• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  (C) Copyright Nick Thompson 2018.
3  *  Use, modification and distribution are subject to the
4  *  Boost Software License, Version 1.0. (See accompanying file
5  *  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
6  */
7 
8 #include <vector>
9 #include <array>
10 #include <forward_list>
11 #include <algorithm>
12 #include <random>
13 #include <boost/core/lightweight_test.hpp>
14 #include <boost/numeric/ublas/vector.hpp>
15 #include <boost/math/constants/constants.hpp>
16 #include <boost/math/statistics/univariate_statistics.hpp>
17 #include <boost/math/statistics/signal_statistics.hpp>
18 #include <boost/multiprecision/cpp_bin_float.hpp>
19 #include <boost/multiprecision/cpp_complex.hpp>
20 
21 using std::abs;
22 using boost::multiprecision::cpp_bin_float_50;
23 using boost::multiprecision::cpp_complex_50;
24 using boost::math::constants::two_pi;
25 
26 /*
27  * Test checklist:
28  * 1) Does it work with multiprecision?
29  * 2) Does it work with .cbegin()/.cend() if the data is not altered?
30  * 3) Does it work with ublas and std::array? (Checking Eigen and Armadillo will make the CI system really unhappy.)
31  * 4) Does it work with std::forward_list if a forward iterator is all that is required?
32  * 5) Does it work with complex data if complex data is sensible?
33  * 6) Does it work with integer data if sensible?
34  */
35 
36 template<class Real>
test_hoyer_sparsity()37 void test_hoyer_sparsity()
38 {
39     using std::sqrt;
40     Real tol = 5*std::numeric_limits<Real>::epsilon();
41     std::vector<Real> v{1,0,0};
42     Real hs = boost::math::statistics::hoyer_sparsity(v.begin(), v.end());
43     BOOST_TEST(abs(hs - 1) < tol);
44 
45     hs = boost::math::statistics::hoyer_sparsity(v);
46     BOOST_TEST(abs(hs - 1) < tol);
47 
48     // Does it work with constant iterators?
49     hs = boost::math::statistics::hoyer_sparsity(v.cbegin(), v.cend());
50     BOOST_TEST(abs(hs - 1) < tol);
51 
52     v[0] = 1;
53     v[1] = 1;
54     v[2] = 1;
55     hs = boost::math::statistics::hoyer_sparsity(v.cbegin(), v.cend());
56     BOOST_TEST(abs(hs) < tol);
57 
58     std::array<Real, 3> w{1,1,1};
59     hs = boost::math::statistics::hoyer_sparsity(w);
60     BOOST_TEST(abs(hs) < tol);
61 
62     // Now some statistics:
63     // If x_i ~ Unif(0,1), E[x_i] = 1/2, E[x_i^2] = 1/3.
64     // Therefore, E[||x||_1] = N/2, E[||x||_2] = sqrt(N/3),
65     // and hoyer_sparsity(x) is close to (1-sqrt(3)/2)/(1-1/sqrt(N))
66     std::mt19937 gen(82);
67     std::uniform_real_distribution<long double> dis(0, 1);
68     v.resize(5000);
69     for (size_t i = 0; i < v.size(); ++i) {
70         v[i] = dis(gen);
71     }
72     hs = boost::math::statistics::hoyer_sparsity(v);
73     Real expected = (1.0 - boost::math::constants::root_three<Real>()/2)/(1.0 - 1.0/sqrt(v.size()));
74     BOOST_TEST(abs(expected - hs) < 0.01);
75 
76     // Does it work with a forward list?
77     std::forward_list<Real> u1{1, 1, 1};
78     hs = boost::math::statistics::hoyer_sparsity(u1);
79     BOOST_TEST(abs(hs) < tol);
80 
81     // Does it work with a boost ublas vector?
82     boost::numeric::ublas::vector<Real> u2(3);
83     u2[0] = 1;
84     u2[1] = 1;
85     u2[2] = 1;
86     hs = boost::math::statistics::hoyer_sparsity(u2);
87     BOOST_TEST(abs(hs) < tol);
88 
89 }
90 
91 template<class Z>
test_integer_hoyer_sparsity()92 void test_integer_hoyer_sparsity()
93 {
94     using std::sqrt;
95     double tol = 5*std::numeric_limits<double>::epsilon();
96     std::vector<Z> v{1,0,0};
97     double hs = boost::math::statistics::hoyer_sparsity(v);
98     BOOST_TEST(abs(hs - 1) < tol);
99 
100     v[0] = 1;
101     v[1] = 1;
102     v[2] = 1;
103     hs = boost::math::statistics::hoyer_sparsity(v);
104     BOOST_TEST(abs(hs) < tol);
105 }
106 
107 
108 template<class Complex>
test_complex_hoyer_sparsity()109 void test_complex_hoyer_sparsity()
110 {
111     typedef typename Complex::value_type Real;
112     using std::sqrt;
113     Real tol = 5*std::numeric_limits<Real>::epsilon();
114     std::vector<Complex> v{{0,1}, {0, 0}, {0,0}};
115     Real hs = boost::math::statistics::hoyer_sparsity(v.begin(), v.end());
116     BOOST_TEST(abs(hs - 1) < tol);
117 
118     hs = boost::math::statistics::hoyer_sparsity(v);
119     BOOST_TEST(abs(hs - 1) < tol);
120 
121     // Does it work with constant iterators?
122     hs = boost::math::statistics::hoyer_sparsity(v.cbegin(), v.cend());
123     BOOST_TEST(abs(hs - 1) < tol);
124 
125     // All are the same magnitude:
126     v[0] = {0, 1};
127     v[1] = {1, 0};
128     v[2] = {0,-1};
129     hs = boost::math::statistics::hoyer_sparsity(v.cbegin(), v.cend());
130     BOOST_TEST(abs(hs) < tol);
131 }
132 
133 
134 template<class Real>
test_absolute_gini_coefficient()135 void test_absolute_gini_coefficient()
136 {
137     using boost::math::statistics::absolute_gini_coefficient;
138     using boost::math::statistics::sample_absolute_gini_coefficient;
139     Real tol = std::numeric_limits<Real>::epsilon();
140     std::vector<Real> v{-1,0,0};
141     Real gini = sample_absolute_gini_coefficient(v.begin(), v.end());
142     BOOST_TEST(abs(gini - 1) < tol);
143 
144     gini = absolute_gini_coefficient(v);
145     BOOST_TEST(abs(gini - Real(2)/Real(3)) < tol);
146 
147     v[0] = 1;
148     v[1] = -1;
149     v[2] = 1;
150     gini = absolute_gini_coefficient(v.begin(), v.end());
151     BOOST_TEST(abs(gini) < tol);
152     gini = sample_absolute_gini_coefficient(v.begin(), v.end());
153     BOOST_TEST(abs(gini) < tol);
154 
155     std::vector<std::complex<Real>> w(128);
156     std::complex<Real> i{0,1};
157     for(size_t k = 0; k < w.size(); ++k)
158     {
159         w[k] = exp(i*static_cast<Real>(k)/static_cast<Real>(w.size()));
160     }
161     gini = absolute_gini_coefficient(w.begin(), w.end());
162     BOOST_TEST(abs(gini) < tol);
163     gini = sample_absolute_gini_coefficient(w.begin(), w.end());
164     BOOST_TEST(abs(gini) < tol);
165 
166     // The population Gini index is invariant under "cloning": If w = v \oplus v, then G(w) = G(v).
167     // We use the sample Gini index, so we need to rescale
168     std::vector<Real> u(1000);
169     std::mt19937 gen(35);
170     std::uniform_real_distribution<long double> dis(0, 50);
171     for (size_t i = 0; i < u.size()/2; ++i)
172     {
173         u[i] = dis(gen);
174     }
175     for (size_t i = 0; i < u.size()/2; ++i)
176     {
177         u[i + u.size()/2] = u[i];
178     }
179     Real population_gini1 = absolute_gini_coefficient(u.begin(), u.begin() + u.size()/2);
180     Real population_gini2 = absolute_gini_coefficient(u.begin(), u.end());
181 
182     BOOST_TEST(abs(population_gini1 - population_gini2) < 10*tol);
183 
184     // The Gini coefficient of a uniform distribution is (b-a)/(3*(b+a)), see https://en.wikipedia.org/wiki/Gini_coefficient
185     Real expected = (dis.b() - dis.a() )/(3*(dis.a() + dis.b()));
186 
187     BOOST_TEST(abs(expected - population_gini1) < 0.01);
188 
189     std::exponential_distribution<long double> exp_dis(1);
190     for (size_t i = 0; i < u.size(); ++i)
191     {
192         u[i] = exp_dis(gen);
193     }
194     population_gini2 = absolute_gini_coefficient(u);
195 
196     BOOST_TEST(abs(population_gini2 - 0.5) < 0.01);
197 }
198 
199 
200 template<class Real>
test_oracle_snr()201 void test_oracle_snr()
202 {
203     using std::abs;
204     Real tol = 100*std::numeric_limits<Real>::epsilon();
205     size_t length = 100;
206     std::vector<Real> signal(length, 1);
207     std::vector<Real> noisy_signal = signal;
208 
209     noisy_signal[0] += 1;
210     Real snr = boost::math::statistics::oracle_snr(signal, noisy_signal);
211     Real snr_db = boost::math::statistics::oracle_snr_db(signal, noisy_signal);
212     BOOST_TEST(abs(snr - length) < tol);
213     BOOST_TEST(abs(snr_db - 10*log10(length)) < tol);
214 }
215 
216 template<class Z>
test_integer_oracle_snr()217 void test_integer_oracle_snr()
218 {
219     double tol = std::numeric_limits<double>::epsilon();
220     size_t length = 100;
221     std::vector<Z> signal(length, 1);
222     std::vector<Z> noisy_signal = signal;
223 
224     noisy_signal[0] += 1;
225     double snr = boost::math::statistics::oracle_snr(signal, noisy_signal);
226     double snr_db = boost::math::statistics::oracle_snr_db(signal, noisy_signal);
227     BOOST_TEST(abs(snr - length) < tol);
228     BOOST_TEST(abs(snr_db - 10*log10(length)) < tol);
229 }
230 
231 template<class Complex>
test_complex_oracle_snr()232 void test_complex_oracle_snr()
233 {
234     using Real = typename Complex::value_type;
235     using std::abs;
236     using std::log10;
237     Real tol = 100*std::numeric_limits<Real>::epsilon();
238     size_t length = 100;
239     std::vector<Complex> signal(length, {1,0});
240     std::vector<Complex> noisy_signal = signal;
241 
242     noisy_signal[0] += Complex(1,0);
243     Real snr = boost::math::statistics::oracle_snr(signal, noisy_signal);
244     Real snr_db = boost::math::statistics::oracle_snr_db(signal, noisy_signal);
245     BOOST_TEST(abs(snr - length) < tol);
246     BOOST_TEST(abs(snr_db - 10*log10(length)) < tol);
247 }
248 
249 template<class Real>
test_m2m4_snr_estimator()250 void test_m2m4_snr_estimator()
251 {
252     Real tol = std::numeric_limits<Real>::epsilon();
253     std::vector<Real> signal(5000, 1);
254     std::vector<Real> x(signal.size());
255     std::mt19937 gen(18);
256     std::normal_distribution<Real> dis{0, 1.0};
257 
258     for (size_t i = 0; i < x.size(); ++i)
259     {
260         signal[i] = 5*sin(100*6.28*i/x.size());
261         x[i] = signal[i] + dis(gen);
262     }
263 
264     // Kurtosis of a sine wave is 1.5:
265     auto m2m4_db = boost::math::statistics::m2m4_snr_estimator_db(x, 1.5);
266     auto oracle_snr_db = boost::math::statistics::mean_invariant_oracle_snr_db(signal, x);
267     BOOST_TEST(abs(m2m4_db - oracle_snr_db) < 0.2);
268 
269     std::uniform_real_distribution<Real> uni_dis{-1,1};
270     for (size_t i = 0; i < x.size(); ++i)
271     {
272         x[i] = signal[i] + uni_dis(gen);
273     }
274 
275     // Kurtosis of continuous uniform distribution over [-1,1] is 1.8:
276     m2m4_db = boost::math::statistics::m2m4_snr_estimator_db(x, 1.5, 1.8);
277     oracle_snr_db = boost::math::statistics::mean_invariant_oracle_snr_db(signal, x);
278     // The performance depends on the exact numbers generated by the distribution, but this isn't bad:
279     BOOST_TEST(abs(m2m4_db - oracle_snr_db) < 0.2);
280 
281     // The SNR estimator should be scale invariant.
282     // If x has snr y, then kx should have snr y.
283     Real ka = 1.5;
284     Real kw = 1.8;
285     auto m2m4 = boost::math::statistics::m2m4_snr_estimator(x.begin(), x.end(), ka, kw);
286     for(size_t i = 0; i < x.size(); ++i)
287     {
288         x[i] *= 4096;
289     }
290     auto m2m4_2 = boost::math::statistics::m2m4_snr_estimator(x.begin(), x.end(), ka, kw);
291     BOOST_TEST(abs(m2m4 - m2m4_2) < tol);
292 }
293 
main()294 int main()
295 {
296     test_absolute_gini_coefficient<float>();
297     test_absolute_gini_coefficient<double>();
298     test_absolute_gini_coefficient<long double>();
299 
300     test_hoyer_sparsity<float>();
301     test_hoyer_sparsity<double>();
302     test_hoyer_sparsity<long double>();
303     test_hoyer_sparsity<cpp_bin_float_50>();
304 
305     test_integer_hoyer_sparsity<int>();
306     test_integer_hoyer_sparsity<unsigned>();
307 
308     test_complex_hoyer_sparsity<std::complex<float>>();
309     test_complex_hoyer_sparsity<std::complex<double>>();
310     test_complex_hoyer_sparsity<std::complex<long double>>();
311     test_complex_hoyer_sparsity<cpp_complex_50>();
312 
313     test_oracle_snr<float>();
314     test_oracle_snr<double>();
315     test_oracle_snr<long double>();
316     test_oracle_snr<cpp_bin_float_50>();
317 
318     test_integer_oracle_snr<int>();
319     test_integer_oracle_snr<unsigned>();
320 
321     test_complex_oracle_snr<std::complex<float>>();
322     test_complex_oracle_snr<std::complex<double>>();
323     test_complex_oracle_snr<std::complex<long double>>();
324     test_complex_oracle_snr<cpp_complex_50>();
325 
326     test_m2m4_snr_estimator<float>();
327     test_m2m4_snr_estimator<double>();
328     test_m2m4_snr_estimator<long double>();
329 
330     return boost::report_errors();
331 }
332