condition:
252     for (size_t i = 0; i < v.size(); ++i)
253     {
254         Real s = helix.parameter_at_point(i);
255         auto p = helix(s);
256         Real t = p[2];
257 
258         Real x = p[0];
259         Real y = p[1];
260         if (abs(x) < tol)
261         {
262             BOOST_CHECK_SMALL(cos(t), tol);
263         }
264         if (abs(y) < tol)
265         {
266             BOOST_CHECK_SMALL(sin(t), tol);
267         }
268         else
269         {
270             BOOST_CHECK_CLOSE_FRACTION(x, cos(t), tol);
271             BOOST_CHECK_CLOSE_FRACTION(y, sin(t), tol);
272         }
273     }
274 
275     Real max_s = helix.max_parameter();
276     for(Real s = helix.parameter_at_point(1); s < max_s; s += 0.01)
277     {
278         auto p = helix(s);
279         Real x = p[0];
280         Real y = p[1];
281         Real t = p[2];
282         BOOST_CHECK_CLOSE_FRACTION(x*x+y*y, (Real) 1, (Real) 0.01);
283         if (abs(x) < 0.01)
284         {
285             BOOST_CHECK_SMALL(cos(t),  (Real) 0.05);
286         }
287         if (abs(y) < 0.01)
288         {
289             BOOST_CHECK_SMALL(sin(t), (Real) 0.05);
290         }
291         else
292         {
293             BOOST_CHECK_CLOSE_FRACTION(x, cos(t), (Real) 0.05);
294             BOOST_CHECK_CLOSE_FRACTION(y, sin(t), (Real) 0.05);
295         }
296     }
297 }
298 
299 
300 template<class Real>
301 class mypoint3d
302 {
303 public:
304     // Must define a value_type:
305     typedef Real value_type;
306 
307     // Regular constructor:
mypoint3d(Real x,Real y,Real z)308     mypoint3d(Real x, Real y, Real z)
309     {
310         m_vec[0] = x;
311         m_vec[1] = y;
312         m_vec[2] = z;
313     }
314 
315     // Must define a default constructor:
mypoint3d()316     mypoint3d() {}
317 
318     // Must define array access:
operator [](size_t i) const319     Real operator[](size_t i) const
320     {
321         return m_vec[i];
322     }
323 
324     // Array element assignment:
operator [](size_t i)325     Real& operator[](size_t i)
326     {
327         return m_vec[i];
328     }
329 
330 
331 private:
332     std::array<Real, 3>  m_vec;
333 };
334 
335 
336 // Must define the free function "size()":
337 template<class Real>
size(const mypoint3d<Real> & c)338 BOOST_CONSTEXPR std::size_t size(const mypoint3d<Real>& c)
339 {
340     return 3;
341 }
342 
343 template<class Real>
test_data_representations()344 void test_data_representations()
345 {
346     std::cout << "Testing that the Catmull-Rom spline works with multiple data representations.\n";
347     mypoint3d<Real> p0(0.1, 0.2, 0.3);
348     mypoint3d<Real> p1(0.2, 0.3, 0.4);
349     mypoint3d<Real> p2(0.3, 0.4, 0.5);
350     mypoint3d<Real> p3(0.4, 0.5, 0.6);
351     mypoint3d<Real> p4(0.5, 0.6, 0.7);
352     mypoint3d<Real> p5(0.6, 0.7, 0.8);
353 
354 
355     // Tests initializer_list:
356     catmull_rom<mypoint3d<Real>> cat({p0, p1, p2, p3, p4, p5});
357 
358     Real tol = 0.001;
359     auto p = cat(cat.parameter_at_point(0));
360     BOOST_CHECK_CLOSE_FRACTION(p[0], p0[0], tol);
361     BOOST_CHECK_CLOSE_FRACTION(p[1], p0[1], tol);
362     BOOST_CHECK_CLOSE_FRACTION(p[2], p0[2], tol);
363     p = cat(cat.parameter_at_point(1));
364     BOOST_CHECK_CLOSE_FRACTION(p[0], p1[0], tol);
365     BOOST_CHECK_CLOSE_FRACTION(p[1], p1[1], tol);
366     BOOST_CHECK_CLOSE_FRACTION(p[2], p1[2], tol);
367 }
368 
369 template<class Real>
test_random_access_container()370 void test_random_access_container()
371 {
372     std::cout << "Testing that the Catmull-Rom spline works with multiple data representations.\n";
373     mypoint3d<Real> p0(0.1, 0.2, 0.3);
374     mypoint3d<Real> p1(0.2, 0.3, 0.4);
375     mypoint3d<Real> p2(0.3, 0.4, 0.5);
376     mypoint3d<Real> p3(0.4, 0.5, 0.6);
377     mypoint3d<Real> p4(0.5, 0.6, 0.7);
378     mypoint3d<Real> p5(0.6, 0.7, 0.8);
379 
380     boost::numeric::ublas::vector<mypoint3d<Real>> u(6);
381     u[0] = p0;
382     u[1] = p1;
383     u[2] = p2;
384     u[3] = p3;
385     u[4] = p4;
386     u[5] = p5;
387 
388     // Tests initializer_list:
389     catmull_rom<mypoint3d<Real>, decltype(u)> cat(std::move(u));
390 
391     Real tol = 0.001;
392     auto p = cat(cat.parameter_at_point(0));
393     BOOST_CHECK_CLOSE_FRACTION(p[0], p0[0], tol);
394     BOOST_CHECK_CLOSE_FRACTION(p[1], p0[1], tol);
395     BOOST_CHECK_CLOSE_FRACTION(p[2], p0[2], tol);
396     p = cat(cat.parameter_at_point(1));
397     BOOST_CHECK_CLOSE_FRACTION(p[0], p1[0], tol);
398     BOOST_CHECK_CLOSE_FRACTION(p[1], p1[1], tol);
399     BOOST_CHECK_CLOSE_FRACTION(p[2], p1[2], tol);
400 }
401 
BOOST_AUTO_TEST_CASE(catmull_rom_test)402 BOOST_AUTO_TEST_CASE(catmull_rom_test)
403 {
404 #if !defined(TEST) || (TEST == 1)
405     test_data_representations<float>();
406     test_alpha_distance<double>();
407 
408     test_linear<double>();
409     test_linear<long double>();
410 
411     test_circle<float>();
412     test_circle<double>();
413 #endif
414 #if !defined(TEST) || (TEST == 2)
415     test_helix<double>();
416 
417     test_affine_invariance<double, 1>();
418     test_affine_invariance<double, 2>();
419     test_affine_invariance<double, 3>();
420     test_affine_invariance<double, 4>();
421 
422     test_random_access_container<double>();
423 #endif
424 #if !defined(TEST) || (TEST == 3)
425     test_affine_invariance<cpp_bin_float_50, 4>();
426 #endif
427 }
428