• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * @file
3  *
4  * 6LowPAN output for IPv6. Uses ND tables for link-layer addressing. Fragments packets to 6LowPAN units.
5  *
6  * This implementation aims to conform to IEEE 802.15.4(-2015), RFC 4944 and RFC 6282.
7  * @todo: RFC 6775.
8  */
9 
10 /*
11  * Copyright (c) 2015 Inico Technologies Ltd.
12  * All rights reserved.
13  *
14  * Redistribution and use in source and binary forms, with or without modification,
15  * are permitted provided that the following conditions are met:
16  *
17  * 1. Redistributions of source code must retain the above copyright notice,
18  *    this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright notice,
20  *    this list of conditions and the following disclaimer in the documentation
21  *    and/or other materials provided with the distribution.
22  * 3. The name of the author may not be used to endorse or promote products
23  *    derived from this software without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
26  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
28  * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
30  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
33  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
34  * OF SUCH DAMAGE.
35  *
36  * This file is part of the lwIP TCP/IP stack.
37  *
38  * Author: Ivan Delamer <delamer@inicotech.com>
39  *
40  *
41  * Please coordinate changes and requests with Ivan Delamer
42  * <delamer@inicotech.com>
43  */
44 
45 /**
46  * @defgroup sixlowpan 6LoWPAN (RFC4944)
47  * @ingroup netifs
48  * 6LowPAN netif implementation
49  */
50 
51 #include "netif/lowpan6.h"
52 
53 #if LWIP_IPV6
54 
55 #include "lwip/ip.h"
56 #include "lwip/pbuf.h"
57 #include "lwip/ip_addr.h"
58 #include "lwip/netif.h"
59 #include "lwip/nd6.h"
60 #include "lwip/mem.h"
61 #include "lwip/udp.h"
62 #include "lwip/tcpip.h"
63 #include "lwip/snmp.h"
64 #include "netif/ieee802154.h"
65 
66 #include <string.h>
67 
68 #if LWIP_6LOWPAN_802154_HW_CRC
69 #define LWIP_6LOWPAN_DO_CALC_CRC(buf, len) 0
70 #else
71 #define LWIP_6LOWPAN_DO_CALC_CRC(buf, len) LWIP_6LOWPAN_CALC_CRC(buf, len)
72 #endif
73 
74 /** This is a helper struct for reassembly of fragments
75  * (IEEE 802.15.4 limits to 127 bytes)
76  */
77 struct lowpan6_reass_helper {
78   struct lowpan6_reass_helper *next_packet;
79   struct pbuf *reass;
80   struct pbuf *frags;
81   u8_t timer;
82   struct lowpan6_link_addr sender_addr;
83   u16_t datagram_size;
84   u16_t datagram_tag;
85 };
86 
87 /** This struct keeps track of per-netif state */
88 struct lowpan6_ieee802154_data {
89   /** fragment reassembly list */
90   struct lowpan6_reass_helper *reass_list;
91 #if LWIP_6LOWPAN_NUM_CONTEXTS > 0
92   /** address context for compression */
93   ip6_addr_t lowpan6_context[LWIP_6LOWPAN_NUM_CONTEXTS];
94 #endif
95   /** Datagram Tag for fragmentation */
96   u16_t tx_datagram_tag;
97   /** local PAN ID for IEEE 802.15.4 header */
98   u16_t ieee_802154_pan_id;
99   /** Sequence Number for IEEE 802.15.4 transmission */
100   u8_t tx_frame_seq_num;
101 };
102 
103 /* Maximum frame size is 127 bytes minus CRC size */
104 #define LOWPAN6_MAX_PAYLOAD (127 - 2)
105 
106 /** Currently, this state is global, since there's only one 6LoWPAN netif */
107 static struct lowpan6_ieee802154_data lowpan6_data;
108 
109 #if LWIP_6LOWPAN_NUM_CONTEXTS > 0
110 #define LWIP_6LOWPAN_CONTEXTS(netif) lowpan6_data.lowpan6_context
111 #else
112 #define LWIP_6LOWPAN_CONTEXTS(netif) NULL
113 #endif
114 
115 static const struct lowpan6_link_addr ieee_802154_broadcast = {2, {0xff, 0xff}};
116 
117 #if LWIP_6LOWPAN_INFER_SHORT_ADDRESS
118 static struct lowpan6_link_addr short_mac_addr = {2, {0, 0}};
119 #endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */
120 
121 /* IEEE 802.15.4 specific functions: */
122 
123 /** Write the IEEE 802.15.4 header that encapsulates the 6LoWPAN frame.
124  * Src and dst PAN IDs are filled with the ID set by @ref lowpan6_set_pan_id.
125  *
126  * Since the length is variable:
127  * @returns the header length
128  */
129 static u8_t
lowpan6_write_iee802154_header(struct ieee_802154_hdr * hdr,const struct lowpan6_link_addr * src,const struct lowpan6_link_addr * dst)130 lowpan6_write_iee802154_header(struct ieee_802154_hdr *hdr, const struct lowpan6_link_addr *src,
131                                const struct lowpan6_link_addr *dst)
132 {
133   u8_t ieee_header_len;
134   u8_t *buffer;
135   u8_t i;
136   u16_t fc;
137 
138   fc = IEEE_802154_FC_FT_DATA; /* send data packet (2003 frame version) */
139   fc |= IEEE_802154_FC_PANID_COMPR; /* set PAN ID compression, for now src and dst PANs are equal */
140   if (dst != &ieee_802154_broadcast) {
141     fc |= IEEE_802154_FC_ACK_REQ; /* data packet, no broadcast: ack required. */
142   }
143   if (dst->addr_len == 2) {
144     fc |= IEEE_802154_FC_DST_ADDR_MODE_SHORT;
145   } else {
146     LWIP_ASSERT("invalid dst address length", dst->addr_len == 8);
147     fc |= IEEE_802154_FC_DST_ADDR_MODE_EXT;
148   }
149   if (src->addr_len == 2) {
150     fc |= IEEE_802154_FC_SRC_ADDR_MODE_SHORT;
151   } else {
152     LWIP_ASSERT("invalid src address length", src->addr_len == 8);
153     fc |= IEEE_802154_FC_SRC_ADDR_MODE_EXT;
154   }
155   hdr->frame_control = fc;
156   hdr->sequence_number = lowpan6_data.tx_frame_seq_num++;
157   hdr->destination_pan_id = lowpan6_data.ieee_802154_pan_id; /* pan id */
158 
159   buffer = (u8_t *)hdr;
160   ieee_header_len = 5;
161   i = dst->addr_len;
162   /* reverse memcpy of dst addr */
163   while (i-- > 0) {
164     buffer[ieee_header_len++] = dst->addr[i];
165   }
166   /* Source PAN ID skipped due to PAN ID Compression */
167   i = src->addr_len;
168   /* reverse memcpy of src addr */
169   while (i-- > 0) {
170     buffer[ieee_header_len++] = src->addr[i];
171   }
172   return ieee_header_len;
173 }
174 
175 /** Parse the IEEE 802.15.4 header from a pbuf.
176  * If successful, the header is hidden from the pbuf.
177  *
178  * PAN IDs and seuqence number are not checked
179  *
180  * @param p input pbuf, p->payload pointing at the IEEE 802.15.4 header
181  * @param src pointer to source address filled from the header
182  * @param dest pointer to destination address filled from the header
183  * @returns ERR_OK if successful
184  */
185 static err_t
lowpan6_parse_iee802154_header(struct pbuf * p,struct lowpan6_link_addr * src,struct lowpan6_link_addr * dest)186 lowpan6_parse_iee802154_header(struct pbuf *p, struct lowpan6_link_addr *src,
187                                struct lowpan6_link_addr *dest)
188 {
189   u8_t *puc;
190   s8_t i;
191   u16_t frame_control, addr_mode;
192   u16_t datagram_offset;
193 
194   /* Parse IEEE 802.15.4 header */
195   puc = (u8_t *)p->payload;
196   frame_control = puc[0] | (puc[1] << 8);
197   datagram_offset = 2;
198   if (frame_control & IEEE_802154_FC_SEQNO_SUPPR) {
199     if (IEEE_802154_FC_FRAME_VERSION_GET(frame_control) <= 1) {
200       /* sequence number suppressed, this is not valid for versions 0/1 */
201       return ERR_VAL;
202     }
203   } else {
204     datagram_offset++;
205   }
206   datagram_offset += 2; /* Skip destination PAN ID */
207   addr_mode = frame_control & IEEE_802154_FC_DST_ADDR_MODE_MASK;
208   if (addr_mode == IEEE_802154_FC_DST_ADDR_MODE_EXT) {
209     /* extended address (64 bit) */
210     dest->addr_len = 8;
211     /* reverse memcpy: */
212     for (i = 0; i < 8; i++) {
213       dest->addr[i] = puc[datagram_offset + 7 - i];
214     }
215     datagram_offset += 8;
216   } else if (addr_mode == IEEE_802154_FC_DST_ADDR_MODE_SHORT) {
217     /* short address (16 bit) */
218     dest->addr_len = 2;
219     /* reverse memcpy: */
220     dest->addr[0] = puc[datagram_offset + 1];
221     dest->addr[1] = puc[datagram_offset];
222     datagram_offset += 2;
223   } else {
224     /* unsupported address mode (do we need "no address"?) */
225     return ERR_VAL;
226   }
227 
228   if (!(frame_control & IEEE_802154_FC_PANID_COMPR)) {
229     /* No PAN ID compression, skip source PAN ID */
230     datagram_offset += 2;
231   }
232 
233   addr_mode = frame_control & IEEE_802154_FC_SRC_ADDR_MODE_MASK;
234   if (addr_mode == IEEE_802154_FC_SRC_ADDR_MODE_EXT) {
235     /* extended address (64 bit) */
236     src->addr_len = 8;
237     /* reverse memcpy: */
238     for (i = 0; i < 8; i++) {
239       src->addr[i] = puc[datagram_offset + 7 - i];
240     }
241     datagram_offset += 8;
242   } else if (addr_mode == IEEE_802154_FC_DST_ADDR_MODE_SHORT) {
243     /* short address (16 bit) */
244     src->addr_len = 2;
245     src->addr[0] = puc[datagram_offset + 1];
246     src->addr[1] = puc[datagram_offset];
247     datagram_offset += 2;
248   } else {
249     /* unsupported address mode (do we need "no address"?) */
250     return ERR_VAL;
251   }
252 
253   /* hide IEEE802.15.4 header. */
254   if (pbuf_remove_header(p, datagram_offset)) {
255     return ERR_VAL;
256   }
257   return ERR_OK;
258 }
259 
260 /** Calculate the 16-bit CRC as required by IEEE 802.15.4 */
261 u16_t
lowpan6_calc_crc(const void * buf,u16_t len)262 lowpan6_calc_crc(const void* buf, u16_t len)
263 {
264 #define CCITT_POLY_16 0x8408U
265   u16_t i;
266   u8_t b;
267   u16_t crc = 0;
268   const u8_t* p = (const u8_t*)buf;
269 
270   for (i = 0; i < len; i++) {
271     u8_t data = *p;
272     for (b = 0U; b < 8U; b++) {
273       if (((data ^ crc) & 1) != 0) {
274         crc = (u16_t)((crc >> 1) ^ CCITT_POLY_16);
275       } else {
276         crc = (u16_t)(crc >> 1);
277       }
278       data = (u8_t)(data >> 1);
279     }
280     p++;
281   }
282   return crc;
283 }
284 
285 /* Fragmentation specific functions: */
286 
287 static void
free_reass_datagram(struct lowpan6_reass_helper * lrh)288 free_reass_datagram(struct lowpan6_reass_helper *lrh)
289 {
290   if (lrh->reass) {
291     pbuf_free(lrh->reass);
292   }
293   if (lrh->frags) {
294     pbuf_free(lrh->frags);
295   }
296   mem_free(lrh);
297 }
298 
299 /**
300  * Removes a datagram from the reassembly queue.
301  **/
302 static void
dequeue_datagram(struct lowpan6_reass_helper * lrh,struct lowpan6_reass_helper * prev)303 dequeue_datagram(struct lowpan6_reass_helper *lrh, struct lowpan6_reass_helper *prev)
304 {
305   if (lowpan6_data.reass_list == lrh) {
306     lowpan6_data.reass_list = lowpan6_data.reass_list->next_packet;
307   } else {
308     /* it wasn't the first, so it must have a valid 'prev' */
309     LWIP_ASSERT("sanity check linked list", prev != NULL);
310     prev->next_packet = lrh->next_packet;
311   }
312 }
313 
314 /**
315  * Periodic timer for 6LowPAN functions:
316  *
317  * - Remove incomplete/old packets
318  */
319 void
lowpan6_tmr(void)320 lowpan6_tmr(void)
321 {
322   struct lowpan6_reass_helper *lrh, *lrh_next, *lrh_prev = NULL;
323 
324   lrh = lowpan6_data.reass_list;
325   while (lrh != NULL) {
326     lrh_next = lrh->next_packet;
327     if ((--lrh->timer) == 0) {
328       dequeue_datagram(lrh, lrh_prev);
329       free_reass_datagram(lrh);
330     } else {
331       lrh_prev = lrh;
332     }
333     lrh = lrh_next;
334   }
335 }
336 
337 /*
338  * Encapsulates data into IEEE 802.15.4 frames.
339  * Fragments an IPv6 datagram into 6LowPAN units, which fit into IEEE 802.15.4 frames.
340  * If configured, will compress IPv6 and or UDP headers.
341  * */
342 static err_t
lowpan6_frag(struct netif * netif,struct pbuf * p,const struct lowpan6_link_addr * src,const struct lowpan6_link_addr * dst)343 lowpan6_frag(struct netif *netif, struct pbuf *p, const struct lowpan6_link_addr *src, const struct lowpan6_link_addr *dst)
344 {
345   struct pbuf *p_frag;
346   u16_t frag_len, remaining_len, max_data_len;
347   u8_t *buffer;
348   u8_t ieee_header_len;
349   u8_t lowpan6_header_len;
350   u8_t hidden_header_len;
351   u16_t crc;
352   u16_t datagram_offset;
353   err_t err = ERR_IF;
354 
355   LWIP_ASSERT("lowpan6_frag: netif->linkoutput not set", netif->linkoutput != NULL);
356 
357   /* We'll use a dedicated pbuf for building 6LowPAN fragments. */
358   p_frag = pbuf_alloc(PBUF_RAW, 127, PBUF_RAM);
359   if (p_frag == NULL) {
360     MIB2_STATS_NETIF_INC(netif, ifoutdiscards);
361     return ERR_MEM;
362   }
363   LWIP_ASSERT("this needs a pbuf in one piece", p_frag->len == p_frag->tot_len);
364 
365   /* Write IEEE 802.15.4 header. */
366   buffer = (u8_t *)p_frag->payload;
367   ieee_header_len = lowpan6_write_iee802154_header((struct ieee_802154_hdr *)buffer, src, dst);
368   LWIP_ASSERT("ieee_header_len < p_frag->len", ieee_header_len < p_frag->len);
369 
370 #if LWIP_6LOWPAN_IPHC
371   /* Perform 6LowPAN IPv6 header compression according to RFC 6282 */
372   /* do the header compression (this does NOT copy any non-compressed data) */
373   err = lowpan6_compress_headers(netif, (u8_t *)p->payload, p->len,
374     &buffer[ieee_header_len], p_frag->len - ieee_header_len, &lowpan6_header_len,
375     &hidden_header_len, LWIP_6LOWPAN_CONTEXTS(netif), src, dst);
376   if (err != ERR_OK) {
377     MIB2_STATS_NETIF_INC(netif, ifoutdiscards);
378     pbuf_free(p_frag);
379     return err;
380   }
381   pbuf_remove_header(p, hidden_header_len);
382 
383 #else /* LWIP_6LOWPAN_IPHC */
384   /* Send uncompressed IPv6 header with appropriate dispatch byte. */
385   lowpan6_header_len = 1;
386   buffer[ieee_header_len] = 0x41; /* IPv6 dispatch */
387 #endif /* LWIP_6LOWPAN_IPHC */
388 
389   /* Calculate remaining packet length */
390   remaining_len = p->tot_len;
391 
392   if (remaining_len > 0x7FF) {
393     MIB2_STATS_NETIF_INC(netif, ifoutdiscards);
394     /* datagram_size must fit into 11 bit */
395     pbuf_free(p_frag);
396     return ERR_VAL;
397   }
398 
399   /* Fragment, or 1 packet? */
400   max_data_len = LOWPAN6_MAX_PAYLOAD - ieee_header_len - lowpan6_header_len;
401   if (remaining_len > max_data_len) {
402     u16_t data_len;
403     /* We must move the 6LowPAN header to make room for the FRAG header. */
404     memmove(&buffer[ieee_header_len + 4], &buffer[ieee_header_len], lowpan6_header_len);
405 
406     /* Now we need to fragment the packet. FRAG1 header first */
407     buffer[ieee_header_len] = 0xc0 | (((p->tot_len + hidden_header_len) >> 8) & 0x7);
408     buffer[ieee_header_len + 1] = (p->tot_len + hidden_header_len) & 0xff;
409 
410     lowpan6_data.tx_datagram_tag++;
411     buffer[ieee_header_len + 2] = (lowpan6_data.tx_datagram_tag >> 8) & 0xff;
412     buffer[ieee_header_len + 3] = lowpan6_data.tx_datagram_tag & 0xff;
413 
414     /* Fragment follows. */
415     data_len = (max_data_len - 4) & 0xf8;
416     frag_len = data_len + lowpan6_header_len;
417 
418     pbuf_copy_partial(p, buffer + ieee_header_len + lowpan6_header_len + 4, frag_len - lowpan6_header_len, 0);
419     remaining_len -= frag_len - lowpan6_header_len;
420     /* datagram offset holds the offset before compression */
421     datagram_offset = frag_len - lowpan6_header_len + hidden_header_len;
422     LWIP_ASSERT("datagram offset must be a multiple of 8", (datagram_offset & 7) == 0);
423 
424     /* Calculate frame length */
425     p_frag->len = p_frag->tot_len = ieee_header_len + 4 + frag_len + 2; /* add 2 bytes for crc*/
426 
427     /* 2 bytes CRC */
428     crc = LWIP_6LOWPAN_DO_CALC_CRC(p_frag->payload, p_frag->len - 2);
429     pbuf_take_at(p_frag, &crc, 2, p_frag->len - 2);
430 
431     /* send the packet */
432     MIB2_STATS_NETIF_ADD(netif, ifoutoctets, p_frag->tot_len);
433     LWIP_DEBUGF(LWIP_LOWPAN6_DEBUG | LWIP_DBG_TRACE, ("lowpan6_send: sending packet %p\n", (void *)p));
434     err = netif->linkoutput(netif, p_frag);
435 
436     while ((remaining_len > 0) && (err == ERR_OK)) {
437       struct ieee_802154_hdr *hdr = (struct ieee_802154_hdr *)buffer;
438       /* new frame, new seq num for ACK */
439       hdr->sequence_number = lowpan6_data.tx_frame_seq_num++;
440 
441       buffer[ieee_header_len] |= 0x20; /* Change FRAG1 to FRAGN */
442 
443       LWIP_ASSERT("datagram offset must be a multiple of 8", (datagram_offset & 7) == 0);
444       buffer[ieee_header_len + 4] = (u8_t)(datagram_offset >> 3); /* datagram offset in FRAGN header (datagram_offset is max. 11 bit) */
445 
446       frag_len = (127 - ieee_header_len - 5 - 2) & 0xf8;
447       if (frag_len > remaining_len) {
448         frag_len = remaining_len;
449       }
450 
451       pbuf_copy_partial(p, buffer + ieee_header_len + 5, frag_len, p->tot_len - remaining_len);
452       remaining_len -= frag_len;
453       datagram_offset += frag_len;
454 
455       /* Calculate frame length */
456       p_frag->len = p_frag->tot_len = frag_len + 5 + ieee_header_len + 2;
457 
458       /* 2 bytes CRC */
459       crc = LWIP_6LOWPAN_DO_CALC_CRC(p_frag->payload, p_frag->len - 2);
460       pbuf_take_at(p_frag, &crc, 2, p_frag->len - 2);
461 
462       /* send the packet */
463       MIB2_STATS_NETIF_ADD(netif, ifoutoctets, p_frag->tot_len);
464       LWIP_DEBUGF(LWIP_LOWPAN6_DEBUG | LWIP_DBG_TRACE, ("lowpan6_send: sending packet %p\n", (void *)p));
465       err = netif->linkoutput(netif, p_frag);
466     }
467   } else {
468     /* It fits in one frame. */
469     frag_len = remaining_len;
470 
471     /* Copy IPv6 packet */
472     pbuf_copy_partial(p, buffer + ieee_header_len + lowpan6_header_len, frag_len, 0);
473     remaining_len = 0;
474 
475     /* Calculate frame length */
476     p_frag->len = p_frag->tot_len = frag_len + lowpan6_header_len + ieee_header_len + 2;
477     LWIP_ASSERT("", p_frag->len <= 127);
478 
479     /* 2 bytes CRC */
480     crc = LWIP_6LOWPAN_DO_CALC_CRC(p_frag->payload, p_frag->len - 2);
481     pbuf_take_at(p_frag, &crc, 2, p_frag->len - 2);
482 
483     /* send the packet */
484     MIB2_STATS_NETIF_ADD(netif, ifoutoctets, p_frag->tot_len);
485     LWIP_DEBUGF(LWIP_LOWPAN6_DEBUG | LWIP_DBG_TRACE, ("lowpan6_send: sending packet %p\n", (void *)p));
486     err = netif->linkoutput(netif, p_frag);
487   }
488 
489   pbuf_free(p_frag);
490 
491   return err;
492 }
493 
494 /**
495  * @ingroup sixlowpan
496  * Set context
497  */
498 err_t
lowpan6_set_context(u8_t idx,const ip6_addr_t * context)499 lowpan6_set_context(u8_t idx, const ip6_addr_t *context)
500 {
501 #if LWIP_6LOWPAN_NUM_CONTEXTS > 0
502   if (idx >= LWIP_6LOWPAN_NUM_CONTEXTS) {
503     return ERR_ARG;
504   }
505 
506   IP6_ADDR_ZONECHECK(context);
507 
508   ip6_addr_set(&lowpan6_data.lowpan6_context[idx], context);
509 
510   return ERR_OK;
511 #else
512   LWIP_UNUSED_ARG(idx);
513   LWIP_UNUSED_ARG(context);
514   return ERR_ARG;
515 #endif
516 }
517 
518 #if LWIP_6LOWPAN_INFER_SHORT_ADDRESS
519 /**
520  * @ingroup sixlowpan
521  * Set short address
522  */
523 err_t
lowpan6_set_short_addr(u8_t addr_high,u8_t addr_low)524 lowpan6_set_short_addr(u8_t addr_high, u8_t addr_low)
525 {
526   short_mac_addr.addr[0] = addr_high;
527   short_mac_addr.addr[1] = addr_low;
528 
529   return ERR_OK;
530 }
531 #endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */
532 
533 /* Create IEEE 802.15.4 address from netif address */
534 static err_t
lowpan6_hwaddr_to_addr(struct netif * netif,struct lowpan6_link_addr * addr)535 lowpan6_hwaddr_to_addr(struct netif *netif, struct lowpan6_link_addr *addr)
536 {
537   addr->addr_len = 8;
538   if (netif->hwaddr_len == 8) {
539     LWIP_ERROR("NETIF_MAX_HWADDR_LEN >= 8 required", sizeof(netif->hwaddr) >= 8, return ERR_VAL;);
540     SMEMCPY(addr->addr, netif->hwaddr, 8);
541   } else if (netif->hwaddr_len == 6) {
542     /* Copy from MAC-48 */
543     SMEMCPY(addr->addr, netif->hwaddr, 3);
544     addr->addr[3] = addr->addr[4] = 0xff;
545     SMEMCPY(&addr->addr[5], &netif->hwaddr[3], 3);
546   } else {
547     /* Invalid address length, don't know how to convert this */
548     return ERR_VAL;
549   }
550   return ERR_OK;
551 }
552 
553 /**
554  * @ingroup sixlowpan
555  * Resolve and fill-in IEEE 802.15.4 address header for outgoing IPv6 packet.
556  *
557  * Perform Header Compression and fragment if necessary.
558  *
559  * @param netif The lwIP network interface which the IP packet will be sent on.
560  * @param q The pbuf(s) containing the IP packet to be sent.
561  * @param ip6addr The IP address of the packet destination.
562  *
563  * @return err_t
564  */
565 err_t
lowpan6_output(struct netif * netif,struct pbuf * q,const ip6_addr_t * ip6addr)566 lowpan6_output(struct netif *netif, struct pbuf *q, const ip6_addr_t *ip6addr)
567 {
568   err_t result;
569   const u8_t *hwaddr;
570   struct lowpan6_link_addr src, dest;
571 #if LWIP_6LOWPAN_INFER_SHORT_ADDRESS
572   ip6_addr_t ip6_src;
573   struct ip6_hdr *ip6_hdr;
574 #endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */
575 
576 #if LWIP_6LOWPAN_INFER_SHORT_ADDRESS
577   /* Check if we can compress source address (use aligned copy) */
578   ip6_hdr = (struct ip6_hdr *)q->payload;
579   ip6_addr_copy_from_packed(ip6_src, ip6_hdr->src);
580   ip6_addr_assign_zone(&ip6_src, IP6_UNICAST, netif);
581   if (lowpan6_get_address_mode(&ip6_src, &short_mac_addr) == 3) {
582     src.addr_len = 2;
583     src.addr[0] = short_mac_addr.addr[0];
584     src.addr[1] = short_mac_addr.addr[1];
585   } else
586 #endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */
587   {
588     result = lowpan6_hwaddr_to_addr(netif, &src);
589     if (result != ERR_OK) {
590       MIB2_STATS_NETIF_INC(netif, ifoutdiscards);
591       return result;
592     }
593   }
594 
595   /* multicast destination IP address? */
596   if (ip6_addr_ismulticast(ip6addr)) {
597     MIB2_STATS_NETIF_INC(netif, ifoutnucastpkts);
598     /* We need to send to the broadcast address.*/
599     return lowpan6_frag(netif, q, &src, &ieee_802154_broadcast);
600   }
601 
602   /* We have a unicast destination IP address */
603   /* @todo anycast? */
604 
605 #if LWIP_6LOWPAN_INFER_SHORT_ADDRESS
606   if (src.addr_len == 2) {
607     /* If source address was compressable to short_mac_addr, and dest has same subnet and
608      * is also compressable to 2-bytes, assume we can infer dest as a short address too. */
609     dest.addr_len = 2;
610     dest.addr[0] = ((u8_t *)q->payload)[38];
611     dest.addr[1] = ((u8_t *)q->payload)[39];
612     if ((src.addr_len == 2) && (ip6_addr_netcmp_zoneless(&ip6_hdr->src, &ip6_hdr->dest)) &&
613         (lowpan6_get_address_mode(ip6addr, &dest) == 3)) {
614       MIB2_STATS_NETIF_INC(netif, ifoutucastpkts);
615       return lowpan6_frag(netif, q, &src, &dest);
616     }
617   }
618 #endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */
619 
620   /* Ask ND6 what to do with the packet. */
621   result = nd6_get_next_hop_addr_or_queue(netif, q, ip6addr, &hwaddr);
622   if (result != ERR_OK) {
623     MIB2_STATS_NETIF_INC(netif, ifoutdiscards);
624     return result;
625   }
626 
627   /* If no hardware address is returned, nd6 has queued the packet for later. */
628   if (hwaddr == NULL) {
629     return ERR_OK;
630   }
631 
632   /* Send out the packet using the returned hardware address. */
633   dest.addr_len = netif->hwaddr_len;
634   /* XXX: Inferring the length of the source address from the destination address
635    * is not correct for IEEE 802.15.4, but currently we don't get this information
636    * from the neighbor cache */
637   SMEMCPY(dest.addr, hwaddr, netif->hwaddr_len);
638   MIB2_STATS_NETIF_INC(netif, ifoutucastpkts);
639   return lowpan6_frag(netif, q, &src, &dest);
640 }
641 /**
642  * @ingroup sixlowpan
643  * NETIF input function: don't free the input pbuf when returning != ERR_OK!
644  */
645 err_t
lowpan6_input(struct pbuf * p,struct netif * netif)646 lowpan6_input(struct pbuf *p, struct netif *netif)
647 {
648   u8_t *puc, b;
649   s8_t i;
650   struct lowpan6_link_addr src, dest;
651   u16_t datagram_size = 0;
652   u16_t datagram_offset, datagram_tag;
653   struct lowpan6_reass_helper *lrh, *lrh_next, *lrh_prev = NULL;
654 
655   if (p == NULL) {
656     return ERR_OK;
657   }
658 
659   MIB2_STATS_NETIF_ADD(netif, ifinoctets, p->tot_len);
660 
661   if (p->len != p->tot_len) {
662     /* for now, this needs a pbuf in one piece */
663     goto lowpan6_input_discard;
664   }
665 
666   if (lowpan6_parse_iee802154_header(p, &src, &dest) != ERR_OK) {
667     goto lowpan6_input_discard;
668   }
669 
670   /* Check dispatch. */
671   puc = (u8_t *)p->payload;
672 
673   b = *puc;
674   if ((b & 0xf8) == 0xc0) {
675     /* FRAG1 dispatch. add this packet to reassembly list. */
676     datagram_size = ((u16_t)(puc[0] & 0x07) << 8) | (u16_t)puc[1];
677     datagram_tag = ((u16_t)puc[2] << 8) | (u16_t)puc[3];
678 
679     /* check for duplicate */
680     lrh = lowpan6_data.reass_list;
681     while (lrh != NULL) {
682       uint8_t discard = 0;
683       lrh_next = lrh->next_packet;
684       if ((lrh->sender_addr.addr_len == src.addr_len) &&
685           (memcmp(lrh->sender_addr.addr, src.addr, src.addr_len) == 0)) {
686         /* address match with packet in reassembly. */
687         if ((datagram_tag == lrh->datagram_tag) && (datagram_size == lrh->datagram_size)) {
688           /* duplicate fragment. */
689           goto lowpan6_input_discard;
690         } else {
691           /* We are receiving the start of a new datagram. Discard old one (incomplete). */
692           discard = 1;
693         }
694       }
695       if (discard) {
696         dequeue_datagram(lrh, lrh_prev);
697         free_reass_datagram(lrh);
698       } else {
699         lrh_prev = lrh;
700       }
701       /* Check next datagram in queue. */
702       lrh = lrh_next;
703     }
704 
705     pbuf_remove_header(p, 4); /* hide frag1 dispatch */
706 
707     lrh = (struct lowpan6_reass_helper *) mem_malloc(sizeof(struct lowpan6_reass_helper));
708     if (lrh == NULL) {
709       goto lowpan6_input_discard;
710     }
711 
712     lrh->sender_addr.addr_len = src.addr_len;
713     for (i = 0; i < src.addr_len; i++) {
714       lrh->sender_addr.addr[i] = src.addr[i];
715     }
716     lrh->datagram_size = datagram_size;
717     lrh->datagram_tag = datagram_tag;
718     lrh->frags = NULL;
719     if (*(u8_t *)p->payload == 0x41) {
720       /* This is a complete IPv6 packet, just skip dispatch byte. */
721       pbuf_remove_header(p, 1); /* hide dispatch byte. */
722       lrh->reass = p;
723     } else if ((*(u8_t *)p->payload & 0xe0 ) == 0x60) {
724       lrh->reass = lowpan6_decompress(p, datagram_size, LWIP_6LOWPAN_CONTEXTS(netif), &src, &dest);
725       if (lrh->reass == NULL) {
726         /* decompression failed */
727         mem_free(lrh);
728         goto lowpan6_input_discard;
729       }
730     }
731     /* TODO: handle the case where we already have FRAGN received */
732     lrh->next_packet = lowpan6_data.reass_list;
733     lrh->timer = 2;
734     lowpan6_data.reass_list = lrh;
735 
736     return ERR_OK;
737   } else if ((b & 0xf8) == 0xe0) {
738     /* FRAGN dispatch, find packet being reassembled. */
739     datagram_size = ((u16_t)(puc[0] & 0x07) << 8) | (u16_t)puc[1];
740     datagram_tag = ((u16_t)puc[2] << 8) | (u16_t)puc[3];
741     datagram_offset = (u16_t)puc[4] << 3;
742     pbuf_remove_header(p, 4); /* hide frag1 dispatch but keep datagram offset for reassembly */
743 
744     for (lrh = lowpan6_data.reass_list; lrh != NULL; lrh_prev = lrh, lrh = lrh->next_packet) {
745       if ((lrh->sender_addr.addr_len == src.addr_len) &&
746           (memcmp(lrh->sender_addr.addr, src.addr, src.addr_len) == 0) &&
747           (datagram_tag == lrh->datagram_tag) &&
748           (datagram_size == lrh->datagram_size)) {
749         break;
750       }
751     }
752     if (lrh == NULL) {
753       /* rogue fragment */
754       goto lowpan6_input_discard;
755     }
756     /* Insert new pbuf into list of fragments. Each fragment is a pbuf,
757        this only works for unchained pbufs. */
758     LWIP_ASSERT("p->next == NULL", p->next == NULL);
759     if (lrh->reass != NULL) {
760       /* FRAG1 already received, check this offset against first len */
761       if (datagram_offset < lrh->reass->len) {
762         /* fragment overlap, discard old fragments */
763         dequeue_datagram(lrh, lrh_prev);
764         free_reass_datagram(lrh);
765         goto lowpan6_input_discard;
766       }
767     }
768     if (lrh->frags == NULL) {
769       /* first FRAGN */
770       lrh->frags = p;
771     } else {
772       /* find the correct place to insert */
773       struct pbuf *q, *last;
774       u16_t new_frag_len = p->len - 1; /* p->len includes datagram_offset byte */
775       for (q = lrh->frags, last = NULL; q != NULL; last = q, q = q->next) {
776         u16_t q_datagram_offset = ((u8_t *)q->payload)[0] << 3;
777         u16_t q_frag_len = q->len - 1;
778         if (datagram_offset < q_datagram_offset) {
779           if (datagram_offset + new_frag_len > q_datagram_offset) {
780             /* overlap, discard old fragments */
781             dequeue_datagram(lrh, lrh_prev);
782             free_reass_datagram(lrh);
783             goto lowpan6_input_discard;
784           }
785           /* insert here */
786           break;
787         } else if (datagram_offset == q_datagram_offset) {
788           if (q_frag_len != new_frag_len) {
789             /* fragment mismatch, discard old fragments */
790             dequeue_datagram(lrh, lrh_prev);
791             free_reass_datagram(lrh);
792             goto lowpan6_input_discard;
793           }
794           /* duplicate, ignore */
795           pbuf_free(p);
796           return ERR_OK;
797         }
798       }
799       /* insert fragment */
800       if (last == NULL) {
801         lrh->frags = p;
802       } else {
803         last->next = p;
804         p->next = q;
805       }
806     }
807     /* check if all fragments were received */
808     if (lrh->reass) {
809       u16_t offset = lrh->reass->len;
810       struct pbuf *q;
811       for (q = lrh->frags; q != NULL; q = q->next) {
812         u16_t q_datagram_offset = ((u8_t *)q->payload)[0] << 3;
813         if (q_datagram_offset != offset) {
814           /* not complete, wait for more fragments */
815           return ERR_OK;
816         }
817         offset += q->len - 1;
818       }
819       if (offset == datagram_size) {
820         /* all fragments received, combine pbufs */
821         u16_t datagram_left = datagram_size - lrh->reass->len;
822         for (q = lrh->frags; q != NULL; q = q->next) {
823           /* hide datagram_offset byte now */
824           pbuf_remove_header(q, 1);
825           q->tot_len = datagram_left;
826           datagram_left -= q->len;
827         }
828         LWIP_ASSERT("datagram_left == 0", datagram_left == 0);
829         q = lrh->reass;
830         q->tot_len = datagram_size;
831         q->next = lrh->frags;
832         lrh->frags = NULL;
833         lrh->reass = NULL;
834         dequeue_datagram(lrh, lrh_prev);
835         mem_free(lrh);
836 
837         /* @todo: distinguish unicast/multicast */
838         MIB2_STATS_NETIF_INC(netif, ifinucastpkts);
839         return ip6_input(q, netif);
840       }
841     }
842     /* pbuf enqueued, waiting for more fragments */
843     return ERR_OK;
844   } else {
845     if (b == 0x41) {
846       /* This is a complete IPv6 packet, just skip dispatch byte. */
847       pbuf_remove_header(p, 1); /* hide dispatch byte. */
848     } else if ((b & 0xe0 ) == 0x60) {
849       /* IPv6 headers are compressed using IPHC. */
850       p = lowpan6_decompress(p, datagram_size, LWIP_6LOWPAN_CONTEXTS(netif), &src, &dest);
851       if (p == NULL) {
852         MIB2_STATS_NETIF_INC(netif, ifindiscards);
853         return ERR_OK;
854       }
855     } else {
856       goto lowpan6_input_discard;
857     }
858 
859     /* @todo: distinguish unicast/multicast */
860     MIB2_STATS_NETIF_INC(netif, ifinucastpkts);
861 
862     return ip6_input(p, netif);
863   }
864 lowpan6_input_discard:
865   MIB2_STATS_NETIF_INC(netif, ifindiscards);
866   pbuf_free(p);
867   /* always return ERR_OK here to prevent the caller freeing the pbuf */
868   return ERR_OK;
869 }
870 
871 /**
872  * @ingroup sixlowpan
873  */
874 err_t
lowpan6_if_init(struct netif * netif)875 lowpan6_if_init(struct netif *netif)
876 {
877   netif->name[0] = 'L';
878   netif->name[1] = '6';
879   netif->output_ip6 = lowpan6_output;
880 
881   MIB2_INIT_NETIF(netif, snmp_ifType_other, 0);
882 
883   /* maximum transfer unit */
884   netif->mtu = 1280;
885 
886   /* broadcast capability */
887   netif->flags = NETIF_FLAG_BROADCAST /* | NETIF_FLAG_LOWPAN6 */;
888 
889   return ERR_OK;
890 }
891 
892 /**
893  * @ingroup sixlowpan
894  * Set PAN ID
895  */
896 err_t
lowpan6_set_pan_id(u16_t pan_id)897 lowpan6_set_pan_id(u16_t pan_id)
898 {
899   lowpan6_data.ieee_802154_pan_id = pan_id;
900 
901   return ERR_OK;
902 }
903 
904 #if !NO_SYS
905 /**
906  * @ingroup sixlowpan
907  * Pass a received packet to tcpip_thread for input processing
908  *
909  * @param p the received packet, p->payload pointing to the
910  *          IEEE 802.15.4 header.
911  * @param inp the network interface on which the packet was received
912  */
913 err_t
tcpip_6lowpan_input(struct pbuf * p,struct netif * inp)914 tcpip_6lowpan_input(struct pbuf *p, struct netif *inp)
915 {
916   return tcpip_inpkt(p, inp, lowpan6_input);
917 }
918 #endif /* !NO_SYS */
919 
920 #endif /* LWIP_IPV6 */
921