• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //  (C) Copyright John Maddock 2006.
2 //  Use, modification and distribution are subject to the
3 //  Boost Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 
6 #define BOOST_TEST_MAIN
7 #include <boost/test/unit_test.hpp>
8 #include <boost/test/tools/floating_point_comparison.hpp>
9 #include <boost/math/tools/stats.hpp>
10 #include <boost/math/tools/test.hpp>
11 #include <boost/math/tools/big_constant.hpp>
12 #include <boost/math/constants/constants.hpp>
13 #include <boost/type_traits/is_floating_point.hpp>
14 #include <boost/array.hpp>
15 #include "functor.hpp"
16 
17 #include "handle_test_result.hpp"
18 #include "table_type.hpp"
19 
20 #include <boost/math/special_functions/hypergeometric_pFq.hpp>
21 #include <boost/multiprecision/mpfr.hpp>
22 #include <boost/math/special_functions/relative_difference.hpp>
23 
24 #ifdef BOOST_MSVC
25 #pragma warning(disable:4127)
26 #endif
27 
28 #ifndef SC_
29 #define SC_(x) BOOST_MATH_BIG_CONSTANT(mp_type, 1000000, x)
30 #endif
31 
32 typedef boost::multiprecision::mpfr_float mp_type;
33 
test_spots_1F0()34 void test_spots_1F0()
35 {
36    using std::pow;
37 
38    mp_type tolerance = 2e-20;
39 
40    BOOST_CHECK_CLOSE_FRACTION(boost::math::hypergeometric_pFq_precision({ mp_type(-3) }, {}, mp_type(2), 20), mp_type(-1), tolerance);
41    BOOST_CHECK_CLOSE_FRACTION(boost::math::hypergeometric_pFq_precision({ mp_type(-3) }, {}, mp_type(4), 20), mp_type(-27), tolerance);
42    BOOST_CHECK_CLOSE_FRACTION(boost::math::hypergeometric_pFq_precision({ mp_type(-3) }, {}, mp_type(0.5), 20), mp_type(0.125), tolerance);
43    BOOST_CHECK_CLOSE_FRACTION(boost::math::hypergeometric_pFq_precision({ mp_type(3) }, {}, mp_type(0.5), 20), mp_type(8), tolerance);
44    BOOST_CHECK_CLOSE_FRACTION(boost::math::hypergeometric_pFq_precision({ mp_type(3) }, {}, mp_type(2), 20), mp_type(-1), tolerance);
45    BOOST_CHECK_CLOSE_FRACTION(boost::math::hypergeometric_pFq_precision({ mp_type(3) }, {}, mp_type(4), 20), mp_type(mp_type(-1) / 27), tolerance);
46    BOOST_CHECK_CLOSE_FRACTION(boost::math::hypergeometric_pFq_precision({ mp_type(3) }, {}, mp_type(-0.5), 20), pow(mp_type(1.5), -3), tolerance);
47    BOOST_CHECK_CLOSE_FRACTION(boost::math::hypergeometric_pFq_precision({ mp_type(3) }, {}, mp_type(-2), 20), mp_type(1 / mp_type(27)), tolerance);
48    BOOST_CHECK_CLOSE_FRACTION(boost::math::hypergeometric_pFq_precision({ mp_type(3) }, {}, mp_type(-4), 20), mp_type(mp_type(1) / 125), tolerance);
49    BOOST_CHECK_CLOSE_FRACTION(boost::math::hypergeometric_pFq_precision({ mp_type(-3) }, {}, mp_type(-0.5), 20), pow(mp_type(1.5), 3), tolerance);
50    BOOST_CHECK_CLOSE_FRACTION(boost::math::hypergeometric_pFq_precision({ mp_type(-3) }, {}, mp_type(-2), 20), mp_type(27), tolerance);
51    BOOST_CHECK_CLOSE_FRACTION(boost::math::hypergeometric_pFq_precision({ mp_type(-3) }, {}, mp_type(-4), 20), mp_type(125), tolerance);
52 
53    BOOST_CHECK_THROW(boost::math::hypergeometric_pFq_precision({ mp_type(3) }, {}, mp_type(1), 20), std::domain_error);
54    BOOST_CHECK_THROW(boost::math::hypergeometric_pFq_precision({ mp_type(3.25) }, {}, mp_type(1), 20), std::domain_error);
55    BOOST_CHECK_THROW(boost::math::hypergeometric_pFq_precision({ mp_type(3.25) }, {}, mp_type(2), 20), std::domain_error);
56    BOOST_CHECK_THROW(boost::math::hypergeometric_pFq_precision({ mp_type(-3.25) }, {}, mp_type(2), 20), std::domain_error);
57 }
58 
test_spots_0F1()59 void test_spots_0F1()
60 {
61    mp_type tolerance = 2e-20;
62 
63    BOOST_CHECK_EQUAL(boost::math::hypergeometric_pFq_precision({}, { mp_type(3) }, mp_type(0), 20), 1);
64    BOOST_CHECK_EQUAL(boost::math::hypergeometric_pFq_precision({}, { mp_type(-3) }, mp_type(0), 20), 1);
65    //BOOST_CHECK_EQUAL(boost::math::hypergeometric_pFq_precision({}, { mp_type(0) }, mp_type(0), 20), 1);
66 
67    BOOST_CHECK_THROW(boost::math::hypergeometric_pFq_precision({}, { mp_type(0) }, mp_type(-1), 20), std::domain_error);
68    BOOST_CHECK_THROW(boost::math::hypergeometric_pFq_precision({}, { mp_type(-1) }, mp_type(-1), 20), std::domain_error);
69    BOOST_CHECK_THROW(boost::math::hypergeometric_pFq_precision({}, { mp_type(-10) }, mp_type(-5), 20), std::domain_error);
70 
71    static const boost::array<boost::array<mp_type, 3>, 35> hypergeometric_pFq_integer_data = { {
72       { SC_(4.0), SC_(-20.0),  SC_(-0.012889714201783047561923257996127233830940165138385) },
73       { SC_(8.0), SC_(-20.0),  SC_(0.046498609282365144223175012935939437508273248399881) },
74       { SC_(12.0), SC_(-20.0),  SC_(0.16608847431869756642136191351311569335145459224622) },
75       { SC_(16.0), SC_(-20.0),  SC_(0.27230484709157170329168048388841880599105216477631) },
76       //{ SC_(20.0), SC_(-20.0),  SC_(0.35865872656868844615709101792040025253126126604266) },
77       { SC_(4.0), SC_(-16.0),  SC_(-0.027293644412433023379286103818840667403690937153604) },
78       { SC_(8.0), SC_(-16.0),  SC_(0.098618710511372349330666801041676087431136532039702) },
79       { SC_(12.0), SC_(-16.0),  SC_(0.24360114226383905073379763460037817885919457531523) },
80       //{ SC_(16.0), SC_(-16.0),  SC_(0.35635186318802906043824855864337727878754460163525) },
81       //{ SC_(20.0), SC_(-16.0),  SC_(0.44218381382689101428948260613085371477815110358789) },
82       { SC_(4.0), SC_(-12.0),  SC_(-0.021743572290699436419371120781513860006290363262907) },
83       { SC_(8.0), SC_(-12.0),  SC_(0.19025625754362006866949730683824627505504067855043) },
84       //{ SC_(12.0), SC_(-12.0),  SC_(0.35251228238278927379621049815222218665165551016489) },
85       //{ SC_(16.0), SC_(-12.0),  SC_(0.46415411486674623230458980010115972932474705884865) },
86       //{ SC_(20.0), SC_(-12.0),  SC_(0.54394918325286018927327004362535051310016558628741) },
87       { SC_(4.0), SC_(-8.0),  SC_(0.056818744289274872033266550620647787396712125304880) },
88       //{ SC_(8.0), SC_(-8.0),  SC_(0.34487371876996263249797701802458885718691612997456) },
89       //{ SC_(12.0), SC_(-8.0),  SC_(0.50411654015891701804499796523449656998841355305043) },
90       //{ SC_(16.0), SC_(-8.0),  SC_(0.60191459981670594041254437708158847428118361245442) },
91       //{ SC_(20.0), SC_(-8.0),  SC_(0.66770752550930138035694866478078941681114294465418) },
92       //{ SC_(4.0), SC_(-4.0),  SC_(0.32262860540671645526863760914000166725449779629143) },
93       //{ SC_(8.0), SC_(-4.0),  SC_(0.59755773349355150397404772151441126513126998265958) },
94       //{ SC_(12.0), SC_(-4.0),  SC_(0.71337465206009117934071859694314971137807212605147) },
95       //{ SC_(16.0), SC_(-4.0),  SC_(0.77734333649378860739496954157535257278092349684783) },
96       //{ SC_(20.0), SC_(-4.0),  SC_(0.81794177985447769150469288350369205683856312760890) },
97 
98       { SC_(4.0), SC_(4.0),  SC_(2.5029568338152582758923890008139391395035041790831) },
99       { SC_(8.0), SC_(4.0),  SC_(1.6273673128576761227855719910743734060605725722129) },
100       { SC_(12.0), SC_(4.0),  SC_(1.3898419290864057799739567227851793491657442624207) },
101       { SC_(16.0), SC_(4.0),  SC_(1.2817098157957427946677711269410726972209834860612) },
102       { SC_(20.0), SC_(4.0),  SC_(1.2202539302152377230940386181201477276788392792437) },
103       { SC_(4.0), SC_(8.0),  SC_(5.5616961007411965409200003309686924059253894118586) },
104       { SC_(8.0), SC_(8.0),  SC_(2.5877053985451664722152913482683136948296873738479) },
105       { SC_(12.0), SC_(8.0),  SC_(1.9166410733572697158003086323981583993970490592046) },
106       { SC_(16.0), SC_(8.0),  SC_(1.6370675016890669952237854163997946987362497613701) },
107       { SC_(20.0), SC_(8.0),  SC_(1.4862852701827990444915220582410007454379891584086) },
108       { SC_(4.0), SC_(12.0),  SC_(11.419268276211177842169936131590385979116019595164) },
109       { SC_(8.0), SC_(12.0),  SC_(4.0347215359576567066789638314925802225312840819037) },
110       { SC_(12.0), SC_(12.0),  SC_(2.6242497527837800417573064942486918368886996538285) },
111       { SC_(16.0), SC_(12.0),  SC_(2.0840468784170876805932772732753387258909164486511) },
112       { SC_(20.0), SC_(12.0),  SC_(1.8071042457762091748544382847762106786633952487005) },
113       { SC_(4.0), SC_(16.0),  SC_(22.132051970576036053853444648907108439504682530918) },
114       { SC_(8.0), SC_(16.0),  SC_(6.1850485247748975008808779795786699492711191898792) },
115       { SC_(12.0), SC_(16.0),  SC_(3.5694322843488018916484224923627864928705138154372) },
116       { SC_(16.0), SC_(16.0),  SC_(2.6447371137201451261118187672029372265909501355722) },
117       { SC_(20.0), SC_(16.0),  SC_(2.1934058398888071720297525592515838555602675797235) },
118       { SC_(4.0), SC_(20.0),  SC_(41.021743268279206331672552645354782698296383424328) },
119       { SC_(8.0), SC_(20.0),  SC_(9.3414225299809886395081381945971250426599939097753) },
120       { SC_(12.0), SC_(20.0),  SC_(4.8253866205826406499959001774187695527272168375992) },
121       { SC_(16.0), SC_(20.0),  SC_(3.3462305133519485784864062004430532216764447939942) },
122       { SC_(20.0), SC_(20.0),  SC_(2.6578698872220394617444624241257799193518140676691) },
123       } };
124 
125    for (auto row = hypergeometric_pFq_integer_data.begin(); row != hypergeometric_pFq_integer_data.end(); ++row)
126    {
127       BOOST_CHECK_CLOSE_FRACTION(boost::math::hypergeometric_pFq_precision({}, { (*row)[0] }, (*row)[1], 20), (*row)[2], tolerance);
128    }
129 }
130 
test_spots_1F1()131 void test_spots_1F1()
132 {
133    typedef mp_type T;
134 #include "hypergeometric_1F1.ipp"
135 
136    mp_type tolerance = 2e-20;
137 
138    for (auto row = hypergeometric_1F1.begin(); row != hypergeometric_1F1.end(); ++row)
139    {
140       try {
141          mp_type norm;
142          mp_type result = boost::math::hypergeometric_pFq_precision({ (*row)[0] }, { (*row)[1] }, (*row)[2], 20);
143          BOOST_CHECK_CLOSE_FRACTION(result, (*row)[3], tolerance);
144       }
145       catch (const boost::math::evaluation_error&) {}
146    }
147 }
148 
test_spots_1F1_b()149 void test_spots_1F1_b()
150 {
151    typedef mp_type T;
152 #include "hypergeometric_1F1_big.ipp"
153 
154    mp_type tolerance = 2e-20;
155 
156    for (auto row = hypergeometric_1F1_big.begin(); row != hypergeometric_1F1_big.end(); ++row)
157    {
158       try {
159          mp_type result = boost::math::hypergeometric_pFq_precision({ (*row)[0] }, { (*row)[1] }, (*row)[2], 20);
160          BOOST_CHECK_CLOSE_FRACTION(result, (*row)[3], tolerance);
161       }
162       catch (const boost::math::evaluation_error&) {}
163    }
164 }
165 
test_spots_2F1()166 void test_spots_2F1()
167 {
168    typedef mp_type T;
169 #include "hypergeometric_2F1.ipp"
170 
171    mp_type tolerance = 2e-20;
172 
173    for (auto row = hypergeometric_2F1.begin(); row != hypergeometric_2F1.end(); ++row)
174    {
175       try {
176          mp_type result = boost::math::hypergeometric_pFq_precision({ (*row)[0], (*row)[1] }, { (*row)[2] }, (*row)[3], 20);
177          BOOST_CHECK_CLOSE_FRACTION(result, (*row)[4], tolerance);
178       }
179       catch (const boost::math::evaluation_error&) {}
180    }
181 }
182 
test_spots_0F2()183 void test_spots_0F2()
184 {
185    typedef mp_type T;
186 #include "hypergeometric_0F2.ipp"
187 
188    mp_type tolerance = 2e-20;
189 
190    for (auto row = hypergeometric_0F2.begin(); row != hypergeometric_0F2.end(); ++row)
191    {
192       try {
193          T result = boost::math::hypergeometric_pFq_precision({}, { (*row)[0], (*row)[1] }, (*row)[2], 20);
194          BOOST_CHECK_CLOSE_FRACTION(result, (*row)[3], tolerance);
195       }
196       catch (const boost::math::evaluation_error&) {}
197    }
198 }
199 
test_spots_1F2()200 void test_spots_1F2()
201 {
202    typedef mp_type T;
203 #include "hypergeometric_1F2.ipp"
204 
205    mp_type tolerance = 2e-20;
206 
207    for (auto row = hypergeometric_1F2.begin(); row != hypergeometric_1F2.end(); ++row)
208    {
209       try {
210          mp_type result = boost::math::hypergeometric_pFq_precision({ (*row)[0] }, { (*row)[1], (*row)[2] }, (*row)[3], 20);
211          BOOST_CHECK_CLOSE_FRACTION(result, (*row)[4], tolerance);
212       }
213       catch (const boost::math::evaluation_error&) {}
214    }
215 }
216 
test_spots_2F2()217 void test_spots_2F2()
218 {
219    typedef mp_type T;
220 #include "hypergeometric_2F2.ipp"
221 
222    mp_type tolerance = 2e-20;
223 
224    for (auto row = hypergeometric_2F2.begin(); row != hypergeometric_2F2.end(); ++row)
225    {
226       try {
227          mp_type result = boost::math::hypergeometric_pFq_precision({ (*row)[0], (*row)[1] }, { (*row)[2], (*row)[3] }, (*row)[4], 20);
228          BOOST_CHECK_CLOSE_FRACTION(result, (*row)[5], tolerance);
229       }
230       catch (const boost::math::evaluation_error&) {}
231    }
232 }
233 
BOOST_AUTO_TEST_CASE(test_main)234 BOOST_AUTO_TEST_CASE( test_main )
235 {
236    test_spots_1F0();
237    test_spots_0F1();
238    test_spots_1F1();
239    test_spots_1F1_b();
240    test_spots_2F1();
241    test_spots_0F2();
242    test_spots_1F2();
243    test_spots_2F2();
244 
245    mpfr_free_cache();
246 }
247 
248