1 /*
2 * Copyright (C) 2007 Marco Gerards <marco@gnu.org>
3 * Copyright (C) 2009 David Conrad
4 * Copyright (C) 2011 Jordi Ortiz
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /**
24 * @file
25 * Dirac Decoder
26 * @author Marco Gerards <marco@gnu.org>, David Conrad, Jordi Ortiz <nenjordi@gmail.com>
27 */
28
29 #include "libavutil/pixdesc.h"
30 #include "libavutil/thread.h"
31 #include "avcodec.h"
32 #include "get_bits.h"
33 #include "bytestream.h"
34 #include "internal.h"
35 #include "golomb.h"
36 #include "dirac_arith.h"
37 #include "dirac_vlc.h"
38 #include "mpeg12data.h"
39 #include "libavcodec/mpegvideo.h"
40 #include "mpegvideoencdsp.h"
41 #include "dirac_dwt.h"
42 #include "dirac.h"
43 #include "diractab.h"
44 #include "diracdsp.h"
45 #include "videodsp.h"
46
47 /**
48 * The spec limits this to 3 for frame coding, but in practice can be as high as 6
49 */
50 #define MAX_REFERENCE_FRAMES 8
51 #define MAX_DELAY 5 /* limit for main profile for frame coding (TODO: field coding) */
52 #define MAX_FRAMES (MAX_REFERENCE_FRAMES + MAX_DELAY + 1)
53 #define MAX_QUANT 255 /* max quant for VC-2 */
54 #define MAX_BLOCKSIZE 32 /* maximum xblen/yblen we support */
55
56 /**
57 * DiracBlock->ref flags, if set then the block does MC from the given ref
58 */
59 #define DIRAC_REF_MASK_REF1 1
60 #define DIRAC_REF_MASK_REF2 2
61 #define DIRAC_REF_MASK_GLOBAL 4
62
63 /**
64 * Value of Picture.reference when Picture is not a reference picture, but
65 * is held for delayed output.
66 */
67 #define DELAYED_PIC_REF 4
68
69 #define CALC_PADDING(size, depth) \
70 (((size + (1 << depth) - 1) >> depth) << depth)
71
72 #define DIVRNDUP(a, b) (((a) + (b) - 1) / (b))
73
74 typedef struct {
75 AVFrame *avframe;
76 int interpolated[3]; /* 1 if hpel[] is valid */
77 uint8_t *hpel[3][4];
78 uint8_t *hpel_base[3][4];
79 int reference;
80 } DiracFrame;
81
82 typedef struct {
83 union {
84 int16_t mv[2][2];
85 int16_t dc[3];
86 } u; /* anonymous unions aren't in C99 :( */
87 uint8_t ref;
88 } DiracBlock;
89
90 typedef struct SubBand {
91 int level;
92 int orientation;
93 int stride; /* in bytes */
94 int width;
95 int height;
96 int pshift;
97 int quant;
98 uint8_t *ibuf;
99 struct SubBand *parent;
100
101 /* for low delay */
102 unsigned length;
103 const uint8_t *coeff_data;
104 } SubBand;
105
106 typedef struct Plane {
107 DWTPlane idwt;
108
109 int width;
110 int height;
111 ptrdiff_t stride;
112
113 /* block length */
114 uint8_t xblen;
115 uint8_t yblen;
116 /* block separation (block n+1 starts after this many pixels in block n) */
117 uint8_t xbsep;
118 uint8_t ybsep;
119 /* amount of overspill on each edge (half of the overlap between blocks) */
120 uint8_t xoffset;
121 uint8_t yoffset;
122
123 SubBand band[MAX_DWT_LEVELS][4];
124 } Plane;
125
126 /* Used by Low Delay and High Quality profiles */
127 typedef struct DiracSlice {
128 GetBitContext gb;
129 int slice_x;
130 int slice_y;
131 int bytes;
132 } DiracSlice;
133
134 typedef struct DiracContext {
135 AVCodecContext *avctx;
136 MpegvideoEncDSPContext mpvencdsp;
137 VideoDSPContext vdsp;
138 DiracDSPContext diracdsp;
139 DiracVersionInfo version;
140 GetBitContext gb;
141 AVDiracSeqHeader seq;
142 int seen_sequence_header;
143 int64_t frame_number; /* number of the next frame to display */
144 Plane plane[3];
145 int chroma_x_shift;
146 int chroma_y_shift;
147
148 int bit_depth; /* bit depth */
149 int pshift; /* pixel shift = bit_depth > 8 */
150
151 int zero_res; /* zero residue flag */
152 int is_arith; /* whether coeffs use arith or golomb coding */
153 int core_syntax; /* use core syntax only */
154 int low_delay; /* use the low delay syntax */
155 int hq_picture; /* high quality picture, enables low_delay */
156 int ld_picture; /* use low delay picture, turns on low_delay */
157 int dc_prediction; /* has dc prediction */
158 int globalmc_flag; /* use global motion compensation */
159 int num_refs; /* number of reference pictures */
160
161 /* wavelet decoding */
162 unsigned wavelet_depth; /* depth of the IDWT */
163 unsigned wavelet_idx;
164
165 /**
166 * schroedinger older than 1.0.8 doesn't store
167 * quant delta if only one codebook exists in a band
168 */
169 unsigned old_delta_quant;
170 unsigned codeblock_mode;
171
172 unsigned num_x; /* number of horizontal slices */
173 unsigned num_y; /* number of vertical slices */
174
175 uint8_t *thread_buf; /* Per-thread buffer for coefficient storage */
176 int threads_num_buf; /* Current # of buffers allocated */
177 int thread_buf_size; /* Each thread has a buffer this size */
178
179 DiracSlice *slice_params_buf;
180 int slice_params_num_buf;
181
182 struct {
183 unsigned width;
184 unsigned height;
185 } codeblock[MAX_DWT_LEVELS+1];
186
187 struct {
188 AVRational bytes; /* average bytes per slice */
189 uint8_t quant[MAX_DWT_LEVELS][4]; /* [DIRAC_STD] E.1 */
190 } lowdelay;
191
192 struct {
193 unsigned prefix_bytes;
194 uint64_t size_scaler;
195 } highquality;
196
197 struct {
198 int pan_tilt[2]; /* pan/tilt vector */
199 int zrs[2][2]; /* zoom/rotate/shear matrix */
200 int perspective[2]; /* perspective vector */
201 unsigned zrs_exp;
202 unsigned perspective_exp;
203 } globalmc[2];
204
205 /* motion compensation */
206 uint8_t mv_precision; /* [DIRAC_STD] REFS_WT_PRECISION */
207 int16_t weight[2]; /* [DIRAC_STD] REF1_WT and REF2_WT */
208 unsigned weight_log2denom; /* [DIRAC_STD] REFS_WT_PRECISION */
209
210 int blwidth; /* number of blocks (horizontally) */
211 int blheight; /* number of blocks (vertically) */
212 int sbwidth; /* number of superblocks (horizontally) */
213 int sbheight; /* number of superblocks (vertically) */
214
215 uint8_t *sbsplit;
216 DiracBlock *blmotion;
217
218 uint8_t *edge_emu_buffer[4];
219 uint8_t *edge_emu_buffer_base;
220
221 uint16_t *mctmp; /* buffer holding the MC data multiplied by OBMC weights */
222 uint8_t *mcscratch;
223 int buffer_stride;
224
225 DECLARE_ALIGNED(16, uint8_t, obmc_weight)[3][MAX_BLOCKSIZE*MAX_BLOCKSIZE];
226
227 void (*put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
228 void (*avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
229 void (*add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen);
230 dirac_weight_func weight_func;
231 dirac_biweight_func biweight_func;
232
233 DiracFrame *current_picture;
234 DiracFrame *ref_pics[2];
235
236 DiracFrame *ref_frames[MAX_REFERENCE_FRAMES+1];
237 DiracFrame *delay_frames[MAX_DELAY+1];
238 DiracFrame all_frames[MAX_FRAMES];
239 } DiracContext;
240
241 enum dirac_subband {
242 subband_ll = 0,
243 subband_hl = 1,
244 subband_lh = 2,
245 subband_hh = 3,
246 subband_nb,
247 };
248
249 /* magic number division by 3 from schroedinger */
divide3(int x)250 static inline int divide3(int x)
251 {
252 return (int)((x+1U)*21845 + 10922) >> 16;
253 }
254
remove_frame(DiracFrame * framelist[],int picnum)255 static DiracFrame *remove_frame(DiracFrame *framelist[], int picnum)
256 {
257 DiracFrame *remove_pic = NULL;
258 int i, remove_idx = -1;
259
260 for (i = 0; framelist[i]; i++)
261 if (framelist[i]->avframe->display_picture_number == picnum) {
262 remove_pic = framelist[i];
263 remove_idx = i;
264 }
265
266 if (remove_pic)
267 for (i = remove_idx; framelist[i]; i++)
268 framelist[i] = framelist[i+1];
269
270 return remove_pic;
271 }
272
add_frame(DiracFrame * framelist[],int maxframes,DiracFrame * frame)273 static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
274 {
275 int i;
276 for (i = 0; i < maxframes; i++)
277 if (!framelist[i]) {
278 framelist[i] = frame;
279 return 0;
280 }
281 return -1;
282 }
283
alloc_sequence_buffers(DiracContext * s)284 static int alloc_sequence_buffers(DiracContext *s)
285 {
286 int sbwidth = DIVRNDUP(s->seq.width, 4);
287 int sbheight = DIVRNDUP(s->seq.height, 4);
288 int i, w, h, top_padding;
289
290 /* todo: think more about this / use or set Plane here */
291 for (i = 0; i < 3; i++) {
292 int max_xblen = MAX_BLOCKSIZE >> (i ? s->chroma_x_shift : 0);
293 int max_yblen = MAX_BLOCKSIZE >> (i ? s->chroma_y_shift : 0);
294 w = s->seq.width >> (i ? s->chroma_x_shift : 0);
295 h = s->seq.height >> (i ? s->chroma_y_shift : 0);
296
297 /* we allocate the max we support here since num decompositions can
298 * change from frame to frame. Stride is aligned to 16 for SIMD, and
299 * 1<<MAX_DWT_LEVELS top padding to avoid if(y>0) in arith decoding
300 * MAX_BLOCKSIZE padding for MC: blocks can spill up to half of that
301 * on each side */
302 top_padding = FFMAX(1<<MAX_DWT_LEVELS, max_yblen/2);
303 w = FFALIGN(CALC_PADDING(w, MAX_DWT_LEVELS), 8); /* FIXME: Should this be 16 for SSE??? */
304 h = top_padding + CALC_PADDING(h, MAX_DWT_LEVELS) + max_yblen/2;
305
306 s->plane[i].idwt.buf_base = av_mallocz_array((w+max_xblen), h * (2 << s->pshift));
307 s->plane[i].idwt.tmp = av_malloc_array((w+16), 2 << s->pshift);
308 s->plane[i].idwt.buf = s->plane[i].idwt.buf_base + (top_padding*w)*(2 << s->pshift);
309 if (!s->plane[i].idwt.buf_base || !s->plane[i].idwt.tmp)
310 return AVERROR(ENOMEM);
311 }
312
313 /* fixme: allocate using real stride here */
314 s->sbsplit = av_malloc_array(sbwidth, sbheight);
315 s->blmotion = av_malloc_array(sbwidth, sbheight * 16 * sizeof(*s->blmotion));
316
317 if (!s->sbsplit || !s->blmotion)
318 return AVERROR(ENOMEM);
319 return 0;
320 }
321
alloc_buffers(DiracContext * s,int stride)322 static int alloc_buffers(DiracContext *s, int stride)
323 {
324 int w = s->seq.width;
325 int h = s->seq.height;
326
327 av_assert0(stride >= w);
328 stride += 64;
329
330 if (s->buffer_stride >= stride)
331 return 0;
332 s->buffer_stride = 0;
333
334 av_freep(&s->edge_emu_buffer_base);
335 memset(s->edge_emu_buffer, 0, sizeof(s->edge_emu_buffer));
336 av_freep(&s->mctmp);
337 av_freep(&s->mcscratch);
338
339 s->edge_emu_buffer_base = av_malloc_array(stride, MAX_BLOCKSIZE);
340
341 s->mctmp = av_malloc_array((stride+MAX_BLOCKSIZE), (h+MAX_BLOCKSIZE) * sizeof(*s->mctmp));
342 s->mcscratch = av_malloc_array(stride, MAX_BLOCKSIZE);
343
344 if (!s->edge_emu_buffer_base || !s->mctmp || !s->mcscratch)
345 return AVERROR(ENOMEM);
346
347 s->buffer_stride = stride;
348 return 0;
349 }
350
free_sequence_buffers(DiracContext * s)351 static void free_sequence_buffers(DiracContext *s)
352 {
353 int i, j, k;
354
355 for (i = 0; i < MAX_FRAMES; i++) {
356 if (s->all_frames[i].avframe->data[0]) {
357 av_frame_unref(s->all_frames[i].avframe);
358 memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
359 }
360
361 for (j = 0; j < 3; j++)
362 for (k = 1; k < 4; k++)
363 av_freep(&s->all_frames[i].hpel_base[j][k]);
364 }
365
366 memset(s->ref_frames, 0, sizeof(s->ref_frames));
367 memset(s->delay_frames, 0, sizeof(s->delay_frames));
368
369 for (i = 0; i < 3; i++) {
370 av_freep(&s->plane[i].idwt.buf_base);
371 av_freep(&s->plane[i].idwt.tmp);
372 }
373
374 s->buffer_stride = 0;
375 av_freep(&s->sbsplit);
376 av_freep(&s->blmotion);
377 av_freep(&s->edge_emu_buffer_base);
378
379 av_freep(&s->mctmp);
380 av_freep(&s->mcscratch);
381 }
382
383 static AVOnce dirac_arith_init = AV_ONCE_INIT;
384
dirac_decode_init(AVCodecContext * avctx)385 static av_cold int dirac_decode_init(AVCodecContext *avctx)
386 {
387 DiracContext *s = avctx->priv_data;
388 int i, ret;
389
390 s->avctx = avctx;
391 s->frame_number = -1;
392
393 s->thread_buf = NULL;
394 s->threads_num_buf = -1;
395 s->thread_buf_size = -1;
396
397 ff_diracdsp_init(&s->diracdsp);
398 ff_mpegvideoencdsp_init(&s->mpvencdsp, avctx);
399 ff_videodsp_init(&s->vdsp, 8);
400
401 for (i = 0; i < MAX_FRAMES; i++) {
402 s->all_frames[i].avframe = av_frame_alloc();
403 if (!s->all_frames[i].avframe) {
404 while (i > 0)
405 av_frame_free(&s->all_frames[--i].avframe);
406 return AVERROR(ENOMEM);
407 }
408 }
409 ret = ff_thread_once(&dirac_arith_init, ff_dirac_init_arith_tables);
410 if (ret != 0)
411 return AVERROR_UNKNOWN;
412
413 return 0;
414 }
415
dirac_decode_flush(AVCodecContext * avctx)416 static void dirac_decode_flush(AVCodecContext *avctx)
417 {
418 DiracContext *s = avctx->priv_data;
419 free_sequence_buffers(s);
420 s->seen_sequence_header = 0;
421 s->frame_number = -1;
422 }
423
dirac_decode_end(AVCodecContext * avctx)424 static av_cold int dirac_decode_end(AVCodecContext *avctx)
425 {
426 DiracContext *s = avctx->priv_data;
427 int i;
428
429 dirac_decode_flush(avctx);
430 for (i = 0; i < MAX_FRAMES; i++)
431 av_frame_free(&s->all_frames[i].avframe);
432
433 av_freep(&s->thread_buf);
434 av_freep(&s->slice_params_buf);
435
436 return 0;
437 }
438
coeff_unpack_golomb(GetBitContext * gb,int qfactor,int qoffset)439 static inline int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
440 {
441 int coeff = dirac_get_se_golomb(gb);
442 const unsigned sign = FFSIGN(coeff);
443 if (coeff)
444 coeff = sign*((sign * coeff * qfactor + qoffset) >> 2);
445 return coeff;
446 }
447
448 #define SIGN_CTX(x) (CTX_SIGN_ZERO + ((x) > 0) - ((x) < 0))
449
450 #define UNPACK_ARITH(n, type) \
451 static inline void coeff_unpack_arith_##n(DiracArith *c, int qfactor, int qoffset, \
452 SubBand *b, type *buf, int x, int y) \
453 { \
454 int sign, sign_pred = 0, pred_ctx = CTX_ZPZN_F1; \
455 unsigned coeff; \
456 const int mstride = -(b->stride >> (1+b->pshift)); \
457 if (b->parent) { \
458 const type *pbuf = (type *)b->parent->ibuf; \
459 const int stride = b->parent->stride >> (1+b->parent->pshift); \
460 pred_ctx += !!pbuf[stride * (y>>1) + (x>>1)] << 1; \
461 } \
462 if (b->orientation == subband_hl) \
463 sign_pred = buf[mstride]; \
464 if (x) { \
465 pred_ctx += !(buf[-1] | buf[mstride] | buf[-1 + mstride]); \
466 if (b->orientation == subband_lh) \
467 sign_pred = buf[-1]; \
468 } else { \
469 pred_ctx += !buf[mstride]; \
470 } \
471 coeff = dirac_get_arith_uint(c, pred_ctx, CTX_COEFF_DATA); \
472 if (coeff) { \
473 coeff = (coeff * qfactor + qoffset) >> 2; \
474 sign = dirac_get_arith_bit(c, SIGN_CTX(sign_pred)); \
475 coeff = (coeff ^ -sign) + sign; \
476 } \
477 *buf = coeff; \
478 } \
479
480 UNPACK_ARITH(8, int16_t)
481 UNPACK_ARITH(10, int32_t)
482
483 /**
484 * Decode the coeffs in the rectangle defined by left, right, top, bottom
485 * [DIRAC_STD] 13.4.3.2 Codeblock unpacking loop. codeblock()
486 */
codeblock(DiracContext * s,SubBand * b,GetBitContext * gb,DiracArith * c,int left,int right,int top,int bottom,int blockcnt_one,int is_arith)487 static inline int codeblock(DiracContext *s, SubBand *b,
488 GetBitContext *gb, DiracArith *c,
489 int left, int right, int top, int bottom,
490 int blockcnt_one, int is_arith)
491 {
492 int x, y, zero_block;
493 int qoffset, qfactor;
494 uint8_t *buf;
495
496 /* check for any coded coefficients in this codeblock */
497 if (!blockcnt_one) {
498 if (is_arith)
499 zero_block = dirac_get_arith_bit(c, CTX_ZERO_BLOCK);
500 else
501 zero_block = get_bits1(gb);
502
503 if (zero_block)
504 return 0;
505 }
506
507 if (s->codeblock_mode && !(s->old_delta_quant && blockcnt_one)) {
508 int quant;
509 if (is_arith)
510 quant = dirac_get_arith_int(c, CTX_DELTA_Q_F, CTX_DELTA_Q_DATA);
511 else
512 quant = dirac_get_se_golomb(gb);
513 if (quant > INT_MAX - b->quant || b->quant + quant < 0) {
514 av_log(s->avctx, AV_LOG_ERROR, "Invalid quant\n");
515 return AVERROR_INVALIDDATA;
516 }
517 b->quant += quant;
518 }
519
520 if (b->quant > (DIRAC_MAX_QUANT_INDEX - 1)) {
521 av_log(s->avctx, AV_LOG_ERROR, "Unsupported quant %d\n", b->quant);
522 b->quant = 0;
523 return AVERROR_INVALIDDATA;
524 }
525
526 qfactor = ff_dirac_qscale_tab[b->quant];
527 /* TODO: context pointer? */
528 if (!s->num_refs)
529 qoffset = ff_dirac_qoffset_intra_tab[b->quant] + 2;
530 else
531 qoffset = ff_dirac_qoffset_inter_tab[b->quant] + 2;
532
533 buf = b->ibuf + top * b->stride;
534 if (is_arith) {
535 for (y = top; y < bottom; y++) {
536 if (c->error)
537 return c->error;
538 for (x = left; x < right; x++) {
539 if (b->pshift) {
540 coeff_unpack_arith_10(c, qfactor, qoffset, b, (int32_t*)(buf)+x, x, y);
541 } else {
542 coeff_unpack_arith_8(c, qfactor, qoffset, b, (int16_t*)(buf)+x, x, y);
543 }
544 }
545 buf += b->stride;
546 }
547 } else {
548 for (y = top; y < bottom; y++) {
549 if (get_bits_left(gb) < 1)
550 return AVERROR_INVALIDDATA;
551 for (x = left; x < right; x++) {
552 int val = coeff_unpack_golomb(gb, qfactor, qoffset);
553 if (b->pshift) {
554 AV_WN32(&buf[4*x], val);
555 } else {
556 AV_WN16(&buf[2*x], val);
557 }
558 }
559 buf += b->stride;
560 }
561 }
562 return 0;
563 }
564
565 /**
566 * Dirac Specification ->
567 * 13.3 intra_dc_prediction(band)
568 */
569 #define INTRA_DC_PRED(n, type) \
570 static inline void intra_dc_prediction_##n(SubBand *b) \
571 { \
572 type *buf = (type*)b->ibuf; \
573 int x, y; \
574 \
575 for (x = 1; x < b->width; x++) \
576 buf[x] += buf[x-1]; \
577 buf += (b->stride >> (1+b->pshift)); \
578 \
579 for (y = 1; y < b->height; y++) { \
580 buf[0] += buf[-(b->stride >> (1+b->pshift))]; \
581 \
582 for (x = 1; x < b->width; x++) { \
583 int pred = buf[x - 1] + buf[x - (b->stride >> (1+b->pshift))] + buf[x - (b->stride >> (1+b->pshift))-1]; \
584 buf[x] += divide3(pred); \
585 } \
586 buf += (b->stride >> (1+b->pshift)); \
587 } \
588 } \
589
590 INTRA_DC_PRED(8, int16_t)
591 INTRA_DC_PRED(10, uint32_t)
592
593 /**
594 * Dirac Specification ->
595 * 13.4.2 Non-skipped subbands. subband_coeffs()
596 */
decode_subband_internal(DiracContext * s,SubBand * b,int is_arith)597 static av_always_inline int decode_subband_internal(DiracContext *s, SubBand *b, int is_arith)
598 {
599 int cb_x, cb_y, left, right, top, bottom;
600 DiracArith c;
601 GetBitContext gb;
602 int cb_width = s->codeblock[b->level + (b->orientation != subband_ll)].width;
603 int cb_height = s->codeblock[b->level + (b->orientation != subband_ll)].height;
604 int blockcnt_one = (cb_width + cb_height) == 2;
605 int ret;
606
607 if (!b->length)
608 return 0;
609
610 init_get_bits8(&gb, b->coeff_data, b->length);
611
612 if (is_arith)
613 ff_dirac_init_arith_decoder(&c, &gb, b->length);
614
615 top = 0;
616 for (cb_y = 0; cb_y < cb_height; cb_y++) {
617 bottom = (b->height * (cb_y+1LL)) / cb_height;
618 left = 0;
619 for (cb_x = 0; cb_x < cb_width; cb_x++) {
620 right = (b->width * (cb_x+1LL)) / cb_width;
621 ret = codeblock(s, b, &gb, &c, left, right, top, bottom, blockcnt_one, is_arith);
622 if (ret < 0)
623 return ret;
624 left = right;
625 }
626 top = bottom;
627 }
628
629 if (b->orientation == subband_ll && s->num_refs == 0) {
630 if (s->pshift) {
631 intra_dc_prediction_10(b);
632 } else {
633 intra_dc_prediction_8(b);
634 }
635 }
636 return 0;
637 }
638
decode_subband_arith(AVCodecContext * avctx,void * b)639 static int decode_subband_arith(AVCodecContext *avctx, void *b)
640 {
641 DiracContext *s = avctx->priv_data;
642 return decode_subband_internal(s, b, 1);
643 }
644
decode_subband_golomb(AVCodecContext * avctx,void * arg)645 static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
646 {
647 DiracContext *s = avctx->priv_data;
648 SubBand **b = arg;
649 return decode_subband_internal(s, *b, 0);
650 }
651
652 /**
653 * Dirac Specification ->
654 * [DIRAC_STD] 13.4.1 core_transform_data()
655 */
decode_component(DiracContext * s,int comp)656 static int decode_component(DiracContext *s, int comp)
657 {
658 AVCodecContext *avctx = s->avctx;
659 SubBand *bands[3*MAX_DWT_LEVELS+1];
660 enum dirac_subband orientation;
661 int level, num_bands = 0;
662 int ret[3*MAX_DWT_LEVELS+1];
663 int i;
664 int damaged_count = 0;
665
666 /* Unpack all subbands at all levels. */
667 for (level = 0; level < s->wavelet_depth; level++) {
668 for (orientation = !!level; orientation < 4; orientation++) {
669 SubBand *b = &s->plane[comp].band[level][orientation];
670 bands[num_bands++] = b;
671
672 align_get_bits(&s->gb);
673 /* [DIRAC_STD] 13.4.2 subband() */
674 b->length = get_interleaved_ue_golomb(&s->gb);
675 if (b->length) {
676 b->quant = get_interleaved_ue_golomb(&s->gb);
677 if (b->quant > (DIRAC_MAX_QUANT_INDEX - 1)) {
678 av_log(s->avctx, AV_LOG_ERROR, "Unsupported quant %d\n", b->quant);
679 b->quant = 0;
680 return AVERROR_INVALIDDATA;
681 }
682 align_get_bits(&s->gb);
683 b->coeff_data = s->gb.buffer + get_bits_count(&s->gb)/8;
684 if (b->length > FFMAX(get_bits_left(&s->gb)/8, 0)) {
685 b->length = FFMAX(get_bits_left(&s->gb)/8, 0);
686 damaged_count ++;
687 }
688 skip_bits_long(&s->gb, b->length*8);
689 }
690 }
691 /* arithmetic coding has inter-level dependencies, so we can only execute one level at a time */
692 if (s->is_arith)
693 avctx->execute(avctx, decode_subband_arith, &s->plane[comp].band[level][!!level],
694 ret + 3*level + !!level, 4-!!level, sizeof(SubBand));
695 }
696 /* golomb coding has no inter-level dependencies, so we can execute all subbands in parallel */
697 if (!s->is_arith)
698 avctx->execute(avctx, decode_subband_golomb, bands, ret, num_bands, sizeof(SubBand*));
699
700 for (i = 0; i < s->wavelet_depth * 3 + 1; i++) {
701 if (ret[i] < 0)
702 damaged_count++;
703 }
704 if (damaged_count > (s->wavelet_depth * 3 + 1) /2)
705 return AVERROR_INVALIDDATA;
706
707 return 0;
708 }
709
710 #define PARSE_VALUES(type, x, gb, ebits, buf1, buf2) \
711 type *buf = (type *)buf1; \
712 buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
713 if (get_bits_count(gb) >= ebits) \
714 return; \
715 if (buf2) { \
716 buf = (type *)buf2; \
717 buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
718 if (get_bits_count(gb) >= ebits) \
719 return; \
720 } \
721
decode_subband(DiracContext * s,GetBitContext * gb,int quant,int slice_x,int slice_y,int bits_end,SubBand * b1,SubBand * b2)722 static void decode_subband(DiracContext *s, GetBitContext *gb, int quant,
723 int slice_x, int slice_y, int bits_end,
724 SubBand *b1, SubBand *b2)
725 {
726 int left = b1->width * slice_x / s->num_x;
727 int right = b1->width *(slice_x+1) / s->num_x;
728 int top = b1->height * slice_y / s->num_y;
729 int bottom = b1->height *(slice_y+1) / s->num_y;
730
731 int qfactor, qoffset;
732
733 uint8_t *buf1 = b1->ibuf + top * b1->stride;
734 uint8_t *buf2 = b2 ? b2->ibuf + top * b2->stride: NULL;
735 int x, y;
736
737 if (quant > (DIRAC_MAX_QUANT_INDEX - 1)) {
738 av_log(s->avctx, AV_LOG_ERROR, "Unsupported quant %d\n", quant);
739 return;
740 }
741 qfactor = ff_dirac_qscale_tab[quant];
742 qoffset = ff_dirac_qoffset_intra_tab[quant] + 2;
743 /* we have to constantly check for overread since the spec explicitly
744 requires this, with the meaning that all remaining coeffs are set to 0 */
745 if (get_bits_count(gb) >= bits_end)
746 return;
747
748 if (s->pshift) {
749 for (y = top; y < bottom; y++) {
750 for (x = left; x < right; x++) {
751 PARSE_VALUES(int32_t, x, gb, bits_end, buf1, buf2);
752 }
753 buf1 += b1->stride;
754 if (buf2)
755 buf2 += b2->stride;
756 }
757 }
758 else {
759 for (y = top; y < bottom; y++) {
760 for (x = left; x < right; x++) {
761 PARSE_VALUES(int16_t, x, gb, bits_end, buf1, buf2);
762 }
763 buf1 += b1->stride;
764 if (buf2)
765 buf2 += b2->stride;
766 }
767 }
768 }
769
770 /**
771 * Dirac Specification ->
772 * 13.5.2 Slices. slice(sx,sy)
773 */
decode_lowdelay_slice(AVCodecContext * avctx,void * arg)774 static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
775 {
776 DiracContext *s = avctx->priv_data;
777 DiracSlice *slice = arg;
778 GetBitContext *gb = &slice->gb;
779 enum dirac_subband orientation;
780 int level, quant, chroma_bits, chroma_end;
781
782 int quant_base = get_bits(gb, 7); /*[DIRAC_STD] qindex */
783 int length_bits = av_log2(8 * slice->bytes)+1;
784 int luma_bits = get_bits_long(gb, length_bits);
785 int luma_end = get_bits_count(gb) + FFMIN(luma_bits, get_bits_left(gb));
786
787 /* [DIRAC_STD] 13.5.5.2 luma_slice_band */
788 for (level = 0; level < s->wavelet_depth; level++)
789 for (orientation = !!level; orientation < 4; orientation++) {
790 quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
791 decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, luma_end,
792 &s->plane[0].band[level][orientation], NULL);
793 }
794
795 /* consume any unused bits from luma */
796 skip_bits_long(gb, get_bits_count(gb) - luma_end);
797
798 chroma_bits = 8*slice->bytes - 7 - length_bits - luma_bits;
799 chroma_end = get_bits_count(gb) + FFMIN(chroma_bits, get_bits_left(gb));
800 /* [DIRAC_STD] 13.5.5.3 chroma_slice_band */
801 for (level = 0; level < s->wavelet_depth; level++)
802 for (orientation = !!level; orientation < 4; orientation++) {
803 quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
804 decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, chroma_end,
805 &s->plane[1].band[level][orientation],
806 &s->plane[2].band[level][orientation]);
807 }
808
809 return 0;
810 }
811
812 typedef struct SliceCoeffs {
813 int left;
814 int top;
815 int tot_h;
816 int tot_v;
817 int tot;
818 } SliceCoeffs;
819
subband_coeffs(DiracContext * s,int x,int y,int p,SliceCoeffs c[MAX_DWT_LEVELS])820 static int subband_coeffs(DiracContext *s, int x, int y, int p,
821 SliceCoeffs c[MAX_DWT_LEVELS])
822 {
823 int level, coef = 0;
824 for (level = 0; level < s->wavelet_depth; level++) {
825 SliceCoeffs *o = &c[level];
826 SubBand *b = &s->plane[p].band[level][3]; /* orientation doens't matter */
827 o->top = b->height * y / s->num_y;
828 o->left = b->width * x / s->num_x;
829 o->tot_h = ((b->width * (x + 1)) / s->num_x) - o->left;
830 o->tot_v = ((b->height * (y + 1)) / s->num_y) - o->top;
831 o->tot = o->tot_h*o->tot_v;
832 coef += o->tot * (4 - !!level);
833 }
834 return coef;
835 }
836
837 /**
838 * VC-2 Specification ->
839 * 13.5.3 hq_slice(sx,sy)
840 */
decode_hq_slice(DiracContext * s,DiracSlice * slice,uint8_t * tmp_buf)841 static int decode_hq_slice(DiracContext *s, DiracSlice *slice, uint8_t *tmp_buf)
842 {
843 int i, level, orientation, quant_idx;
844 int qfactor[MAX_DWT_LEVELS][4], qoffset[MAX_DWT_LEVELS][4];
845 GetBitContext *gb = &slice->gb;
846 SliceCoeffs coeffs_num[MAX_DWT_LEVELS];
847
848 skip_bits_long(gb, 8*s->highquality.prefix_bytes);
849 quant_idx = get_bits(gb, 8);
850
851 if (quant_idx > DIRAC_MAX_QUANT_INDEX - 1) {
852 av_log(s->avctx, AV_LOG_ERROR, "Invalid quantization index - %i\n", quant_idx);
853 return AVERROR_INVALIDDATA;
854 }
855
856 /* Slice quantization (slice_quantizers() in the specs) */
857 for (level = 0; level < s->wavelet_depth; level++) {
858 for (orientation = !!level; orientation < 4; orientation++) {
859 const int quant = FFMAX(quant_idx - s->lowdelay.quant[level][orientation], 0);
860 qfactor[level][orientation] = ff_dirac_qscale_tab[quant];
861 qoffset[level][orientation] = ff_dirac_qoffset_intra_tab[quant] + 2;
862 }
863 }
864
865 /* Luma + 2 Chroma planes */
866 for (i = 0; i < 3; i++) {
867 int coef_num, coef_par, off = 0;
868 int64_t length = s->highquality.size_scaler*get_bits(gb, 8);
869 int64_t bits_end = get_bits_count(gb) + 8*length;
870 const uint8_t *addr = align_get_bits(gb);
871
872 if (length*8 > get_bits_left(gb)) {
873 av_log(s->avctx, AV_LOG_ERROR, "end too far away\n");
874 return AVERROR_INVALIDDATA;
875 }
876
877 coef_num = subband_coeffs(s, slice->slice_x, slice->slice_y, i, coeffs_num);
878
879 if (s->pshift)
880 coef_par = ff_dirac_golomb_read_32bit(addr, length,
881 tmp_buf, coef_num);
882 else
883 coef_par = ff_dirac_golomb_read_16bit(addr, length,
884 tmp_buf, coef_num);
885
886 if (coef_num > coef_par) {
887 const int start_b = coef_par * (1 << (s->pshift + 1));
888 const int end_b = coef_num * (1 << (s->pshift + 1));
889 memset(&tmp_buf[start_b], 0, end_b - start_b);
890 }
891
892 for (level = 0; level < s->wavelet_depth; level++) {
893 const SliceCoeffs *c = &coeffs_num[level];
894 for (orientation = !!level; orientation < 4; orientation++) {
895 const SubBand *b1 = &s->plane[i].band[level][orientation];
896 uint8_t *buf = b1->ibuf + c->top * b1->stride + (c->left << (s->pshift + 1));
897
898 /* Change to c->tot_h <= 4 for AVX2 dequantization */
899 const int qfunc = s->pshift + 2*(c->tot_h <= 2);
900 s->diracdsp.dequant_subband[qfunc](&tmp_buf[off], buf, b1->stride,
901 qfactor[level][orientation],
902 qoffset[level][orientation],
903 c->tot_v, c->tot_h);
904
905 off += c->tot << (s->pshift + 1);
906 }
907 }
908
909 skip_bits_long(gb, bits_end - get_bits_count(gb));
910 }
911
912 return 0;
913 }
914
decode_hq_slice_row(AVCodecContext * avctx,void * arg,int jobnr,int threadnr)915 static int decode_hq_slice_row(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
916 {
917 int i;
918 DiracContext *s = avctx->priv_data;
919 DiracSlice *slices = ((DiracSlice *)arg) + s->num_x*jobnr;
920 uint8_t *thread_buf = &s->thread_buf[s->thread_buf_size*threadnr];
921 for (i = 0; i < s->num_x; i++)
922 decode_hq_slice(s, &slices[i], thread_buf);
923 return 0;
924 }
925
926 /**
927 * Dirac Specification ->
928 * 13.5.1 low_delay_transform_data()
929 */
decode_lowdelay(DiracContext * s)930 static int decode_lowdelay(DiracContext *s)
931 {
932 AVCodecContext *avctx = s->avctx;
933 int slice_x, slice_y, bufsize;
934 int64_t coef_buf_size, bytes = 0;
935 const uint8_t *buf;
936 DiracSlice *slices;
937 SliceCoeffs tmp[MAX_DWT_LEVELS];
938 int slice_num = 0;
939
940 if (s->slice_params_num_buf != (s->num_x * s->num_y)) {
941 s->slice_params_buf = av_realloc_f(s->slice_params_buf, s->num_x * s->num_y, sizeof(DiracSlice));
942 if (!s->slice_params_buf) {
943 av_log(s->avctx, AV_LOG_ERROR, "slice params buffer allocation failure\n");
944 s->slice_params_num_buf = 0;
945 return AVERROR(ENOMEM);
946 }
947 s->slice_params_num_buf = s->num_x * s->num_y;
948 }
949 slices = s->slice_params_buf;
950
951 /* 8 becacuse that's how much the golomb reader could overread junk data
952 * from another plane/slice at most, and 512 because SIMD */
953 coef_buf_size = subband_coeffs(s, s->num_x - 1, s->num_y - 1, 0, tmp) + 8;
954 coef_buf_size = (coef_buf_size << (1 + s->pshift)) + 512;
955
956 if (s->threads_num_buf != avctx->thread_count ||
957 s->thread_buf_size != coef_buf_size) {
958 s->threads_num_buf = avctx->thread_count;
959 s->thread_buf_size = coef_buf_size;
960 s->thread_buf = av_realloc_f(s->thread_buf, avctx->thread_count, s->thread_buf_size);
961 if (!s->thread_buf) {
962 av_log(s->avctx, AV_LOG_ERROR, "thread buffer allocation failure\n");
963 return AVERROR(ENOMEM);
964 }
965 }
966
967 align_get_bits(&s->gb);
968 /*[DIRAC_STD] 13.5.2 Slices. slice(sx,sy) */
969 buf = s->gb.buffer + get_bits_count(&s->gb)/8;
970 bufsize = get_bits_left(&s->gb);
971
972 if (s->hq_picture) {
973 int i;
974
975 for (slice_y = 0; bufsize > 0 && slice_y < s->num_y; slice_y++) {
976 for (slice_x = 0; bufsize > 0 && slice_x < s->num_x; slice_x++) {
977 bytes = s->highquality.prefix_bytes + 1;
978 for (i = 0; i < 3; i++) {
979 if (bytes <= bufsize/8)
980 bytes += buf[bytes] * s->highquality.size_scaler + 1;
981 }
982 if (bytes >= INT_MAX || bytes*8 > bufsize) {
983 av_log(s->avctx, AV_LOG_ERROR, "too many bytes\n");
984 return AVERROR_INVALIDDATA;
985 }
986
987 slices[slice_num].bytes = bytes;
988 slices[slice_num].slice_x = slice_x;
989 slices[slice_num].slice_y = slice_y;
990 init_get_bits(&slices[slice_num].gb, buf, bufsize);
991 slice_num++;
992
993 buf += bytes;
994 if (bufsize/8 >= bytes)
995 bufsize -= bytes*8;
996 else
997 bufsize = 0;
998 }
999 }
1000
1001 if (s->num_x*s->num_y != slice_num) {
1002 av_log(s->avctx, AV_LOG_ERROR, "too few slices\n");
1003 return AVERROR_INVALIDDATA;
1004 }
1005
1006 avctx->execute2(avctx, decode_hq_slice_row, slices, NULL, s->num_y);
1007 } else {
1008 for (slice_y = 0; bufsize > 0 && slice_y < s->num_y; slice_y++) {
1009 for (slice_x = 0; bufsize > 0 && slice_x < s->num_x; slice_x++) {
1010 bytes = (slice_num+1) * (int64_t)s->lowdelay.bytes.num / s->lowdelay.bytes.den
1011 - slice_num * (int64_t)s->lowdelay.bytes.num / s->lowdelay.bytes.den;
1012 if (bytes >= INT_MAX || bytes*8 > bufsize) {
1013 av_log(s->avctx, AV_LOG_ERROR, "too many bytes\n");
1014 return AVERROR_INVALIDDATA;
1015 }
1016 slices[slice_num].bytes = bytes;
1017 slices[slice_num].slice_x = slice_x;
1018 slices[slice_num].slice_y = slice_y;
1019 init_get_bits(&slices[slice_num].gb, buf, bufsize);
1020 slice_num++;
1021
1022 buf += bytes;
1023 if (bufsize/8 >= bytes)
1024 bufsize -= bytes*8;
1025 else
1026 bufsize = 0;
1027 }
1028 }
1029 avctx->execute(avctx, decode_lowdelay_slice, slices, NULL, slice_num,
1030 sizeof(DiracSlice)); /* [DIRAC_STD] 13.5.2 Slices */
1031 }
1032
1033 if (s->dc_prediction) {
1034 if (s->pshift) {
1035 intra_dc_prediction_10(&s->plane[0].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
1036 intra_dc_prediction_10(&s->plane[1].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
1037 intra_dc_prediction_10(&s->plane[2].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
1038 } else {
1039 intra_dc_prediction_8(&s->plane[0].band[0][0]);
1040 intra_dc_prediction_8(&s->plane[1].band[0][0]);
1041 intra_dc_prediction_8(&s->plane[2].band[0][0]);
1042 }
1043 }
1044
1045 return 0;
1046 }
1047
init_planes(DiracContext * s)1048 static void init_planes(DiracContext *s)
1049 {
1050 int i, w, h, level, orientation;
1051
1052 for (i = 0; i < 3; i++) {
1053 Plane *p = &s->plane[i];
1054
1055 p->width = s->seq.width >> (i ? s->chroma_x_shift : 0);
1056 p->height = s->seq.height >> (i ? s->chroma_y_shift : 0);
1057 p->idwt.width = w = CALC_PADDING(p->width , s->wavelet_depth);
1058 p->idwt.height = h = CALC_PADDING(p->height, s->wavelet_depth);
1059 p->idwt.stride = FFALIGN(p->idwt.width, 8) << (1 + s->pshift);
1060
1061 for (level = s->wavelet_depth-1; level >= 0; level--) {
1062 w = w>>1;
1063 h = h>>1;
1064 for (orientation = !!level; orientation < 4; orientation++) {
1065 SubBand *b = &p->band[level][orientation];
1066
1067 b->pshift = s->pshift;
1068 b->ibuf = p->idwt.buf;
1069 b->level = level;
1070 b->stride = p->idwt.stride << (s->wavelet_depth - level);
1071 b->width = w;
1072 b->height = h;
1073 b->orientation = orientation;
1074
1075 if (orientation & 1)
1076 b->ibuf += w << (1+b->pshift);
1077 if (orientation > 1)
1078 b->ibuf += (b->stride>>1);
1079
1080 if (level)
1081 b->parent = &p->band[level-1][orientation];
1082 }
1083 }
1084
1085 if (i > 0) {
1086 p->xblen = s->plane[0].xblen >> s->chroma_x_shift;
1087 p->yblen = s->plane[0].yblen >> s->chroma_y_shift;
1088 p->xbsep = s->plane[0].xbsep >> s->chroma_x_shift;
1089 p->ybsep = s->plane[0].ybsep >> s->chroma_y_shift;
1090 }
1091
1092 p->xoffset = (p->xblen - p->xbsep)/2;
1093 p->yoffset = (p->yblen - p->ybsep)/2;
1094 }
1095 }
1096
1097 /**
1098 * Unpack the motion compensation parameters
1099 * Dirac Specification ->
1100 * 11.2 Picture prediction data. picture_prediction()
1101 */
dirac_unpack_prediction_parameters(DiracContext * s)1102 static int dirac_unpack_prediction_parameters(DiracContext *s)
1103 {
1104 static const uint8_t default_blen[] = { 4, 12, 16, 24 };
1105
1106 GetBitContext *gb = &s->gb;
1107 unsigned idx, ref;
1108
1109 align_get_bits(gb);
1110 /* [DIRAC_STD] 11.2.2 Block parameters. block_parameters() */
1111 /* Luma and Chroma are equal. 11.2.3 */
1112 idx = get_interleaved_ue_golomb(gb); /* [DIRAC_STD] index */
1113
1114 if (idx > 4) {
1115 av_log(s->avctx, AV_LOG_ERROR, "Block prediction index too high\n");
1116 return AVERROR_INVALIDDATA;
1117 }
1118
1119 if (idx == 0) {
1120 s->plane[0].xblen = get_interleaved_ue_golomb(gb);
1121 s->plane[0].yblen = get_interleaved_ue_golomb(gb);
1122 s->plane[0].xbsep = get_interleaved_ue_golomb(gb);
1123 s->plane[0].ybsep = get_interleaved_ue_golomb(gb);
1124 } else {
1125 /*[DIRAC_STD] preset_block_params(index). Table 11.1 */
1126 s->plane[0].xblen = default_blen[idx-1];
1127 s->plane[0].yblen = default_blen[idx-1];
1128 s->plane[0].xbsep = 4 * idx;
1129 s->plane[0].ybsep = 4 * idx;
1130 }
1131 /*[DIRAC_STD] 11.2.4 motion_data_dimensions()
1132 Calculated in function dirac_unpack_block_motion_data */
1133
1134 if (s->plane[0].xblen % (1 << s->chroma_x_shift) != 0 ||
1135 s->plane[0].yblen % (1 << s->chroma_y_shift) != 0 ||
1136 !s->plane[0].xblen || !s->plane[0].yblen) {
1137 av_log(s->avctx, AV_LOG_ERROR,
1138 "invalid x/y block length (%d/%d) for x/y chroma shift (%d/%d)\n",
1139 s->plane[0].xblen, s->plane[0].yblen, s->chroma_x_shift, s->chroma_y_shift);
1140 return AVERROR_INVALIDDATA;
1141 }
1142 if (!s->plane[0].xbsep || !s->plane[0].ybsep || s->plane[0].xbsep < s->plane[0].xblen/2 || s->plane[0].ybsep < s->plane[0].yblen/2) {
1143 av_log(s->avctx, AV_LOG_ERROR, "Block separation too small\n");
1144 return AVERROR_INVALIDDATA;
1145 }
1146 if (s->plane[0].xbsep > s->plane[0].xblen || s->plane[0].ybsep > s->plane[0].yblen) {
1147 av_log(s->avctx, AV_LOG_ERROR, "Block separation greater than size\n");
1148 return AVERROR_INVALIDDATA;
1149 }
1150 if (FFMAX(s->plane[0].xblen, s->plane[0].yblen) > MAX_BLOCKSIZE) {
1151 av_log(s->avctx, AV_LOG_ERROR, "Unsupported large block size\n");
1152 return AVERROR_PATCHWELCOME;
1153 }
1154
1155 /*[DIRAC_STD] 11.2.5 Motion vector precision. motion_vector_precision()
1156 Read motion vector precision */
1157 s->mv_precision = get_interleaved_ue_golomb(gb);
1158 if (s->mv_precision > 3) {
1159 av_log(s->avctx, AV_LOG_ERROR, "MV precision finer than eighth-pel\n");
1160 return AVERROR_INVALIDDATA;
1161 }
1162
1163 /*[DIRAC_STD] 11.2.6 Global motion. global_motion()
1164 Read the global motion compensation parameters */
1165 s->globalmc_flag = get_bits1(gb);
1166 if (s->globalmc_flag) {
1167 memset(s->globalmc, 0, sizeof(s->globalmc));
1168 /* [DIRAC_STD] pan_tilt(gparams) */
1169 for (ref = 0; ref < s->num_refs; ref++) {
1170 if (get_bits1(gb)) {
1171 s->globalmc[ref].pan_tilt[0] = dirac_get_se_golomb(gb);
1172 s->globalmc[ref].pan_tilt[1] = dirac_get_se_golomb(gb);
1173 }
1174 /* [DIRAC_STD] zoom_rotate_shear(gparams)
1175 zoom/rotation/shear parameters */
1176 if (get_bits1(gb)) {
1177 s->globalmc[ref].zrs_exp = get_interleaved_ue_golomb(gb);
1178 s->globalmc[ref].zrs[0][0] = dirac_get_se_golomb(gb);
1179 s->globalmc[ref].zrs[0][1] = dirac_get_se_golomb(gb);
1180 s->globalmc[ref].zrs[1][0] = dirac_get_se_golomb(gb);
1181 s->globalmc[ref].zrs[1][1] = dirac_get_se_golomb(gb);
1182 } else {
1183 s->globalmc[ref].zrs[0][0] = 1;
1184 s->globalmc[ref].zrs[1][1] = 1;
1185 }
1186 /* [DIRAC_STD] perspective(gparams) */
1187 if (get_bits1(gb)) {
1188 s->globalmc[ref].perspective_exp = get_interleaved_ue_golomb(gb);
1189 s->globalmc[ref].perspective[0] = dirac_get_se_golomb(gb);
1190 s->globalmc[ref].perspective[1] = dirac_get_se_golomb(gb);
1191 }
1192 if (s->globalmc[ref].perspective_exp + (uint64_t)s->globalmc[ref].zrs_exp > 30) {
1193 return AVERROR_INVALIDDATA;
1194 }
1195
1196 }
1197 }
1198
1199 /*[DIRAC_STD] 11.2.7 Picture prediction mode. prediction_mode()
1200 Picture prediction mode, not currently used. */
1201 if (get_interleaved_ue_golomb(gb)) {
1202 av_log(s->avctx, AV_LOG_ERROR, "Unknown picture prediction mode\n");
1203 return AVERROR_INVALIDDATA;
1204 }
1205
1206 /* [DIRAC_STD] 11.2.8 Reference picture weight. reference_picture_weights()
1207 just data read, weight calculation will be done later on. */
1208 s->weight_log2denom = 1;
1209 s->weight[0] = 1;
1210 s->weight[1] = 1;
1211
1212 if (get_bits1(gb)) {
1213 s->weight_log2denom = get_interleaved_ue_golomb(gb);
1214 if (s->weight_log2denom < 1 || s->weight_log2denom > 8) {
1215 av_log(s->avctx, AV_LOG_ERROR, "weight_log2denom unsupported or invalid\n");
1216 s->weight_log2denom = 1;
1217 return AVERROR_INVALIDDATA;
1218 }
1219 s->weight[0] = dirac_get_se_golomb(gb);
1220 if (s->num_refs == 2)
1221 s->weight[1] = dirac_get_se_golomb(gb);
1222 }
1223 return 0;
1224 }
1225
1226 /**
1227 * Dirac Specification ->
1228 * 11.3 Wavelet transform data. wavelet_transform()
1229 */
dirac_unpack_idwt_params(DiracContext * s)1230 static int dirac_unpack_idwt_params(DiracContext *s)
1231 {
1232 GetBitContext *gb = &s->gb;
1233 int i, level;
1234 unsigned tmp;
1235
1236 #define CHECKEDREAD(dst, cond, errmsg) \
1237 tmp = get_interleaved_ue_golomb(gb); \
1238 if (cond) { \
1239 av_log(s->avctx, AV_LOG_ERROR, errmsg); \
1240 return AVERROR_INVALIDDATA; \
1241 }\
1242 dst = tmp;
1243
1244 align_get_bits(gb);
1245
1246 s->zero_res = s->num_refs ? get_bits1(gb) : 0;
1247 if (s->zero_res)
1248 return 0;
1249
1250 /*[DIRAC_STD] 11.3.1 Transform parameters. transform_parameters() */
1251 CHECKEDREAD(s->wavelet_idx, tmp > 6, "wavelet_idx is too big\n")
1252
1253 CHECKEDREAD(s->wavelet_depth, tmp > MAX_DWT_LEVELS || tmp < 1, "invalid number of DWT decompositions\n")
1254
1255 if (!s->low_delay) {
1256 /* Codeblock parameters (core syntax only) */
1257 if (get_bits1(gb)) {
1258 for (i = 0; i <= s->wavelet_depth; i++) {
1259 CHECKEDREAD(s->codeblock[i].width , tmp < 1 || tmp > (s->avctx->width >>s->wavelet_depth-i), "codeblock width invalid\n")
1260 CHECKEDREAD(s->codeblock[i].height, tmp < 1 || tmp > (s->avctx->height>>s->wavelet_depth-i), "codeblock height invalid\n")
1261 }
1262
1263 CHECKEDREAD(s->codeblock_mode, tmp > 1, "unknown codeblock mode\n")
1264 }
1265 else {
1266 for (i = 0; i <= s->wavelet_depth; i++)
1267 s->codeblock[i].width = s->codeblock[i].height = 1;
1268 }
1269 }
1270 else {
1271 s->num_x = get_interleaved_ue_golomb(gb);
1272 s->num_y = get_interleaved_ue_golomb(gb);
1273 if (s->num_x * s->num_y == 0 || s->num_x * (uint64_t)s->num_y > INT_MAX ||
1274 s->num_x * (uint64_t)s->avctx->width > INT_MAX ||
1275 s->num_y * (uint64_t)s->avctx->height > INT_MAX ||
1276 s->num_x > s->avctx->width ||
1277 s->num_y > s->avctx->height
1278 ) {
1279 av_log(s->avctx,AV_LOG_ERROR,"Invalid numx/y\n");
1280 s->num_x = s->num_y = 0;
1281 return AVERROR_INVALIDDATA;
1282 }
1283 if (s->ld_picture) {
1284 s->lowdelay.bytes.num = get_interleaved_ue_golomb(gb);
1285 s->lowdelay.bytes.den = get_interleaved_ue_golomb(gb);
1286 if (s->lowdelay.bytes.den <= 0) {
1287 av_log(s->avctx,AV_LOG_ERROR,"Invalid lowdelay.bytes.den\n");
1288 return AVERROR_INVALIDDATA;
1289 }
1290 } else if (s->hq_picture) {
1291 s->highquality.prefix_bytes = get_interleaved_ue_golomb(gb);
1292 s->highquality.size_scaler = get_interleaved_ue_golomb(gb);
1293 if (s->highquality.prefix_bytes >= INT_MAX / 8) {
1294 av_log(s->avctx,AV_LOG_ERROR,"too many prefix bytes\n");
1295 return AVERROR_INVALIDDATA;
1296 }
1297 }
1298
1299 /* [DIRAC_STD] 11.3.5 Quantisation matrices (low-delay syntax). quant_matrix() */
1300 if (get_bits1(gb)) {
1301 av_log(s->avctx,AV_LOG_DEBUG,"Low Delay: Has Custom Quantization Matrix!\n");
1302 /* custom quantization matrix */
1303 for (level = 0; level < s->wavelet_depth; level++) {
1304 for (i = !!level; i < 4; i++) {
1305 s->lowdelay.quant[level][i] = get_interleaved_ue_golomb(gb);
1306 }
1307 }
1308 } else {
1309 if (s->wavelet_depth > 4) {
1310 av_log(s->avctx,AV_LOG_ERROR,"Mandatory custom low delay matrix missing for depth %d\n", s->wavelet_depth);
1311 return AVERROR_INVALIDDATA;
1312 }
1313 /* default quantization matrix */
1314 for (level = 0; level < s->wavelet_depth; level++)
1315 for (i = 0; i < 4; i++) {
1316 s->lowdelay.quant[level][i] = ff_dirac_default_qmat[s->wavelet_idx][level][i];
1317 /* haar with no shift differs for different depths */
1318 if (s->wavelet_idx == 3)
1319 s->lowdelay.quant[level][i] += 4*(s->wavelet_depth-1 - level);
1320 }
1321 }
1322 }
1323 return 0;
1324 }
1325
pred_sbsplit(uint8_t * sbsplit,int stride,int x,int y)1326 static inline int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
1327 {
1328 static const uint8_t avgsplit[7] = { 0, 0, 1, 1, 1, 2, 2 };
1329
1330 if (!(x|y))
1331 return 0;
1332 else if (!y)
1333 return sbsplit[-1];
1334 else if (!x)
1335 return sbsplit[-stride];
1336
1337 return avgsplit[sbsplit[-1] + sbsplit[-stride] + sbsplit[-stride-1]];
1338 }
1339
pred_block_mode(DiracBlock * block,int stride,int x,int y,int refmask)1340 static inline int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
1341 {
1342 int pred;
1343
1344 if (!(x|y))
1345 return 0;
1346 else if (!y)
1347 return block[-1].ref & refmask;
1348 else if (!x)
1349 return block[-stride].ref & refmask;
1350
1351 /* return the majority */
1352 pred = (block[-1].ref & refmask) + (block[-stride].ref & refmask) + (block[-stride-1].ref & refmask);
1353 return (pred >> 1) & refmask;
1354 }
1355
pred_block_dc(DiracBlock * block,int stride,int x,int y)1356 static inline void pred_block_dc(DiracBlock *block, int stride, int x, int y)
1357 {
1358 int i, n = 0;
1359
1360 memset(block->u.dc, 0, sizeof(block->u.dc));
1361
1362 if (x && !(block[-1].ref & 3)) {
1363 for (i = 0; i < 3; i++)
1364 block->u.dc[i] += block[-1].u.dc[i];
1365 n++;
1366 }
1367
1368 if (y && !(block[-stride].ref & 3)) {
1369 for (i = 0; i < 3; i++)
1370 block->u.dc[i] += block[-stride].u.dc[i];
1371 n++;
1372 }
1373
1374 if (x && y && !(block[-1-stride].ref & 3)) {
1375 for (i = 0; i < 3; i++)
1376 block->u.dc[i] += block[-1-stride].u.dc[i];
1377 n++;
1378 }
1379
1380 if (n == 2) {
1381 for (i = 0; i < 3; i++)
1382 block->u.dc[i] = (block->u.dc[i]+1)>>1;
1383 } else if (n == 3) {
1384 for (i = 0; i < 3; i++)
1385 block->u.dc[i] = divide3(block->u.dc[i]);
1386 }
1387 }
1388
pred_mv(DiracBlock * block,int stride,int x,int y,int ref)1389 static inline void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
1390 {
1391 int16_t *pred[3];
1392 int refmask = ref+1;
1393 int mask = refmask | DIRAC_REF_MASK_GLOBAL; /* exclude gmc blocks */
1394 int n = 0;
1395
1396 if (x && (block[-1].ref & mask) == refmask)
1397 pred[n++] = block[-1].u.mv[ref];
1398
1399 if (y && (block[-stride].ref & mask) == refmask)
1400 pred[n++] = block[-stride].u.mv[ref];
1401
1402 if (x && y && (block[-stride-1].ref & mask) == refmask)
1403 pred[n++] = block[-stride-1].u.mv[ref];
1404
1405 switch (n) {
1406 case 0:
1407 block->u.mv[ref][0] = 0;
1408 block->u.mv[ref][1] = 0;
1409 break;
1410 case 1:
1411 block->u.mv[ref][0] = pred[0][0];
1412 block->u.mv[ref][1] = pred[0][1];
1413 break;
1414 case 2:
1415 block->u.mv[ref][0] = (pred[0][0] + pred[1][0] + 1) >> 1;
1416 block->u.mv[ref][1] = (pred[0][1] + pred[1][1] + 1) >> 1;
1417 break;
1418 case 3:
1419 block->u.mv[ref][0] = mid_pred(pred[0][0], pred[1][0], pred[2][0]);
1420 block->u.mv[ref][1] = mid_pred(pred[0][1], pred[1][1], pred[2][1]);
1421 break;
1422 }
1423 }
1424
global_mv(DiracContext * s,DiracBlock * block,int x,int y,int ref)1425 static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
1426 {
1427 int ez = s->globalmc[ref].zrs_exp;
1428 int ep = s->globalmc[ref].perspective_exp;
1429 int (*A)[2] = s->globalmc[ref].zrs;
1430 int *b = s->globalmc[ref].pan_tilt;
1431 int *c = s->globalmc[ref].perspective;
1432
1433 int64_t m = (1<<ep) - (c[0]*(int64_t)x + c[1]*(int64_t)y);
1434 int64_t mx = m * (int64_t)((A[0][0] * (int64_t)x + A[0][1]*(int64_t)y) + (1LL<<ez) * b[0]);
1435 int64_t my = m * (int64_t)((A[1][0] * (int64_t)x + A[1][1]*(int64_t)y) + (1LL<<ez) * b[1]);
1436
1437 block->u.mv[ref][0] = (mx + (1<<(ez+ep))) >> (ez+ep);
1438 block->u.mv[ref][1] = (my + (1<<(ez+ep))) >> (ez+ep);
1439 }
1440
decode_block_params(DiracContext * s,DiracArith arith[8],DiracBlock * block,int stride,int x,int y)1441 static void decode_block_params(DiracContext *s, DiracArith arith[8], DiracBlock *block,
1442 int stride, int x, int y)
1443 {
1444 int i;
1445
1446 block->ref = pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF1);
1447 block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF1);
1448
1449 if (s->num_refs == 2) {
1450 block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF2);
1451 block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF2) << 1;
1452 }
1453
1454 if (!block->ref) {
1455 pred_block_dc(block, stride, x, y);
1456 for (i = 0; i < 3; i++)
1457 block->u.dc[i] += (unsigned)dirac_get_arith_int(arith+1+i, CTX_DC_F1, CTX_DC_DATA);
1458 return;
1459 }
1460
1461 if (s->globalmc_flag) {
1462 block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_GLOBAL);
1463 block->ref ^= dirac_get_arith_bit(arith, CTX_GLOBAL_BLOCK) << 2;
1464 }
1465
1466 for (i = 0; i < s->num_refs; i++)
1467 if (block->ref & (i+1)) {
1468 if (block->ref & DIRAC_REF_MASK_GLOBAL) {
1469 global_mv(s, block, x, y, i);
1470 } else {
1471 pred_mv(block, stride, x, y, i);
1472 block->u.mv[i][0] += (unsigned)dirac_get_arith_int(arith + 4 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
1473 block->u.mv[i][1] += (unsigned)dirac_get_arith_int(arith + 5 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
1474 }
1475 }
1476 }
1477
1478 /**
1479 * Copies the current block to the other blocks covered by the current superblock split mode
1480 */
propagate_block_data(DiracBlock * block,int stride,int size)1481 static void propagate_block_data(DiracBlock *block, int stride, int size)
1482 {
1483 int x, y;
1484 DiracBlock *dst = block;
1485
1486 for (x = 1; x < size; x++)
1487 dst[x] = *block;
1488
1489 for (y = 1; y < size; y++) {
1490 dst += stride;
1491 for (x = 0; x < size; x++)
1492 dst[x] = *block;
1493 }
1494 }
1495
1496 /**
1497 * Dirac Specification ->
1498 * 12. Block motion data syntax
1499 */
dirac_unpack_block_motion_data(DiracContext * s)1500 static int dirac_unpack_block_motion_data(DiracContext *s)
1501 {
1502 GetBitContext *gb = &s->gb;
1503 uint8_t *sbsplit = s->sbsplit;
1504 int i, x, y, q, p;
1505 DiracArith arith[8];
1506
1507 align_get_bits(gb);
1508
1509 /* [DIRAC_STD] 11.2.4 and 12.2.1 Number of blocks and superblocks */
1510 s->sbwidth = DIVRNDUP(s->seq.width, 4*s->plane[0].xbsep);
1511 s->sbheight = DIVRNDUP(s->seq.height, 4*s->plane[0].ybsep);
1512 s->blwidth = 4 * s->sbwidth;
1513 s->blheight = 4 * s->sbheight;
1514
1515 /* [DIRAC_STD] 12.3.1 Superblock splitting modes. superblock_split_modes()
1516 decode superblock split modes */
1517 ff_dirac_init_arith_decoder(arith, gb, get_interleaved_ue_golomb(gb)); /* get_interleaved_ue_golomb(gb) is the length */
1518 for (y = 0; y < s->sbheight; y++) {
1519 for (x = 0; x < s->sbwidth; x++) {
1520 unsigned int split = dirac_get_arith_uint(arith, CTX_SB_F1, CTX_SB_DATA);
1521 if (split > 2)
1522 return AVERROR_INVALIDDATA;
1523 sbsplit[x] = (split + pred_sbsplit(sbsplit+x, s->sbwidth, x, y)) % 3;
1524 }
1525 sbsplit += s->sbwidth;
1526 }
1527
1528 /* setup arith decoding */
1529 ff_dirac_init_arith_decoder(arith, gb, get_interleaved_ue_golomb(gb));
1530 for (i = 0; i < s->num_refs; i++) {
1531 ff_dirac_init_arith_decoder(arith + 4 + 2 * i, gb, get_interleaved_ue_golomb(gb));
1532 ff_dirac_init_arith_decoder(arith + 5 + 2 * i, gb, get_interleaved_ue_golomb(gb));
1533 }
1534 for (i = 0; i < 3; i++)
1535 ff_dirac_init_arith_decoder(arith+1+i, gb, get_interleaved_ue_golomb(gb));
1536
1537 for (y = 0; y < s->sbheight; y++)
1538 for (x = 0; x < s->sbwidth; x++) {
1539 int blkcnt = 1 << s->sbsplit[y * s->sbwidth + x];
1540 int step = 4 >> s->sbsplit[y * s->sbwidth + x];
1541
1542 for (q = 0; q < blkcnt; q++)
1543 for (p = 0; p < blkcnt; p++) {
1544 int bx = 4 * x + p*step;
1545 int by = 4 * y + q*step;
1546 DiracBlock *block = &s->blmotion[by*s->blwidth + bx];
1547 decode_block_params(s, arith, block, s->blwidth, bx, by);
1548 propagate_block_data(block, s->blwidth, step);
1549 }
1550 }
1551
1552 for (i = 0; i < 4 + 2*s->num_refs; i++) {
1553 if (arith[i].error)
1554 return arith[i].error;
1555 }
1556
1557 return 0;
1558 }
1559
weight(int i,int blen,int offset)1560 static int weight(int i, int blen, int offset)
1561 {
1562 #define ROLLOFF(i) offset == 1 ? ((i) ? 5 : 3) : \
1563 (1 + (6*(i) + offset - 1) / (2*offset - 1))
1564
1565 if (i < 2*offset)
1566 return ROLLOFF(i);
1567 else if (i > blen-1 - 2*offset)
1568 return ROLLOFF(blen-1 - i);
1569 return 8;
1570 }
1571
init_obmc_weight_row(Plane * p,uint8_t * obmc_weight,int stride,int left,int right,int wy)1572 static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride,
1573 int left, int right, int wy)
1574 {
1575 int x;
1576 for (x = 0; left && x < p->xblen >> 1; x++)
1577 obmc_weight[x] = wy*8;
1578 for (; x < p->xblen >> right; x++)
1579 obmc_weight[x] = wy*weight(x, p->xblen, p->xoffset);
1580 for (; x < p->xblen; x++)
1581 obmc_weight[x] = wy*8;
1582 for (; x < stride; x++)
1583 obmc_weight[x] = 0;
1584 }
1585
init_obmc_weight(Plane * p,uint8_t * obmc_weight,int stride,int left,int right,int top,int bottom)1586 static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride,
1587 int left, int right, int top, int bottom)
1588 {
1589 int y;
1590 for (y = 0; top && y < p->yblen >> 1; y++) {
1591 init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
1592 obmc_weight += stride;
1593 }
1594 for (; y < p->yblen >> bottom; y++) {
1595 int wy = weight(y, p->yblen, p->yoffset);
1596 init_obmc_weight_row(p, obmc_weight, stride, left, right, wy);
1597 obmc_weight += stride;
1598 }
1599 for (; y < p->yblen; y++) {
1600 init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
1601 obmc_weight += stride;
1602 }
1603 }
1604
init_obmc_weights(DiracContext * s,Plane * p,int by)1605 static void init_obmc_weights(DiracContext *s, Plane *p, int by)
1606 {
1607 int top = !by;
1608 int bottom = by == s->blheight-1;
1609
1610 /* don't bother re-initing for rows 2 to blheight-2, the weights don't change */
1611 if (top || bottom || by == 1) {
1612 init_obmc_weight(p, s->obmc_weight[0], MAX_BLOCKSIZE, 1, 0, top, bottom);
1613 init_obmc_weight(p, s->obmc_weight[1], MAX_BLOCKSIZE, 0, 0, top, bottom);
1614 init_obmc_weight(p, s->obmc_weight[2], MAX_BLOCKSIZE, 0, 1, top, bottom);
1615 }
1616 }
1617
1618 static const uint8_t epel_weights[4][4][4] = {
1619 {{ 16, 0, 0, 0 },
1620 { 12, 4, 0, 0 },
1621 { 8, 8, 0, 0 },
1622 { 4, 12, 0, 0 }},
1623 {{ 12, 0, 4, 0 },
1624 { 9, 3, 3, 1 },
1625 { 6, 6, 2, 2 },
1626 { 3, 9, 1, 3 }},
1627 {{ 8, 0, 8, 0 },
1628 { 6, 2, 6, 2 },
1629 { 4, 4, 4, 4 },
1630 { 2, 6, 2, 6 }},
1631 {{ 4, 0, 12, 0 },
1632 { 3, 1, 9, 3 },
1633 { 2, 2, 6, 6 },
1634 { 1, 3, 3, 9 }}
1635 };
1636
1637 /**
1638 * For block x,y, determine which of the hpel planes to do bilinear
1639 * interpolation from and set src[] to the location in each hpel plane
1640 * to MC from.
1641 *
1642 * @return the index of the put_dirac_pixels_tab function to use
1643 * 0 for 1 plane (fpel,hpel), 1 for 2 planes (qpel), 2 for 4 planes (qpel), and 3 for epel
1644 */
mc_subpel(DiracContext * s,DiracBlock * block,const uint8_t * src[5],int x,int y,int ref,int plane)1645 static int mc_subpel(DiracContext *s, DiracBlock *block, const uint8_t *src[5],
1646 int x, int y, int ref, int plane)
1647 {
1648 Plane *p = &s->plane[plane];
1649 uint8_t **ref_hpel = s->ref_pics[ref]->hpel[plane];
1650 int motion_x = block->u.mv[ref][0];
1651 int motion_y = block->u.mv[ref][1];
1652 int mx, my, i, epel, nplanes = 0;
1653
1654 if (plane) {
1655 motion_x >>= s->chroma_x_shift;
1656 motion_y >>= s->chroma_y_shift;
1657 }
1658
1659 mx = motion_x & ~(-1U << s->mv_precision);
1660 my = motion_y & ~(-1U << s->mv_precision);
1661 motion_x >>= s->mv_precision;
1662 motion_y >>= s->mv_precision;
1663 /* normalize subpel coordinates to epel */
1664 /* TODO: template this function? */
1665 mx <<= 3 - s->mv_precision;
1666 my <<= 3 - s->mv_precision;
1667
1668 x += motion_x;
1669 y += motion_y;
1670 epel = (mx|my)&1;
1671
1672 /* hpel position */
1673 if (!((mx|my)&3)) {
1674 nplanes = 1;
1675 src[0] = ref_hpel[(my>>1)+(mx>>2)] + y*p->stride + x;
1676 } else {
1677 /* qpel or epel */
1678 nplanes = 4;
1679 for (i = 0; i < 4; i++)
1680 src[i] = ref_hpel[i] + y*p->stride + x;
1681
1682 /* if we're interpolating in the right/bottom halves, adjust the planes as needed
1683 we increment x/y because the edge changes for half of the pixels */
1684 if (mx > 4) {
1685 src[0] += 1;
1686 src[2] += 1;
1687 x++;
1688 }
1689 if (my > 4) {
1690 src[0] += p->stride;
1691 src[1] += p->stride;
1692 y++;
1693 }
1694
1695 /* hpel planes are:
1696 [0]: F [1]: H
1697 [2]: V [3]: C */
1698 if (!epel) {
1699 /* check if we really only need 2 planes since either mx or my is
1700 a hpel position. (epel weights of 0 handle this there) */
1701 if (!(mx&3)) {
1702 /* mx == 0: average [0] and [2]
1703 mx == 4: average [1] and [3] */
1704 src[!mx] = src[2 + !!mx];
1705 nplanes = 2;
1706 } else if (!(my&3)) {
1707 src[0] = src[(my>>1) ];
1708 src[1] = src[(my>>1)+1];
1709 nplanes = 2;
1710 }
1711 } else {
1712 /* adjust the ordering if needed so the weights work */
1713 if (mx > 4) {
1714 FFSWAP(const uint8_t *, src[0], src[1]);
1715 FFSWAP(const uint8_t *, src[2], src[3]);
1716 }
1717 if (my > 4) {
1718 FFSWAP(const uint8_t *, src[0], src[2]);
1719 FFSWAP(const uint8_t *, src[1], src[3]);
1720 }
1721 src[4] = epel_weights[my&3][mx&3];
1722 }
1723 }
1724
1725 /* fixme: v/h _edge_pos */
1726 if (x + p->xblen > p->width +EDGE_WIDTH/2 ||
1727 y + p->yblen > p->height+EDGE_WIDTH/2 ||
1728 x < 0 || y < 0) {
1729 for (i = 0; i < nplanes; i++) {
1730 s->vdsp.emulated_edge_mc(s->edge_emu_buffer[i], src[i],
1731 p->stride, p->stride,
1732 p->xblen, p->yblen, x, y,
1733 p->width+EDGE_WIDTH/2, p->height+EDGE_WIDTH/2);
1734 src[i] = s->edge_emu_buffer[i];
1735 }
1736 }
1737 return (nplanes>>1) + epel;
1738 }
1739
add_dc(uint16_t * dst,int dc,int stride,uint8_t * obmc_weight,int xblen,int yblen)1740 static void add_dc(uint16_t *dst, int dc, int stride,
1741 uint8_t *obmc_weight, int xblen, int yblen)
1742 {
1743 int x, y;
1744 dc += 128;
1745
1746 for (y = 0; y < yblen; y++) {
1747 for (x = 0; x < xblen; x += 2) {
1748 dst[x ] += dc * obmc_weight[x ];
1749 dst[x+1] += dc * obmc_weight[x+1];
1750 }
1751 dst += stride;
1752 obmc_weight += MAX_BLOCKSIZE;
1753 }
1754 }
1755
block_mc(DiracContext * s,DiracBlock * block,uint16_t * mctmp,uint8_t * obmc_weight,int plane,int dstx,int dsty)1756 static void block_mc(DiracContext *s, DiracBlock *block,
1757 uint16_t *mctmp, uint8_t *obmc_weight,
1758 int plane, int dstx, int dsty)
1759 {
1760 Plane *p = &s->plane[plane];
1761 const uint8_t *src[5];
1762 int idx;
1763
1764 switch (block->ref&3) {
1765 case 0: /* DC */
1766 add_dc(mctmp, block->u.dc[plane], p->stride, obmc_weight, p->xblen, p->yblen);
1767 return;
1768 case 1:
1769 case 2:
1770 idx = mc_subpel(s, block, src, dstx, dsty, (block->ref&3)-1, plane);
1771 s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
1772 if (s->weight_func)
1773 s->weight_func(s->mcscratch, p->stride, s->weight_log2denom,
1774 s->weight[0] + s->weight[1], p->yblen);
1775 break;
1776 case 3:
1777 idx = mc_subpel(s, block, src, dstx, dsty, 0, plane);
1778 s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
1779 idx = mc_subpel(s, block, src, dstx, dsty, 1, plane);
1780 if (s->biweight_func) {
1781 /* fixme: +32 is a quick hack */
1782 s->put_pixels_tab[idx](s->mcscratch + 32, src, p->stride, p->yblen);
1783 s->biweight_func(s->mcscratch, s->mcscratch+32, p->stride, s->weight_log2denom,
1784 s->weight[0], s->weight[1], p->yblen);
1785 } else
1786 s->avg_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
1787 break;
1788 }
1789 s->add_obmc(mctmp, s->mcscratch, p->stride, obmc_weight, p->yblen);
1790 }
1791
mc_row(DiracContext * s,DiracBlock * block,uint16_t * mctmp,int plane,int dsty)1792 static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
1793 {
1794 Plane *p = &s->plane[plane];
1795 int x, dstx = p->xbsep - p->xoffset;
1796
1797 block_mc(s, block, mctmp, s->obmc_weight[0], plane, -p->xoffset, dsty);
1798 mctmp += p->xbsep;
1799
1800 for (x = 1; x < s->blwidth-1; x++) {
1801 block_mc(s, block+x, mctmp, s->obmc_weight[1], plane, dstx, dsty);
1802 dstx += p->xbsep;
1803 mctmp += p->xbsep;
1804 }
1805 block_mc(s, block+x, mctmp, s->obmc_weight[2], plane, dstx, dsty);
1806 }
1807
select_dsp_funcs(DiracContext * s,int width,int height,int xblen,int yblen)1808 static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
1809 {
1810 int idx = 0;
1811 if (xblen > 8)
1812 idx = 1;
1813 if (xblen > 16)
1814 idx = 2;
1815
1816 memcpy(s->put_pixels_tab, s->diracdsp.put_dirac_pixels_tab[idx], sizeof(s->put_pixels_tab));
1817 memcpy(s->avg_pixels_tab, s->diracdsp.avg_dirac_pixels_tab[idx], sizeof(s->avg_pixels_tab));
1818 s->add_obmc = s->diracdsp.add_dirac_obmc[idx];
1819 if (s->weight_log2denom > 1 || s->weight[0] != 1 || s->weight[1] != 1) {
1820 s->weight_func = s->diracdsp.weight_dirac_pixels_tab[idx];
1821 s->biweight_func = s->diracdsp.biweight_dirac_pixels_tab[idx];
1822 } else {
1823 s->weight_func = NULL;
1824 s->biweight_func = NULL;
1825 }
1826 }
1827
interpolate_refplane(DiracContext * s,DiracFrame * ref,int plane,int width,int height)1828 static int interpolate_refplane(DiracContext *s, DiracFrame *ref, int plane, int width, int height)
1829 {
1830 /* chroma allocates an edge of 8 when subsampled
1831 which for 4:2:2 means an h edge of 16 and v edge of 8
1832 just use 8 for everything for the moment */
1833 int i, edge = EDGE_WIDTH/2;
1834
1835 ref->hpel[plane][0] = ref->avframe->data[plane];
1836 s->mpvencdsp.draw_edges(ref->hpel[plane][0], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); /* EDGE_TOP | EDGE_BOTTOM values just copied to make it build, this needs to be ensured */
1837
1838 /* no need for hpel if we only have fpel vectors */
1839 if (!s->mv_precision)
1840 return 0;
1841
1842 for (i = 1; i < 4; i++) {
1843 if (!ref->hpel_base[plane][i])
1844 ref->hpel_base[plane][i] = av_malloc((height+2*edge) * ref->avframe->linesize[plane] + 32);
1845 if (!ref->hpel_base[plane][i]) {
1846 return AVERROR(ENOMEM);
1847 }
1848 /* we need to be 16-byte aligned even for chroma */
1849 ref->hpel[plane][i] = ref->hpel_base[plane][i] + edge*ref->avframe->linesize[plane] + 16;
1850 }
1851
1852 if (!ref->interpolated[plane]) {
1853 s->diracdsp.dirac_hpel_filter(ref->hpel[plane][1], ref->hpel[plane][2],
1854 ref->hpel[plane][3], ref->hpel[plane][0],
1855 ref->avframe->linesize[plane], width, height);
1856 s->mpvencdsp.draw_edges(ref->hpel[plane][1], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
1857 s->mpvencdsp.draw_edges(ref->hpel[plane][2], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
1858 s->mpvencdsp.draw_edges(ref->hpel[plane][3], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
1859 }
1860 ref->interpolated[plane] = 1;
1861
1862 return 0;
1863 }
1864
1865 /**
1866 * Dirac Specification ->
1867 * 13.0 Transform data syntax. transform_data()
1868 */
dirac_decode_frame_internal(DiracContext * s)1869 static int dirac_decode_frame_internal(DiracContext *s)
1870 {
1871 DWTContext d;
1872 int y, i, comp, dsty;
1873 int ret;
1874
1875 if (s->low_delay) {
1876 /* [DIRAC_STD] 13.5.1 low_delay_transform_data() */
1877 if (!s->hq_picture) {
1878 for (comp = 0; comp < 3; comp++) {
1879 Plane *p = &s->plane[comp];
1880 memset(p->idwt.buf, 0, p->idwt.stride * p->idwt.height);
1881 }
1882 }
1883 if (!s->zero_res) {
1884 if ((ret = decode_lowdelay(s)) < 0)
1885 return ret;
1886 }
1887 }
1888
1889 for (comp = 0; comp < 3; comp++) {
1890 Plane *p = &s->plane[comp];
1891 uint8_t *frame = s->current_picture->avframe->data[comp];
1892
1893 /* FIXME: small resolutions */
1894 for (i = 0; i < 4; i++)
1895 s->edge_emu_buffer[i] = s->edge_emu_buffer_base + i*FFALIGN(p->width, 16);
1896
1897 if (!s->zero_res && !s->low_delay)
1898 {
1899 memset(p->idwt.buf, 0, p->idwt.stride * p->idwt.height);
1900 ret = decode_component(s, comp); /* [DIRAC_STD] 13.4.1 core_transform_data() */
1901 if (ret < 0)
1902 return ret;
1903 }
1904 ret = ff_spatial_idwt_init(&d, &p->idwt, s->wavelet_idx+2,
1905 s->wavelet_depth, s->bit_depth);
1906 if (ret < 0)
1907 return ret;
1908
1909 if (!s->num_refs) { /* intra */
1910 for (y = 0; y < p->height; y += 16) {
1911 int idx = (s->bit_depth - 8) >> 1;
1912 ff_spatial_idwt_slice2(&d, y+16); /* decode */
1913 s->diracdsp.put_signed_rect_clamped[idx](frame + y*p->stride,
1914 p->stride,
1915 p->idwt.buf + y*p->idwt.stride,
1916 p->idwt.stride, p->width, 16);
1917 }
1918 } else { /* inter */
1919 int rowheight = p->ybsep*p->stride;
1920
1921 select_dsp_funcs(s, p->width, p->height, p->xblen, p->yblen);
1922
1923 for (i = 0; i < s->num_refs; i++) {
1924 int ret = interpolate_refplane(s, s->ref_pics[i], comp, p->width, p->height);
1925 if (ret < 0)
1926 return ret;
1927 }
1928
1929 memset(s->mctmp, 0, 4*p->yoffset*p->stride);
1930
1931 dsty = -p->yoffset;
1932 for (y = 0; y < s->blheight; y++) {
1933 int h = 0,
1934 start = FFMAX(dsty, 0);
1935 uint16_t *mctmp = s->mctmp + y*rowheight;
1936 DiracBlock *blocks = s->blmotion + y*s->blwidth;
1937
1938 init_obmc_weights(s, p, y);
1939
1940 if (y == s->blheight-1 || start+p->ybsep > p->height)
1941 h = p->height - start;
1942 else
1943 h = p->ybsep - (start - dsty);
1944 if (h < 0)
1945 break;
1946
1947 memset(mctmp+2*p->yoffset*p->stride, 0, 2*rowheight);
1948 mc_row(s, blocks, mctmp, comp, dsty);
1949
1950 mctmp += (start - dsty)*p->stride + p->xoffset;
1951 ff_spatial_idwt_slice2(&d, start + h); /* decode */
1952 /* NOTE: add_rect_clamped hasn't been templated hence the shifts.
1953 * idwt.stride is passed as pixels, not in bytes as in the rest of the decoder */
1954 s->diracdsp.add_rect_clamped(frame + start*p->stride, mctmp, p->stride,
1955 (int16_t*)(p->idwt.buf) + start*(p->idwt.stride >> 1), (p->idwt.stride >> 1), p->width, h);
1956
1957 dsty += p->ybsep;
1958 }
1959 }
1960 }
1961
1962
1963 return 0;
1964 }
1965
get_buffer_with_edge(AVCodecContext * avctx,AVFrame * f,int flags)1966 static int get_buffer_with_edge(AVCodecContext *avctx, AVFrame *f, int flags)
1967 {
1968 int ret, i;
1969 int chroma_x_shift, chroma_y_shift;
1970 ret = av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &chroma_x_shift,
1971 &chroma_y_shift);
1972 if (ret < 0)
1973 return ret;
1974
1975 f->width = avctx->width + 2 * EDGE_WIDTH;
1976 f->height = avctx->height + 2 * EDGE_WIDTH + 2;
1977 ret = ff_get_buffer(avctx, f, flags);
1978 if (ret < 0)
1979 return ret;
1980
1981 for (i = 0; f->data[i]; i++) {
1982 int offset = (EDGE_WIDTH >> (i && i<3 ? chroma_y_shift : 0)) *
1983 f->linesize[i] + 32;
1984 f->data[i] += offset;
1985 }
1986 f->width = avctx->width;
1987 f->height = avctx->height;
1988
1989 return 0;
1990 }
1991
1992 /**
1993 * Dirac Specification ->
1994 * 11.1.1 Picture Header. picture_header()
1995 */
dirac_decode_picture_header(DiracContext * s)1996 static int dirac_decode_picture_header(DiracContext *s)
1997 {
1998 unsigned retire, picnum;
1999 int i, j, ret;
2000 int64_t refdist, refnum;
2001 GetBitContext *gb = &s->gb;
2002
2003 /* [DIRAC_STD] 11.1.1 Picture Header. picture_header() PICTURE_NUM */
2004 picnum = s->current_picture->avframe->display_picture_number = get_bits_long(gb, 32);
2005
2006
2007 av_log(s->avctx,AV_LOG_DEBUG,"PICTURE_NUM: %d\n",picnum);
2008
2009 /* if this is the first keyframe after a sequence header, start our
2010 reordering from here */
2011 if (s->frame_number < 0)
2012 s->frame_number = picnum;
2013
2014 s->ref_pics[0] = s->ref_pics[1] = NULL;
2015 for (i = 0; i < s->num_refs; i++) {
2016 refnum = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
2017 refdist = INT64_MAX;
2018
2019 /* find the closest reference to the one we want */
2020 /* Jordi: this is needed if the referenced picture hasn't yet arrived */
2021 for (j = 0; j < MAX_REFERENCE_FRAMES && refdist; j++)
2022 if (s->ref_frames[j]
2023 && FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum) < refdist) {
2024 s->ref_pics[i] = s->ref_frames[j];
2025 refdist = FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum);
2026 }
2027
2028 if (!s->ref_pics[i] || refdist)
2029 av_log(s->avctx, AV_LOG_DEBUG, "Reference not found\n");
2030
2031 /* if there were no references at all, allocate one */
2032 if (!s->ref_pics[i])
2033 for (j = 0; j < MAX_FRAMES; j++)
2034 if (!s->all_frames[j].avframe->data[0]) {
2035 s->ref_pics[i] = &s->all_frames[j];
2036 ret = get_buffer_with_edge(s->avctx, s->ref_pics[i]->avframe, AV_GET_BUFFER_FLAG_REF);
2037 if (ret < 0)
2038 return ret;
2039 break;
2040 }
2041
2042 if (!s->ref_pics[i]) {
2043 av_log(s->avctx, AV_LOG_ERROR, "Reference could not be allocated\n");
2044 return AVERROR_INVALIDDATA;
2045 }
2046
2047 }
2048
2049 /* retire the reference frames that are not used anymore */
2050 if (s->current_picture->reference) {
2051 retire = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
2052 if (retire != picnum) {
2053 DiracFrame *retire_pic = remove_frame(s->ref_frames, retire);
2054
2055 if (retire_pic)
2056 retire_pic->reference &= DELAYED_PIC_REF;
2057 else
2058 av_log(s->avctx, AV_LOG_DEBUG, "Frame to retire not found\n");
2059 }
2060
2061 /* if reference array is full, remove the oldest as per the spec */
2062 while (add_frame(s->ref_frames, MAX_REFERENCE_FRAMES, s->current_picture)) {
2063 av_log(s->avctx, AV_LOG_ERROR, "Reference frame overflow\n");
2064 remove_frame(s->ref_frames, s->ref_frames[0]->avframe->display_picture_number)->reference &= DELAYED_PIC_REF;
2065 }
2066 }
2067
2068 if (s->num_refs) {
2069 ret = dirac_unpack_prediction_parameters(s); /* [DIRAC_STD] 11.2 Picture Prediction Data. picture_prediction() */
2070 if (ret < 0)
2071 return ret;
2072 ret = dirac_unpack_block_motion_data(s); /* [DIRAC_STD] 12. Block motion data syntax */
2073 if (ret < 0)
2074 return ret;
2075 }
2076 ret = dirac_unpack_idwt_params(s); /* [DIRAC_STD] 11.3 Wavelet transform data */
2077 if (ret < 0)
2078 return ret;
2079
2080 init_planes(s);
2081 return 0;
2082 }
2083
get_delayed_pic(DiracContext * s,AVFrame * picture,int * got_frame)2084 static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame)
2085 {
2086 DiracFrame *out = s->delay_frames[0];
2087 int i, out_idx = 0;
2088 int ret;
2089
2090 /* find frame with lowest picture number */
2091 for (i = 1; s->delay_frames[i]; i++)
2092 if (s->delay_frames[i]->avframe->display_picture_number < out->avframe->display_picture_number) {
2093 out = s->delay_frames[i];
2094 out_idx = i;
2095 }
2096
2097 for (i = out_idx; s->delay_frames[i]; i++)
2098 s->delay_frames[i] = s->delay_frames[i+1];
2099
2100 if (out) {
2101 out->reference ^= DELAYED_PIC_REF;
2102 if((ret = av_frame_ref(picture, out->avframe)) < 0)
2103 return ret;
2104 *got_frame = 1;
2105 }
2106
2107 return 0;
2108 }
2109
2110 /**
2111 * Dirac Specification ->
2112 * 9.6 Parse Info Header Syntax. parse_info()
2113 * 4 byte start code + byte parse code + 4 byte size + 4 byte previous size
2114 */
2115 #define DATA_UNIT_HEADER_SIZE 13
2116
2117 /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3
2118 inside the function parse_sequence() */
dirac_decode_data_unit(AVCodecContext * avctx,const uint8_t * buf,int size)2119 static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
2120 {
2121 DiracContext *s = avctx->priv_data;
2122 DiracFrame *pic = NULL;
2123 AVDiracSeqHeader *dsh;
2124 int ret, i;
2125 uint8_t parse_code;
2126 unsigned tmp;
2127
2128 if (size < DATA_UNIT_HEADER_SIZE)
2129 return AVERROR_INVALIDDATA;
2130
2131 parse_code = buf[4];
2132
2133 init_get_bits(&s->gb, &buf[13], 8*(size - DATA_UNIT_HEADER_SIZE));
2134
2135 if (parse_code == DIRAC_PCODE_SEQ_HEADER) {
2136 if (s->seen_sequence_header)
2137 return 0;
2138
2139 /* [DIRAC_STD] 10. Sequence header */
2140 ret = av_dirac_parse_sequence_header(&dsh, buf + DATA_UNIT_HEADER_SIZE, size - DATA_UNIT_HEADER_SIZE, avctx);
2141 if (ret < 0) {
2142 av_log(avctx, AV_LOG_ERROR, "error parsing sequence header");
2143 return ret;
2144 }
2145
2146 if (CALC_PADDING((int64_t)dsh->width, MAX_DWT_LEVELS) * CALC_PADDING((int64_t)dsh->height, MAX_DWT_LEVELS) * 5LL > avctx->max_pixels)
2147 ret = AVERROR(ERANGE);
2148 if (ret >= 0)
2149 ret = ff_set_dimensions(avctx, dsh->width, dsh->height);
2150 if (ret < 0) {
2151 av_freep(&dsh);
2152 return ret;
2153 }
2154
2155 ff_set_sar(avctx, dsh->sample_aspect_ratio);
2156 avctx->pix_fmt = dsh->pix_fmt;
2157 avctx->color_range = dsh->color_range;
2158 avctx->color_trc = dsh->color_trc;
2159 avctx->color_primaries = dsh->color_primaries;
2160 avctx->colorspace = dsh->colorspace;
2161 avctx->profile = dsh->profile;
2162 avctx->level = dsh->level;
2163 avctx->framerate = dsh->framerate;
2164 s->bit_depth = dsh->bit_depth;
2165 s->version.major = dsh->version.major;
2166 s->version.minor = dsh->version.minor;
2167 s->seq = *dsh;
2168 av_freep(&dsh);
2169
2170 s->pshift = s->bit_depth > 8;
2171
2172 ret = av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt,
2173 &s->chroma_x_shift,
2174 &s->chroma_y_shift);
2175 if (ret < 0)
2176 return ret;
2177
2178 ret = alloc_sequence_buffers(s);
2179 if (ret < 0)
2180 return ret;
2181
2182 s->seen_sequence_header = 1;
2183 } else if (parse_code == DIRAC_PCODE_END_SEQ) { /* [DIRAC_STD] End of Sequence */
2184 free_sequence_buffers(s);
2185 s->seen_sequence_header = 0;
2186 } else if (parse_code == DIRAC_PCODE_AUX) {
2187 if (buf[13] == 1) { /* encoder implementation/version */
2188 int ver[3];
2189 /* versions older than 1.0.8 don't store quant delta for
2190 subbands with only one codeblock */
2191 if (sscanf(buf+14, "Schroedinger %d.%d.%d", ver, ver+1, ver+2) == 3)
2192 if (ver[0] == 1 && ver[1] == 0 && ver[2] <= 7)
2193 s->old_delta_quant = 1;
2194 }
2195 } else if (parse_code & 0x8) { /* picture data unit */
2196 if (!s->seen_sequence_header) {
2197 av_log(avctx, AV_LOG_DEBUG, "Dropping frame without sequence header\n");
2198 return AVERROR_INVALIDDATA;
2199 }
2200
2201 /* find an unused frame */
2202 for (i = 0; i < MAX_FRAMES; i++)
2203 if (s->all_frames[i].avframe->data[0] == NULL)
2204 pic = &s->all_frames[i];
2205 if (!pic) {
2206 av_log(avctx, AV_LOG_ERROR, "framelist full\n");
2207 return AVERROR_INVALIDDATA;
2208 }
2209
2210 av_frame_unref(pic->avframe);
2211
2212 /* [DIRAC_STD] Defined in 9.6.1 ... */
2213 tmp = parse_code & 0x03; /* [DIRAC_STD] num_refs() */
2214 if (tmp > 2) {
2215 av_log(avctx, AV_LOG_ERROR, "num_refs of 3\n");
2216 return AVERROR_INVALIDDATA;
2217 }
2218 s->num_refs = tmp;
2219 s->is_arith = (parse_code & 0x48) == 0x08; /* [DIRAC_STD] using_ac() */
2220 s->low_delay = (parse_code & 0x88) == 0x88; /* [DIRAC_STD] is_low_delay() */
2221 s->core_syntax = (parse_code & 0x88) == 0x08; /* [DIRAC_STD] is_core_syntax() */
2222 s->ld_picture = (parse_code & 0xF8) == 0xC8; /* [DIRAC_STD] is_ld_picture() */
2223 s->hq_picture = (parse_code & 0xF8) == 0xE8; /* [DIRAC_STD] is_hq_picture() */
2224 s->dc_prediction = (parse_code & 0x28) == 0x08; /* [DIRAC_STD] using_dc_prediction() */
2225 pic->reference = (parse_code & 0x0C) == 0x0C; /* [DIRAC_STD] is_reference() */
2226 pic->avframe->key_frame = s->num_refs == 0; /* [DIRAC_STD] is_intra() */
2227 pic->avframe->pict_type = s->num_refs + 1; /* Definition of AVPictureType in avutil.h */
2228
2229 /* VC-2 Low Delay has a different parse code than the Dirac Low Delay */
2230 if (s->version.minor == 2 && parse_code == 0x88)
2231 s->ld_picture = 1;
2232
2233 if (s->low_delay && !(s->ld_picture || s->hq_picture) ) {
2234 av_log(avctx, AV_LOG_ERROR, "Invalid low delay flag\n");
2235 return AVERROR_INVALIDDATA;
2236 }
2237
2238 if ((ret = get_buffer_with_edge(avctx, pic->avframe, (parse_code & 0x0C) == 0x0C ? AV_GET_BUFFER_FLAG_REF : 0)) < 0)
2239 return ret;
2240 s->current_picture = pic;
2241 s->plane[0].stride = pic->avframe->linesize[0];
2242 s->plane[1].stride = pic->avframe->linesize[1];
2243 s->plane[2].stride = pic->avframe->linesize[2];
2244
2245 if (alloc_buffers(s, FFMAX3(FFABS(s->plane[0].stride), FFABS(s->plane[1].stride), FFABS(s->plane[2].stride))) < 0)
2246 return AVERROR(ENOMEM);
2247
2248 /* [DIRAC_STD] 11.1 Picture parse. picture_parse() */
2249 ret = dirac_decode_picture_header(s);
2250 if (ret < 0)
2251 return ret;
2252
2253 /* [DIRAC_STD] 13.0 Transform data syntax. transform_data() */
2254 ret = dirac_decode_frame_internal(s);
2255 if (ret < 0)
2256 return ret;
2257 }
2258 return 0;
2259 }
2260
dirac_decode_frame(AVCodecContext * avctx,void * data,int * got_frame,AVPacket * pkt)2261 static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
2262 {
2263 DiracContext *s = avctx->priv_data;
2264 AVFrame *picture = data;
2265 uint8_t *buf = pkt->data;
2266 int buf_size = pkt->size;
2267 int i, buf_idx = 0;
2268 int ret;
2269 unsigned data_unit_size;
2270
2271 /* release unused frames */
2272 for (i = 0; i < MAX_FRAMES; i++)
2273 if (s->all_frames[i].avframe->data[0] && !s->all_frames[i].reference) {
2274 av_frame_unref(s->all_frames[i].avframe);
2275 memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
2276 }
2277
2278 s->current_picture = NULL;
2279 *got_frame = 0;
2280
2281 /* end of stream, so flush delayed pics */
2282 if (buf_size == 0)
2283 return get_delayed_pic(s, (AVFrame *)data, got_frame);
2284
2285 for (;;) {
2286 /*[DIRAC_STD] Here starts the code from parse_info() defined in 9.6
2287 [DIRAC_STD] PARSE_INFO_PREFIX = "BBCD" as defined in ISO/IEC 646
2288 BBCD start code search */
2289 for (; buf_idx + DATA_UNIT_HEADER_SIZE < buf_size; buf_idx++) {
2290 if (buf[buf_idx ] == 'B' && buf[buf_idx+1] == 'B' &&
2291 buf[buf_idx+2] == 'C' && buf[buf_idx+3] == 'D')
2292 break;
2293 }
2294 /* BBCD found or end of data */
2295 if (buf_idx + DATA_UNIT_HEADER_SIZE >= buf_size)
2296 break;
2297
2298 data_unit_size = AV_RB32(buf+buf_idx+5);
2299 if (data_unit_size > buf_size - buf_idx || !data_unit_size) {
2300 if(data_unit_size > buf_size - buf_idx)
2301 av_log(s->avctx, AV_LOG_ERROR,
2302 "Data unit with size %d is larger than input buffer, discarding\n",
2303 data_unit_size);
2304 buf_idx += 4;
2305 continue;
2306 }
2307 /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3 inside the function parse_sequence() */
2308 ret = dirac_decode_data_unit(avctx, buf+buf_idx, data_unit_size);
2309 if (ret < 0)
2310 {
2311 av_log(s->avctx, AV_LOG_ERROR,"Error in dirac_decode_data_unit\n");
2312 return ret;
2313 }
2314 buf_idx += data_unit_size;
2315 }
2316
2317 if (!s->current_picture)
2318 return buf_size;
2319
2320 if (s->current_picture->avframe->display_picture_number > s->frame_number) {
2321 DiracFrame *delayed_frame = remove_frame(s->delay_frames, s->frame_number);
2322
2323 s->current_picture->reference |= DELAYED_PIC_REF;
2324
2325 if (add_frame(s->delay_frames, MAX_DELAY, s->current_picture)) {
2326 int min_num = s->delay_frames[0]->avframe->display_picture_number;
2327 /* Too many delayed frames, so we display the frame with the lowest pts */
2328 av_log(avctx, AV_LOG_ERROR, "Delay frame overflow\n");
2329
2330 for (i = 1; s->delay_frames[i]; i++)
2331 if (s->delay_frames[i]->avframe->display_picture_number < min_num)
2332 min_num = s->delay_frames[i]->avframe->display_picture_number;
2333
2334 delayed_frame = remove_frame(s->delay_frames, min_num);
2335 add_frame(s->delay_frames, MAX_DELAY, s->current_picture);
2336 }
2337
2338 if (delayed_frame) {
2339 delayed_frame->reference ^= DELAYED_PIC_REF;
2340 if((ret=av_frame_ref(data, delayed_frame->avframe)) < 0)
2341 return ret;
2342 *got_frame = 1;
2343 }
2344 } else if (s->current_picture->avframe->display_picture_number == s->frame_number) {
2345 /* The right frame at the right time :-) */
2346 if((ret=av_frame_ref(data, s->current_picture->avframe)) < 0)
2347 return ret;
2348 *got_frame = 1;
2349 }
2350
2351 if (*got_frame)
2352 s->frame_number = picture->display_picture_number + 1LL;
2353
2354 return buf_idx;
2355 }
2356
2357 AVCodec ff_dirac_decoder = {
2358 .name = "dirac",
2359 .long_name = NULL_IF_CONFIG_SMALL("BBC Dirac VC-2"),
2360 .type = AVMEDIA_TYPE_VIDEO,
2361 .id = AV_CODEC_ID_DIRAC,
2362 .priv_data_size = sizeof(DiracContext),
2363 .init = dirac_decode_init,
2364 .close = dirac_decode_end,
2365 .decode = dirac_decode_frame,
2366 .capabilities = AV_CODEC_CAP_DELAY | AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_DR1,
2367 .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
2368 .flush = dirac_decode_flush,
2369 };
2370