• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2007 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkBitmapProcState_DEFINED
9 #define SkBitmapProcState_DEFINED
10 
11 #include "include/core/SkBitmap.h"
12 #include "include/core/SkPaint.h"
13 #include "include/core/SkShader.h"
14 #include "include/private/SkFixed.h"
15 #include "include/private/SkFloatBits.h"
16 #include "include/private/SkTemplates.h"
17 #include "src/core/SkArenaAlloc.h"
18 #include "src/core/SkBitmapController.h"
19 #include "src/core/SkMatrixPriv.h"
20 #include "src/core/SkMipMap.h"
21 
22 typedef SkFixed3232    SkFractionalInt;
23 #define SkScalarToFractionalInt(x)  SkScalarToFixed3232(x)
24 #define SkFractionalIntToFixed(x)   SkFixed3232ToFixed(x)
25 #define SkFixedToFractionalInt(x)   SkFixedToFixed3232(x)
26 #define SkFractionalIntToInt(x)     SkFixed3232ToInt(x)
27 
28 class SkPaint;
29 
30 struct SkBitmapProcInfo {
31     SkBitmapProcInfo(const SkImage_Base*, SkTileMode tmx, SkTileMode tmy);
32     ~SkBitmapProcInfo();
33 
34     const SkImage_Base*     fImage;
35 
36     SkPixmap                fPixmap;
37     SkMatrix                fInvMatrix;         // This changes based on tile mode.
38     // TODO: combine fInvMatrix and fRealInvMatrix.
39     SkMatrix                fRealInvMatrix;     // The actual inverse matrix.
40     SkColor                 fPaintColor;
41     SkTileMode              fTileModeX;
42     SkTileMode              fTileModeY;
43     SkFilterQuality         fFilterQuality;
44     SkMatrix::TypeMask      fInvType;
45 
46     bool init(const SkMatrix& inverse, const SkPaint&);
47 
48 private:
49     enum {
50         kBMStateSize = 136  // found by inspection. if too small, we will call new/delete
51     };
52     SkSTArenaAlloc<kBMStateSize> fAlloc;
53     SkBitmapController::State* fBMState;
54 };
55 
56 struct SkBitmapProcState : public SkBitmapProcInfo {
SkBitmapProcStateSkBitmapProcState57     SkBitmapProcState(const SkImage_Base* image, SkTileMode tmx, SkTileMode tmy)
58         : SkBitmapProcInfo(image, tmx, tmy) {}
59 
setupSkBitmapProcState60     bool setup(const SkMatrix& inv, const SkPaint& paint) {
61         return this->init(inv, paint) && this->chooseProcs();
62     }
63 
64     typedef void (*ShaderProc32)(const void* ctx, int x, int y, SkPMColor[], int count);
65 
66     typedef void (*MatrixProc)(const SkBitmapProcState&,
67                                uint32_t bitmapXY[],
68                                int count,
69                                int x, int y);
70 
71     typedef void (*SampleProc32)(const SkBitmapProcState&,
72                                  const uint32_t[],
73                                  int count,
74                                  SkPMColor colors[]);
75 
76     SkMatrixPriv::MapXYProc fInvProc;           // chooseProcs
77     SkFractionalInt     fInvSxFractionalInt;
78     SkFractionalInt     fInvKyFractionalInt;
79 
80     SkFixed             fFilterOneX;
81     SkFixed             fFilterOneY;
82 
83     SkFixed             fInvSx;             // chooseProcs
84     SkFixed             fInvKy;             // chooseProcs
85     SkPMColor           fPaintPMColor;      // chooseProcs - A8 config
86     uint16_t            fAlphaScale;        // chooseProcs
87 
88     /** Given the byte size of the index buffer to be passed to the matrix proc,
89         return the maximum number of resulting pixels that can be computed
90         (i.e. the number of SkPMColor values to be written by the sample proc).
91         This routine takes into account that filtering and scale-vs-affine
92         affect the amount of buffer space needed.
93 
94         Only valid to call after chooseProcs (setContext) has been called. It is
95         safe to call this inside the shader's shadeSpan() method.
96      */
97     int maxCountForBufferSize(size_t bufferSize) const;
98 
99     // If a shader proc is present, then the corresponding matrix/sample procs
100     // are ignored
getShaderProc32SkBitmapProcState101     ShaderProc32 getShaderProc32() const { return fShaderProc32; }
102 
103 #ifdef SK_DEBUG
104     MatrixProc getMatrixProc() const;
105 #else
getMatrixProcSkBitmapProcState106     MatrixProc getMatrixProc() const { return fMatrixProc; }
107 #endif
getSampleProc32SkBitmapProcState108     SampleProc32 getSampleProc32() const { return fSampleProc32; }
109 
110 private:
111     ShaderProc32        fShaderProc32;      // chooseProcs
112     // These are used if the shaderproc is nullptr
113     MatrixProc          fMatrixProc;        // chooseProcs
114     SampleProc32        fSampleProc32;      // chooseProcs
115 
116     MatrixProc chooseMatrixProc(bool trivial_matrix);
117     bool chooseProcs(); // caller must have called init() first (on our base-class)
118     ShaderProc32 chooseShaderProc32();
119 
120     // Return false if we failed to setup for fast translate (e.g. overflow)
121     bool setupForTranslate();
122 
123 #ifdef SK_DEBUG
124     static void DebugMatrixProc(const SkBitmapProcState&,
125                                 uint32_t[], int count, int x, int y);
126 #endif
127 };
128 
129 /*  Macros for packing and unpacking pairs of 16bit values in a 32bit uint.
130     Used to allow access to a stream of uint16_t either one at a time, or
131     2 at a time by unpacking a uint32_t
132  */
133 #ifdef SK_CPU_BENDIAN
134     #define PACK_TWO_SHORTS(pri, sec) ((pri) << 16 | (sec))
135     #define UNPACK_PRIMARY_SHORT(packed)    ((uint32_t)(packed) >> 16)
136     #define UNPACK_SECONDARY_SHORT(packed)  ((packed) & 0xFFFF)
137 #else
138     #define PACK_TWO_SHORTS(pri, sec) ((pri) | ((sec) << 16))
139     #define UNPACK_PRIMARY_SHORT(packed)    ((packed) & 0xFFFF)
140     #define UNPACK_SECONDARY_SHORT(packed)  ((uint32_t)(packed) >> 16)
141 #endif
142 
143 #ifdef SK_DEBUG
pack_two_shorts(U16CPU pri,U16CPU sec)144     static inline uint32_t pack_two_shorts(U16CPU pri, U16CPU sec) {
145         SkASSERT((uint16_t)pri == pri);
146         SkASSERT((uint16_t)sec == sec);
147         return PACK_TWO_SHORTS(pri, sec);
148     }
149 #else
150     #define pack_two_shorts(pri, sec)   PACK_TWO_SHORTS(pri, sec)
151 #endif
152 
153 // Helper class for mapping the middle of pixel (x, y) into SkFractionalInt bitmap space.
154 // Discussion:
155 // Overall, this code takes a point in destination space, and uses the center of the pixel
156 // at (x, y) to determine the sample point in source space. It then adjusts the pixel by different
157 // amounts based in filtering and tiling.
158 // This code can be broken into two main cases based on filtering:
159 // * no filtering (nearest neighbor) - when using nearest neighbor filtering all tile modes reduce
160 // the sampled by one ulp. If a simple point pt lies precisely on XXX.1/2 then it forced down
161 // when positive making 1/2 + 1/2 = .999999 instead of 1.0.
162 // * filtering - in the filtering case, the code calculates the -1/2 shift for starting the
163 // bilerp kernel. There is a twist; there is a big difference between clamp and the other tile
164 // modes. In tile and repeat the matrix has been reduced by an additional 1/width and 1/height
165 // factor. This maps from destination space to [0, 1) (instead of source space) to allow easy
166 // modulo arithmetic. This means that the -1/2 needed by bilerp is actually 1/2 * 1/width for x
167 // and 1/2 * 1/height for y. This is what happens when the poorly named fFilterOne{X|Y} is
168 // divided by two.
169 class SkBitmapProcStateAutoMapper {
170 public:
171     SkBitmapProcStateAutoMapper(const SkBitmapProcState& s, int x, int y,
172                                 SkPoint* scalarPoint = nullptr) {
173         SkPoint pt;
174         s.fInvProc(s.fInvMatrix,
175                    SkIntToScalar(x) + SK_ScalarHalf,
176                    SkIntToScalar(y) + SK_ScalarHalf, &pt);
177 
178         SkFixed biasX, biasY;
179         if (s.fFilterQuality == kNone_SkFilterQuality) {
180             // SkFixed epsilon bias to ensure inverse-mapped bitmap coordinates are rounded
181             // consistently WRT geometry.  Note that we only need the bias for positive scales:
182             // for negative scales, the rounding is intrinsically correct.
183             // We scale it to persist SkFractionalInt -> SkFixed conversions.
184             biasX = (s.fInvMatrix.getScaleX() > 0);
185             biasY = (s.fInvMatrix.getScaleY() > 0);
186         } else {
187             biasX = s.fFilterOneX >> 1;
188             biasY = s.fFilterOneY >> 1;
189         }
190 
191         // punt to unsigned for defined underflow behavior
192         fX = (SkFractionalInt)((uint64_t)SkScalarToFractionalInt(pt.x()) -
193                                (uint64_t)SkFixedToFractionalInt(biasX));
194         fY = (SkFractionalInt)((uint64_t)SkScalarToFractionalInt(pt.y()) -
195                                (uint64_t)SkFixedToFractionalInt(biasY));
196 
197         if (scalarPoint) {
198             scalarPoint->set(pt.x() - SkFixedToScalar(biasX),
199                              pt.y() - SkFixedToScalar(biasY));
200         }
201     }
202 
fractionalIntX()203     SkFractionalInt fractionalIntX() const { return fX; }
fractionalIntY()204     SkFractionalInt fractionalIntY() const { return fY; }
205 
fixedX()206     SkFixed fixedX() const { return SkFractionalIntToFixed(fX); }
fixedY()207     SkFixed fixedY() const { return SkFractionalIntToFixed(fY); }
208 
intX()209     int intX() const { return SkFractionalIntToInt(fX); }
intY()210     int intY() const { return SkFractionalIntToInt(fY); }
211 
212 private:
213     SkFractionalInt fX, fY;
214 };
215 
216 #endif
217