1 // (C) Copyright John Maddock 2006.
2 // Use, modification and distribution are subject to the
3 // Boost Software License, Version 1.0. (See accompanying file
4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5
6 #define BOOST_TEST_MAIN
7 #include <boost/test/unit_test.hpp>
8 #include <boost/test/tools/floating_point_comparison.hpp>
9 #include <boost/math/tools/stats.hpp>
10 #include <boost/math/tools/test.hpp>
11 #include <boost/math/tools/big_constant.hpp>
12 #include <boost/math/constants/constants.hpp>
13 #include <boost/type_traits/is_floating_point.hpp>
14 #include <boost/array.hpp>
15 #include "functor.hpp"
16
17 #include "handle_test_result.hpp"
18 #include "table_type.hpp"
19
20 #include <boost/math/special_functions/hypergeometric_pFq.hpp>
21 #include <boost/multiprecision/mpfr.hpp>
22 #include <boost/math/special_functions/relative_difference.hpp>
23
24 #ifdef BOOST_MSVC
25 #pragma warning(disable:4127)
26 #endif
27
28 #ifndef SC_
29 #define SC_(x) BOOST_MATH_BIG_CONSTANT(mp_type, 1000000, x)
30 #endif
31
32 typedef boost::multiprecision::mpfr_float mp_type;
33
test_spots_1F0()34 void test_spots_1F0()
35 {
36 using std::pow;
37
38 mp_type tolerance = 2e-20;
39
40 BOOST_CHECK_CLOSE_FRACTION(boost::math::hypergeometric_pFq_precision({ mp_type(-3) }, {}, mp_type(2), 20), mp_type(-1), tolerance);
41 BOOST_CHECK_CLOSE_FRACTION(boost::math::hypergeometric_pFq_precision({ mp_type(-3) }, {}, mp_type(4), 20), mp_type(-27), tolerance);
42 BOOST_CHECK_CLOSE_FRACTION(boost::math::hypergeometric_pFq_precision({ mp_type(-3) }, {}, mp_type(0.5), 20), mp_type(0.125), tolerance);
43 BOOST_CHECK_CLOSE_FRACTION(boost::math::hypergeometric_pFq_precision({ mp_type(3) }, {}, mp_type(0.5), 20), mp_type(8), tolerance);
44 BOOST_CHECK_CLOSE_FRACTION(boost::math::hypergeometric_pFq_precision({ mp_type(3) }, {}, mp_type(2), 20), mp_type(-1), tolerance);
45 BOOST_CHECK_CLOSE_FRACTION(boost::math::hypergeometric_pFq_precision({ mp_type(3) }, {}, mp_type(4), 20), mp_type(mp_type(-1) / 27), tolerance);
46 BOOST_CHECK_CLOSE_FRACTION(boost::math::hypergeometric_pFq_precision({ mp_type(3) }, {}, mp_type(-0.5), 20), pow(mp_type(1.5), -3), tolerance);
47 BOOST_CHECK_CLOSE_FRACTION(boost::math::hypergeometric_pFq_precision({ mp_type(3) }, {}, mp_type(-2), 20), mp_type(1 / mp_type(27)), tolerance);
48 BOOST_CHECK_CLOSE_FRACTION(boost::math::hypergeometric_pFq_precision({ mp_type(3) }, {}, mp_type(-4), 20), mp_type(mp_type(1) / 125), tolerance);
49 BOOST_CHECK_CLOSE_FRACTION(boost::math::hypergeometric_pFq_precision({ mp_type(-3) }, {}, mp_type(-0.5), 20), pow(mp_type(1.5), 3), tolerance);
50 BOOST_CHECK_CLOSE_FRACTION(boost::math::hypergeometric_pFq_precision({ mp_type(-3) }, {}, mp_type(-2), 20), mp_type(27), tolerance);
51 BOOST_CHECK_CLOSE_FRACTION(boost::math::hypergeometric_pFq_precision({ mp_type(-3) }, {}, mp_type(-4), 20), mp_type(125), tolerance);
52
53 BOOST_CHECK_THROW(boost::math::hypergeometric_pFq_precision({ mp_type(3) }, {}, mp_type(1), 20), std::domain_error);
54 BOOST_CHECK_THROW(boost::math::hypergeometric_pFq_precision({ mp_type(3.25) }, {}, mp_type(1), 20), std::domain_error);
55 BOOST_CHECK_THROW(boost::math::hypergeometric_pFq_precision({ mp_type(3.25) }, {}, mp_type(2), 20), std::domain_error);
56 BOOST_CHECK_THROW(boost::math::hypergeometric_pFq_precision({ mp_type(-3.25) }, {}, mp_type(2), 20), std::domain_error);
57 }
58
test_spots_0F1()59 void test_spots_0F1()
60 {
61 mp_type tolerance = 2e-20;
62
63 BOOST_CHECK_EQUAL(boost::math::hypergeometric_pFq_precision({}, { mp_type(3) }, mp_type(0), 20), 1);
64 BOOST_CHECK_EQUAL(boost::math::hypergeometric_pFq_precision({}, { mp_type(-3) }, mp_type(0), 20), 1);
65 //BOOST_CHECK_EQUAL(boost::math::hypergeometric_pFq_precision({}, { mp_type(0) }, mp_type(0), 20), 1);
66
67 BOOST_CHECK_THROW(boost::math::hypergeometric_pFq_precision({}, { mp_type(0) }, mp_type(-1), 20), std::domain_error);
68 BOOST_CHECK_THROW(boost::math::hypergeometric_pFq_precision({}, { mp_type(-1) }, mp_type(-1), 20), std::domain_error);
69 BOOST_CHECK_THROW(boost::math::hypergeometric_pFq_precision({}, { mp_type(-10) }, mp_type(-5), 20), std::domain_error);
70
71 static const boost::array<boost::array<mp_type, 3>, 35> hypergeometric_pFq_integer_data = { {
72 { SC_(4.0), SC_(-20.0), SC_(-0.012889714201783047561923257996127233830940165138385) },
73 { SC_(8.0), SC_(-20.0), SC_(0.046498609282365144223175012935939437508273248399881) },
74 { SC_(12.0), SC_(-20.0), SC_(0.16608847431869756642136191351311569335145459224622) },
75 { SC_(16.0), SC_(-20.0), SC_(0.27230484709157170329168048388841880599105216477631) },
76 //{ SC_(20.0), SC_(-20.0), SC_(0.35865872656868844615709101792040025253126126604266) },
77 { SC_(4.0), SC_(-16.0), SC_(-0.027293644412433023379286103818840667403690937153604) },
78 { SC_(8.0), SC_(-16.0), SC_(0.098618710511372349330666801041676087431136532039702) },
79 { SC_(12.0), SC_(-16.0), SC_(0.24360114226383905073379763460037817885919457531523) },
80 //{ SC_(16.0), SC_(-16.0), SC_(0.35635186318802906043824855864337727878754460163525) },
81 //{ SC_(20.0), SC_(-16.0), SC_(0.44218381382689101428948260613085371477815110358789) },
82 { SC_(4.0), SC_(-12.0), SC_(-0.021743572290699436419371120781513860006290363262907) },
83 { SC_(8.0), SC_(-12.0), SC_(0.19025625754362006866949730683824627505504067855043) },
84 //{ SC_(12.0), SC_(-12.0), SC_(0.35251228238278927379621049815222218665165551016489) },
85 //{ SC_(16.0), SC_(-12.0), SC_(0.46415411486674623230458980010115972932474705884865) },
86 //{ SC_(20.0), SC_(-12.0), SC_(0.54394918325286018927327004362535051310016558628741) },
87 { SC_(4.0), SC_(-8.0), SC_(0.056818744289274872033266550620647787396712125304880) },
88 //{ SC_(8.0), SC_(-8.0), SC_(0.34487371876996263249797701802458885718691612997456) },
89 //{ SC_(12.0), SC_(-8.0), SC_(0.50411654015891701804499796523449656998841355305043) },
90 //{ SC_(16.0), SC_(-8.0), SC_(0.60191459981670594041254437708158847428118361245442) },
91 //{ SC_(20.0), SC_(-8.0), SC_(0.66770752550930138035694866478078941681114294465418) },
92 //{ SC_(4.0), SC_(-4.0), SC_(0.32262860540671645526863760914000166725449779629143) },
93 //{ SC_(8.0), SC_(-4.0), SC_(0.59755773349355150397404772151441126513126998265958) },
94 //{ SC_(12.0), SC_(-4.0), SC_(0.71337465206009117934071859694314971137807212605147) },
95 //{ SC_(16.0), SC_(-4.0), SC_(0.77734333649378860739496954157535257278092349684783) },
96 //{ SC_(20.0), SC_(-4.0), SC_(0.81794177985447769150469288350369205683856312760890) },
97
98 { SC_(4.0), SC_(4.0), SC_(2.5029568338152582758923890008139391395035041790831) },
99 { SC_(8.0), SC_(4.0), SC_(1.6273673128576761227855719910743734060605725722129) },
100 { SC_(12.0), SC_(4.0), SC_(1.3898419290864057799739567227851793491657442624207) },
101 { SC_(16.0), SC_(4.0), SC_(1.2817098157957427946677711269410726972209834860612) },
102 { SC_(20.0), SC_(4.0), SC_(1.2202539302152377230940386181201477276788392792437) },
103 { SC_(4.0), SC_(8.0), SC_(5.5616961007411965409200003309686924059253894118586) },
104 { SC_(8.0), SC_(8.0), SC_(2.5877053985451664722152913482683136948296873738479) },
105 { SC_(12.0), SC_(8.0), SC_(1.9166410733572697158003086323981583993970490592046) },
106 { SC_(16.0), SC_(8.0), SC_(1.6370675016890669952237854163997946987362497613701) },
107 { SC_(20.0), SC_(8.0), SC_(1.4862852701827990444915220582410007454379891584086) },
108 { SC_(4.0), SC_(12.0), SC_(11.419268276211177842169936131590385979116019595164) },
109 { SC_(8.0), SC_(12.0), SC_(4.0347215359576567066789638314925802225312840819037) },
110 { SC_(12.0), SC_(12.0), SC_(2.6242497527837800417573064942486918368886996538285) },
111 { SC_(16.0), SC_(12.0), SC_(2.0840468784170876805932772732753387258909164486511) },
112 { SC_(20.0), SC_(12.0), SC_(1.8071042457762091748544382847762106786633952487005) },
113 { SC_(4.0), SC_(16.0), SC_(22.132051970576036053853444648907108439504682530918) },
114 { SC_(8.0), SC_(16.0), SC_(6.1850485247748975008808779795786699492711191898792) },
115 { SC_(12.0), SC_(16.0), SC_(3.5694322843488018916484224923627864928705138154372) },
116 { SC_(16.0), SC_(16.0), SC_(2.6447371137201451261118187672029372265909501355722) },
117 { SC_(20.0), SC_(16.0), SC_(2.1934058398888071720297525592515838555602675797235) },
118 { SC_(4.0), SC_(20.0), SC_(41.021743268279206331672552645354782698296383424328) },
119 { SC_(8.0), SC_(20.0), SC_(9.3414225299809886395081381945971250426599939097753) },
120 { SC_(12.0), SC_(20.0), SC_(4.8253866205826406499959001774187695527272168375992) },
121 { SC_(16.0), SC_(20.0), SC_(3.3462305133519485784864062004430532216764447939942) },
122 { SC_(20.0), SC_(20.0), SC_(2.6578698872220394617444624241257799193518140676691) },
123 } };
124
125 for (auto row = hypergeometric_pFq_integer_data.begin(); row != hypergeometric_pFq_integer_data.end(); ++row)
126 {
127 BOOST_CHECK_CLOSE_FRACTION(boost::math::hypergeometric_pFq_precision({}, { (*row)[0] }, (*row)[1], 20), (*row)[2], tolerance);
128 }
129 }
130
test_spots_1F1()131 void test_spots_1F1()
132 {
133 typedef mp_type T;
134 #include "hypergeometric_1F1.ipp"
135
136 mp_type tolerance = 2e-20;
137
138 for (auto row = hypergeometric_1F1.begin(); row != hypergeometric_1F1.end(); ++row)
139 {
140 try {
141 mp_type norm;
142 mp_type result = boost::math::hypergeometric_pFq_precision({ (*row)[0] }, { (*row)[1] }, (*row)[2], 20);
143 BOOST_CHECK_CLOSE_FRACTION(result, (*row)[3], tolerance);
144 }
145 catch (const boost::math::evaluation_error&) {}
146 }
147 }
148
test_spots_1F1_b()149 void test_spots_1F1_b()
150 {
151 typedef mp_type T;
152 #include "hypergeometric_1F1_big.ipp"
153
154 mp_type tolerance = 2e-20;
155
156 for (auto row = hypergeometric_1F1_big.begin(); row != hypergeometric_1F1_big.end(); ++row)
157 {
158 try {
159 mp_type result = boost::math::hypergeometric_pFq_precision({ (*row)[0] }, { (*row)[1] }, (*row)[2], 20);
160 BOOST_CHECK_CLOSE_FRACTION(result, (*row)[3], tolerance);
161 }
162 catch (const boost::math::evaluation_error&) {}
163 }
164 }
165
test_spots_2F1()166 void test_spots_2F1()
167 {
168 typedef mp_type T;
169 #include "hypergeometric_2F1.ipp"
170
171 mp_type tolerance = 2e-20;
172
173 for (auto row = hypergeometric_2F1.begin(); row != hypergeometric_2F1.end(); ++row)
174 {
175 try {
176 mp_type result = boost::math::hypergeometric_pFq_precision({ (*row)[0], (*row)[1] }, { (*row)[2] }, (*row)[3], 20);
177 BOOST_CHECK_CLOSE_FRACTION(result, (*row)[4], tolerance);
178 }
179 catch (const boost::math::evaluation_error&) {}
180 }
181 }
182
test_spots_0F2()183 void test_spots_0F2()
184 {
185 typedef mp_type T;
186 #include "hypergeometric_0F2.ipp"
187
188 mp_type tolerance = 2e-20;
189
190 for (auto row = hypergeometric_0F2.begin(); row != hypergeometric_0F2.end(); ++row)
191 {
192 try {
193 T result = boost::math::hypergeometric_pFq_precision({}, { (*row)[0], (*row)[1] }, (*row)[2], 20);
194 BOOST_CHECK_CLOSE_FRACTION(result, (*row)[3], tolerance);
195 }
196 catch (const boost::math::evaluation_error&) {}
197 }
198 }
199
test_spots_1F2()200 void test_spots_1F2()
201 {
202 typedef mp_type T;
203 #include "hypergeometric_1F2.ipp"
204
205 mp_type tolerance = 2e-20;
206
207 for (auto row = hypergeometric_1F2.begin(); row != hypergeometric_1F2.end(); ++row)
208 {
209 try {
210 mp_type result = boost::math::hypergeometric_pFq_precision({ (*row)[0] }, { (*row)[1], (*row)[2] }, (*row)[3], 20);
211 BOOST_CHECK_CLOSE_FRACTION(result, (*row)[4], tolerance);
212 }
213 catch (const boost::math::evaluation_error&) {}
214 }
215 }
216
test_spots_2F2()217 void test_spots_2F2()
218 {
219 typedef mp_type T;
220 #include "hypergeometric_2F2.ipp"
221
222 mp_type tolerance = 2e-20;
223
224 for (auto row = hypergeometric_2F2.begin(); row != hypergeometric_2F2.end(); ++row)
225 {
226 try {
227 mp_type result = boost::math::hypergeometric_pFq_precision({ (*row)[0], (*row)[1] }, { (*row)[2], (*row)[3] }, (*row)[4], 20);
228 BOOST_CHECK_CLOSE_FRACTION(result, (*row)[5], tolerance);
229 }
230 catch (const boost::math::evaluation_error&) {}
231 }
232 }
233
BOOST_AUTO_TEST_CASE(test_main)234 BOOST_AUTO_TEST_CASE( test_main )
235 {
236 test_spots_1F0();
237 test_spots_0F1();
238 test_spots_1F1();
239 test_spots_1F1_b();
240 test_spots_2F1();
241 test_spots_0F2();
242 test_spots_1F2();
243 test_spots_2F2();
244
245 mpfr_free_cache();
246 }
247
248