• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * G.723.1 compatible decoder
3  * Copyright (c) 2006 Benjamin Larsson
4  * Copyright (c) 2010 Mohamed Naufal Basheer
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 #include <stdint.h>
24 
25 #include "libavutil/common.h"
26 
27 #include "acelp_vectors.h"
28 #include "avcodec.h"
29 #include "celp_math.h"
30 #include "g723_1.h"
31 
ff_g723_1_scale_vector(int16_t * dst,const int16_t * vector,int length)32 int ff_g723_1_scale_vector(int16_t *dst, const int16_t *vector, int length)
33 {
34     int bits, max = 0;
35     int i;
36 
37     for (i = 0; i < length; i++)
38         max |= FFABS(vector[i]);
39 
40     bits= 14 - av_log2_16bit(max);
41     bits= FFMAX(bits, 0);
42 
43     for (i = 0; i < length; i++)
44         dst[i] = (vector[i] * (1 << bits)) >> 3;
45 
46     return bits - 3;
47 }
48 
ff_g723_1_normalize_bits(int num,int width)49 int ff_g723_1_normalize_bits(int num, int width)
50 {
51     return width - av_log2(num) - 1;
52 }
53 
ff_g723_1_dot_product(const int16_t * a,const int16_t * b,int length)54 int ff_g723_1_dot_product(const int16_t *a, const int16_t *b, int length)
55 {
56     int sum = ff_dot_product(a, b, length);
57     return av_sat_add32(sum, sum);
58 }
59 
ff_g723_1_get_residual(int16_t * residual,int16_t * prev_excitation,int lag)60 void ff_g723_1_get_residual(int16_t *residual, int16_t *prev_excitation,
61                             int lag)
62 {
63     int offset = PITCH_MAX - PITCH_ORDER / 2 - lag;
64     int i;
65 
66     residual[0] = prev_excitation[offset];
67     residual[1] = prev_excitation[offset + 1];
68 
69     offset += 2;
70     for (i = 2; i < SUBFRAME_LEN + PITCH_ORDER - 1; i++)
71         residual[i] = prev_excitation[offset + (i - 2) % lag];
72 }
73 
ff_g723_1_gen_dirac_train(int16_t * buf,int pitch_lag)74 void ff_g723_1_gen_dirac_train(int16_t *buf, int pitch_lag)
75 {
76     int16_t vector[SUBFRAME_LEN];
77     int i, j;
78 
79     memcpy(vector, buf, SUBFRAME_LEN * sizeof(*vector));
80     for (i = pitch_lag; i < SUBFRAME_LEN; i += pitch_lag) {
81         for (j = 0; j < SUBFRAME_LEN - i; j++)
82             buf[i + j] += vector[j];
83     }
84 }
85 
ff_g723_1_gen_acb_excitation(int16_t * vector,int16_t * prev_excitation,int pitch_lag,G723_1_Subframe * subfrm,enum Rate cur_rate)86 void ff_g723_1_gen_acb_excitation(int16_t *vector, int16_t *prev_excitation,
87                                   int pitch_lag, G723_1_Subframe *subfrm,
88                                   enum Rate cur_rate)
89 {
90     int16_t residual[SUBFRAME_LEN + PITCH_ORDER - 1];
91     const int16_t *cb_ptr;
92     int lag = pitch_lag + subfrm->ad_cb_lag - 1;
93 
94     int i;
95     int sum;
96 
97     ff_g723_1_get_residual(residual, prev_excitation, lag);
98 
99     /* Select quantization table */
100     if (cur_rate == RATE_6300 && pitch_lag < SUBFRAME_LEN - 2) {
101         cb_ptr = adaptive_cb_gain85;
102     } else
103         cb_ptr = adaptive_cb_gain170;
104 
105     /* Calculate adaptive vector */
106     cb_ptr += subfrm->ad_cb_gain * 20;
107     for (i = 0; i < SUBFRAME_LEN; i++) {
108         sum = ff_dot_product(residual + i, cb_ptr, PITCH_ORDER);
109         vector[i] = av_sat_dadd32(1 << 15, av_sat_add32(sum, sum)) >> 16;
110     }
111 }
112 
113 /**
114  * Convert LSP frequencies to LPC coefficients.
115  *
116  * @param lpc buffer for LPC coefficients
117  */
lsp2lpc(int16_t * lpc)118 static void lsp2lpc(int16_t *lpc)
119 {
120     int f1[LPC_ORDER / 2 + 1];
121     int f2[LPC_ORDER / 2 + 1];
122     int i, j;
123 
124     /* Calculate negative cosine */
125     for (j = 0; j < LPC_ORDER; j++) {
126         int index     = (lpc[j] >> 7) & 0x1FF;
127         int offset    = lpc[j] & 0x7f;
128         int temp1     = cos_tab[index] * (1 << 16);
129         int temp2     = (cos_tab[index + 1] - cos_tab[index]) *
130                           (((offset << 8) + 0x80) << 1);
131 
132         lpc[j] = -(av_sat_dadd32(1 << 15, temp1 + temp2) >> 16);
133     }
134 
135     /*
136      * Compute sum and difference polynomial coefficients
137      * (bitexact alternative to lsp2poly() in lsp.c)
138      */
139     /* Initialize with values in Q28 */
140     f1[0] = 1 << 28;
141     f1[1] = (lpc[0] + lpc[2]) * (1 << 14);
142     f1[2] = lpc[0] * lpc[2] + (2 << 28);
143 
144     f2[0] = 1 << 28;
145     f2[1] = (lpc[1] + lpc[3]) * (1 << 14);
146     f2[2] = lpc[1] * lpc[3] + (2 << 28);
147 
148     /*
149      * Calculate and scale the coefficients by 1/2 in
150      * each iteration for a final scaling factor of Q25
151      */
152     for (i = 2; i < LPC_ORDER / 2; i++) {
153         f1[i + 1] = av_clipl_int32(f1[i - 1] + (int64_t)MULL2(f1[i], lpc[2 * i]));
154         f2[i + 1] = av_clipl_int32(f2[i - 1] + (int64_t)MULL2(f2[i], lpc[2 * i + 1]));
155 
156         for (j = i; j >= 2; j--) {
157             f1[j] = MULL2(f1[j - 1], lpc[2 * i]) +
158                     (f1[j] >> 1) + (f1[j - 2] >> 1);
159             f2[j] = MULL2(f2[j - 1], lpc[2 * i + 1]) +
160                     (f2[j] >> 1) + (f2[j - 2] >> 1);
161         }
162 
163         f1[0] >>= 1;
164         f2[0] >>= 1;
165         f1[1] = ((lpc[2 * i]     * 65536 >> i) + f1[1]) >> 1;
166         f2[1] = ((lpc[2 * i + 1] * 65536 >> i) + f2[1]) >> 1;
167     }
168 
169     /* Convert polynomial coefficients to LPC coefficients */
170     for (i = 0; i < LPC_ORDER / 2; i++) {
171         int64_t ff1 = f1[i + 1] + f1[i];
172         int64_t ff2 = f2[i + 1] - f2[i];
173 
174         lpc[i] = av_clipl_int32(((ff1 + ff2) * 8) + (1 << 15)) >> 16;
175         lpc[LPC_ORDER - i - 1] = av_clipl_int32(((ff1 - ff2) * 8) +
176                                                 (1 << 15)) >> 16;
177     }
178 }
179 
ff_g723_1_lsp_interpolate(int16_t * lpc,int16_t * cur_lsp,int16_t * prev_lsp)180 void ff_g723_1_lsp_interpolate(int16_t *lpc, int16_t *cur_lsp,
181                                int16_t *prev_lsp)
182 {
183     int i;
184     int16_t *lpc_ptr = lpc;
185 
186     /* cur_lsp * 0.25 + prev_lsp * 0.75 */
187     ff_acelp_weighted_vector_sum(lpc, cur_lsp, prev_lsp,
188                                  4096, 12288, 1 << 13, 14, LPC_ORDER);
189     ff_acelp_weighted_vector_sum(lpc + LPC_ORDER, cur_lsp, prev_lsp,
190                                  8192, 8192, 1 << 13, 14, LPC_ORDER);
191     ff_acelp_weighted_vector_sum(lpc + 2 * LPC_ORDER, cur_lsp, prev_lsp,
192                                  12288, 4096, 1 << 13, 14, LPC_ORDER);
193     memcpy(lpc + 3 * LPC_ORDER, cur_lsp, LPC_ORDER * sizeof(*lpc));
194 
195     for (i = 0; i < SUBFRAMES; i++) {
196         lsp2lpc(lpc_ptr);
197         lpc_ptr += LPC_ORDER;
198     }
199 }
200 
ff_g723_1_inverse_quant(int16_t * cur_lsp,int16_t * prev_lsp,uint8_t * lsp_index,int bad_frame)201 void ff_g723_1_inverse_quant(int16_t *cur_lsp, int16_t *prev_lsp,
202                              uint8_t *lsp_index, int bad_frame)
203 {
204     int min_dist, pred;
205     int i, j, temp, stable;
206 
207     /* Check for frame erasure */
208     if (!bad_frame) {
209         min_dist     = 0x100;
210         pred         = 12288;
211     } else {
212         min_dist     = 0x200;
213         pred         = 23552;
214         lsp_index[0] = lsp_index[1] = lsp_index[2] = 0;
215     }
216 
217     /* Get the VQ table entry corresponding to the transmitted index */
218     cur_lsp[0] = lsp_band0[lsp_index[0]][0];
219     cur_lsp[1] = lsp_band0[lsp_index[0]][1];
220     cur_lsp[2] = lsp_band0[lsp_index[0]][2];
221     cur_lsp[3] = lsp_band1[lsp_index[1]][0];
222     cur_lsp[4] = lsp_band1[lsp_index[1]][1];
223     cur_lsp[5] = lsp_band1[lsp_index[1]][2];
224     cur_lsp[6] = lsp_band2[lsp_index[2]][0];
225     cur_lsp[7] = lsp_band2[lsp_index[2]][1];
226     cur_lsp[8] = lsp_band2[lsp_index[2]][2];
227     cur_lsp[9] = lsp_band2[lsp_index[2]][3];
228 
229     /* Add predicted vector & DC component to the previously quantized vector */
230     for (i = 0; i < LPC_ORDER; i++) {
231         temp        = ((prev_lsp[i] - dc_lsp[i]) * pred + (1 << 14)) >> 15;
232         cur_lsp[i] += dc_lsp[i] + temp;
233     }
234 
235     for (i = 0; i < LPC_ORDER; i++) {
236         cur_lsp[0]             = FFMAX(cur_lsp[0],  0x180);
237         cur_lsp[LPC_ORDER - 1] = FFMIN(cur_lsp[LPC_ORDER - 1], 0x7e00);
238 
239         /* Stability check */
240         for (j = 1; j < LPC_ORDER; j++) {
241             temp = min_dist + cur_lsp[j - 1] - cur_lsp[j];
242             if (temp > 0) {
243                 temp >>= 1;
244                 cur_lsp[j - 1] -= temp;
245                 cur_lsp[j]     += temp;
246             }
247         }
248         stable = 1;
249         for (j = 1; j < LPC_ORDER; j++) {
250             temp = cur_lsp[j - 1] + min_dist - cur_lsp[j] - 4;
251             if (temp > 0) {
252                 stable = 0;
253                 break;
254             }
255         }
256         if (stable)
257             break;
258     }
259     if (!stable)
260         memcpy(cur_lsp, prev_lsp, LPC_ORDER * sizeof(*cur_lsp));
261 }
262