1 /*
2 * adaptive and fixed codebook vector operations for ACELP-based codecs
3 *
4 * Copyright (c) 2008 Vladimir Voroshilov
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 #include <inttypes.h>
24
25 #include "libavutil/avassert.h"
26 #include "libavutil/common.h"
27 #include "libavutil/float_dsp.h"
28 #include "avcodec.h"
29 #include "acelp_vectors.h"
30
31 const uint8_t ff_fc_2pulses_9bits_track1[16] =
32 {
33 1, 3,
34 6, 8,
35 11, 13,
36 16, 18,
37 21, 23,
38 26, 28,
39 31, 33,
40 36, 38
41 };
42 const uint8_t ff_fc_2pulses_9bits_track1_gray[16] =
43 {
44 1, 3,
45 8, 6,
46 18, 16,
47 11, 13,
48 38, 36,
49 31, 33,
50 21, 23,
51 28, 26,
52 };
53
54 const uint8_t ff_fc_2pulses_9bits_track2_gray[32] =
55 {
56 0, 2,
57 5, 4,
58 12, 10,
59 7, 9,
60 25, 24,
61 20, 22,
62 14, 15,
63 19, 17,
64 36, 31,
65 21, 26,
66 1, 6,
67 16, 11,
68 27, 29,
69 32, 30,
70 39, 37,
71 34, 35,
72 };
73
74 const uint8_t ff_fc_4pulses_8bits_tracks_13[16] =
75 {
76 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75,
77 };
78
79 const uint8_t ff_fc_4pulses_8bits_track_4[32] =
80 {
81 3, 4,
82 8, 9,
83 13, 14,
84 18, 19,
85 23, 24,
86 28, 29,
87 33, 34,
88 38, 39,
89 43, 44,
90 48, 49,
91 53, 54,
92 58, 59,
93 63, 64,
94 68, 69,
95 73, 74,
96 78, 79,
97 };
98
99 const float ff_pow_0_7[10] = {
100 0.700000, 0.490000, 0.343000, 0.240100, 0.168070,
101 0.117649, 0.082354, 0.057648, 0.040354, 0.028248
102 };
103
104 const float ff_pow_0_75[10] = {
105 0.750000, 0.562500, 0.421875, 0.316406, 0.237305,
106 0.177979, 0.133484, 0.100113, 0.075085, 0.056314
107 };
108
109 const float ff_pow_0_55[10] = {
110 0.550000, 0.302500, 0.166375, 0.091506, 0.050328,
111 0.027681, 0.015224, 0.008373, 0.004605, 0.002533
112 };
113
114 const float ff_b60_sinc[61] = {
115 0.898529 , 0.865051 , 0.769257 , 0.624054 , 0.448639 , 0.265289 ,
116 0.0959167 , -0.0412598 , -0.134338 , -0.178986 , -0.178528 , -0.142609 ,
117 -0.0849304 , -0.0205078 , 0.0369568 , 0.0773926 , 0.0955200 , 0.0912781 ,
118 0.0689392 , 0.0357056 , 0.0 , -0.0305481 , -0.0504150 , -0.0570068 ,
119 -0.0508423 , -0.0350037 , -0.0141602 , 0.00665283, 0.0230713 , 0.0323486 ,
120 0.0335388 , 0.0275879 , 0.0167847 , 0.00411987, -0.00747681, -0.0156860 ,
121 -0.0193481 , -0.0183716 , -0.0137634 , -0.00704956, 0.0 , 0.00582886 ,
122 0.00939941, 0.0103760 , 0.00903320, 0.00604248, 0.00238037, -0.00109863 ,
123 -0.00366211, -0.00497437, -0.00503540, -0.00402832, -0.00241089, -0.000579834,
124 0.00103760, 0.00222778, 0.00277710, 0.00271606, 0.00213623, 0.00115967 ,
125 0.
126 };
127
ff_acelp_fc_pulse_per_track(int16_t * fc_v,const uint8_t * tab1,const uint8_t * tab2,int pulse_indexes,int pulse_signs,int pulse_count,int bits)128 void ff_acelp_fc_pulse_per_track(
129 int16_t* fc_v,
130 const uint8_t *tab1,
131 const uint8_t *tab2,
132 int pulse_indexes,
133 int pulse_signs,
134 int pulse_count,
135 int bits)
136 {
137 int mask = (1 << bits) - 1;
138 int i;
139
140 for(i=0; i<pulse_count; i++)
141 {
142 fc_v[i + tab1[pulse_indexes & mask]] +=
143 (pulse_signs & 1) ? 8191 : -8192; // +/-1 in (2.13)
144
145 pulse_indexes >>= bits;
146 pulse_signs >>= 1;
147 }
148
149 fc_v[tab2[pulse_indexes]] += (pulse_signs & 1) ? 8191 : -8192;
150 }
151
ff_decode_10_pulses_35bits(const int16_t * fixed_index,AMRFixed * fixed_sparse,const uint8_t * gray_decode,int half_pulse_count,int bits)152 void ff_decode_10_pulses_35bits(const int16_t *fixed_index,
153 AMRFixed *fixed_sparse,
154 const uint8_t *gray_decode,
155 int half_pulse_count, int bits)
156 {
157 int i;
158 int mask = (1 << bits) - 1;
159
160 fixed_sparse->no_repeat_mask = 0;
161 fixed_sparse->n = 2 * half_pulse_count;
162 for (i = 0; i < half_pulse_count; i++) {
163 const int pos1 = gray_decode[fixed_index[2*i+1] & mask] + i;
164 const int pos2 = gray_decode[fixed_index[2*i ] & mask] + i;
165 const float sign = (fixed_index[2*i+1] & (1 << bits)) ? -1.0 : 1.0;
166 fixed_sparse->x[2*i+1] = pos1;
167 fixed_sparse->x[2*i ] = pos2;
168 fixed_sparse->y[2*i+1] = sign;
169 fixed_sparse->y[2*i ] = pos2 < pos1 ? -sign : sign;
170 }
171 }
172
ff_acelp_weighted_vector_sum(int16_t * out,const int16_t * in_a,const int16_t * in_b,int16_t weight_coeff_a,int16_t weight_coeff_b,int16_t rounder,int shift,int length)173 void ff_acelp_weighted_vector_sum(
174 int16_t* out,
175 const int16_t *in_a,
176 const int16_t *in_b,
177 int16_t weight_coeff_a,
178 int16_t weight_coeff_b,
179 int16_t rounder,
180 int shift,
181 int length)
182 {
183 int i;
184
185 // Clipping required here; breaks OVERFLOW test.
186 for(i=0; i<length; i++)
187 out[i] = av_clip_int16((
188 in_a[i] * weight_coeff_a +
189 in_b[i] * weight_coeff_b +
190 rounder) >> shift);
191 }
192
ff_weighted_vector_sumf(float * out,const float * in_a,const float * in_b,float weight_coeff_a,float weight_coeff_b,int length)193 void ff_weighted_vector_sumf(float *out, const float *in_a, const float *in_b,
194 float weight_coeff_a, float weight_coeff_b, int length)
195 {
196 int i;
197
198 for(i=0; i<length; i++)
199 out[i] = weight_coeff_a * in_a[i]
200 + weight_coeff_b * in_b[i];
201 }
202
ff_adaptive_gain_control(float * out,const float * in,float speech_energ,int size,float alpha,float * gain_mem)203 void ff_adaptive_gain_control(float *out, const float *in, float speech_energ,
204 int size, float alpha, float *gain_mem)
205 {
206 int i;
207 float postfilter_energ = avpriv_scalarproduct_float_c(in, in, size);
208 float gain_scale_factor = 1.0;
209 float mem = *gain_mem;
210
211 if (postfilter_energ)
212 gain_scale_factor = sqrt(speech_energ / postfilter_energ);
213
214 gain_scale_factor *= 1.0 - alpha;
215
216 for (i = 0; i < size; i++) {
217 mem = alpha * mem + gain_scale_factor;
218 out[i] = in[i] * mem;
219 }
220
221 *gain_mem = mem;
222 }
223
ff_scale_vector_to_given_sum_of_squares(float * out,const float * in,float sum_of_squares,const int n)224 void ff_scale_vector_to_given_sum_of_squares(float *out, const float *in,
225 float sum_of_squares, const int n)
226 {
227 int i;
228 float scalefactor = avpriv_scalarproduct_float_c(in, in, n);
229 if (scalefactor)
230 scalefactor = sqrt(sum_of_squares / scalefactor);
231 for (i = 0; i < n; i++)
232 out[i] = in[i] * scalefactor;
233 }
234
ff_set_fixed_vector(float * out,const AMRFixed * in,float scale,int size)235 void ff_set_fixed_vector(float *out, const AMRFixed *in, float scale, int size)
236 {
237 int i;
238
239 for (i=0; i < in->n; i++) {
240 int x = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);
241 float y = in->y[i] * scale;
242
243 if (in->pitch_lag > 0)
244 av_assert0(x < size);
245 do {
246 out[x] += y;
247 y *= in->pitch_fac;
248 x += in->pitch_lag;
249 } while (x < size && repeats);
250 }
251 }
252
ff_clear_fixed_vector(float * out,const AMRFixed * in,int size)253 void ff_clear_fixed_vector(float *out, const AMRFixed *in, int size)
254 {
255 int i;
256
257 for (i=0; i < in->n; i++) {
258 int x = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);
259
260 if (in->pitch_lag > 0)
261 do {
262 out[x] = 0.0;
263 x += in->pitch_lag;
264 } while (x < size && repeats);
265 }
266 }
267
ff_acelp_vectors_init(ACELPVContext * c)268 void ff_acelp_vectors_init(ACELPVContext *c)
269 {
270 c->weighted_vector_sumf = ff_weighted_vector_sumf;
271
272 if(HAVE_MIPSFPU)
273 ff_acelp_vectors_init_mips(c);
274 }
275