• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright Nick Thompson, 2017
2 // Use, modification and distribution are subject to the
3 // Boost Software License, Version 1.0.
4 // (See accompanying file LICENSE_1_0.txt
5 // or copy at http://www.boost.org/LICENSE_1_0.txt)
6 
7 #define BOOST_TEST_MODULE Gauss Kronrod_quadrature_test
8 
9 #include <complex>
10 #include <boost/config.hpp>
11 #include <boost/detail/workaround.hpp>
12 
13 #if !defined(BOOST_NO_CXX11_DECLTYPE) && !defined(BOOST_NO_CXX11_TRAILING_RESULT_TYPES) && !defined(BOOST_NO_SFINAE_EXPR)
14 
15 #include <boost/math/concepts/real_concept.hpp>
16 #include <boost/test/included/unit_test.hpp>
17 #include <boost/test/tools/floating_point_comparison.hpp>
18 #include <boost/math/quadrature/gauss_kronrod.hpp>
19 #include <boost/math/special_functions/sinc.hpp>
20 #include <boost/multiprecision/cpp_bin_float.hpp>
21 #include <boost/multiprecision/cpp_dec_float.hpp>
22 #include <boost/multiprecision/debug_adaptor.hpp>
23 
24 #ifdef BOOST_HAS_FLOAT128
25 #include <boost/multiprecision/complex128.hpp>
26 #endif
27 
28 #if !defined(TEST1) && !defined(TEST1A) && !defined(TEST2) && !defined(TEST3)
29 #  define TEST1
30 #  define TEST1A
31 #  define TEST2
32 #  define TEST3
33 #endif
34 
35 #ifdef _MSC_VER
36 #pragma warning(disable:4127)  // Conditional expression is constant
37 #endif
38 
39 using std::expm1;
40 using std::atan;
41 using std::tan;
42 using std::log;
43 using std::log1p;
44 using std::asinh;
45 using std::atanh;
46 using std::sqrt;
47 using std::isnormal;
48 using std::abs;
49 using std::sinh;
50 using std::tanh;
51 using std::cosh;
52 using std::pow;
53 using std::exp;
54 using std::sin;
55 using std::cos;
56 using std::string;
57 using boost::math::quadrature::gauss_kronrod;
58 using boost::math::constants::pi;
59 using boost::math::constants::half_pi;
60 using boost::math::constants::two_div_pi;
61 using boost::math::constants::two_pi;
62 using boost::math::constants::half;
63 using boost::math::constants::third;
64 using boost::math::constants::half;
65 using boost::math::constants::third;
66 using boost::math::constants::catalan;
67 using boost::math::constants::ln_two;
68 using boost::math::constants::root_two;
69 using boost::math::constants::root_two_pi;
70 using boost::math::constants::root_pi;
71 using boost::multiprecision::cpp_bin_float_quad;
72 using boost::multiprecision::cpp_dec_float_50;
73 using boost::multiprecision::debug_adaptor;
74 using boost::multiprecision::number;
75 
76 //
77 // Error rates depend only on the number of points in the approximation, not the type being tested,
78 // define all our expected errors here:
79 //
80 
81 enum
82 {
83    test_ca_error_id,
84    test_ca_error_id_2,
85    test_three_quad_error_id,
86    test_three_quad_error_id_2,
87    test_integration_over_real_line_error_id,
88    test_right_limit_infinite_error_id,
89    test_left_limit_infinite_error_id
90 };
91 
92 template <unsigned Points>
expected_error(unsigned)93 double expected_error(unsigned)
94 {
95    return 0; // placeholder, all tests will fail
96 }
97 
98 template <>
expected_error(unsigned id)99 double expected_error<15>(unsigned id)
100 {
101    switch (id)
102    {
103    case test_ca_error_id:
104       return 1e-7;
105    case test_ca_error_id_2:
106       return 2e-5;
107    case test_three_quad_error_id:
108       return 1e-8;
109    case test_three_quad_error_id_2:
110       return 3.5e-3;
111    case test_integration_over_real_line_error_id:
112       return 6e-3;
113    case test_right_limit_infinite_error_id:
114    case test_left_limit_infinite_error_id:
115       return 1e-5;
116    }
117    return 0;  // placeholder, all tests will fail
118 }
119 
120 template <>
expected_error(unsigned id)121 double expected_error<17>(unsigned id)
122 {
123    switch (id)
124    {
125    case test_ca_error_id:
126       return 1e-7;
127    case test_ca_error_id_2:
128       return 2e-5;
129    case test_three_quad_error_id:
130       return 1e-8;
131    case test_three_quad_error_id_2:
132       return 3.5e-3;
133    case test_integration_over_real_line_error_id:
134       return 6e-3;
135    case test_right_limit_infinite_error_id:
136    case test_left_limit_infinite_error_id:
137       return 1e-5;
138    }
139    return 0;  // placeholder, all tests will fail
140 }
141 
142 template <>
expected_error(unsigned id)143 double expected_error<21>(unsigned id)
144 {
145    switch (id)
146    {
147    case test_ca_error_id:
148       return 1e-12;
149    case test_ca_error_id_2:
150       return 3e-6;
151    case test_three_quad_error_id:
152       return 2e-13;
153    case test_three_quad_error_id_2:
154       return 2e-3;
155    case test_integration_over_real_line_error_id:
156       return 6e-3;  // doesn't get any better with more points!
157    case test_right_limit_infinite_error_id:
158    case test_left_limit_infinite_error_id:
159       return 5e-8;
160    }
161    return 0;  // placeholder, all tests will fail
162 }
163 
164 template <>
expected_error(unsigned id)165 double expected_error<31>(unsigned id)
166 {
167    switch (id)
168    {
169    case test_ca_error_id:
170       return 6e-20;
171    case test_ca_error_id_2:
172       return 3e-7;
173    case test_three_quad_error_id:
174       return 1e-19;
175    case test_three_quad_error_id_2:
176       return 6e-4;
177    case test_integration_over_real_line_error_id:
178       return 6e-3;  // doesn't get any better with more points!
179    case test_right_limit_infinite_error_id:
180    case test_left_limit_infinite_error_id:
181       return 5e-11;
182    }
183    return 0;  // placeholder, all tests will fail
184 }
185 
186 template <>
expected_error(unsigned id)187 double expected_error<41>(unsigned id)
188 {
189    switch (id)
190    {
191    case test_ca_error_id:
192       return 1e-26;
193    case test_ca_error_id_2:
194       return 1e-7;
195    case test_three_quad_error_id:
196       return 3e-27;
197    case test_three_quad_error_id_2:
198       return 3e-4;
199    case test_integration_over_real_line_error_id:
200       return 5e-5;  // doesn't get any better with more points!
201    case test_right_limit_infinite_error_id:
202    case test_left_limit_infinite_error_id:
203       return 1e-15;
204    }
205    return 0;  // placeholder, all tests will fail
206 }
207 
208 template <>
expected_error(unsigned id)209 double expected_error<51>(unsigned id)
210 {
211    switch (id)
212    {
213    case test_ca_error_id:
214       return 5e-33;
215    case test_ca_error_id_2:
216       return 1e-8;
217    case test_three_quad_error_id:
218       return 1e-32;
219    case test_three_quad_error_id_2:
220       return 3e-4;
221    case test_integration_over_real_line_error_id:
222       return 1e-14;
223    case test_right_limit_infinite_error_id:
224    case test_left_limit_infinite_error_id:
225       return 3e-19;
226    }
227    return 0;  // placeholder, all tests will fail
228 }
229 
230 template <>
expected_error(unsigned id)231 double expected_error<61>(unsigned id)
232 {
233    switch (id)
234    {
235    case test_ca_error_id:
236       return 5e-34;
237    case test_ca_error_id_2:
238       return 5e-9;
239    case test_three_quad_error_id:
240       return 4e-34;
241    case test_three_quad_error_id_2:
242       return 1e-4;
243    case test_integration_over_real_line_error_id:
244       return 1e-16;
245    case test_right_limit_infinite_error_id:
246    case test_left_limit_infinite_error_id:
247       return 3e-23;
248    }
249    return 0;  // placeholder, all tests will fail
250 }
251 
252 
253 template<class Real, unsigned Points>
test_linear()254 void test_linear()
255 {
256     std::cout << "Testing linear functions are integrated properly by gauss_kronrod on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
257     Real tol = boost::math::tools::epsilon<Real>() * 10;
258     Real error;
259     auto f = [](const Real& x)->Real
260     {
261        return 5*x + 7;
262     };
263     Real L1;
264     Real Q = gauss_kronrod<Real, Points>::integrate(f, (Real) 0, (Real) 1, 0, 0, &error, &L1);
265     BOOST_CHECK_CLOSE_FRACTION(Q, 9.5, tol);
266     BOOST_CHECK_CLOSE_FRACTION(L1, 9.5, tol);
267 
268     Q = gauss_kronrod<Real, Points>::integrate(f, (Real) 1, (Real) 0, 0, 0, &error, &L1);
269     BOOST_CHECK_CLOSE_FRACTION(Q, -9.5, tol);
270     BOOST_CHECK_CLOSE_FRACTION(L1, 9.5, tol);
271 
272     Q = gauss_kronrod<Real, Points>::integrate(f, (Real) 0, (Real) 0, 0, 0, &error, &L1);
273     BOOST_CHECK_CLOSE(Q, Real(0), tol);
274 }
275 
276 template<class Real, unsigned Points>
test_quadratic()277 void test_quadratic()
278 {
279     std::cout << "Testing quadratic functions are integrated properly by Gauss Kronrod on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
280     Real tol = boost::math::tools::epsilon<Real>() * 10;
281     Real error;
282 
283     auto f = [](const Real& x)->Real { return 5*x*x + 7*x + 12; };
284     Real L1;
285     Real Q = gauss_kronrod<Real, Points>::integrate(f, 0, 1, 0, 0, &error, &L1);
286     BOOST_CHECK_CLOSE_FRACTION(Q, (Real) 17 + half<Real>()*third<Real>(), tol);
287     BOOST_CHECK_CLOSE_FRACTION(L1, (Real) 17 + half<Real>()*third<Real>(), tol);
288 }
289 
290 // Examples taken from
291 //http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/quadrature.pdf
292 template<class Real, unsigned Points>
test_ca()293 void test_ca()
294 {
295     std::cout << "Testing integration of C(a) on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
296     Real tol = expected_error<Points>(test_ca_error_id);
297     Real L1;
298     Real error;
299 
300     auto f1 = [](const Real& x)->Real { return atan(x)/(x*(x*x + 1)) ; };
301     Real Q = gauss_kronrod<Real, Points>::integrate(f1, 0, 1, 0, 0, &error, &L1);
302     Real Q_expected = pi<Real>()*ln_two<Real>()/8 + catalan<Real>()*half<Real>();
303     BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
304     BOOST_CHECK_CLOSE_FRACTION(L1, Q_expected, tol);
305 
306     auto f2 = [](Real x)->Real { Real t0 = x*x + 1; Real t1 = sqrt(t0); return atan(t1)/(t0*t1); };
307     Q = gauss_kronrod<Real, Points>::integrate(f2, 0 , 1, 0, 0, &error, &L1);
308     Q_expected = pi<Real>()/4 - pi<Real>()/root_two<Real>() + 3*atan(root_two<Real>())/root_two<Real>();
309     BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
310     BOOST_CHECK_CLOSE_FRACTION(L1, Q_expected, tol);
311 
312     tol = expected_error<Points>(test_ca_error_id_2);
313     auto f5 = [](Real t)->Real { return t*t*log(t)/((t*t - 1)*(t*t*t*t + 1)); };
314     Q = gauss_kronrod<Real, Points>::integrate(f5, 0, 1, 0);
315     Q_expected = pi<Real>()*pi<Real>()*(2 - root_two<Real>())/32;
316     BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
317 }
318 
319 template<class Real, unsigned Points>
test_three_quadrature_schemes_examples()320 void test_three_quadrature_schemes_examples()
321 {
322     std::cout << "Testing integral in 'A Comparison of Three High Precision Quadrature Schemes' on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
323     Real tol = expected_error<Points>(test_three_quad_error_id);
324     Real Q;
325     Real Q_expected;
326 
327     // Example 1:
328     auto f1 = [](const Real& t)->Real { return t*boost::math::log1p(t); };
329     Q = gauss_kronrod<Real, Points>::integrate(f1, 0 , 1, 0);
330     Q_expected = half<Real>()*half<Real>();
331     BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
332 
333 
334     // Example 2:
335     auto f2 = [](const Real& t)->Real { return t*t*atan(t); };
336     Q = gauss_kronrod<Real, Points>::integrate(f2, 0 , 1, 0);
337     Q_expected = (pi<Real>() -2 + 2*ln_two<Real>())/12;
338     BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, 2 * tol);
339 
340     // Example 3:
341     auto f3 = [](const Real& t)->Real { return exp(t)*cos(t); };
342     Q = gauss_kronrod<Real, Points>::integrate(f3, 0, half_pi<Real>(), 0);
343     Q_expected = boost::math::expm1(half_pi<Real>())*half<Real>();
344     BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
345 
346     // Example 4:
347     auto f4 = [](Real x)->Real { Real t0 = sqrt(x*x + 2); return atan(t0)/(t0*(x*x+1)); };
348     Q = gauss_kronrod<Real, Points>::integrate(f4, 0 , 1, 0);
349     Q_expected = 5*pi<Real>()*pi<Real>()/96;
350     BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
351 
352     tol = expected_error<Points>(test_three_quad_error_id_2);
353     // Example 5:
354     auto f5 = [](const Real& t)->Real { return sqrt(t)*log(t); };
355     Q = gauss_kronrod<Real, Points>::integrate(f5, 0 , 1, 0);
356     Q_expected = -4/ (Real) 9;
357     BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
358 
359     // Example 6:
360     auto f6 = [](const Real& t)->Real { return sqrt(1 - t*t); };
361     Q = gauss_kronrod<Real, Points>::integrate(f6, 0 , 1, 0);
362     Q_expected = pi<Real>()/4;
363     BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
364 }
365 
366 
367 template<class Real, unsigned Points>
test_integration_over_real_line()368 void test_integration_over_real_line()
369 {
370     std::cout << "Testing integrals over entire real line in 'A Comparison of Three High Precision Quadrature Schemes' on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
371     Real tol = expected_error<Points>(test_integration_over_real_line_error_id);
372     Real Q;
373     Real Q_expected;
374     Real L1;
375     Real error;
376 
377     auto f1 = [](const Real& t)->Real { return 1/(1+t*t);};
378     Q = gauss_kronrod<Real, Points>::integrate(f1, -boost::math::tools::max_value<Real>(), boost::math::tools::max_value<Real>(), 0, 0, &error, &L1);
379     Q_expected = pi<Real>();
380     BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
381     BOOST_CHECK_CLOSE_FRACTION(L1, Q_expected, tol);
382 }
383 
384 template<class Real, unsigned Points>
test_right_limit_infinite()385 void test_right_limit_infinite()
386 {
387     std::cout << "Testing right limit infinite for Gauss Kronrod in 'A Comparison of Three High Precision Quadrature Schemes' on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
388     Real tol = expected_error<Points>(test_right_limit_infinite_error_id);
389     Real Q;
390     Real Q_expected;
391     Real L1;
392     Real error;
393 
394     // Example 11:
395     auto f1 = [](const Real& t)->Real { return 1/(1+t*t);};
396     Q = gauss_kronrod<Real, Points>::integrate(f1, 0, boost::math::tools::max_value<Real>(), 0, 0, &error, &L1);
397     Q_expected = half_pi<Real>();
398     BOOST_CHECK_CLOSE(Q, Q_expected, 100*tol);
399 
400     auto f4 = [](const Real& t)->Real { return 1/(1+t*t); };
401     Q = gauss_kronrod<Real, Points>::integrate(f4, 1, boost::math::tools::max_value<Real>(), 0, 0, &error, &L1);
402     Q_expected = pi<Real>()/4;
403     BOOST_CHECK_CLOSE(Q, Q_expected, 100*tol);
404 }
405 
406 template<class Real, unsigned Points>
test_left_limit_infinite()407 void test_left_limit_infinite()
408 {
409     std::cout << "Testing left limit infinite for Gauss Kronrod in 'A Comparison of Three High Precision Quadrature Schemes' on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
410     Real tol = expected_error<Points>(test_left_limit_infinite_error_id);
411     Real Q;
412     Real Q_expected;
413 
414     // Example 11:
415     auto f1 = [](const Real& t)->Real { return 1/(1+t*t);};
416     Q = gauss_kronrod<Real, Points>::integrate(f1, -boost::math::tools::max_value<Real>(), Real(0), 0);
417     Q_expected = half_pi<Real>();
418     BOOST_CHECK_CLOSE(Q, Q_expected, 100*tol);
419 }
420 
421 template<class Complex>
test_complex_lambert_w()422 void test_complex_lambert_w()
423 {
424     std::cout << "Testing that complex-valued integrands are integrated correctly by Gaussian quadrature on type " << boost::typeindex::type_id<Complex>().pretty_name() << "\n";
425     typedef typename Complex::value_type Real;
426     Real tol = 10e-9;
427     using boost::math::constants::pi;
428     Complex z{2, 3};
429     auto lw = [&z](Real v)->Complex {
430       using std::cos;
431       using std::sin;
432       using std::exp;
433       Real sinv = sin(v);
434       Real cosv = cos(v);
435 
436       Real cotv = cosv/sinv;
437       Real cscv = 1/sinv;
438       Real t = (1-v*cotv)*(1-v*cotv) + v*v;
439       Real x = v*cscv*exp(-v*cotv);
440       Complex den = z + x;
441       Complex num = t*(z/pi<Real>());
442       Complex res = num/den;
443       return res;
444     };
445 
446     //N[ProductLog[2+3*I], 150]
447     boost::math::quadrature::gauss_kronrod<Real, 61> integrator;
448     Complex Q = integrator.integrate(lw, (Real) 0, pi<Real>());
449     BOOST_CHECK_CLOSE_FRACTION(Q.real(), boost::lexical_cast<Real>("1.09007653448579084630177782678166964987102108635357778056449870727913321296238687023915522935120701763447787503167111962008709116746523970476893277703"), tol);
450     BOOST_CHECK_CLOSE_FRACTION(Q.imag(), boost::lexical_cast<Real>("0.530139720774838801426860213574121741928705631382703178297940568794784362495390544411799468140433404536019992695815009036975117285537382995180319280835"), tol);
451 }
452 
BOOST_AUTO_TEST_CASE(gauss_quadrature_test)453 BOOST_AUTO_TEST_CASE(gauss_quadrature_test)
454 {
455 #ifdef TEST1
456     std::cout << "Testing 15 point approximation:\n";
457     test_linear<double, 15>();
458     test_quadratic<double, 15>();
459     test_ca<double, 15>();
460     test_three_quadrature_schemes_examples<double, 15>();
461     test_integration_over_real_line<double, 15>();
462     test_right_limit_infinite<double, 15>();
463     test_left_limit_infinite<double, 15>();
464 
465     //  test one case where we do not have pre-computed constants:
466     std::cout << "Testing 17 point approximation:\n";
467     test_linear<double, 17>();
468     test_quadratic<double, 17>();
469     test_ca<double, 17>();
470     test_three_quadrature_schemes_examples<double, 17>();
471     test_integration_over_real_line<double, 17>();
472     test_right_limit_infinite<double, 17>();
473     test_left_limit_infinite<double, 17>();
474     test_complex_lambert_w<std::complex<double>>();
475     test_complex_lambert_w<std::complex<long double>>();
476 #endif
477 #ifdef TEST1A
478     std::cout << "Testing 21 point approximation:\n";
479     test_linear<cpp_bin_float_quad, 21>();
480     test_quadratic<cpp_bin_float_quad, 21>();
481     test_ca<cpp_bin_float_quad, 21>();
482     test_three_quadrature_schemes_examples<cpp_bin_float_quad, 21>();
483     test_integration_over_real_line<cpp_bin_float_quad, 21>();
484     test_right_limit_infinite<cpp_bin_float_quad, 21>();
485     test_left_limit_infinite<cpp_bin_float_quad, 21>();
486 
487     std::cout << "Testing 31 point approximation:\n";
488     test_linear<cpp_bin_float_quad, 31>();
489     test_quadratic<cpp_bin_float_quad, 31>();
490     test_ca<cpp_bin_float_quad, 31>();
491     test_three_quadrature_schemes_examples<cpp_bin_float_quad, 31>();
492     test_integration_over_real_line<cpp_bin_float_quad, 31>();
493     test_right_limit_infinite<cpp_bin_float_quad, 31>();
494     test_left_limit_infinite<cpp_bin_float_quad, 31>();
495 #endif
496 #ifdef TEST2
497     std::cout << "Testing 41 point approximation:\n";
498     test_linear<cpp_bin_float_quad, 41>();
499     test_quadratic<cpp_bin_float_quad, 41>();
500     test_ca<cpp_bin_float_quad, 41>();
501     test_three_quadrature_schemes_examples<cpp_bin_float_quad, 41>();
502     test_integration_over_real_line<cpp_bin_float_quad, 41>();
503     test_right_limit_infinite<cpp_bin_float_quad, 41>();
504     test_left_limit_infinite<cpp_bin_float_quad, 41>();
505 
506     std::cout << "Testing 51 point approximation:\n";
507     test_linear<cpp_bin_float_quad, 51>();
508     test_quadratic<cpp_bin_float_quad, 51>();
509     test_ca<cpp_bin_float_quad, 51>();
510     test_three_quadrature_schemes_examples<cpp_bin_float_quad, 51>();
511     test_integration_over_real_line<cpp_bin_float_quad, 51>();
512     test_right_limit_infinite<cpp_bin_float_quad, 51>();
513     test_left_limit_infinite<cpp_bin_float_quad, 51>();
514 #endif
515 #ifdef TEST3
516     // Need at least one set of tests with expression templates turned on:
517     std::cout << "Testing 61 point approximation:\n";
518     test_linear<cpp_dec_float_50, 61>();
519     test_quadratic<cpp_dec_float_50, 61>();
520     test_ca<cpp_dec_float_50, 61>();
521     test_three_quadrature_schemes_examples<cpp_dec_float_50, 61>();
522     test_integration_over_real_line<cpp_dec_float_50, 61>();
523     test_right_limit_infinite<cpp_dec_float_50, 61>();
524     test_left_limit_infinite<cpp_dec_float_50, 61>();
525 #ifdef BOOST_HAS_FLOAT128
526     test_complex_lambert_w<boost::multiprecision::complex128>();
527 #endif
528 #endif
529 }
530 
531 #else
532 
main()533 int main() { return 0; }
534 
535 #endif
536