1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0.1 Transitional//EN"> 2 3<html> 4<head> 5<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> 6<title>Boost.MultiIndex Documentation - Examples</title> 7<link rel="stylesheet" href="style.css" type="text/css"> 8<link rel="start" href="index.html"> 9<link rel="prev" href="performance.html"> 10<link rel="up" href="index.html"> 11<link rel="next" href="tests.html"> 12</head> 13 14<body> 15<h1><img src="../../../boost.png" alt="boost.png (6897 bytes)" align= 16"middle" width="277" height="86">Boost.MultiIndex Examples</h1> 17 18<div class="prev_link"><a href="performance.html"><img src="prev.gif" alt="performance" border="0"><br> 19Performance 20</a></div> 21<div class="up_link"><a href="index.html"><img src="up.gif" alt="index" border="0"><br> 22Index 23</a></div> 24<div class="next_link"><a href="tests.html"><img src="next.gif" alt="tests" border="0"><br> 25Tests 26</a></div><br clear="all" style="clear: all;"> 27 28<hr> 29 30<h2>Contents</h2> 31 32<ul> 33 <li><a href="#example1">Example 1: basic usage</a></li> 34 <li><a href="#example2">Example 2: using functions as keys</a></li> 35 <li><a href="#example3">Example 3: constructing <code>multi_index_container</code>s 36 with <code>ctor_args_list</code></a></li> 37 <li><a href="#example4">Example 4: bidirectional map</a></li> 38 <li><a href="#example5">Example 5: sequenced indices</a></li> 39 <li><a href="#example6">Example 6: complex searches and foreign keys</a></li> 40 <li><a href="#example7">Example 7: composite keys</a></li> 41 <li><a href="#example8">Example 8: hashed indices</a></li> 42 <li><a href="#example9">Example 9: serialization and MRU lists</a></li> 43 <li><a href="#example10">Example 10: random access indices</a></li> 44 <li><a href="#example11">Example 11: index rearrangement</a></li> 45 <li><a href="#example12">Example 12: using Boost.Interprocess allocators</a></li> 46</ul> 47 48<h2><a name="example1">Example 1: basic usage</a></h2> 49 50<p> 51See <a href="../example/basic.cpp">source code</a>. 52</p> 53 54<p> 55Basic program showing the multi-indexing capabilities of Boost.MultiIndex 56with an admittedly boring set of <code>employee</code> records. 57</p> 58 59<h2><a name="example2">Example 2: using functions as keys</a></h2> 60 61<p> 62See <a href="../example/fun_key.cpp">source code</a>. 63</p> 64 65<p> 66Usually keys assigned to an index are based on a member variable of the 67element, but key extractors can be defined which take their value from 68a member function or a global function. This has some similarity with the concept of 69<i>calculated keys</i> supported by some relational database engines. 70The example shows how to use the predefined <code>const_mem_fun</code> 71and <code>global_fun</code> key extractors to deal with this situation. 72</p> 73 74<p> 75Keys based on functions usually will not be actual references, 76but rather the temporary values resulting from the invocation of the 77member function used. This implies that <code>modify_key</code> cannot be 78applied to this type of extractors, which is a perfectly logical 79constraint anyway. 80</p> 81 82<h2><a name="example3">Example 3: constructing <code>multi_index_container</code>s 83with <code>ctor_args_list</code></a></h2> 84 85<p> 86See <a href="../example/non_default_ctor.cpp">source code</a>. 87</p> 88 89<p> 90We show a practical example of usage of <code>multi_index_container::ctor_arg_list</code>, 91whose definition and purpose are explained in the 92<a href="tutorial/creation.html#ctor_args_list">tutorial</a>. The 93program groups a sorted collection of numbers based on identification through 94modulo arithmetics, by which <code>x</code> and <code>y</code> are equivalent 95if <code>(x%n)==(y%n)</code>, for some fixed <code>n</code>. 96</p> 97 98<h2><a name="example4">Example 4: bidirectional map</a></h2> 99 100<p> 101See <a href="../example/bimap.cpp">source code</a>. 102</p> 103 104<p> 105This example shows how to construct a bidirectional map with 106<code>multi_index_container</code>. By a <i>bidirectional map</i> we mean 107a container of <code>(const FromType,const ToType)</code> pairs 108such that no two elements exists with the same first 109<i>or</i> second component (<code>std::map</code> only 110guarantees uniqueness of the first component). Fast lookup is provided 111for both keys. The program features a tiny Spanish-English 112dictionary with online query of words in both languages. 113</p> 114 115<p> 116This bidirectional map can be considered as a primitive precursor 117to the full-fledged container provided by 118<a href="../../bimap/index.html">Boost.Bimap</a>. 119</p> 120 121<h2><a name="example5">Example 5: sequenced indices</a></h2> 122 123<p> 124See <a href="../example/sequenced.cpp">source code</a>. 125</p> 126 127<p> 128The combination of a sequenced index with an index of type <code>ordered_non_unique</code> 129yields a <code>list</code>-like structure with fast lookup capabilities. The 130example performs some operations on a given text, like word counting and 131selective deletion of some words. 132</p> 133 134<h2><a name="example6">Example 6: complex searches and foreign keys</a></h2> 135 136<p> 137See <a href="../example/complex_structs.cpp">source code</a>. 138</p> 139 140<p> 141This program illustrates some advanced techniques that can be applied 142for complex data structures using <code>multi_index_container</code>. 143Consider a <code>car_model</code> class for storing information 144about automobiles. On a first approach, <code>car_model</code> can 145be defined as: 146</p> 147 148<blockquote><pre> 149<span class=keyword>struct</span> <span class=identifier>car_model</span> 150<span class=special>{</span> 151 <span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span> <span class=identifier>model</span><span class=special>;</span> 152 <span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span> <span class=identifier>manufacturer</span><span class=special>;</span> 153 <span class=keyword>int</span> <span class=identifier>price</span><span class=special>;</span> 154<span class=special>};</span> 155</pre></blockquote> 156 157<p> 158This definition has a design flaw that any reader acquainted with 159relational databases can easily spot: The <code>manufacturer</code> 160member is duplicated among all cars having the same manufacturer. 161This is a waste of space and poses difficulties when, for instance, 162the name of a manufacturer has to be changed. Following the usual 163principles in relational database design, the appropriate design 164involves having the manufactures stored in a separate 165<code>multi_index_container</code> and store pointers to these in 166<code>car_model</code>: 167</p> 168 169<blockquote><pre> 170<span class=keyword>struct</span> <span class=identifier>car_manufacturer</span> 171<span class=special>{</span> 172 <span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span> <span class=identifier>name</span><span class=special>;</span> 173<span class=special>};</span> 174 175<span class=keyword>struct</span> <span class=identifier>car_model</span> 176<span class=special>{</span> 177 <span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span> <span class=identifier>model</span><span class=special>;</span> 178 <span class=keyword>const</span> <span class=identifier>car_manufacturer</span><span class=special>*</span> <span class=identifier>manufacturer</span><span class=special>;</span> 179 <span class=keyword>int</span> <span class=identifier>price</span><span class=special>;</span> 180<span class=special>};</span> 181</pre></blockquote> 182 183<p> 184Although predefined Boost.MultiIndex key extractors can handle many 185situations involving pointers (see 186<a href="tutorial/key_extraction.html#advanced_key_extractors">advanced features 187of Boost.MultiIndex key extractors</a> in the tutorial), this case 188is complex enough that a suitable key extractor has to be defined. The following 189utility cascades two key extractors: 190</p> 191 192<blockquote><pre> 193<span class=keyword>template</span><span class=special><</span><span class=keyword>class</span> <span class=identifier>KeyExtractor1</span><span class=special>,</span><span class=keyword>class</span> <span class=identifier>KeyExtractor2</span><span class=special>></span> 194<span class=keyword>struct</span> <span class=identifier>key_from_key</span> 195<span class=special>{</span> 196<span class=keyword>public</span><span class=special>:</span> 197 <span class=keyword>typedef</span> <span class=keyword>typename</span> <span class=identifier>KeyExtractor1</span><span class=special>::</span><span class=identifier>result_type</span> <span class=identifier>result_type</span><span class=special>;</span> 198 199 <span class=identifier>key_from_key</span><span class=special>(</span> 200 <span class=keyword>const</span> <span class=identifier>KeyExtractor1</span><span class=special>&</span> <span class=identifier>key1_</span><span class=special>=</span><span class=identifier>KeyExtractor1</span><span class=special>(),</span> 201 <span class=keyword>const</span> <span class=identifier>KeyExtractor2</span><span class=special>&</span> <span class=identifier>key2_</span><span class=special>=</span><span class=identifier>KeyExtractor2</span><span class=special>()):</span> 202 <span class=identifier>key1</span><span class=special>(</span><span class=identifier>key1_</span><span class=special>),</span><span class=identifier>key2</span><span class=special>(</span><span class=identifier>key2_</span><span class=special>)</span> 203 <span class=special>{}</span> 204 205 <span class=keyword>template</span><span class=special><</span><span class=keyword>typename</span> <span class=identifier>Arg</span><span class=special>></span> 206 <span class=identifier>result_type</span> <span class=keyword>operator</span><span class=special>()(</span><span class=identifier>Arg</span><span class=special>&</span> <span class=identifier>arg</span><span class=special>)</span><span class=keyword>const</span> 207 <span class=special>{</span> 208 <span class=keyword>return</span> <span class=identifier>key1</span><span class=special>(</span><span class=identifier>key2</span><span class=special>(</span><span class=identifier>arg</span><span class=special>));</span> 209 <span class=special>}</span> 210 211<span class=keyword>private</span><span class=special>:</span> 212 <span class=identifier>KeyExtractor1</span> <span class=identifier>key1</span><span class=special>;</span> 213 <span class=identifier>KeyExtractor2</span> <span class=identifier>key2</span><span class=special>;</span> 214<span class=special>};</span> 215</pre></blockquote> 216 217<p> 218so that access from a <code>car_model</code> to the <code>name</code> field 219of its associated <code>car_manufacturer</code> can be accomplished with 220</p> 221 222<blockquote><pre> 223<span class=identifier>key_from_key</span><span class=special><</span> 224 <span class=identifier>member</span><span class=special><</span><span class=identifier>car_manufacturer</span><span class=special>,</span><span class=keyword>const</span> <span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span><span class=special>,&</span><span class=identifier>car_manufacturer</span><span class=special>::</span><span class=identifier>name</span><span class=special>>,</span> 225 <span class=identifier>member</span><span class=special><</span><span class=identifier>car_model</span><span class=special>,</span><span class=keyword>const</span> <span class=identifier>car_manufacturer</span> <span class=special>*,&</span><span class=identifier>car_model</span><span class=special>::</span><span class=identifier>manufacturer</span><span class=special>></span> 226<span class=special>></span> 227</pre></blockquote> 228 229<p> 230The program asks the user for a car manufacturer and a range of prices 231and returns the car models satisfying these requirements. This is a complex 232search that cannot be performed on a single operation. Broadly sketched, 233one procedure for executing the selection is: 234<ol> 235 <li>Select the elements with the given manufacturer by means 236 of <code>equal_range</code>, 237 <li>feed these elements into a <code>multi_index_container</code> sorted 238 by price, 239 <li>select by price using <code>lower_bound</code> and 240 <code>upper_bound</code>; 241</ol> 242or alternatively: 243<ol> 244 <li>Select the elements within the price range with 245 <code>lower_bound</code> and <code>upper_bound</code>, 246 <li>feed these elements into a <code>multi_index_container</code> sorted 247 by manufacturer, 248 <li>locate the elements with given manufacturer using 249 <code>equal_range</code>. 250</ol> 251An interesting technique developed in the example lies in 252the construction of the intermediate <code>multi_index_container</code>. 253In order to avoid object copying, appropriate <i>view</i> types 254are defined with <code>multi_index_container</code>s having as elements 255pointers to <code>car_model</code>s instead of actual objects. 256These views have to be supplemented with appropriate 257dereferencing key extractors. 258</p> 259 260<h2><a name="example7">Example 7: composite keys</a></h2> 261 262<p> 263See <a href="../example/composite_keys.cpp">source code</a>. 264</p> 265 266<p> 267Boost.MultiIndex <a href="tutorial/key_extraction.html#composite_keys"> 268<code>composite_key</code></a> construct provides a flexible tool for 269creating indices with non-trivial sorting criteria. 270The program features a rudimentary simulation of a file system 271along with an interactive Unix-like shell. A file entry is represented by 272the following structure: 273</p> 274 275<blockquote><pre> 276<span class=keyword>struct</span> <span class=identifier>file_entry</span> 277<span class=special>{</span> 278 <span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span> <span class=identifier>name</span><span class=special>;</span> 279 <span class=keyword>unsigned</span> <span class=identifier>size</span><span class=special>;</span> 280 <span class=keyword>bool</span> <span class=identifier>is_dir</span><span class=special>;</span> <span class=comment>// true if the entry is a directory</span> 281 <span class=keyword>const</span> <span class=identifier>file_entry</span><span class=special>*</span> <span class=identifier>dir</span><span class=special>;</span> <span class=comment>// directory this entry belongs in</span> 282<span class=special>};</span> 283</pre></blockquote> 284 285<p> 286Entries are kept in a <code>multi_index_container</code> maintaining two indices 287with composite keys: 288<ul> 289 <li>A primary index ordered by directory and name,</li> 290 <li>a secondary index ordered by directory and size.</li> 291</ul> 292The reason that the order is made firstly by the directory in which 293the files are located obeys to the local nature of the shell commands, 294like for instance <code>ls</code>. The shell simulation only has three 295commands: 296<ul> 297 <li><code>cd [.|..|<i><directory></i>]</code></li> 298 <li><code>ls [-s]</code> (<code>-s</code> orders the output by size)</li> 299 <li><code>mkdir <i><directory></i></code></li> 300</ul> 301The program exits when the user presses the Enter key at the command prompt. 302</p> 303 304<p> 305The reader is challenged to add more functionality to the program; for 306instance: 307<ul> 308 <li>Implement additional commands, like <code>cp</code>.</li> 309 <li>Add handling of absolute paths.</li> 310 <li>Use <a href="tutorial/creation.html#serialization">serialization</a> 311 to store and retrieve the filesystem state between program runs.</li> 312</ul> 313</p> 314 315<h2><a name="example8">Example 8: hashed indices</a></h2> 316 317<p> 318See <a href="../example/hashed.cpp">source code</a>. 319</p> 320 321<p> 322Hashed indices can be used as an alternative to ordered indices when 323fast lookup is needed and sorting information is of no interest. The 324example features a word counter where duplicate entries are checked 325by means of a hashed index. Confront the word counting algorithm with 326that of <a href="#example5">example 5</a>. 327</p> 328 329<h2><a name="example9">Example 9: serialization and MRU lists</a></h2> 330 331<p> 332See <a href="../example/serialization.cpp">source code</a>. 333</p> 334 335<p> 336A typical application of serialization capabilities allows a program to 337restore the user context between executions. The example program asks 338the user for words and keeps a record of the ten most recently entered 339ones, in the current or in previous sessions. The serialized data structure, 340sometimes called an <i>MRU (most recently used) list</i>, has some interest 341on its own: an MRU list behaves as a regular FIFO queue, with the exception 342that, when inserting a preexistent entry, this does not appear twice, but 343instead the entry is moved to the front of the list. You can observe this 344behavior in many programs featuring a "Recent files" menu command. This 345data structure is implemented with <code>multi_index_container</code> by 346combining a sequenced index and an index of type <code>hashed_unique</code>. 347</p> 348 349<h2><a name="example10">Example 10: random access indices</a></h2> 350 351<p> 352See <a href="../example/random_access.cpp">source code</a>. 353</p> 354 355<p> 356The example resumes the text container introduced in 357<a href="#example5">example 5</a> and shows how substituting a random 358access index for a sequenced index allows for extra capabilities like 359efficient access by position and calculation of the offset of a given 360element into the container. 361</p> 362 363<h2><a name="example11">Example 11: index rearrangement</a></h2> 364 365<p> 366See <a href="../example/rearrange.cpp">source code</a>. 367</p> 368 369<p> 370There is a relatively common piece of urban lore claiming that 371a deck of cards must be shuffled seven times in a row to be perfectly 372mixed. The statement derives from the works of mathematician Persi 373Diaconis on <i>riffle shuffling</i>: this shuffling 374technique involves splitting the deck in two packets roughly the same 375size and then dropping the cards from both packets so that they become 376interleaved. It has been shown that when repeating this procedure 377seven times the statistical distribution of cards is reasonably 378close to that associated with a truly random permutation. A measure 379of "randomness" can be estimated by counting <i>rising sequences</i>: 380consider a permutation of the sequence 1,2, ... , <i>n</i>, a rising sequence 381is a maximal chain of consecutive elements <i>m</i>, <i>m+1</i>, ... , <i>m+r</i> 382such that they are arranged in ascending order. For instance, the permutation 383125364789 is composed of the two rising sequences 1234 and 56789, 384as becomes obvious by displaying the sequence like this, 385<span style="vertical-align:sub">1</span><span style="vertical-align:sub">2</span><span style="vertical-align:super">5</span><span style="vertical-align:sub">3</span><span style="vertical-align:super">6</span><span style="vertical-align:sub">4</span><span style="vertical-align:super">7</span><span style="vertical-align:super">8</span><span style="vertical-align:super">9</span>. 386The average number of rising sequences in a random permutation of 387<i>n</i> elements is (<i>n</i>+1)/2: by contrast, after a single riffle 388shuffle of an initially sorted deck of cards, there cannot be more than 389two rising sequences. The average number of rising sequences approximates 390to (<i>n</i>+1)/2 as the number of consecutive riffle shuffles increases, 391with seven shuffles yielding a close result for a 52-card poker deck. 392Brad Mann's paper 393<a href="http://www.dartmouth.edu/~chance/teaching_aids/books_articles/Mann.pdf">"How 394many times should you shuffle a deck of cards?"</a> provides a 395rigorous yet very accessible treatment of this subject. 396 397</p> 398 399<p> 400The example program estimates the average number of rising sequences 401in a 52-card deck after repeated riffle shuffling as well as applying 402a completely random permutation. The deck is modeled by the following 403container: 404<blockquote><pre> 405<span class=identifier>multi_index_container</span><span class=special><</span> 406 <span class=keyword>int</span><span class=special>,</span> 407 <span class=identifier>indexed_by</span><span class=special><</span> 408 <span class=identifier>random_access</span><span class=special><>,</span> 409 <span class=identifier>random_access</span><span class=special><></span> 410 <span class=special>></span> 411<span class=special>></span> 412</pre></blockquote> 413where the first index stores the current arrangement of the deck, while 414the second index is used to remember the start position. This representation 415allows for an efficient implementation of a rising sequences counting 416algorithm in linear time. 417<a href="reference/rnd_indices.html#rearrange"><code>rearrange</code></a> 418is used to apply to the deck a shuffle performed externally on an 419auxiliary data structure. 420</p> 421 422<h2><a name="example12">Example 12: using Boost.Interprocess allocators</a></h2> 423 424<p> 425See <a href="../example/ip_allocator.cpp">source code</a>. 426</p> 427 428<p> 429Boost.MultiIndex supports special allocators such as those provided by 430<a href="../../interprocess/index.html">Boost.Interprocess</a>, 431which allows for <code>multi_index_container</code>s to be placed in shared 432memory. The example features a front-end to a small book database 433implemented by means of a <code>multi_index_container</code> stored 434in a Boost.Interprocess memory mapped file. The reader can verify that several 435instances of the program correctly work simultaneously and immediately see 436the changes to the database performed by any other instance. 437</p> 438 439<hr> 440 441<div class="prev_link"><a href="performance.html"><img src="prev.gif" alt="performance" border="0"><br> 442Performance 443</a></div> 444<div class="up_link"><a href="index.html"><img src="up.gif" alt="index" border="0"><br> 445Index 446</a></div> 447<div class="next_link"><a href="tests.html"><img src="next.gif" alt="tests" border="0"><br> 448Tests 449</a></div><br clear="all" style="clear: all;"> 450 451<br> 452 453<p>Revised November 18th 2019</p> 454 455<p>© Copyright 2003-2019 Joaquín M López Muñoz. 456Distributed under the Boost Software 457License, Version 1.0. (See accompanying file <a href="../../../LICENSE_1_0.txt"> 458LICENSE_1_0.txt</a> or copy at <a href="http://www.boost.org/LICENSE_1_0.txt"> 459http://www.boost.org/LICENSE_1_0.txt</a>) 460</p> 461 462</body> 463</html> 464