• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkTArray_DEFINED
9 #define SkTArray_DEFINED
10 
11 #include "include/core/SkMath.h"
12 #include "include/core/SkTypes.h"
13 #include "include/private/SkMalloc.h"
14 #include "include/private/SkSafe32.h"
15 #include "include/private/SkTLogic.h"
16 #include "include/private/SkTemplates.h"
17 
18 #include <string.h>
19 #include <memory>
20 #include <new>
21 #include <utility>
22 
23 /** When MEM_MOVE is true T will be bit copied when moved.
24     When MEM_MOVE is false, T will be copy constructed / destructed.
25     In all cases T will be default-initialized on allocation,
26     and its destructor will be called from this object's destructor.
27 */
28 template <typename T, bool MEM_MOVE = false> class SkTArray {
29 public:
30     /**
31      * Creates an empty array with no initial storage
32      */
SkTArray()33     SkTArray() { this->init(); }
34 
35     /**
36      * Creates an empty array that will preallocate space for reserveCount
37      * elements.
38      */
SkTArray(int reserveCount)39     explicit SkTArray(int reserveCount) { this->init(0, reserveCount); }
40 
41     /**
42      * Copies one array to another. The new array will be heap allocated.
43      */
SkTArray(const SkTArray & that)44     SkTArray(const SkTArray& that) {
45         this->init(that.fCount);
46         this->copy(that.fItemArray);
47     }
48 
SkTArray(SkTArray && that)49     SkTArray(SkTArray&& that) {
50         // TODO: If 'that' owns its memory why don't we just steal the pointer?
51         this->init(that.fCount);
52         that.move(fMemArray);
53         that.fCount = 0;
54     }
55 
56     /**
57      * Creates a SkTArray by copying contents of a standard C array. The new
58      * array will be heap allocated. Be careful not to use this constructor
59      * when you really want the (void*, int) version.
60      */
SkTArray(const T * array,int count)61     SkTArray(const T* array, int count) {
62         this->init(count);
63         this->copy(array);
64     }
65 
66     SkTArray& operator=(const SkTArray& that) {
67         if (this == &that) {
68             return *this;
69         }
70         for (int i = 0; i < fCount; ++i) {
71             fItemArray[i].~T();
72         }
73         fCount = 0;
74         this->checkRealloc(that.count());
75         fCount = that.count();
76         this->copy(that.fItemArray);
77         return *this;
78     }
79     SkTArray& operator=(SkTArray&& that) {
80         if (this == &that) {
81             return *this;
82         }
83         for (int i = 0; i < fCount; ++i) {
84             fItemArray[i].~T();
85         }
86         fCount = 0;
87         this->checkRealloc(that.count());
88         fCount = that.count();
89         that.move(fMemArray);
90         that.fCount = 0;
91         return *this;
92     }
93 
~SkTArray()94     ~SkTArray() {
95         for (int i = 0; i < fCount; ++i) {
96             fItemArray[i].~T();
97         }
98         if (fOwnMemory) {
99             sk_free(fMemArray);
100         }
101     }
102 
103     /**
104      * Resets to count() == 0 and resets any reserve count.
105      */
reset()106     void reset() {
107         this->pop_back_n(fCount);
108         fReserved = false;
109     }
110 
111     /**
112      * Resets to count() = n newly constructed T objects and resets any reserve count.
113      */
reset(int n)114     void reset(int n) {
115         SkASSERT(n >= 0);
116         for (int i = 0; i < fCount; ++i) {
117             fItemArray[i].~T();
118         }
119         // Set fCount to 0 before calling checkRealloc so that no elements are moved.
120         fCount = 0;
121         this->checkRealloc(n);
122         fCount = n;
123         for (int i = 0; i < fCount; ++i) {
124             new (fItemArray + i) T;
125         }
126         fReserved = false;
127     }
128 
129     /**
130      * Resets to a copy of a C array and resets any reserve count.
131      */
reset(const T * array,int count)132     void reset(const T* array, int count) {
133         for (int i = 0; i < fCount; ++i) {
134             fItemArray[i].~T();
135         }
136         fCount = 0;
137         this->checkRealloc(count);
138         fCount = count;
139         this->copy(array);
140         fReserved = false;
141     }
142 
143     /**
144      * Ensures there is enough reserved space for n additional elements. The is guaranteed at least
145      * until the array size grows above n and subsequently shrinks below n, any version of reset()
146      * is called, or reserve() is called again.
147      */
reserve(int n)148     void reserve(int n) {
149         SkASSERT(n >= 0);
150         if (n > 0) {
151             this->checkRealloc(n);
152             fReserved = fOwnMemory;
153         } else {
154             fReserved = false;
155         }
156     }
157 
removeShuffle(int n)158     void removeShuffle(int n) {
159         SkASSERT(n < fCount);
160         int newCount = fCount - 1;
161         fCount = newCount;
162         fItemArray[n].~T();
163         if (n != newCount) {
164             this->move(n, newCount);
165         }
166     }
167 
168     /**
169      * Number of elements in the array.
170      */
count()171     int count() const { return fCount; }
172 
173     /**
174      * Is the array empty.
175      */
empty()176     bool empty() const { return !fCount; }
177 
178     /**
179      * Adds 1 new default-initialized T value and returns it by reference. Note
180      * the reference only remains valid until the next call that adds or removes
181      * elements.
182      */
push_back()183     T& push_back() {
184         void* newT = this->push_back_raw(1);
185         return *new (newT) T;
186     }
187 
188     /**
189      * Version of above that uses a copy constructor to initialize the new item
190      */
push_back(const T & t)191     T& push_back(const T& t) {
192         void* newT = this->push_back_raw(1);
193         return *new (newT) T(t);
194     }
195 
196     /**
197      * Version of above that uses a move constructor to initialize the new item
198      */
push_back(T && t)199     T& push_back(T&& t) {
200         void* newT = this->push_back_raw(1);
201         return *new (newT) T(std::move(t));
202     }
203 
204     /**
205      *  Construct a new T at the back of this array.
206      */
emplace_back(Args &&...args)207     template<class... Args> T& emplace_back(Args&&... args) {
208         void* newT = this->push_back_raw(1);
209         return *new (newT) T(std::forward<Args>(args)...);
210     }
211 
212     /**
213      * Allocates n more default-initialized T values, and returns the address of
214      * the start of that new range. Note: this address is only valid until the
215      * next API call made on the array that might add or remove elements.
216      */
push_back_n(int n)217     T* push_back_n(int n) {
218         SkASSERT(n >= 0);
219         void* newTs = this->push_back_raw(n);
220         for (int i = 0; i < n; ++i) {
221             new (static_cast<char*>(newTs) + i * sizeof(T)) T;
222         }
223         return static_cast<T*>(newTs);
224     }
225 
226     /**
227      * Version of above that uses a copy constructor to initialize all n items
228      * to the same T.
229      */
push_back_n(int n,const T & t)230     T* push_back_n(int n, const T& t) {
231         SkASSERT(n >= 0);
232         void* newTs = this->push_back_raw(n);
233         for (int i = 0; i < n; ++i) {
234             new (static_cast<char*>(newTs) + i * sizeof(T)) T(t);
235         }
236         return static_cast<T*>(newTs);
237     }
238 
239     /**
240      * Version of above that uses a copy constructor to initialize the n items
241      * to separate T values.
242      */
push_back_n(int n,const T t[])243     T* push_back_n(int n, const T t[]) {
244         SkASSERT(n >= 0);
245         this->checkRealloc(n);
246         for (int i = 0; i < n; ++i) {
247             new (fItemArray + fCount + i) T(t[i]);
248         }
249         fCount += n;
250         return fItemArray + fCount - n;
251     }
252 
253     /**
254      * Version of above that uses the move constructor to set n items.
255      */
move_back_n(int n,T * t)256     T* move_back_n(int n, T* t) {
257         SkASSERT(n >= 0);
258         this->checkRealloc(n);
259         for (int i = 0; i < n; ++i) {
260             new (fItemArray + fCount + i) T(std::move(t[i]));
261         }
262         fCount += n;
263         return fItemArray + fCount - n;
264     }
265 
266     /**
267      * Removes the last element. Not safe to call when count() == 0.
268      */
pop_back()269     void pop_back() {
270         SkASSERT(fCount > 0);
271         --fCount;
272         fItemArray[fCount].~T();
273         this->checkRealloc(0);
274     }
275 
276     /**
277      * Removes the last n elements. Not safe to call when count() < n.
278      */
pop_back_n(int n)279     void pop_back_n(int n) {
280         SkASSERT(n >= 0);
281         SkASSERT(fCount >= n);
282         fCount -= n;
283         for (int i = 0; i < n; ++i) {
284             fItemArray[fCount + i].~T();
285         }
286         this->checkRealloc(0);
287     }
288 
289     /**
290      * Pushes or pops from the back to resize. Pushes will be default
291      * initialized.
292      */
resize_back(int newCount)293     void resize_back(int newCount) {
294         SkASSERT(newCount >= 0);
295 
296         if (newCount > fCount) {
297             this->push_back_n(newCount - fCount);
298         } else if (newCount < fCount) {
299             this->pop_back_n(fCount - newCount);
300         }
301     }
302 
303     /** Swaps the contents of this array with that array. Does a pointer swap if possible,
304         otherwise copies the T values. */
swap(SkTArray & that)305     void swap(SkTArray& that) {
306         using std::swap;
307         if (this == &that) {
308             return;
309         }
310         if (fOwnMemory && that.fOwnMemory) {
311             swap(fItemArray, that.fItemArray);
312             swap(fCount, that.fCount);
313             swap(fAllocCount, that.fAllocCount);
314         } else {
315             // This could be more optimal...
316             SkTArray copy(std::move(that));
317             that = std::move(*this);
318             *this = std::move(copy);
319         }
320     }
321 
begin()322     T* begin() {
323         return fItemArray;
324     }
begin()325     const T* begin() const {
326         return fItemArray;
327     }
end()328     T* end() {
329         return fItemArray ? fItemArray + fCount : nullptr;
330     }
end()331     const T* end() const {
332         return fItemArray ? fItemArray + fCount : nullptr;
333     }
data()334     T* data() { return fItemArray; }
data()335     const T* data() const { return fItemArray; }
size()336     size_t size() const { return (size_t)fCount; }
resize(size_t count)337     void resize(size_t count) { this->resize_back((int)count); }
338 
339    /**
340      * Get the i^th element.
341      */
342     T& operator[] (int i) {
343         SkASSERT(i < fCount);
344         SkASSERT(i >= 0);
345         return fItemArray[i];
346     }
347 
348     const T& operator[] (int i) const {
349         SkASSERT(i < fCount);
350         SkASSERT(i >= 0);
351         return fItemArray[i];
352     }
353 
354     /**
355      * equivalent to operator[](0)
356      */
front()357     T& front() { SkASSERT(fCount > 0); return fItemArray[0];}
358 
front()359     const T& front() const { SkASSERT(fCount > 0); return fItemArray[0];}
360 
361     /**
362      * equivalent to operator[](count() - 1)
363      */
back()364     T& back() { SkASSERT(fCount); return fItemArray[fCount - 1];}
365 
back()366     const T& back() const { SkASSERT(fCount > 0); return fItemArray[fCount - 1];}
367 
368     /**
369      * equivalent to operator[](count()-1-i)
370      */
fromBack(int i)371     T& fromBack(int i) {
372         SkASSERT(i >= 0);
373         SkASSERT(i < fCount);
374         return fItemArray[fCount - i - 1];
375     }
376 
fromBack(int i)377     const T& fromBack(int i) const {
378         SkASSERT(i >= 0);
379         SkASSERT(i < fCount);
380         return fItemArray[fCount - i - 1];
381     }
382 
383     bool operator==(const SkTArray<T, MEM_MOVE>& right) const {
384         int leftCount = this->count();
385         if (leftCount != right.count()) {
386             return false;
387         }
388         for (int index = 0; index < leftCount; ++index) {
389             if (fItemArray[index] != right.fItemArray[index]) {
390                 return false;
391             }
392         }
393         return true;
394     }
395 
396     bool operator!=(const SkTArray<T, MEM_MOVE>& right) const {
397         return !(*this == right);
398     }
399 
400     inline int allocCntForTest() const;
401 
402 protected:
403     /**
404      * Creates an empty array that will use the passed storage block until it
405      * is insufficiently large to hold the entire array.
406      */
407     template <int N>
SkTArray(SkAlignedSTStorage<N,T> * storage)408     SkTArray(SkAlignedSTStorage<N,T>* storage) {
409         this->initWithPreallocatedStorage(0, storage->get(), N);
410     }
411 
412     /**
413      * Copy another array, using preallocated storage if preAllocCount >=
414      * array.count(). Otherwise storage will only be used when array shrinks
415      * to fit.
416      */
417     template <int N>
SkTArray(const SkTArray & array,SkAlignedSTStorage<N,T> * storage)418     SkTArray(const SkTArray& array, SkAlignedSTStorage<N,T>* storage) {
419         this->initWithPreallocatedStorage(array.fCount, storage->get(), N);
420         this->copy(array.fItemArray);
421     }
422 
423     /**
424      * Move another array, using preallocated storage if preAllocCount >=
425      * array.count(). Otherwise storage will only be used when array shrinks
426      * to fit.
427      */
428     template <int N>
SkTArray(SkTArray && array,SkAlignedSTStorage<N,T> * storage)429     SkTArray(SkTArray&& array, SkAlignedSTStorage<N,T>* storage) {
430         this->initWithPreallocatedStorage(array.fCount, storage->get(), N);
431         array.move(fMemArray);
432         array.fCount = 0;
433     }
434 
435     /**
436      * Copy a C array, using preallocated storage if preAllocCount >=
437      * count. Otherwise storage will only be used when array shrinks
438      * to fit.
439      */
440     template <int N>
SkTArray(const T * array,int count,SkAlignedSTStorage<N,T> * storage)441     SkTArray(const T* array, int count, SkAlignedSTStorage<N,T>* storage) {
442         this->initWithPreallocatedStorage(count, storage->get(), N);
443         this->copy(array);
444     }
445 
446 private:
447     void init(int count = 0, int reserveCount = 0) {
448         SkASSERT(count >= 0);
449         SkASSERT(reserveCount >= 0);
450         fCount = count;
451         if (!count && !reserveCount) {
452             fAllocCount = 0;
453             fMemArray = nullptr;
454             fOwnMemory = true;
455             fReserved = false;
456         } else {
457             fAllocCount = SkTMax(count, SkTMax(kMinHeapAllocCount, reserveCount));
458             fMemArray = sk_malloc_throw(fAllocCount, sizeof(T));
459             fOwnMemory = true;
460             fReserved = reserveCount > 0;
461         }
462     }
463 
initWithPreallocatedStorage(int count,void * preallocStorage,int preallocCount)464     void initWithPreallocatedStorage(int count, void* preallocStorage, int preallocCount) {
465         SkASSERT(count >= 0);
466         SkASSERT(preallocCount > 0);
467         SkASSERT(preallocStorage);
468         fCount = count;
469         fMemArray = nullptr;
470         fReserved = false;
471         if (count > preallocCount) {
472             fAllocCount = SkTMax(count, kMinHeapAllocCount);
473             fMemArray = sk_malloc_throw(fAllocCount, sizeof(T));
474             fOwnMemory = true;
475         } else {
476             fAllocCount = preallocCount;
477             fMemArray = preallocStorage;
478             fOwnMemory = false;
479         }
480     }
481 
482     /** In the following move and copy methods, 'dst' is assumed to be uninitialized raw storage.
483      *  In the following move methods, 'src' is destroyed leaving behind uninitialized raw storage.
484      */
copy(const T * src)485     void copy(const T* src) {
486         // Some types may be trivially copyable, in which case we *could* use memcopy; but
487         // MEM_MOVE == true implies that the type is trivially movable, and not necessarily
488         // trivially copyable (think sk_sp<>).  So short of adding another template arg, we
489         // must be conservative and use copy construction.
490         for (int i = 0; i < fCount; ++i) {
491             new (fItemArray + i) T(src[i]);
492         }
493     }
494 
SK_WHEN(E,void)495     template <bool E = MEM_MOVE> SK_WHEN(E, void) move(int dst, int src) {
496         memcpy(&fItemArray[dst], &fItemArray[src], sizeof(T));
497     }
SK_WHEN(E,void)498     template <bool E = MEM_MOVE> SK_WHEN(E, void) move(void* dst) {
499         sk_careful_memcpy(dst, fMemArray, fCount * sizeof(T));
500     }
501 
move(int dst,int src)502     template <bool E = MEM_MOVE> SK_WHEN(!E, void) move(int dst, int src) {
503         new (&fItemArray[dst]) T(std::move(fItemArray[src]));
504         fItemArray[src].~T();
505     }
move(void * dst)506     template <bool E = MEM_MOVE> SK_WHEN(!E, void) move(void* dst) {
507         for (int i = 0; i < fCount; ++i) {
508             new (static_cast<char*>(dst) + sizeof(T) * i) T(std::move(fItemArray[i]));
509             fItemArray[i].~T();
510         }
511     }
512 
513     static constexpr int kMinHeapAllocCount = 8;
514 
515     // Helper function that makes space for n objects, adjusts the count, but does not initialize
516     // the new objects.
push_back_raw(int n)517     void* push_back_raw(int n) {
518         this->checkRealloc(n);
519         void* ptr = fItemArray + fCount;
520         fCount += n;
521         return ptr;
522     }
523 
checkRealloc(int delta)524     void checkRealloc(int delta) {
525         SkASSERT(fCount >= 0);
526         SkASSERT(fAllocCount >= 0);
527         SkASSERT(-delta <= fCount);
528 
529         // Move into 64bit math temporarily, to avoid local overflows
530         int64_t newCount = fCount + delta;
531 
532         // We allow fAllocCount to be in the range [newCount, 3*newCount]. We also never shrink
533         // when we're currently using preallocated memory, would allocate less than
534         // kMinHeapAllocCount, or a reserve count was specified that has yet to be exceeded.
535         bool mustGrow = newCount > fAllocCount;
536         bool shouldShrink = fAllocCount > 3 * newCount && fOwnMemory && !fReserved;
537         if (!mustGrow && !shouldShrink) {
538             return;
539         }
540 
541 
542         // Whether we're growing or shrinking, we leave at least 50% extra space for future growth.
543         int64_t newAllocCount = newCount + ((newCount + 1) >> 1);
544         // Align the new allocation count to kMinHeapAllocCount.
545         static_assert(SkIsPow2(kMinHeapAllocCount), "min alloc count not power of two.");
546         newAllocCount = (newAllocCount + (kMinHeapAllocCount - 1)) & ~(kMinHeapAllocCount - 1);
547         // At small sizes the old and new alloc count can both be kMinHeapAllocCount.
548         if (newAllocCount == fAllocCount) {
549             return;
550         }
551 
552         fAllocCount = Sk64_pin_to_s32(newAllocCount);
553         SkASSERT(fAllocCount >= newCount);
554         void* newMemArray = sk_malloc_throw(fAllocCount, sizeof(T));
555         this->move(newMemArray);
556         if (fOwnMemory) {
557             sk_free(fMemArray);
558 
559         }
560         fMemArray = newMemArray;
561         fOwnMemory = true;
562         fReserved = false;
563     }
564 
565     union {
566         T*       fItemArray;
567         void*    fMemArray;
568     };
569     int fCount;
570     int fAllocCount;
571     bool fOwnMemory : 1;
572     bool fReserved : 1;
573 };
574 
swap(SkTArray<T,M> & a,SkTArray<T,M> & b)575 template <typename T, bool M> static inline void swap(SkTArray<T, M>& a, SkTArray<T, M>& b) {
576     a.swap(b);
577 }
578 
579 template<typename T, bool MEM_MOVE> constexpr int SkTArray<T, MEM_MOVE>::kMinHeapAllocCount;
580 
581 /**
582  * Subclass of SkTArray that contains a preallocated memory block for the array.
583  */
584 template <int N, typename T, bool MEM_MOVE= false>
585 class SkSTArray : public SkTArray<T, MEM_MOVE> {
586 private:
587     typedef SkTArray<T, MEM_MOVE> INHERITED;
588 
589 public:
SkSTArray()590     SkSTArray() : INHERITED(&fStorage) {
591     }
592 
SkSTArray(const SkSTArray & array)593     SkSTArray(const SkSTArray& array)
594         : INHERITED(array, &fStorage) {
595     }
596 
SkSTArray(SkSTArray && array)597     SkSTArray(SkSTArray&& array)
598         : INHERITED(std::move(array), &fStorage) {
599     }
600 
SkSTArray(const INHERITED & array)601     explicit SkSTArray(const INHERITED& array)
602         : INHERITED(array, &fStorage) {
603     }
604 
SkSTArray(INHERITED && array)605     explicit SkSTArray(INHERITED&& array)
606         : INHERITED(std::move(array), &fStorage) {
607     }
608 
SkSTArray(int reserveCount)609     explicit SkSTArray(int reserveCount)
610         : INHERITED(reserveCount) {
611     }
612 
SkSTArray(const T * array,int count)613     SkSTArray(const T* array, int count)
614         : INHERITED(array, count, &fStorage) {
615     }
616 
617     SkSTArray& operator=(const SkSTArray& array) {
618         INHERITED::operator=(array);
619         return *this;
620     }
621 
622     SkSTArray& operator=(SkSTArray&& array) {
623         INHERITED::operator=(std::move(array));
624         return *this;
625     }
626 
627     SkSTArray& operator=(const INHERITED& array) {
628         INHERITED::operator=(array);
629         return *this;
630     }
631 
632     SkSTArray& operator=(INHERITED&& array) {
633         INHERITED::operator=(std::move(array));
634         return *this;
635     }
636 
637 private:
638     SkAlignedSTStorage<N,T> fStorage;
639 };
640 
641 #endif
642