• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * adaptive and fixed codebook vector operations for ACELP-based codecs
3  *
4  * Copyright (c) 2008 Vladimir Voroshilov
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 #include <inttypes.h>
24 
25 #include "libavutil/avassert.h"
26 #include "libavutil/common.h"
27 #include "libavutil/float_dsp.h"
28 #include "avcodec.h"
29 #include "acelp_vectors.h"
30 
31 const uint8_t ff_fc_2pulses_9bits_track1[16] =
32 {
33     1,  3,
34     6,  8,
35     11, 13,
36     16, 18,
37     21, 23,
38     26, 28,
39     31, 33,
40     36, 38
41 };
42 const uint8_t ff_fc_2pulses_9bits_track1_gray[16] =
43 {
44   1,  3,
45   8,  6,
46   18, 16,
47   11, 13,
48   38, 36,
49   31, 33,
50   21, 23,
51   28, 26,
52 };
53 
54 const uint8_t ff_fc_2pulses_9bits_track2_gray[32] =
55 {
56   0,  2,
57   5,  4,
58   12, 10,
59   7,  9,
60   25, 24,
61   20, 22,
62   14, 15,
63   19, 17,
64   36, 31,
65   21, 26,
66   1,  6,
67   16, 11,
68   27, 29,
69   32, 30,
70   39, 37,
71   34, 35,
72 };
73 
74 const uint8_t ff_fc_4pulses_8bits_tracks_13[16] =
75 {
76   0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75,
77 };
78 
79 const uint8_t ff_fc_4pulses_8bits_track_4[32] =
80 {
81     3,  4,
82     8,  9,
83     13, 14,
84     18, 19,
85     23, 24,
86     28, 29,
87     33, 34,
88     38, 39,
89     43, 44,
90     48, 49,
91     53, 54,
92     58, 59,
93     63, 64,
94     68, 69,
95     73, 74,
96     78, 79,
97 };
98 
99 const float ff_pow_0_7[10] = {
100     0.700000, 0.490000, 0.343000, 0.240100, 0.168070,
101     0.117649, 0.082354, 0.057648, 0.040354, 0.028248
102 };
103 
104 const float ff_pow_0_75[10] = {
105     0.750000, 0.562500, 0.421875, 0.316406, 0.237305,
106     0.177979, 0.133484, 0.100113, 0.075085, 0.056314
107 };
108 
109 const float ff_pow_0_55[10] = {
110     0.550000, 0.302500, 0.166375, 0.091506, 0.050328,
111     0.027681, 0.015224, 0.008373, 0.004605, 0.002533
112 };
113 
114 const float ff_b60_sinc[61] = {
115  0.898529  ,  0.865051  ,  0.769257  ,  0.624054  ,  0.448639  ,  0.265289   ,
116  0.0959167 , -0.0412598 , -0.134338  , -0.178986  , -0.178528  , -0.142609   ,
117 -0.0849304 , -0.0205078 ,  0.0369568 ,  0.0773926 ,  0.0955200 ,  0.0912781  ,
118  0.0689392 ,  0.0357056 ,  0.0       , -0.0305481 , -0.0504150 , -0.0570068  ,
119 -0.0508423 , -0.0350037 , -0.0141602 ,  0.00665283,  0.0230713 ,  0.0323486  ,
120  0.0335388 ,  0.0275879 ,  0.0167847 ,  0.00411987, -0.00747681, -0.0156860  ,
121 -0.0193481 , -0.0183716 , -0.0137634 , -0.00704956,  0.0       ,  0.00582886 ,
122  0.00939941,  0.0103760 ,  0.00903320,  0.00604248,  0.00238037, -0.00109863 ,
123 -0.00366211, -0.00497437, -0.00503540, -0.00402832, -0.00241089, -0.000579834,
124  0.00103760,  0.00222778,  0.00277710,  0.00271606,  0.00213623,  0.00115967 ,
125  0.
126 };
127 
ff_acelp_fc_pulse_per_track(int16_t * fc_v,const uint8_t * tab1,const uint8_t * tab2,int pulse_indexes,int pulse_signs,int pulse_count,int bits)128 void ff_acelp_fc_pulse_per_track(
129         int16_t* fc_v,
130         const uint8_t *tab1,
131         const uint8_t *tab2,
132         int pulse_indexes,
133         int pulse_signs,
134         int pulse_count,
135         int bits)
136 {
137     int mask = (1 << bits) - 1;
138     int i;
139 
140     for(i=0; i<pulse_count; i++)
141     {
142         fc_v[i + tab1[pulse_indexes & mask]] +=
143                 (pulse_signs & 1) ? 8191 : -8192; // +/-1 in (2.13)
144 
145         pulse_indexes >>= bits;
146         pulse_signs >>= 1;
147     }
148 
149     fc_v[tab2[pulse_indexes]] += (pulse_signs & 1) ? 8191 : -8192;
150 }
151 
ff_decode_10_pulses_35bits(const int16_t * fixed_index,AMRFixed * fixed_sparse,const uint8_t * gray_decode,int half_pulse_count,int bits)152 void ff_decode_10_pulses_35bits(const int16_t *fixed_index,
153                                 AMRFixed *fixed_sparse,
154                                 const uint8_t *gray_decode,
155                                 int half_pulse_count, int bits)
156 {
157     int i;
158     int mask = (1 << bits) - 1;
159 
160     fixed_sparse->no_repeat_mask = 0;
161     fixed_sparse->n = 2 * half_pulse_count;
162     for (i = 0; i < half_pulse_count; i++) {
163         const int pos1   = gray_decode[fixed_index[2*i+1] & mask] + i;
164         const int pos2   = gray_decode[fixed_index[2*i  ] & mask] + i;
165         const float sign = (fixed_index[2*i+1] & (1 << bits)) ? -1.0 : 1.0;
166         fixed_sparse->x[2*i+1] = pos1;
167         fixed_sparse->x[2*i  ] = pos2;
168         fixed_sparse->y[2*i+1] = sign;
169         fixed_sparse->y[2*i  ] = pos2 < pos1 ? -sign : sign;
170     }
171 }
172 
ff_acelp_weighted_vector_sum(int16_t * out,const int16_t * in_a,const int16_t * in_b,int16_t weight_coeff_a,int16_t weight_coeff_b,int16_t rounder,int shift,int length)173 void ff_acelp_weighted_vector_sum(
174         int16_t* out,
175         const int16_t *in_a,
176         const int16_t *in_b,
177         int16_t weight_coeff_a,
178         int16_t weight_coeff_b,
179         int16_t rounder,
180         int shift,
181         int length)
182 {
183     int i;
184 
185     // Clipping required here; breaks OVERFLOW test.
186     for(i=0; i<length; i++)
187         out[i] = av_clip_int16((
188                  in_a[i] * weight_coeff_a +
189                  in_b[i] * weight_coeff_b +
190                  rounder) >> shift);
191 }
192 
ff_weighted_vector_sumf(float * out,const float * in_a,const float * in_b,float weight_coeff_a,float weight_coeff_b,int length)193 void ff_weighted_vector_sumf(float *out, const float *in_a, const float *in_b,
194                              float weight_coeff_a, float weight_coeff_b, int length)
195 {
196     int i;
197 
198     for(i=0; i<length; i++)
199         out[i] = weight_coeff_a * in_a[i]
200                + weight_coeff_b * in_b[i];
201 }
202 
ff_adaptive_gain_control(float * out,const float * in,float speech_energ,int size,float alpha,float * gain_mem)203 void ff_adaptive_gain_control(float *out, const float *in, float speech_energ,
204                               int size, float alpha, float *gain_mem)
205 {
206     int i;
207     float postfilter_energ = avpriv_scalarproduct_float_c(in, in, size);
208     float gain_scale_factor = 1.0;
209     float mem = *gain_mem;
210 
211     if (postfilter_energ)
212         gain_scale_factor = sqrt(speech_energ / postfilter_energ);
213 
214     gain_scale_factor *= 1.0 - alpha;
215 
216     for (i = 0; i < size; i++) {
217         mem = alpha * mem + gain_scale_factor;
218         out[i] = in[i] * mem;
219     }
220 
221     *gain_mem = mem;
222 }
223 
ff_scale_vector_to_given_sum_of_squares(float * out,const float * in,float sum_of_squares,const int n)224 void ff_scale_vector_to_given_sum_of_squares(float *out, const float *in,
225                                              float sum_of_squares, const int n)
226 {
227     int i;
228     float scalefactor = avpriv_scalarproduct_float_c(in, in, n);
229     if (scalefactor)
230         scalefactor = sqrt(sum_of_squares / scalefactor);
231     for (i = 0; i < n; i++)
232         out[i] = in[i] * scalefactor;
233 }
234 
ff_set_fixed_vector(float * out,const AMRFixed * in,float scale,int size)235 void ff_set_fixed_vector(float *out, const AMRFixed *in, float scale, int size)
236 {
237     int i;
238 
239     for (i=0; i < in->n; i++) {
240         int x   = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);
241         float y = in->y[i] * scale;
242 
243         if (in->pitch_lag > 0)
244             av_assert0(x < size);
245             do {
246                 out[x] += y;
247                 y *= in->pitch_fac;
248                 x += in->pitch_lag;
249             } while (x < size && repeats);
250     }
251 }
252 
ff_clear_fixed_vector(float * out,const AMRFixed * in,int size)253 void ff_clear_fixed_vector(float *out, const AMRFixed *in, int size)
254 {
255     int i;
256 
257     for (i=0; i < in->n; i++) {
258         int x  = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);
259 
260         if (in->pitch_lag > 0)
261             do {
262                 out[x] = 0.0;
263                 x += in->pitch_lag;
264             } while (x < size && repeats);
265     }
266 }
267 
ff_acelp_vectors_init(ACELPVContext * c)268 void ff_acelp_vectors_init(ACELPVContext *c)
269 {
270     c->weighted_vector_sumf   = ff_weighted_vector_sumf;
271 
272     if(HAVE_MIPSFPU)
273         ff_acelp_vectors_init_mips(c);
274 }
275