1 /* Copyright (c) 2018, Google Inc.
2 *
3 * Permission to use, copy, modify, and/or distribute this software for any
4 * purpose with or without fee is hereby granted, provided that the above
5 * copyright notice and this permission notice appear in all copies.
6 *
7 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14
15 #include "handshake_util.h"
16
17 #include <assert.h>
18 #if defined(OPENSSL_LINUX) && !defined(OPENSSL_ANDROID)
19 #include <errno.h>
20 #include <fcntl.h>
21 #include <spawn.h>
22 #include <sys/socket.h>
23 #include <sys/stat.h>
24 #include <sys/types.h>
25 #include <sys/wait.h>
26 #include <unistd.h>
27 #endif
28
29 #include <functional>
30
31 #include "async_bio.h"
32 #include "packeted_bio.h"
33 #include "test_config.h"
34 #include "test_state.h"
35
36 #include <openssl/ssl.h>
37
38 using namespace bssl;
39
RetryAsync(SSL * ssl,int ret)40 bool RetryAsync(SSL *ssl, int ret) {
41 const TestConfig *config = GetTestConfig(ssl);
42 TestState *test_state = GetTestState(ssl);
43 if (ret >= 0) {
44 return false;
45 }
46
47 int ssl_err = SSL_get_error(ssl, ret);
48 if (ssl_err == SSL_ERROR_WANT_RENEGOTIATE && config->renegotiate_explicit) {
49 test_state->explicit_renegotiates++;
50 return SSL_renegotiate(ssl);
51 }
52
53 if (!config->async) {
54 // Only asynchronous tests should trigger other retries.
55 return false;
56 }
57
58 if (test_state->packeted_bio != nullptr &&
59 PacketedBioAdvanceClock(test_state->packeted_bio)) {
60 // The DTLS retransmit logic silently ignores write failures. So the test
61 // may progress, allow writes through synchronously.
62 AsyncBioEnforceWriteQuota(test_state->async_bio, false);
63 int timeout_ret = DTLSv1_handle_timeout(ssl);
64 AsyncBioEnforceWriteQuota(test_state->async_bio, true);
65
66 if (timeout_ret < 0) {
67 fprintf(stderr, "Error retransmitting.\n");
68 return false;
69 }
70 return true;
71 }
72
73 // See if we needed to read or write more. If so, allow one byte through on
74 // the appropriate end to maximally stress the state machine.
75 switch (ssl_err) {
76 case SSL_ERROR_WANT_READ:
77 AsyncBioAllowRead(test_state->async_bio, 1);
78 return true;
79 case SSL_ERROR_WANT_WRITE:
80 AsyncBioAllowWrite(test_state->async_bio, 1);
81 return true;
82 case SSL_ERROR_WANT_CHANNEL_ID_LOOKUP: {
83 UniquePtr<EVP_PKEY> pkey = LoadPrivateKey(config->send_channel_id);
84 if (!pkey) {
85 return false;
86 }
87 test_state->channel_id = std::move(pkey);
88 return true;
89 }
90 case SSL_ERROR_WANT_X509_LOOKUP:
91 test_state->cert_ready = true;
92 return true;
93 case SSL_ERROR_PENDING_SESSION:
94 test_state->session = std::move(test_state->pending_session);
95 return true;
96 case SSL_ERROR_PENDING_CERTIFICATE:
97 test_state->early_callback_ready = true;
98 return true;
99 case SSL_ERROR_WANT_PRIVATE_KEY_OPERATION:
100 test_state->private_key_retries++;
101 return true;
102 case SSL_ERROR_WANT_CERTIFICATE_VERIFY:
103 test_state->custom_verify_ready = true;
104 return true;
105 default:
106 return false;
107 }
108 }
109
CheckIdempotentError(const char * name,SSL * ssl,std::function<int ()> func)110 int CheckIdempotentError(const char *name, SSL *ssl,
111 std::function<int()> func) {
112 int ret = func();
113 int ssl_err = SSL_get_error(ssl, ret);
114 uint32_t err = ERR_peek_error();
115 if (ssl_err == SSL_ERROR_SSL || ssl_err == SSL_ERROR_ZERO_RETURN) {
116 int ret2 = func();
117 int ssl_err2 = SSL_get_error(ssl, ret2);
118 uint32_t err2 = ERR_peek_error();
119 if (ret != ret2 || ssl_err != ssl_err2 || err != err2) {
120 fprintf(stderr, "Repeating %s did not replay the error.\n", name);
121 char buf[256];
122 ERR_error_string_n(err, buf, sizeof(buf));
123 fprintf(stderr, "Wanted: %d %d %s\n", ret, ssl_err, buf);
124 ERR_error_string_n(err2, buf, sizeof(buf));
125 fprintf(stderr, "Got: %d %d %s\n", ret2, ssl_err2, buf);
126 // runner treats exit code 90 as always failing. Otherwise, it may
127 // accidentally consider the result an expected protocol failure.
128 exit(90);
129 }
130 }
131 return ret;
132 }
133
134 #if defined(OPENSSL_LINUX) && !defined(OPENSSL_ANDROID)
135
136 // MoveBIOs moves the |BIO|s of |src| to |dst|. It is used for handoff.
MoveBIOs(SSL * dest,SSL * src)137 static void MoveBIOs(SSL *dest, SSL *src) {
138 BIO *rbio = SSL_get_rbio(src);
139 BIO_up_ref(rbio);
140 SSL_set0_rbio(dest, rbio);
141
142 BIO *wbio = SSL_get_wbio(src);
143 BIO_up_ref(wbio);
144 SSL_set0_wbio(dest, wbio);
145
146 SSL_set0_rbio(src, nullptr);
147 SSL_set0_wbio(src, nullptr);
148 }
149
HandoffReady(SSL * ssl,int ret)150 static bool HandoffReady(SSL *ssl, int ret) {
151 return ret < 0 && SSL_get_error(ssl, ret) == SSL_ERROR_HANDOFF;
152 }
153
read_eintr(int fd,void * out,size_t len)154 static ssize_t read_eintr(int fd, void *out, size_t len) {
155 ssize_t ret;
156 do {
157 ret = read(fd, out, len);
158 } while (ret < 0 && errno == EINTR);
159 return ret;
160 }
161
write_eintr(int fd,const void * in,size_t len)162 static ssize_t write_eintr(int fd, const void *in, size_t len) {
163 ssize_t ret;
164 do {
165 ret = write(fd, in, len);
166 } while (ret < 0 && errno == EINTR);
167 return ret;
168 }
169
waitpid_eintr(pid_t pid,int * wstatus,int options)170 static ssize_t waitpid_eintr(pid_t pid, int *wstatus, int options) {
171 pid_t ret;
172 do {
173 ret = waitpid(pid, wstatus, options);
174 } while (ret < 0 && errno == EINTR);
175 return ret;
176 }
177
178 // Proxy relays data between |socket|, which is connected to the client, and the
179 // handshaker, which is connected to the numerically specified file descriptors,
180 // until the handshaker returns control.
Proxy(BIO * socket,bool async,int control,int rfd,int wfd)181 static bool Proxy(BIO *socket, bool async, int control, int rfd, int wfd) {
182 for (;;) {
183 fd_set rfds;
184 FD_ZERO(&rfds);
185 FD_SET(wfd, &rfds);
186 FD_SET(control, &rfds);
187 int fd_max = wfd > control ? wfd : control;
188 if (select(fd_max + 1, &rfds, nullptr, nullptr, nullptr) == -1) {
189 perror("select");
190 return false;
191 }
192
193 char buf[64];
194 ssize_t bytes;
195 if (FD_ISSET(wfd, &rfds) &&
196 (bytes = read_eintr(wfd, buf, sizeof(buf))) > 0) {
197 char *b = buf;
198 while (bytes) {
199 int written = BIO_write(socket, b, bytes);
200 if (!written) {
201 fprintf(stderr, "BIO_write wrote nothing\n");
202 return false;
203 }
204 if (written < 0) {
205 if (async) {
206 AsyncBioAllowWrite(socket, 1);
207 continue;
208 }
209 fprintf(stderr, "BIO_write failed\n");
210 return false;
211 }
212 b += written;
213 bytes -= written;
214 }
215 // Flush all pending data from the handshaker to the client before
216 // considering control messages.
217 continue;
218 }
219
220 if (!FD_ISSET(control, &rfds)) {
221 continue;
222 }
223
224 char msg;
225 if (read_eintr(control, &msg, 1) != 1) {
226 perror("read");
227 return false;
228 }
229 switch (msg) {
230 case kControlMsgHandback:
231 return true;
232 case kControlMsgError:
233 return false;
234 case kControlMsgWantRead:
235 break;
236 default:
237 fprintf(stderr, "Unknown control message from handshaker: %c\n", msg);
238 return false;
239 }
240
241 char readbuf[64];
242 if (async) {
243 AsyncBioAllowRead(socket, 1);
244 }
245 int read = BIO_read(socket, readbuf, sizeof(readbuf));
246 if (read < 1) {
247 fprintf(stderr, "BIO_read failed\n");
248 return false;
249 }
250 ssize_t written = write_eintr(rfd, readbuf, read);
251 if (written == -1) {
252 perror("write");
253 return false;
254 }
255 if (written != read) {
256 fprintf(stderr, "short write (%zu of %d bytes)\n", written, read);
257 return false;
258 }
259 // The handshaker blocks on the control channel, so we have to signal
260 // it that the data have been written.
261 msg = kControlMsgWriteCompleted;
262 if (write_eintr(control, &msg, 1) != 1) {
263 perror("write");
264 return false;
265 }
266 }
267 }
268
269 class ScopedFD {
270 public:
ScopedFD(int fd)271 explicit ScopedFD(int fd): fd_(fd) {}
~ScopedFD()272 ~ScopedFD() { close(fd_); }
273 private:
274 const int fd_;
275 };
276
277 // RunHandshaker forks and execs the handshaker binary, handing off |input|,
278 // and, after proxying some amount of handshake traffic, handing back |out|.
RunHandshaker(BIO * bio,const TestConfig * config,bool is_resume,const Array<uint8_t> & input,Array<uint8_t> * out)279 static bool RunHandshaker(BIO *bio, const TestConfig *config, bool is_resume,
280 const Array<uint8_t> &input,
281 Array<uint8_t> *out) {
282 if (config->handshaker_path.empty()) {
283 fprintf(stderr, "no -handshaker-path specified\n");
284 return false;
285 }
286 struct stat dummy;
287 if (stat(config->handshaker_path.c_str(), &dummy) == -1) {
288 perror(config->handshaker_path.c_str());
289 return false;
290 }
291
292 // A datagram socket guarantees that writes are all-or-nothing.
293 int control[2];
294 if (socketpair(AF_LOCAL, SOCK_DGRAM, 0, control) != 0) {
295 perror("socketpair");
296 return false;
297 }
298 int rfd[2], wfd[2];
299 // We use pipes, rather than some other mechanism, for their buffers. During
300 // the handshake, this process acts as a dumb proxy until receiving the
301 // handback signal, which arrives asynchronously. The race condition means
302 // that this process could incorrectly proxy post-handshake data from the
303 // client to the handshaker.
304 //
305 // To avoid this, this process never proxies data to the handshaker that the
306 // handshaker has not explicitly requested as a result of hitting
307 // |SSL_ERROR_WANT_READ|. Pipes allow the data to sit in a buffer while the
308 // two processes synchronize over the |control| channel.
309 if (pipe(rfd) != 0 || pipe(wfd) != 0) {
310 perror("pipe2");
311 return false;
312 }
313
314 fflush(stdout);
315 fflush(stderr);
316
317 std::vector<char *> args;
318 bssl::UniquePtr<char> handshaker_path(
319 OPENSSL_strdup(config->handshaker_path.c_str()));
320 args.push_back(handshaker_path.get());
321 char resume[] = "-handshaker-resume";
322 if (is_resume) {
323 args.push_back(resume);
324 }
325 // config->argv omits argv[0].
326 for (int j = 0; j < config->argc; ++j) {
327 args.push_back(config->argv[j]);
328 }
329 args.push_back(nullptr);
330
331 posix_spawn_file_actions_t actions;
332 if (posix_spawn_file_actions_init(&actions) != 0 ||
333 posix_spawn_file_actions_addclose(&actions, control[0]) ||
334 posix_spawn_file_actions_addclose(&actions, rfd[1]) ||
335 posix_spawn_file_actions_addclose(&actions, wfd[0])) {
336 return false;
337 }
338 assert(kFdControl != rfd[0]);
339 assert(kFdControl != wfd[1]);
340 if (control[1] != kFdControl &&
341 posix_spawn_file_actions_adddup2(&actions, control[1], kFdControl) != 0) {
342 return false;
343 }
344 assert(kFdProxyToHandshaker != wfd[1]);
345 if (rfd[0] != kFdProxyToHandshaker &&
346 posix_spawn_file_actions_adddup2(&actions, rfd[0],
347 kFdProxyToHandshaker) != 0) {
348 return false;
349 }
350 if (wfd[1] != kFdHandshakerToProxy &&
351 posix_spawn_file_actions_adddup2(&actions, wfd[1],
352 kFdHandshakerToProxy) != 0) {
353 return false;
354 }
355
356 // MSan doesn't know that |posix_spawn| initializes its output, so initialize
357 // it to -1.
358 pid_t handshaker_pid = -1;
359 int ret = posix_spawn(&handshaker_pid, args[0], &actions, nullptr,
360 args.data(), environ);
361 if (posix_spawn_file_actions_destroy(&actions) != 0 ||
362 ret != 0) {
363 return false;
364 }
365
366 close(control[1]);
367 close(rfd[0]);
368 close(wfd[1]);
369 ScopedFD rfd_closer(rfd[1]);
370 ScopedFD wfd_closer(wfd[0]);
371 ScopedFD control_closer(control[0]);
372
373 if (write_eintr(control[0], input.data(), input.size()) == -1) {
374 perror("write");
375 return false;
376 }
377 bool ok = Proxy(bio, config->async, control[0], rfd[1], wfd[0]);
378 int wstatus;
379 if (waitpid_eintr(handshaker_pid, &wstatus, 0) != handshaker_pid) {
380 perror("waitpid");
381 return false;
382 }
383 if (ok && wstatus) {
384 fprintf(stderr, "handshaker exited irregularly\n");
385 return false;
386 }
387 if (!ok) {
388 return false; // This is a "good", i.e. expected, error.
389 }
390
391 constexpr size_t kBufSize = 1024 * 1024;
392 bssl::UniquePtr<uint8_t> buf((uint8_t *) OPENSSL_malloc(kBufSize));
393 int len = read_eintr(control[0], buf.get(), kBufSize);
394 if (len == -1) {
395 perror("read");
396 return false;
397 }
398 out->CopyFrom({buf.get(), (size_t)len});
399 return true;
400 }
401
402 // PrepareHandoff accepts the |ClientHello| from |ssl| and serializes state to
403 // be passed to the handshaker. The serialized state includes both the SSL
404 // handoff, as well test-related state.
PrepareHandoff(SSL * ssl,SettingsWriter * writer,Array<uint8_t> * out_handoff)405 static bool PrepareHandoff(SSL *ssl, SettingsWriter *writer,
406 Array<uint8_t> *out_handoff) {
407 SSL_set_handoff_mode(ssl, 1);
408
409 const TestConfig *config = GetTestConfig(ssl);
410 int ret = -1;
411 do {
412 ret = CheckIdempotentError(
413 "SSL_do_handshake", ssl,
414 [&]() -> int { return SSL_do_handshake(ssl); });
415 } while (!HandoffReady(ssl, ret) &&
416 config->async &&
417 RetryAsync(ssl, ret));
418 if (!HandoffReady(ssl, ret)) {
419 fprintf(stderr, "Handshake failed while waiting for handoff.\n");
420 return false;
421 }
422
423 ScopedCBB cbb;
424 SSL_CLIENT_HELLO hello;
425 if (!CBB_init(cbb.get(), 512) ||
426 !SSL_serialize_handoff(ssl, cbb.get(), &hello) ||
427 !writer->WriteHandoff({CBB_data(cbb.get()), CBB_len(cbb.get())}) ||
428 !SerializeContextState(ssl->ctx.get(), cbb.get()) ||
429 !GetTestState(ssl)->Serialize(cbb.get())) {
430 fprintf(stderr, "Handoff serialisation failed.\n");
431 return false;
432 }
433 return CBBFinishArray(cbb.get(), out_handoff);
434 }
435
436 // DoSplitHandshake delegates the SSL handshake to a separate process, called
437 // the handshaker. This process proxies I/O between the handshaker and the
438 // client, using the |BIO| from |ssl|. After a successful handshake, |ssl| is
439 // replaced with a new |SSL| object, in a way that is intended to be invisible
440 // to the caller.
DoSplitHandshake(UniquePtr<SSL> * ssl,SettingsWriter * writer,bool is_resume)441 bool DoSplitHandshake(UniquePtr<SSL> *ssl, SettingsWriter *writer,
442 bool is_resume) {
443 assert(SSL_get_rbio(ssl->get()) == SSL_get_wbio(ssl->get()));
444 Array<uint8_t> handshaker_input;
445 const TestConfig *config = GetTestConfig(ssl->get());
446 // out is the response from the handshaker, which includes a serialized
447 // handback message, but also serialized updates to the |TestState|.
448 Array<uint8_t> out;
449 if (!PrepareHandoff(ssl->get(), writer, &handshaker_input) ||
450 !RunHandshaker(SSL_get_rbio(ssl->get()), config, is_resume,
451 handshaker_input, &out)) {
452 fprintf(stderr, "Handoff failed.\n");
453 return false;
454 }
455
456 UniquePtr<SSL> ssl_handback =
457 config->NewSSL((*ssl)->ctx.get(), nullptr, false, nullptr);
458 if (!ssl_handback) {
459 return false;
460 }
461 CBS output, handback;
462 CBS_init(&output, out.data(), out.size());
463 if (!CBS_get_u24_length_prefixed(&output, &handback) ||
464 !DeserializeContextState(&output, ssl_handback->ctx.get()) ||
465 !SetTestState(ssl_handback.get(), TestState::Deserialize(
466 &output, ssl_handback->ctx.get())) ||
467 !GetTestState(ssl_handback.get()) ||
468 !writer->WriteHandback(handback) ||
469 !SSL_apply_handback(ssl_handback.get(), handback)) {
470 fprintf(stderr, "Handback failed.\n");
471 return false;
472 }
473 MoveBIOs(ssl_handback.get(), ssl->get());
474 GetTestState(ssl_handback.get())->async_bio =
475 GetTestState(ssl->get())->async_bio;
476 GetTestState(ssl->get())->async_bio = nullptr;
477
478 *ssl = std::move(ssl_handback);
479 return true;
480 }
481
482 #endif // defined(OPENSSL_LINUX) && !defined(OPENSSL_ANDROID)
483