1 /*
2 * (C) Copyright Nick Thompson 2018.
3 * Use, modification and distribution are subject to the
4 * Boost Software License, Version 1.0. (See accompanying file
5 * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
6 */
7
8 #include <vector>
9 #include <array>
10 #include <forward_list>
11 #include <algorithm>
12 #include <random>
13 #include <boost/core/lightweight_test.hpp>
14 #include <boost/numeric/ublas/vector.hpp>
15 #include <boost/math/constants/constants.hpp>
16 #include <boost/math/statistics/univariate_statistics.hpp>
17 #include <boost/math/statistics/signal_statistics.hpp>
18 #include <boost/multiprecision/cpp_bin_float.hpp>
19 #include <boost/multiprecision/cpp_complex.hpp>
20
21 using std::abs;
22 using boost::multiprecision::cpp_bin_float_50;
23 using boost::multiprecision::cpp_complex_50;
24 using boost::math::constants::two_pi;
25
26 /*
27 * Test checklist:
28 * 1) Does it work with multiprecision?
29 * 2) Does it work with .cbegin()/.cend() if the data is not altered?
30 * 3) Does it work with ublas and std::array? (Checking Eigen and Armadillo will make the CI system really unhappy.)
31 * 4) Does it work with std::forward_list if a forward iterator is all that is required?
32 * 5) Does it work with complex data if complex data is sensible?
33 * 6) Does it work with integer data if sensible?
34 */
35
36 template<class Real>
test_hoyer_sparsity()37 void test_hoyer_sparsity()
38 {
39 using std::sqrt;
40 Real tol = 5*std::numeric_limits<Real>::epsilon();
41 std::vector<Real> v{1,0,0};
42 Real hs = boost::math::statistics::hoyer_sparsity(v.begin(), v.end());
43 BOOST_TEST(abs(hs - 1) < tol);
44
45 hs = boost::math::statistics::hoyer_sparsity(v);
46 BOOST_TEST(abs(hs - 1) < tol);
47
48 // Does it work with constant iterators?
49 hs = boost::math::statistics::hoyer_sparsity(v.cbegin(), v.cend());
50 BOOST_TEST(abs(hs - 1) < tol);
51
52 v[0] = 1;
53 v[1] = 1;
54 v[2] = 1;
55 hs = boost::math::statistics::hoyer_sparsity(v.cbegin(), v.cend());
56 BOOST_TEST(abs(hs) < tol);
57
58 std::array<Real, 3> w{1,1,1};
59 hs = boost::math::statistics::hoyer_sparsity(w);
60 BOOST_TEST(abs(hs) < tol);
61
62 // Now some statistics:
63 // If x_i ~ Unif(0,1), E[x_i] = 1/2, E[x_i^2] = 1/3.
64 // Therefore, E[||x||_1] = N/2, E[||x||_2] = sqrt(N/3),
65 // and hoyer_sparsity(x) is close to (1-sqrt(3)/2)/(1-1/sqrt(N))
66 std::mt19937 gen(82);
67 std::uniform_real_distribution<long double> dis(0, 1);
68 v.resize(5000);
69 for (size_t i = 0; i < v.size(); ++i) {
70 v[i] = dis(gen);
71 }
72 hs = boost::math::statistics::hoyer_sparsity(v);
73 Real expected = (1.0 - boost::math::constants::root_three<Real>()/2)/(1.0 - 1.0/sqrt(v.size()));
74 BOOST_TEST(abs(expected - hs) < 0.01);
75
76 // Does it work with a forward list?
77 std::forward_list<Real> u1{1, 1, 1};
78 hs = boost::math::statistics::hoyer_sparsity(u1);
79 BOOST_TEST(abs(hs) < tol);
80
81 // Does it work with a boost ublas vector?
82 boost::numeric::ublas::vector<Real> u2(3);
83 u2[0] = 1;
84 u2[1] = 1;
85 u2[2] = 1;
86 hs = boost::math::statistics::hoyer_sparsity(u2);
87 BOOST_TEST(abs(hs) < tol);
88
89 }
90
91 template<class Z>
test_integer_hoyer_sparsity()92 void test_integer_hoyer_sparsity()
93 {
94 using std::sqrt;
95 double tol = 5*std::numeric_limits<double>::epsilon();
96 std::vector<Z> v{1,0,0};
97 double hs = boost::math::statistics::hoyer_sparsity(v);
98 BOOST_TEST(abs(hs - 1) < tol);
99
100 v[0] = 1;
101 v[1] = 1;
102 v[2] = 1;
103 hs = boost::math::statistics::hoyer_sparsity(v);
104 BOOST_TEST(abs(hs) < tol);
105 }
106
107
108 template<class Complex>
test_complex_hoyer_sparsity()109 void test_complex_hoyer_sparsity()
110 {
111 typedef typename Complex::value_type Real;
112 using std::sqrt;
113 Real tol = 5*std::numeric_limits<Real>::epsilon();
114 std::vector<Complex> v{{0,1}, {0, 0}, {0,0}};
115 Real hs = boost::math::statistics::hoyer_sparsity(v.begin(), v.end());
116 BOOST_TEST(abs(hs - 1) < tol);
117
118 hs = boost::math::statistics::hoyer_sparsity(v);
119 BOOST_TEST(abs(hs - 1) < tol);
120
121 // Does it work with constant iterators?
122 hs = boost::math::statistics::hoyer_sparsity(v.cbegin(), v.cend());
123 BOOST_TEST(abs(hs - 1) < tol);
124
125 // All are the same magnitude:
126 v[0] = {0, 1};
127 v[1] = {1, 0};
128 v[2] = {0,-1};
129 hs = boost::math::statistics::hoyer_sparsity(v.cbegin(), v.cend());
130 BOOST_TEST(abs(hs) < tol);
131 }
132
133
134 template<class Real>
test_absolute_gini_coefficient()135 void test_absolute_gini_coefficient()
136 {
137 using boost::math::statistics::absolute_gini_coefficient;
138 using boost::math::statistics::sample_absolute_gini_coefficient;
139 Real tol = std::numeric_limits<Real>::epsilon();
140 std::vector<Real> v{-1,0,0};
141 Real gini = sample_absolute_gini_coefficient(v.begin(), v.end());
142 BOOST_TEST(abs(gini - 1) < tol);
143
144 gini = absolute_gini_coefficient(v);
145 BOOST_TEST(abs(gini - Real(2)/Real(3)) < tol);
146
147 v[0] = 1;
148 v[1] = -1;
149 v[2] = 1;
150 gini = absolute_gini_coefficient(v.begin(), v.end());
151 BOOST_TEST(abs(gini) < tol);
152 gini = sample_absolute_gini_coefficient(v.begin(), v.end());
153 BOOST_TEST(abs(gini) < tol);
154
155 std::vector<std::complex<Real>> w(128);
156 std::complex<Real> i{0,1};
157 for(size_t k = 0; k < w.size(); ++k)
158 {
159 w[k] = exp(i*static_cast<Real>(k)/static_cast<Real>(w.size()));
160 }
161 gini = absolute_gini_coefficient(w.begin(), w.end());
162 BOOST_TEST(abs(gini) < tol);
163 gini = sample_absolute_gini_coefficient(w.begin(), w.end());
164 BOOST_TEST(abs(gini) < tol);
165
166 // The population Gini index is invariant under "cloning": If w = v \oplus v, then G(w) = G(v).
167 // We use the sample Gini index, so we need to rescale
168 std::vector<Real> u(1000);
169 std::mt19937 gen(35);
170 std::uniform_real_distribution<long double> dis(0, 50);
171 for (size_t i = 0; i < u.size()/2; ++i)
172 {
173 u[i] = dis(gen);
174 }
175 for (size_t i = 0; i < u.size()/2; ++i)
176 {
177 u[i + u.size()/2] = u[i];
178 }
179 Real population_gini1 = absolute_gini_coefficient(u.begin(), u.begin() + u.size()/2);
180 Real population_gini2 = absolute_gini_coefficient(u.begin(), u.end());
181
182 BOOST_TEST(abs(population_gini1 - population_gini2) < 10*tol);
183
184 // The Gini coefficient of a uniform distribution is (b-a)/(3*(b+a)), see https://en.wikipedia.org/wiki/Gini_coefficient
185 Real expected = (dis.b() - dis.a() )/(3*(dis.a() + dis.b()));
186
187 BOOST_TEST(abs(expected - population_gini1) < 0.01);
188
189 std::exponential_distribution<long double> exp_dis(1);
190 for (size_t i = 0; i < u.size(); ++i)
191 {
192 u[i] = exp_dis(gen);
193 }
194 population_gini2 = absolute_gini_coefficient(u);
195
196 BOOST_TEST(abs(population_gini2 - 0.5) < 0.01);
197 }
198
199
200 template<class Real>
test_oracle_snr()201 void test_oracle_snr()
202 {
203 using std::abs;
204 Real tol = 100*std::numeric_limits<Real>::epsilon();
205 size_t length = 100;
206 std::vector<Real> signal(length, 1);
207 std::vector<Real> noisy_signal = signal;
208
209 noisy_signal[0] += 1;
210 Real snr = boost::math::statistics::oracle_snr(signal, noisy_signal);
211 Real snr_db = boost::math::statistics::oracle_snr_db(signal, noisy_signal);
212 BOOST_TEST(abs(snr - length) < tol);
213 BOOST_TEST(abs(snr_db - 10*log10(length)) < tol);
214 }
215
216 template<class Z>
test_integer_oracle_snr()217 void test_integer_oracle_snr()
218 {
219 double tol = std::numeric_limits<double>::epsilon();
220 size_t length = 100;
221 std::vector<Z> signal(length, 1);
222 std::vector<Z> noisy_signal = signal;
223
224 noisy_signal[0] += 1;
225 double snr = boost::math::statistics::oracle_snr(signal, noisy_signal);
226 double snr_db = boost::math::statistics::oracle_snr_db(signal, noisy_signal);
227 BOOST_TEST(abs(snr - length) < tol);
228 BOOST_TEST(abs(snr_db - 10*log10(length)) < tol);
229 }
230
231 template<class Complex>
test_complex_oracle_snr()232 void test_complex_oracle_snr()
233 {
234 using Real = typename Complex::value_type;
235 using std::abs;
236 using std::log10;
237 Real tol = 100*std::numeric_limits<Real>::epsilon();
238 size_t length = 100;
239 std::vector<Complex> signal(length, {1,0});
240 std::vector<Complex> noisy_signal = signal;
241
242 noisy_signal[0] += Complex(1,0);
243 Real snr = boost::math::statistics::oracle_snr(signal, noisy_signal);
244 Real snr_db = boost::math::statistics::oracle_snr_db(signal, noisy_signal);
245 BOOST_TEST(abs(snr - length) < tol);
246 BOOST_TEST(abs(snr_db - 10*log10(length)) < tol);
247 }
248
249 template<class Real>
test_m2m4_snr_estimator()250 void test_m2m4_snr_estimator()
251 {
252 Real tol = std::numeric_limits<Real>::epsilon();
253 std::vector<Real> signal(5000, 1);
254 std::vector<Real> x(signal.size());
255 std::mt19937 gen(18);
256 std::normal_distribution<Real> dis{0, 1.0};
257
258 for (size_t i = 0; i < x.size(); ++i)
259 {
260 signal[i] = 5*sin(100*6.28*i/x.size());
261 x[i] = signal[i] + dis(gen);
262 }
263
264 // Kurtosis of a sine wave is 1.5:
265 auto m2m4_db = boost::math::statistics::m2m4_snr_estimator_db(x, 1.5);
266 auto oracle_snr_db = boost::math::statistics::mean_invariant_oracle_snr_db(signal, x);
267 BOOST_TEST(abs(m2m4_db - oracle_snr_db) < 0.2);
268
269 std::uniform_real_distribution<Real> uni_dis{-1,1};
270 for (size_t i = 0; i < x.size(); ++i)
271 {
272 x[i] = signal[i] + uni_dis(gen);
273 }
274
275 // Kurtosis of continuous uniform distribution over [-1,1] is 1.8:
276 m2m4_db = boost::math::statistics::m2m4_snr_estimator_db(x, 1.5, 1.8);
277 oracle_snr_db = boost::math::statistics::mean_invariant_oracle_snr_db(signal, x);
278 // The performance depends on the exact numbers generated by the distribution, but this isn't bad:
279 BOOST_TEST(abs(m2m4_db - oracle_snr_db) < 0.2);
280
281 // The SNR estimator should be scale invariant.
282 // If x has snr y, then kx should have snr y.
283 Real ka = 1.5;
284 Real kw = 1.8;
285 auto m2m4 = boost::math::statistics::m2m4_snr_estimator(x.begin(), x.end(), ka, kw);
286 for(size_t i = 0; i < x.size(); ++i)
287 {
288 x[i] *= 4096;
289 }
290 auto m2m4_2 = boost::math::statistics::m2m4_snr_estimator(x.begin(), x.end(), ka, kw);
291 BOOST_TEST(abs(m2m4 - m2m4_2) < tol);
292 }
293
main()294 int main()
295 {
296 test_absolute_gini_coefficient<float>();
297 test_absolute_gini_coefficient<double>();
298 test_absolute_gini_coefficient<long double>();
299
300 test_hoyer_sparsity<float>();
301 test_hoyer_sparsity<double>();
302 test_hoyer_sparsity<long double>();
303 test_hoyer_sparsity<cpp_bin_float_50>();
304
305 test_integer_hoyer_sparsity<int>();
306 test_integer_hoyer_sparsity<unsigned>();
307
308 test_complex_hoyer_sparsity<std::complex<float>>();
309 test_complex_hoyer_sparsity<std::complex<double>>();
310 test_complex_hoyer_sparsity<std::complex<long double>>();
311 test_complex_hoyer_sparsity<cpp_complex_50>();
312
313 test_oracle_snr<float>();
314 test_oracle_snr<double>();
315 test_oracle_snr<long double>();
316 test_oracle_snr<cpp_bin_float_50>();
317
318 test_integer_oracle_snr<int>();
319 test_integer_oracle_snr<unsigned>();
320
321 test_complex_oracle_snr<std::complex<float>>();
322 test_complex_oracle_snr<std::complex<double>>();
323 test_complex_oracle_snr<std::complex<long double>>();
324 test_complex_oracle_snr<cpp_complex_50>();
325
326 test_m2m4_snr_estimator<float>();
327 test_m2m4_snr_estimator<double>();
328 test_m2m4_snr_estimator<long double>();
329
330 return boost::report_errors();
331 }
332