• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2014 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "include/core/SkPathMeasure.h"
9 #include "include/core/SkStrokeRec.h"
10 #include "src/core/SkPointPriv.h"
11 #include "src/utils/SkDashPathPriv.h"
12 
13 #include <utility>
14 
is_even(int x)15 static inline int is_even(int x) {
16     return !(x & 1);
17 }
18 
find_first_interval(const SkScalar intervals[],SkScalar phase,int32_t * index,int count)19 static SkScalar find_first_interval(const SkScalar intervals[], SkScalar phase,
20                                     int32_t* index, int count) {
21     for (int i = 0; i < count; ++i) {
22         SkScalar gap = intervals[i];
23         if (phase > gap || (phase == gap && gap)) {
24             phase -= gap;
25         } else {
26             *index = i;
27             return gap - phase;
28         }
29     }
30     // If we get here, phase "appears" to be larger than our length. This
31     // shouldn't happen with perfect precision, but we can accumulate errors
32     // during the initial length computation (rounding can make our sum be too
33     // big or too small. In that event, we just have to eat the error here.
34     *index = 0;
35     return intervals[0];
36 }
37 
CalcDashParameters(SkScalar phase,const SkScalar intervals[],int32_t count,SkScalar * initialDashLength,int32_t * initialDashIndex,SkScalar * intervalLength,SkScalar * adjustedPhase)38 void SkDashPath::CalcDashParameters(SkScalar phase, const SkScalar intervals[], int32_t count,
39                                     SkScalar* initialDashLength, int32_t* initialDashIndex,
40                                     SkScalar* intervalLength, SkScalar* adjustedPhase) {
41     SkScalar len = 0;
42     for (int i = 0; i < count; i++) {
43         len += intervals[i];
44     }
45     *intervalLength = len;
46     // Adjust phase to be between 0 and len, "flipping" phase if negative.
47     // e.g., if len is 100, then phase of -20 (or -120) is equivalent to 80
48     if (adjustedPhase) {
49         if (phase < 0) {
50             phase = -phase;
51             if (phase > len) {
52                 phase = SkScalarMod(phase, len);
53             }
54             phase = len - phase;
55 
56             // Due to finite precision, it's possible that phase == len,
57             // even after the subtract (if len >>> phase), so fix that here.
58             // This fixes http://crbug.com/124652 .
59             SkASSERT(phase <= len);
60             if (phase == len) {
61                 phase = 0;
62             }
63         } else if (phase >= len) {
64             phase = SkScalarMod(phase, len);
65         }
66         *adjustedPhase = phase;
67     }
68     SkASSERT(phase >= 0 && phase < len);
69 
70     *initialDashLength = find_first_interval(intervals, phase,
71                                             initialDashIndex, count);
72 
73     SkASSERT(*initialDashLength >= 0);
74     SkASSERT(*initialDashIndex >= 0 && *initialDashIndex < count);
75 }
76 
outset_for_stroke(SkRect * rect,const SkStrokeRec & rec)77 static void outset_for_stroke(SkRect* rect, const SkStrokeRec& rec) {
78     SkScalar radius = SkScalarHalf(rec.getWidth());
79     if (0 == radius) {
80         radius = SK_Scalar1;    // hairlines
81     }
82     if (SkPaint::kMiter_Join == rec.getJoin()) {
83         radius *= rec.getMiter();
84     }
85     rect->outset(radius, radius);
86 }
87 
88 // If line is zero-length, bump out the end by a tiny amount
89 // to draw endcaps. The bump factor is sized so that
90 // SkPoint::Distance() computes a non-zero length.
91 // Offsets SK_ScalarNearlyZero or smaller create empty paths when Iter measures length.
92 // Large values are scaled by SK_ScalarNearlyZero so significant bits change.
adjust_zero_length_line(SkPoint pts[2])93 static void adjust_zero_length_line(SkPoint pts[2]) {
94     SkASSERT(pts[0] == pts[1]);
95     pts[1].fX += SkTMax(1.001f, pts[1].fX) * SK_ScalarNearlyZero;
96 }
97 
clip_line(SkPoint pts[2],const SkRect & bounds,SkScalar intervalLength,SkScalar priorPhase)98 static bool clip_line(SkPoint pts[2], const SkRect& bounds, SkScalar intervalLength,
99                       SkScalar priorPhase) {
100     SkVector dxy = pts[1] - pts[0];
101 
102     // only horizontal or vertical lines
103     if (dxy.fX && dxy.fY) {
104         return false;
105     }
106     int xyOffset = SkToBool(dxy.fY);  // 0 to adjust horizontal, 1 to adjust vertical
107 
108     SkScalar minXY = (&pts[0].fX)[xyOffset];
109     SkScalar maxXY = (&pts[1].fX)[xyOffset];
110     bool swapped = maxXY < minXY;
111     if (swapped) {
112         using std::swap;
113         swap(minXY, maxXY);
114     }
115 
116     SkASSERT(minXY <= maxXY);
117     SkScalar leftTop = (&bounds.fLeft)[xyOffset];
118     SkScalar rightBottom = (&bounds.fRight)[xyOffset];
119     if (maxXY < leftTop || minXY > rightBottom) {
120         return false;
121     }
122 
123     // Now we actually perform the chop, removing the excess to the left/top and
124     // right/bottom of the bounds (keeping our new line "in phase" with the dash,
125     // hence the (mod intervalLength).
126 
127     if (minXY < leftTop) {
128         minXY = leftTop - SkScalarMod(leftTop - minXY, intervalLength);
129         if (!swapped) {
130             minXY -= priorPhase;  // for rectangles, adjust by prior phase
131         }
132     }
133     if (maxXY > rightBottom) {
134         maxXY = rightBottom + SkScalarMod(maxXY - rightBottom, intervalLength);
135         if (swapped) {
136             maxXY += priorPhase;  // for rectangles, adjust by prior phase
137         }
138     }
139 
140     SkASSERT(maxXY >= minXY);
141     if (swapped) {
142         using std::swap;
143         swap(minXY, maxXY);
144     }
145     (&pts[0].fX)[xyOffset] = minXY;
146     (&pts[1].fX)[xyOffset] = maxXY;
147 
148     if (minXY == maxXY) {
149         adjust_zero_length_line(pts);
150     }
151     return true;
152 }
153 
154 // Handles only lines and rects.
155 // If cull_path() returns true, dstPath is the new smaller path,
156 // otherwise dstPath may have been changed but you should ignore it.
cull_path(const SkPath & srcPath,const SkStrokeRec & rec,const SkRect * cullRect,SkScalar intervalLength,SkPath * dstPath)157 static bool cull_path(const SkPath& srcPath, const SkStrokeRec& rec,
158                       const SkRect* cullRect, SkScalar intervalLength, SkPath* dstPath) {
159     if (!cullRect) {
160         SkPoint pts[2];
161         if (srcPath.isLine(pts) && pts[0] == pts[1]) {
162             adjust_zero_length_line(pts);
163             dstPath->moveTo(pts[0]);
164             dstPath->lineTo(pts[1]);
165             return true;
166         }
167         return false;
168     }
169 
170     SkRect bounds;
171     bounds = *cullRect;
172     outset_for_stroke(&bounds, rec);
173 
174     {
175         SkPoint pts[2];
176         if (srcPath.isLine(pts)) {
177             if (clip_line(pts, bounds, intervalLength, 0)) {
178                 dstPath->moveTo(pts[0]);
179                 dstPath->lineTo(pts[1]);
180                 return true;
181             }
182             return false;
183         }
184     }
185 
186     if (srcPath.isRect(nullptr)) {
187         // We'll break the rect into four lines, culling each separately.
188         SkPath::Iter iter(srcPath, false);
189 
190         SkPoint pts[4];  // Rects are all moveTo and lineTo, so we'll only use pts[0] and pts[1].
191         SkAssertResult(SkPath::kMove_Verb == iter.next(pts));
192 
193         SkScalar accum = 0;  // Sum of unculled edge lengths to keep the phase correct.
194         while (iter.next(pts) == SkPath::kLine_Verb) {
195             // Notice this vector v and accum work with the original unclipped length.
196             SkVector v = pts[1] - pts[0];
197 
198             if (clip_line(pts, bounds, intervalLength, SkScalarMod(accum, intervalLength))) {
199                 // pts[0] may have just been changed by clip_line().
200                 // If that's not where we ended the previous lineTo(), we need to moveTo() there.
201                 SkPoint last;
202                 if (!dstPath->getLastPt(&last) || last != pts[0]) {
203                     dstPath->moveTo(pts[0]);
204                 }
205                 dstPath->lineTo(pts[1]);
206             }
207 
208             // We either just traveled v.fX horizontally or v.fY vertically.
209             SkASSERT(v.fX == 0 || v.fY == 0);
210             accum += SkScalarAbs(v.fX + v.fY);
211         }
212         return !dstPath->isEmpty();
213     }
214 
215     return false;
216 }
217 
218 class SpecialLineRec {
219 public:
init(const SkPath & src,SkPath * dst,SkStrokeRec * rec,int intervalCount,SkScalar intervalLength)220     bool init(const SkPath& src, SkPath* dst, SkStrokeRec* rec,
221               int intervalCount, SkScalar intervalLength) {
222         if (rec->isHairlineStyle() || !src.isLine(fPts)) {
223             return false;
224         }
225 
226         // can relax this in the future, if we handle square and round caps
227         if (SkPaint::kButt_Cap != rec->getCap()) {
228             return false;
229         }
230 
231         SkScalar pathLength = SkPoint::Distance(fPts[0], fPts[1]);
232 
233         fTangent = fPts[1] - fPts[0];
234         if (fTangent.isZero()) {
235             return false;
236         }
237 
238         fPathLength = pathLength;
239         fTangent.scale(SkScalarInvert(pathLength));
240         SkPointPriv::RotateCCW(fTangent, &fNormal);
241         fNormal.scale(SkScalarHalf(rec->getWidth()));
242 
243         // now estimate how many quads will be added to the path
244         //     resulting segments = pathLen * intervalCount / intervalLen
245         //     resulting points = 4 * segments
246 
247         SkScalar ptCount = pathLength * intervalCount / (float)intervalLength;
248         ptCount = SkTMin(ptCount, SkDashPath::kMaxDashCount);
249         int n = SkScalarCeilToInt(ptCount) << 2;
250         dst->incReserve(n);
251 
252         // we will take care of the stroking
253         rec->setFillStyle();
254         return true;
255     }
256 
addSegment(SkScalar d0,SkScalar d1,SkPath * path) const257     void addSegment(SkScalar d0, SkScalar d1, SkPath* path) const {
258         SkASSERT(d0 <= fPathLength);
259         // clamp the segment to our length
260         if (d1 > fPathLength) {
261             d1 = fPathLength;
262         }
263 
264         SkScalar x0 = fPts[0].fX + fTangent.fX * d0;
265         SkScalar x1 = fPts[0].fX + fTangent.fX * d1;
266         SkScalar y0 = fPts[0].fY + fTangent.fY * d0;
267         SkScalar y1 = fPts[0].fY + fTangent.fY * d1;
268 
269         SkPoint pts[4];
270         pts[0].set(x0 + fNormal.fX, y0 + fNormal.fY);   // moveTo
271         pts[1].set(x1 + fNormal.fX, y1 + fNormal.fY);   // lineTo
272         pts[2].set(x1 - fNormal.fX, y1 - fNormal.fY);   // lineTo
273         pts[3].set(x0 - fNormal.fX, y0 - fNormal.fY);   // lineTo
274 
275         path->addPoly(pts, SK_ARRAY_COUNT(pts), false);
276     }
277 
278 private:
279     SkPoint fPts[2];
280     SkVector fTangent;
281     SkVector fNormal;
282     SkScalar fPathLength;
283 };
284 
285 
InternalFilter(SkPath * dst,const SkPath & src,SkStrokeRec * rec,const SkRect * cullRect,const SkScalar aIntervals[],int32_t count,SkScalar initialDashLength,int32_t initialDashIndex,SkScalar intervalLength,StrokeRecApplication strokeRecApplication)286 bool SkDashPath::InternalFilter(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
287                                 const SkRect* cullRect, const SkScalar aIntervals[],
288                                 int32_t count, SkScalar initialDashLength, int32_t initialDashIndex,
289                                 SkScalar intervalLength,
290                                 StrokeRecApplication strokeRecApplication) {
291     // we must always have an even number of intervals
292     SkASSERT(is_even(count));
293 
294     // we do nothing if the src wants to be filled
295     SkStrokeRec::Style style = rec->getStyle();
296     if (SkStrokeRec::kFill_Style == style || SkStrokeRec::kStrokeAndFill_Style == style) {
297         return false;
298     }
299 
300     const SkScalar* intervals = aIntervals;
301     SkScalar        dashCount = 0;
302     int             segCount = 0;
303 
304     SkPath cullPathStorage;
305     const SkPath* srcPtr = &src;
306     if (cull_path(src, *rec, cullRect, intervalLength, &cullPathStorage)) {
307         // if rect is closed, starts in a dash, and ends in a dash, add the initial join
308         // potentially a better fix is described here: bug.skia.org/7445
309         if (src.isRect(nullptr) && src.isLastContourClosed() && is_even(initialDashIndex)) {
310             SkScalar pathLength = SkPathMeasure(src, false, rec->getResScale()).getLength();
311             SkScalar endPhase = SkScalarMod(pathLength + initialDashLength, intervalLength);
312             int index = 0;
313             while (endPhase > intervals[index]) {
314                 endPhase -= intervals[index++];
315                 SkASSERT(index <= count);
316                 if (index == count) {
317                     // We have run out of intervals. endPhase "should" never get to this point,
318                     // but it could if the subtracts underflowed. Hence we will pin it as if it
319                     // perfectly ran through the intervals.
320                     // See crbug.com/875494 (and skbug.com/8274)
321                     endPhase = 0;
322                     break;
323                 }
324             }
325             // if dash ends inside "on", or ends at beginning of "off"
326             if (is_even(index) == (endPhase > 0)) {
327                 SkPoint midPoint = src.getPoint(0);
328                 // get vector at end of rect
329                 int last = src.countPoints() - 1;
330                 while (midPoint == src.getPoint(last)) {
331                     --last;
332                     SkASSERT(last >= 0);
333                 }
334                 // get vector at start of rect
335                 int next = 1;
336                 while (midPoint == src.getPoint(next)) {
337                     ++next;
338                     SkASSERT(next < last);
339                 }
340                 SkVector v = midPoint - src.getPoint(last);
341                 const SkScalar kTinyOffset = SK_ScalarNearlyZero;
342                 // scale vector to make start of tiny right angle
343                 v *= kTinyOffset;
344                 cullPathStorage.moveTo(midPoint - v);
345                 cullPathStorage.lineTo(midPoint);
346                 v = midPoint - src.getPoint(next);
347                 // scale vector to make end of tiny right angle
348                 v *= kTinyOffset;
349                 cullPathStorage.lineTo(midPoint - v);
350             }
351         }
352         srcPtr = &cullPathStorage;
353     }
354 
355     SpecialLineRec lineRec;
356     bool specialLine = (StrokeRecApplication::kAllow == strokeRecApplication) &&
357                        lineRec.init(*srcPtr, dst, rec, count >> 1, intervalLength);
358 
359     SkPathMeasure   meas(*srcPtr, false, rec->getResScale());
360 
361     do {
362         bool        skipFirstSegment = meas.isClosed();
363         bool        addedSegment = false;
364         SkScalar    length = meas.getLength();
365         int         index = initialDashIndex;
366 
367         // Since the path length / dash length ratio may be arbitrarily large, we can exert
368         // significant memory pressure while attempting to build the filtered path. To avoid this,
369         // we simply give up dashing beyond a certain threshold.
370         //
371         // The original bug report (http://crbug.com/165432) is based on a path yielding more than
372         // 90 million dash segments and crashing the memory allocator. A limit of 1 million
373         // segments seems reasonable: at 2 verbs per segment * 9 bytes per verb, this caps the
374         // maximum dash memory overhead at roughly 17MB per path.
375         dashCount += length * (count >> 1) / intervalLength;
376         if (dashCount > kMaxDashCount) {
377             dst->reset();
378             return false;
379         }
380 
381         // Using double precision to avoid looping indefinitely due to single precision rounding
382         // (for extreme path_length/dash_length ratios). See test_infinite_dash() unittest.
383         double  distance = 0;
384         double  dlen = initialDashLength;
385 
386         while (distance < length) {
387             SkASSERT(dlen >= 0);
388             addedSegment = false;
389             if (is_even(index) && !skipFirstSegment) {
390                 addedSegment = true;
391                 ++segCount;
392 
393                 if (specialLine) {
394                     lineRec.addSegment(SkDoubleToScalar(distance),
395                                        SkDoubleToScalar(distance + dlen),
396                                        dst);
397                 } else {
398                     meas.getSegment(SkDoubleToScalar(distance),
399                                     SkDoubleToScalar(distance + dlen),
400                                     dst, true);
401                 }
402             }
403             distance += dlen;
404 
405             // clear this so we only respect it the first time around
406             skipFirstSegment = false;
407 
408             // wrap around our intervals array if necessary
409             index += 1;
410             SkASSERT(index <= count);
411             if (index == count) {
412                 index = 0;
413             }
414 
415             // fetch our next dlen
416             dlen = intervals[index];
417         }
418 
419         // extend if we ended on a segment and we need to join up with the (skipped) initial segment
420         if (meas.isClosed() && is_even(initialDashIndex) &&
421             initialDashLength >= 0) {
422             meas.getSegment(0, initialDashLength, dst, !addedSegment);
423             ++segCount;
424         }
425     } while (meas.nextContour());
426 
427     if (segCount > 1) {
428         dst->setConvexity(SkPath::kConcave_Convexity);
429     }
430 
431     return true;
432 }
433 
FilterDashPath(SkPath * dst,const SkPath & src,SkStrokeRec * rec,const SkRect * cullRect,const SkPathEffect::DashInfo & info)434 bool SkDashPath::FilterDashPath(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
435                                 const SkRect* cullRect, const SkPathEffect::DashInfo& info) {
436     if (!ValidDashPath(info.fPhase, info.fIntervals, info.fCount)) {
437         return false;
438     }
439     SkScalar initialDashLength = 0;
440     int32_t initialDashIndex = 0;
441     SkScalar intervalLength = 0;
442     CalcDashParameters(info.fPhase, info.fIntervals, info.fCount,
443                        &initialDashLength, &initialDashIndex, &intervalLength);
444     return InternalFilter(dst, src, rec, cullRect, info.fIntervals, info.fCount, initialDashLength,
445                           initialDashIndex, intervalLength);
446 }
447 
ValidDashPath(SkScalar phase,const SkScalar intervals[],int32_t count)448 bool SkDashPath::ValidDashPath(SkScalar phase, const SkScalar intervals[], int32_t count) {
449     if (count < 2 || !SkIsAlign2(count)) {
450         return false;
451     }
452     SkScalar length = 0;
453     for (int i = 0; i < count; i++) {
454         if (intervals[i] < 0) {
455             return false;
456         }
457         length += intervals[i];
458     }
459     // watch out for values that might make us go out of bounds
460     return length > 0 && SkScalarIsFinite(phase) && SkScalarIsFinite(length);
461 }
462