1#line 2 "suites/helpers.function" 2/*----------------------------------------------------------------------------*/ 3/* Headers */ 4 5#include <stdlib.h> 6 7#if defined(MBEDTLS_PLATFORM_C) 8#include "mbedtls/platform.h" 9#else 10#include <stdio.h> 11#define mbedtls_fprintf fprintf 12#define mbedtls_snprintf snprintf 13#define mbedtls_calloc calloc 14#define mbedtls_free free 15#define mbedtls_exit exit 16#define mbedtls_time time 17#define mbedtls_time_t time_t 18#define MBEDTLS_EXIT_SUCCESS EXIT_SUCCESS 19#define MBEDTLS_EXIT_FAILURE EXIT_FAILURE 20#endif 21 22#if defined(MBEDTLS_MEMORY_BUFFER_ALLOC_C) 23#include "mbedtls/memory_buffer_alloc.h" 24#endif 25 26#if defined(MBEDTLS_CHECK_PARAMS) 27#include "mbedtls/platform_util.h" 28#include <setjmp.h> 29#endif 30 31#ifdef _MSC_VER 32#include <basetsd.h> 33typedef UINT8 uint8_t; 34typedef INT32 int32_t; 35typedef UINT32 uint32_t; 36#define strncasecmp _strnicmp 37#define strcasecmp _stricmp 38#else 39#include <stdint.h> 40#endif 41 42#include <string.h> 43 44#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) 45#include <unistd.h> 46#include <strings.h> 47#endif 48 49#if defined(MBEDTLS_BIGNUM_C) 50#include "mbedtls/bignum.h" 51#endif 52 53#if defined(MBEDTLS_THREADING_C) && defined(MBEDTLS_THREADING_PTHREAD) && \ 54 defined(MBEDTLS_TEST_HOOKS) 55#include "mbedtls/threading.h" 56#define MBEDTLS_TEST_MUTEX_USAGE 57#endif 58 59/* 60 * Define the two macros 61 * 62 * #define TEST_CF_SECRET(ptr, size) 63 * #define TEST_CF_PUBLIC(ptr, size) 64 * 65 * that can be used in tests to mark a memory area as secret (no branch or 66 * memory access should depend on it) or public (default, only needs to be 67 * marked explicitly when it was derived from secret data). 68 * 69 * Arguments: 70 * - ptr: a pointer to the memory area to be marked 71 * - size: the size in bytes of the memory area 72 * 73 * Implementation: 74 * The basic idea is that of ctgrind <https://github.com/agl/ctgrind>: we can 75 * re-use tools that were designed for checking use of uninitialized memory. 76 * This file contains two implementations: one based on MemorySanitizer, the 77 * other on valgrind's memcheck. If none of them is enabled, dummy macros that 78 * do nothing are defined for convenience. 79 */ 80#if defined(MBEDTLS_TEST_CONSTANT_FLOW_MEMSAN) 81#include <sanitizer/msan_interface.h> 82 83/* Use macros to avoid messing up with origin tracking */ 84#define TEST_CF_SECRET __msan_allocated_memory 85// void __msan_allocated_memory(const volatile void* data, size_t size); 86#define TEST_CF_PUBLIC __msan_unpoison 87// void __msan_unpoison(const volatile void *a, size_t size); 88 89#elif defined(MBEDTLS_TEST_CONSTANT_FLOW_VALGRIND) 90#include <valgrind/memcheck.h> 91 92#define TEST_CF_SECRET VALGRIND_MAKE_MEM_UNDEFINED 93// VALGRIND_MAKE_MEM_UNDEFINED(_qzz_addr, _qzz_len) 94#define TEST_CF_PUBLIC VALGRIND_MAKE_MEM_DEFINED 95// VALGRIND_MAKE_MEM_DEFINED(_qzz_addr, _qzz_len) 96 97#else /* MBEDTLS_TEST_CONSTANT_FLOW_MEMSAN || 98 MBEDTLS_TEST_CONSTANT_FLOW_VALGRIND */ 99 100#define TEST_CF_SECRET(ptr, size) 101#define TEST_CF_PUBLIC(ptr, size) 102 103#endif /* MBEDTLS_TEST_CONSTANT_FLOW_MEMSAN */ 104 105/* Type for Hex parameters */ 106typedef struct data_tag 107{ 108 uint8_t * x; 109 uint32_t len; 110} data_t; 111 112/*----------------------------------------------------------------------------*/ 113/* Status and error constants */ 114 115#define DEPENDENCY_SUPPORTED 0 /* Dependency supported by build */ 116#define KEY_VALUE_MAPPING_FOUND 0 /* Integer expression found */ 117#define DISPATCH_TEST_SUCCESS 0 /* Test dispatch successful */ 118 119#define KEY_VALUE_MAPPING_NOT_FOUND -1 /* Integer expression not found */ 120#define DEPENDENCY_NOT_SUPPORTED -2 /* Dependency not supported */ 121#define DISPATCH_TEST_FN_NOT_FOUND -3 /* Test function not found */ 122#define DISPATCH_INVALID_TEST_DATA -4 /* Invalid test parameter type. 123 Only int, string, binary data 124 and integer expressions are 125 allowed */ 126#define DISPATCH_UNSUPPORTED_SUITE -5 /* Test suite not supported by the 127 build */ 128 129typedef enum 130{ 131 PARAMFAIL_TESTSTATE_IDLE = 0, /* No parameter failure call test */ 132 PARAMFAIL_TESTSTATE_PENDING, /* Test call to the parameter failure 133 * is pending */ 134 PARAMFAIL_TESTSTATE_CALLED /* The test call to the parameter 135 * failure function has been made */ 136} paramfail_test_state_t; 137 138 139/*----------------------------------------------------------------------------*/ 140/* Macros */ 141 142/** 143 * \brief This macro tests the expression passed to it as a test step or 144 * individual test in a test case. 145 * 146 * It allows a library function to return a value and return an error 147 * code that can be tested. 148 * 149 * When MBEDTLS_CHECK_PARAMS is enabled, calls to the parameter failure 150 * callback, MBEDTLS_PARAM_FAILED(), will be assumed to be a test 151 * failure. 152 * 153 * This macro is not suitable for negative parameter validation tests, 154 * as it assumes the test step will not create an error. 155 * 156 * \param TEST The test expression to be tested. 157 */ 158#define TEST_ASSERT( TEST ) \ 159 do { \ 160 if( ! (TEST) ) \ 161 { \ 162 test_fail( #TEST, __LINE__, __FILE__ ); \ 163 goto exit; \ 164 } \ 165 } while( 0 ) 166 167/** Evaluate two expressions and fail the test case if they have different 168 * values. 169 * 170 * \param expr1 An expression to evaluate. 171 * \param expr2 The expected value of \p expr1. This can be any 172 * expression, but it is typically a constant. 173 */ 174#define TEST_EQUAL( expr1, expr2 ) \ 175 TEST_ASSERT( ( expr1 ) == ( expr2 ) ) 176 177/** Allocate memory dynamically and fail the test case if this fails. 178 * The allocated memory will be filled with zeros. 179 * 180 * You must set \p pointer to \c NULL before calling this macro and 181 * put `mbedtls_free( pointer )` in the test's cleanup code. 182 * 183 * If \p length is zero, the resulting \p pointer will be \c NULL. 184 * This is usually what we want in tests since API functions are 185 * supposed to accept null pointers when a buffer size is zero. 186 * 187 * This macro expands to an instruction, not an expression. 188 * It may jump to the \c exit label. 189 * 190 * \param pointer An lvalue where the address of the allocated buffer 191 * will be stored. 192 * This expression may be evaluated multiple times. 193 * \param length Number of elements to allocate. 194 * This expression may be evaluated multiple times. 195 * 196 */ 197#define ASSERT_ALLOC( pointer, length ) \ 198 do \ 199 { \ 200 TEST_ASSERT( ( pointer ) == NULL ); \ 201 if( ( length ) != 0 ) \ 202 { \ 203 ( pointer ) = mbedtls_calloc( sizeof( *( pointer ) ), \ 204 ( length ) ); \ 205 TEST_ASSERT( ( pointer ) != NULL ); \ 206 } \ 207 } \ 208 while( 0 ) 209 210/** Allocate memory dynamically. If the allocation fails, skip the test case. 211 * 212 * This macro behaves like #ASSERT_ALLOC, except that if the allocation 213 * fails, it marks the test as skipped rather than failed. 214 */ 215#define ASSERT_ALLOC_WEAK( pointer, length ) \ 216 do \ 217 { \ 218 TEST_ASSERT( ( pointer ) == NULL ); \ 219 if( ( length ) != 0 ) \ 220 { \ 221 ( pointer ) = mbedtls_calloc( sizeof( *( pointer ) ), \ 222 ( length ) ); \ 223 TEST_ASSUME( ( pointer ) != NULL ); \ 224 } \ 225 } \ 226 while( 0 ) 227/** Compare two buffers and fail the test case if they differ. 228 * 229 * This macro expands to an instruction, not an expression. 230 * It may jump to the \c exit label. 231 * 232 * \param p1 Pointer to the start of the first buffer. 233 * \param size1 Size of the first buffer in bytes. 234 * This expression may be evaluated multiple times. 235 * \param p2 Pointer to the start of the second buffer. 236 * \param size2 Size of the second buffer in bytes. 237 * This expression may be evaluated multiple times. 238 */ 239#define ASSERT_COMPARE( p1, size1, p2, size2 ) \ 240 do \ 241 { \ 242 TEST_ASSERT( ( size1 ) == ( size2 ) ); \ 243 if( ( size1 ) != 0 ) \ 244 TEST_ASSERT( memcmp( ( p1 ), ( p2 ), ( size1 ) ) == 0 ); \ 245 } \ 246 while( 0 ) 247 248/** 249 * \brief This macro tests the expression passed to it and skips the 250 * running test if it doesn't evaluate to 'true'. 251 * 252 * \param TEST The test expression to be tested. 253 */ 254#define TEST_ASSUME( TEST ) \ 255 do { \ 256 if( ! (TEST) ) \ 257 { \ 258 test_skip( #TEST, __LINE__, __FILE__ ); \ 259 goto exit; \ 260 } \ 261 } while( 0 ) 262 263#if defined(MBEDTLS_CHECK_PARAMS) && !defined(MBEDTLS_PARAM_FAILED_ALT) 264/** 265 * \brief This macro tests the statement passed to it as a test step or 266 * individual test in a test case. The macro assumes the test will fail 267 * and will generate an error. 268 * 269 * It allows a library function to return a value and tests the return 270 * code on return to confirm the given error code was returned. 271 * 272 * When MBEDTLS_CHECK_PARAMS is enabled, calls to the parameter failure 273 * callback, MBEDTLS_PARAM_FAILED(), are assumed to indicate the 274 * expected failure, and the test will pass. 275 * 276 * This macro is intended for negative parameter validation tests, 277 * where the failing function may return an error value or call 278 * MBEDTLS_PARAM_FAILED() to indicate the error. 279 * 280 * \param PARAM_ERROR_VALUE The expected error code. 281 * 282 * \param TEST The test expression to be tested. 283 */ 284#define TEST_INVALID_PARAM_RET( PARAM_ERR_VALUE, TEST ) \ 285 do { \ 286 test_info.paramfail_test_state = PARAMFAIL_TESTSTATE_PENDING; \ 287 if( (TEST) != (PARAM_ERR_VALUE) || \ 288 test_info.paramfail_test_state != PARAMFAIL_TESTSTATE_CALLED ) \ 289 { \ 290 test_fail( #TEST, __LINE__, __FILE__ ); \ 291 goto exit; \ 292 } \ 293 } while( 0 ) 294 295/** 296 * \brief This macro tests the statement passed to it as a test step or 297 * individual test in a test case. The macro assumes the test will fail 298 * and will generate an error. 299 * 300 * It assumes the library function under test cannot return a value and 301 * assumes errors can only be indicated byt calls to 302 * MBEDTLS_PARAM_FAILED(). 303 * 304 * When MBEDTLS_CHECK_PARAMS is enabled, calls to the parameter failure 305 * callback, MBEDTLS_PARAM_FAILED(), are assumed to indicate the 306 * expected failure. If MBEDTLS_CHECK_PARAMS is not enabled, no test 307 * can be made. 308 * 309 * This macro is intended for negative parameter validation tests, 310 * where the failing function can only return an error by calling 311 * MBEDTLS_PARAM_FAILED() to indicate the error. 312 * 313 * \param TEST The test expression to be tested. 314 */ 315#define TEST_INVALID_PARAM( TEST ) \ 316 do { \ 317 memcpy(jmp_tmp, param_fail_jmp, sizeof(jmp_buf)); \ 318 if( setjmp( param_fail_jmp ) == 0 ) \ 319 { \ 320 TEST; \ 321 test_fail( #TEST, __LINE__, __FILE__ ); \ 322 goto exit; \ 323 } \ 324 memcpy(param_fail_jmp, jmp_tmp, sizeof(jmp_buf)); \ 325 } while( 0 ) 326#endif /* MBEDTLS_CHECK_PARAMS && !MBEDTLS_PARAM_FAILED_ALT */ 327 328/** 329 * \brief This macro tests the statement passed to it as a test step or 330 * individual test in a test case. The macro assumes the test will not fail. 331 * 332 * It assumes the library function under test cannot return a value and 333 * assumes errors can only be indicated by calls to 334 * MBEDTLS_PARAM_FAILED(). 335 * 336 * When MBEDTLS_CHECK_PARAMS is enabled, calls to the parameter failure 337 * callback, MBEDTLS_PARAM_FAILED(), are assumed to indicate the 338 * expected failure. If MBEDTLS_CHECK_PARAMS is not enabled, no test 339 * can be made. 340 * 341 * This macro is intended to test that functions returning void 342 * accept all of the parameter values they're supposed to accept - eg 343 * that they don't call MBEDTLS_PARAM_FAILED() when a parameter 344 * that's allowed to be NULL happens to be NULL. 345 * 346 * Note: for functions that return something other that void, 347 * checking that they accept all the parameters they're supposed to 348 * accept is best done by using TEST_ASSERT() and checking the return 349 * value as well. 350 * 351 * Note: this macro is available even when #MBEDTLS_CHECK_PARAMS is 352 * disabled, as it makes sense to check that the functions accept all 353 * legal values even if this option is disabled - only in that case, 354 * the test is more about whether the function segfaults than about 355 * whether it invokes MBEDTLS_PARAM_FAILED(). 356 * 357 * \param TEST The test expression to be tested. 358 */ 359#define TEST_VALID_PARAM( TEST ) \ 360 TEST_ASSERT( ( TEST, 1 ) ); 361 362#define TEST_HELPER_ASSERT(a) if( !( a ) ) \ 363{ \ 364 mbedtls_fprintf( stderr, "Assertion Failed at %s:%d - %s\n", \ 365 __FILE__, __LINE__, #a ); \ 366 mbedtls_exit( 1 ); \ 367} 368 369#if defined(__GNUC__) 370/* Test if arg and &(arg)[0] have the same type. This is true if arg is 371 * an array but not if it's a pointer. */ 372#define IS_ARRAY_NOT_POINTER( arg ) \ 373 ( ! __builtin_types_compatible_p( __typeof__( arg ), \ 374 __typeof__( &( arg )[0] ) ) ) 375#else 376/* On platforms where we don't know how to implement this check, 377 * omit it. Oh well, a non-portable check is better than nothing. */ 378#define IS_ARRAY_NOT_POINTER( arg ) 1 379#endif 380 381/* A compile-time constant with the value 0. If `const_expr` is not a 382 * compile-time constant with a nonzero value, cause a compile-time error. */ 383#define STATIC_ASSERT_EXPR( const_expr ) \ 384 ( 0 && sizeof( struct { unsigned int STATIC_ASSERT : 1 - 2 * ! ( const_expr ); } ) ) 385/* Return the scalar value `value` (possibly promoted). This is a compile-time 386 * constant if `value` is. `condition` must be a compile-time constant. 387 * If `condition` is false, arrange to cause a compile-time error. */ 388#define STATIC_ASSERT_THEN_RETURN( condition, value ) \ 389 ( STATIC_ASSERT_EXPR( condition ) ? 0 : ( value ) ) 390 391#define ARRAY_LENGTH_UNSAFE( array ) \ 392 ( sizeof( array ) / sizeof( *( array ) ) ) 393/** Return the number of elements of a static or stack array. 394 * 395 * \param array A value of array (not pointer) type. 396 * 397 * \return The number of elements of the array. 398 */ 399#define ARRAY_LENGTH( array ) \ 400 ( STATIC_ASSERT_THEN_RETURN( IS_ARRAY_NOT_POINTER( array ), \ 401 ARRAY_LENGTH_UNSAFE( array ) ) ) 402 403/* 404 * 32-bit integer manipulation macros (big endian) 405 */ 406#ifndef GET_UINT32_BE 407#define GET_UINT32_BE(n,b,i) \ 408{ \ 409 (n) = ( (uint32_t) (b)[(i) ] << 24 ) \ 410 | ( (uint32_t) (b)[(i) + 1] << 16 ) \ 411 | ( (uint32_t) (b)[(i) + 2] << 8 ) \ 412 | ( (uint32_t) (b)[(i) + 3] ); \ 413} 414#endif 415 416#ifndef PUT_UINT32_BE 417#define PUT_UINT32_BE(n,b,i) \ 418{ \ 419 (b)[(i) ] = (unsigned char) ( (n) >> 24 ); \ 420 (b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \ 421 (b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \ 422 (b)[(i) + 3] = (unsigned char) ( (n) ); \ 423} 424#endif 425 426 427/*----------------------------------------------------------------------------*/ 428/* Global variables */ 429 430typedef enum 431{ 432 TEST_RESULT_SUCCESS = 0, 433 TEST_RESULT_FAILED, 434 TEST_RESULT_SKIPPED 435} test_result_t; 436 437static struct 438{ 439 paramfail_test_state_t paramfail_test_state; 440 test_result_t result; 441 const char *test; 442 const char *filename; 443 int line_no; 444#if defined(MBEDTLS_TEST_MUTEX_USAGE) 445 const char *mutex_usage_error; 446#endif 447} 448test_info; 449 450#if defined(MBEDTLS_PLATFORM_C) 451mbedtls_platform_context platform_ctx; 452#endif 453 454#if defined(MBEDTLS_CHECK_PARAMS) 455jmp_buf param_fail_jmp; 456jmp_buf jmp_tmp; 457#endif 458 459/*----------------------------------------------------------------------------*/ 460/* Helper flags for complex dependencies */ 461 462/* Indicates whether we expect mbedtls_entropy_init 463 * to initialize some strong entropy source. */ 464#if defined(MBEDTLS_TEST_NULL_ENTROPY) || \ 465 ( !defined(MBEDTLS_NO_DEFAULT_ENTROPY_SOURCES) && \ 466 ( !defined(MBEDTLS_NO_PLATFORM_ENTROPY) || \ 467 defined(MBEDTLS_HAVEGE_C) || \ 468 defined(MBEDTLS_ENTROPY_HARDWARE_ALT) || \ 469 defined(ENTROPY_NV_SEED) ) ) 470#define ENTROPY_HAVE_STRONG 471#endif 472 473 474/*----------------------------------------------------------------------------*/ 475/* Helper Functions */ 476 477void test_fail( const char *test, int line_no, const char* filename ) 478{ 479 if( test_info.result == TEST_RESULT_FAILED ) 480 { 481 /* We've already recorded the test as having failed. Don't 482 * overwrite any previous information about the failure. */ 483 return; 484 } 485 test_info.result = TEST_RESULT_FAILED; 486 test_info.test = test; 487 test_info.line_no = line_no; 488 test_info.filename = filename; 489} 490 491void test_skip( const char *test, int line_no, const char* filename ) 492{ 493 test_info.result = TEST_RESULT_SKIPPED; 494 test_info.test = test; 495 test_info.line_no = line_no; 496 test_info.filename = filename; 497} 498 499static int platform_setup() 500{ 501 int ret = 0; 502#if defined(MBEDTLS_PLATFORM_C) 503 ret = mbedtls_platform_setup( &platform_ctx ); 504#endif /* MBEDTLS_PLATFORM_C */ 505 return( ret ); 506} 507 508static void platform_teardown() 509{ 510#if defined(MBEDTLS_PLATFORM_C) 511 mbedtls_platform_teardown( &platform_ctx ); 512#endif /* MBEDTLS_PLATFORM_C */ 513} 514 515#if defined(MBEDTLS_CHECK_PARAMS) 516void mbedtls_param_failed( const char *failure_condition, 517 const char *file, 518 int line ) 519{ 520 /* If we are testing the callback function... */ 521 if( test_info.paramfail_test_state == PARAMFAIL_TESTSTATE_PENDING ) 522 { 523 test_info.paramfail_test_state = PARAMFAIL_TESTSTATE_CALLED; 524 } 525 else 526 { 527 /* ...else we treat this as an error */ 528 529 /* Record the location of the failure, but not as a failure yet, in case 530 * it was part of the test */ 531 test_fail( failure_condition, line, file ); 532 test_info.result = TEST_RESULT_SUCCESS; 533 534 longjmp( param_fail_jmp, 1 ); 535 } 536} 537#endif 538 539#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) 540static int redirect_output( FILE* out_stream, const char* path ) 541{ 542 int out_fd, dup_fd; 543 FILE* path_stream; 544 545 out_fd = fileno( out_stream ); 546 dup_fd = dup( out_fd ); 547 548 if( dup_fd == -1 ) 549 { 550 return( -1 ); 551 } 552 553 path_stream = fopen( path, "w" ); 554 if( path_stream == NULL ) 555 { 556 close( dup_fd ); 557 return( -1 ); 558 } 559 560 fflush( out_stream ); 561 if( dup2( fileno( path_stream ), out_fd ) == -1 ) 562 { 563 close( dup_fd ); 564 fclose( path_stream ); 565 return( -1 ); 566 } 567 568 fclose( path_stream ); 569 return( dup_fd ); 570} 571 572static int restore_output( FILE* out_stream, int dup_fd ) 573{ 574 int out_fd = fileno( out_stream ); 575 576 fflush( out_stream ); 577 if( dup2( dup_fd, out_fd ) == -1 ) 578 { 579 close( out_fd ); 580 close( dup_fd ); 581 return( -1 ); 582 } 583 584 close( dup_fd ); 585 return( 0 ); 586} 587#endif /* __unix__ || __APPLE__ __MACH__ */ 588 589int mbedtls_test_unhexify( unsigned char *obuf, const char *ibuf ) 590{ 591 unsigned char c, c2; 592 int len = strlen( ibuf ) / 2; 593 TEST_HELPER_ASSERT( strlen( ibuf ) % 2 == 0 ); /* must be even number of bytes */ 594 595 while( *ibuf != 0 ) 596 { 597 c = *ibuf++; 598 if( c >= '0' && c <= '9' ) 599 c -= '0'; 600 else if( c >= 'a' && c <= 'f' ) 601 c -= 'a' - 10; 602 else if( c >= 'A' && c <= 'F' ) 603 c -= 'A' - 10; 604 else 605 TEST_HELPER_ASSERT( 0 ); 606 607 c2 = *ibuf++; 608 if( c2 >= '0' && c2 <= '9' ) 609 c2 -= '0'; 610 else if( c2 >= 'a' && c2 <= 'f' ) 611 c2 -= 'a' - 10; 612 else if( c2 >= 'A' && c2 <= 'F' ) 613 c2 -= 'A' - 10; 614 else 615 TEST_HELPER_ASSERT( 0 ); 616 617 *obuf++ = ( c << 4 ) | c2; 618 } 619 620 return len; 621} 622 623void mbedtls_test_hexify( unsigned char *obuf, const unsigned char *ibuf, int len ) 624{ 625 unsigned char l, h; 626 627 while( len != 0 ) 628 { 629 h = *ibuf / 16; 630 l = *ibuf % 16; 631 632 if( h < 10 ) 633 *obuf++ = '0' + h; 634 else 635 *obuf++ = 'a' + h - 10; 636 637 if( l < 10 ) 638 *obuf++ = '0' + l; 639 else 640 *obuf++ = 'a' + l - 10; 641 642 ++ibuf; 643 len--; 644 } 645} 646 647/** 648 * Allocate and zeroize a buffer. 649 * 650 * If the size if zero, a pointer to a zeroized 1-byte buffer is returned. 651 * 652 * For convenience, dies if allocation fails. 653 */ 654static unsigned char *zero_alloc( size_t len ) 655{ 656 void *p; 657 size_t actual_len = ( len != 0 ) ? len : 1; 658 659 p = mbedtls_calloc( 1, actual_len ); 660 TEST_HELPER_ASSERT( p != NULL ); 661 662 memset( p, 0x00, actual_len ); 663 664 return( p ); 665} 666 667/** 668 * Allocate and fill a buffer from hex data. 669 * 670 * The buffer is sized exactly as needed. This allows to detect buffer 671 * overruns (including overreads) when running the test suite under valgrind. 672 * 673 * If the size if zero, a pointer to a zeroized 1-byte buffer is returned. 674 * 675 * For convenience, dies if allocation fails. 676 */ 677unsigned char *unhexify_alloc( const char *ibuf, size_t *olen ) 678{ 679 unsigned char *obuf; 680 681 *olen = strlen( ibuf ) / 2; 682 683 if( *olen == 0 ) 684 return( zero_alloc( *olen ) ); 685 686 obuf = mbedtls_calloc( 1, *olen ); 687 TEST_HELPER_ASSERT( obuf != NULL ); 688 689 (void) mbedtls_test_unhexify( obuf, ibuf ); 690 691 return( obuf ); 692} 693 694/** 695 * This function just returns data from rand(). 696 * Although predictable and often similar on multiple 697 * runs, this does not result in identical random on 698 * each run. So do not use this if the results of a 699 * test depend on the random data that is generated. 700 * 701 * rng_state shall be NULL. 702 */ 703static int rnd_std_rand( void *rng_state, unsigned char *output, size_t len ) 704{ 705#if !defined(__OpenBSD__) && !defined(__NetBSD__) 706 size_t i; 707 708 if( rng_state != NULL ) 709 rng_state = NULL; 710 711 for( i = 0; i < len; ++i ) 712 output[i] = rand(); 713#else 714 if( rng_state != NULL ) 715 rng_state = NULL; 716 717 arc4random_buf( output, len ); 718#endif /* !OpenBSD && !NetBSD */ 719 720 return( 0 ); 721} 722 723/** 724 * This function only returns zeros 725 * 726 * rng_state shall be NULL. 727 */ 728int rnd_zero_rand( void *rng_state, unsigned char *output, size_t len ) 729{ 730 if( rng_state != NULL ) 731 rng_state = NULL; 732 733 memset( output, 0, len ); 734 735 return( 0 ); 736} 737 738typedef struct 739{ 740 unsigned char *buf; 741 size_t length; 742} rnd_buf_info; 743 744/** 745 * This function returns random based on a buffer it receives. 746 * 747 * rng_state shall be a pointer to a rnd_buf_info structure. 748 * 749 * The number of bytes released from the buffer on each call to 750 * the random function is specified by per_call. (Can be between 751 * 1 and 4) 752 * 753 * After the buffer is empty it will return rand(); 754 */ 755int rnd_buffer_rand( void *rng_state, unsigned char *output, size_t len ) 756{ 757 rnd_buf_info *info = (rnd_buf_info *) rng_state; 758 size_t use_len; 759 760 if( rng_state == NULL ) 761 return( rnd_std_rand( NULL, output, len ) ); 762 763 use_len = len; 764 if( len > info->length ) 765 use_len = info->length; 766 767 if( use_len ) 768 { 769 memcpy( output, info->buf, use_len ); 770 info->buf += use_len; 771 info->length -= use_len; 772 } 773 774 if( len - use_len > 0 ) 775 return( rnd_std_rand( NULL, output + use_len, len - use_len ) ); 776 777 return( 0 ); 778} 779 780/** 781 * Info structure for the pseudo random function 782 * 783 * Key should be set at the start to a test-unique value. 784 * Do not forget endianness! 785 * State( v0, v1 ) should be set to zero. 786 */ 787typedef struct 788{ 789 uint32_t key[16]; 790 uint32_t v0, v1; 791} rnd_pseudo_info; 792 793/** 794 * This function returns random based on a pseudo random function. 795 * This means the results should be identical on all systems. 796 * Pseudo random is based on the XTEA encryption algorithm to 797 * generate pseudorandom. 798 * 799 * rng_state shall be a pointer to a rnd_pseudo_info structure. 800 */ 801int rnd_pseudo_rand( void *rng_state, unsigned char *output, size_t len ) 802{ 803 rnd_pseudo_info *info = (rnd_pseudo_info *) rng_state; 804 uint32_t i, *k, sum, delta=0x9E3779B9; 805 unsigned char result[4], *out = output; 806 807 if( rng_state == NULL ) 808 return( rnd_std_rand( NULL, output, len ) ); 809 810 k = info->key; 811 812 while( len > 0 ) 813 { 814 size_t use_len = ( len > 4 ) ? 4 : len; 815 sum = 0; 816 817 for( i = 0; i < 32; i++ ) 818 { 819 info->v0 += ( ( ( info->v1 << 4 ) ^ ( info->v1 >> 5 ) ) 820 + info->v1 ) ^ ( sum + k[sum & 3] ); 821 sum += delta; 822 info->v1 += ( ( ( info->v0 << 4 ) ^ ( info->v0 >> 5 ) ) 823 + info->v0 ) ^ ( sum + k[( sum>>11 ) & 3] ); 824 } 825 826 PUT_UINT32_BE( info->v0, result, 0 ); 827 memcpy( out, result, use_len ); 828 len -= use_len; 829 out += 4; 830 } 831 832 return( 0 ); 833} 834 835int mbedtls_test_hexcmp( uint8_t * a, uint8_t * b, uint32_t a_len, uint32_t b_len ) 836{ 837 int ret = 0; 838 uint32_t i = 0; 839 840 if( a_len != b_len ) 841 return( -1 ); 842 843 for( i = 0; i < a_len; i++ ) 844 { 845 if( a[i] != b[i] ) 846 { 847 ret = -1; 848 break; 849 } 850 } 851 return ret; 852} 853 854#if defined(MBEDTLS_BIGNUM_C) 855int mbedtls_test_read_mpi( mbedtls_mpi *X, int radix, const char *s ) 856{ 857 /* mbedtls_mpi_read_string() currently retains leading zeros. 858 * It always allocates at least one limb for the value 0. */ 859 if( s[0] == 0 ) 860 { 861 mbedtls_mpi_free( X ); 862 return( 0 ); 863 } 864 else 865 return( mbedtls_mpi_read_string( X, radix, s ) ); 866} 867#endif /* MBEDTLS_BIGNUM_C */ 868 869#if defined(MBEDTLS_TEST_MUTEX_USAGE) 870/** Mutex usage verification framework. 871 * 872 * The mutex usage verification code below aims to detect bad usage of 873 * Mbed TLS's mutex abstraction layer at runtime. Note that this is solely 874 * about the use of the mutex itself, not about checking whether the mutex 875 * correctly protects whatever it is supposed to protect. 876 * 877 * The normal usage of a mutex is: 878 * ``` 879 * digraph mutex_states { 880 * "UNINITIALIZED"; // the initial state 881 * "IDLE"; 882 * "FREED"; 883 * "LOCKED"; 884 * "UNINITIALIZED" -> "IDLE" [label="init"]; 885 * "FREED" -> "IDLE" [label="init"]; 886 * "IDLE" -> "LOCKED" [label="lock"]; 887 * "LOCKED" -> "IDLE" [label="unlock"]; 888 * "IDLE" -> "FREED" [label="free"]; 889 * } 890 * ``` 891 * 892 * All bad transitions that can be unambiguously detected are reported. 893 * An attempt to use an uninitialized mutex cannot be detected in general 894 * since the memory content may happen to denote a valid state. For the same 895 * reason, a double init cannot be detected. 896 * All-bits-zero is the state of a freed mutex, which is distinct from an 897 * initialized mutex, so attempting to use zero-initialized memory as a mutex 898 * without calling the init function is detected. 899 * 900 * The framework attempts to detect missing calls to init and free by counting 901 * calls to init and free. If there are more calls to init than free, this 902 * means that a mutex is not being freed somewhere, which is a memory leak 903 * on platforms where a mutex consumes resources other than the 904 * mbedtls_threading_mutex_t object itself. If there are more calls to free 905 * than init, this indicates a missing init, which is likely to be detected 906 * by an attempt to lock the mutex as well. A limitation of this framework is 907 * that it cannot detect scenarios where there is exactly the same number of 908 * calls to init and free but the calls don't match. A bug like this is 909 * unlikely to happen uniformly throughout the whole test suite though. 910 * 911 * If an error is detected, this framework will report what happened and the 912 * test case will be marked as failed. Unfortunately, the error report cannot 913 * indicate the exact location of the problematic call. To locate the error, 914 * use a debugger and set a breakpoint on mbedtls_test_mutex_usage_error(). 915 */ 916enum value_of_mutex_is_valid_field 917{ 918 /* Potential values for the is_valid field of mbedtls_threading_mutex_t. 919 * Note that MUTEX_FREED must be 0 and MUTEX_IDLE must be 1 for 920 * compatibility with threading_mutex_init_pthread() and 921 * threading_mutex_free_pthread(). MUTEX_LOCKED could be any nonzero 922 * value. */ 923 MUTEX_FREED = 0, //!< Set by threading_mutex_free_pthread 924 MUTEX_IDLE = 1, //!< Set by threading_mutex_init_pthread and by our unlock 925 MUTEX_LOCKED = 2, //!< Set by our lock 926}; 927 928typedef struct 929{ 930 void (*init)( mbedtls_threading_mutex_t * ); 931 void (*free)( mbedtls_threading_mutex_t * ); 932 int (*lock)( mbedtls_threading_mutex_t * ); 933 int (*unlock)( mbedtls_threading_mutex_t * ); 934} mutex_functions_t; 935static mutex_functions_t mutex_functions; 936 937/** The total number of calls to mbedtls_mutex_init(), minus the total number 938 * of calls to mbedtls_mutex_free(). 939 * 940 * Reset to 0 after each test case. 941 */ 942static int live_mutexes; 943 944static void mbedtls_test_mutex_usage_error( mbedtls_threading_mutex_t *mutex, 945 const char *msg ) 946{ 947 (void) mutex; 948 if( test_info.mutex_usage_error == NULL ) 949 test_info.mutex_usage_error = msg; 950 mbedtls_fprintf( stdout, "[mutex: %s] ", msg ); 951 /* Don't mark the test as failed yet. This way, if the test fails later 952 * for a functional reason, the test framework will report the message 953 * and location for this functional reason. If the test passes, 954 * mbedtls_test_mutex_usage_check() will mark it as failed. */ 955} 956 957static void mbedtls_test_wrap_mutex_init( mbedtls_threading_mutex_t *mutex ) 958{ 959 mutex_functions.init( mutex ); 960 if( mutex->is_valid ) 961 ++live_mutexes; 962} 963 964static void mbedtls_test_wrap_mutex_free( mbedtls_threading_mutex_t *mutex ) 965{ 966 switch( mutex->is_valid ) 967 { 968 case MUTEX_FREED: 969 mbedtls_test_mutex_usage_error( mutex, "free without init or double free" ); 970 break; 971 case MUTEX_IDLE: 972 /* Do nothing. The underlying free function will reset is_valid 973 * to 0. */ 974 break; 975 case MUTEX_LOCKED: 976 mbedtls_test_mutex_usage_error( mutex, "free without unlock" ); 977 break; 978 default: 979 mbedtls_test_mutex_usage_error( mutex, "corrupted state" ); 980 break; 981 } 982 if( mutex->is_valid ) 983 --live_mutexes; 984 mutex_functions.free( mutex ); 985} 986 987static int mbedtls_test_wrap_mutex_lock( mbedtls_threading_mutex_t *mutex ) 988{ 989 int ret = mutex_functions.lock( mutex ); 990 switch( mutex->is_valid ) 991 { 992 case MUTEX_FREED: 993 mbedtls_test_mutex_usage_error( mutex, "lock without init" ); 994 break; 995 case MUTEX_IDLE: 996 if( ret == 0 ) 997 mutex->is_valid = 2; 998 break; 999 case MUTEX_LOCKED: 1000 mbedtls_test_mutex_usage_error( mutex, "double lock" ); 1001 break; 1002 default: 1003 mbedtls_test_mutex_usage_error( mutex, "corrupted state" ); 1004 break; 1005 } 1006 return( ret ); 1007} 1008 1009static int mbedtls_test_wrap_mutex_unlock( mbedtls_threading_mutex_t *mutex ) 1010{ 1011 int ret = mutex_functions.unlock( mutex ); 1012 switch( mutex->is_valid ) 1013 { 1014 case MUTEX_FREED: 1015 mbedtls_test_mutex_usage_error( mutex, "unlock without init" ); 1016 break; 1017 case MUTEX_IDLE: 1018 mbedtls_test_mutex_usage_error( mutex, "unlock without lock" ); 1019 break; 1020 case MUTEX_LOCKED: 1021 if( ret == 0 ) 1022 mutex->is_valid = MUTEX_IDLE; 1023 break; 1024 default: 1025 mbedtls_test_mutex_usage_error( mutex, "corrupted state" ); 1026 break; 1027 } 1028 return( ret ); 1029} 1030 1031static void mbedtls_test_mutex_usage_init( void ) 1032{ 1033 mutex_functions.init = mbedtls_mutex_init; 1034 mutex_functions.free = mbedtls_mutex_free; 1035 mutex_functions.lock = mbedtls_mutex_lock; 1036 mutex_functions.unlock = mbedtls_mutex_unlock; 1037 mbedtls_mutex_init = &mbedtls_test_wrap_mutex_init; 1038 mbedtls_mutex_free = &mbedtls_test_wrap_mutex_free; 1039 mbedtls_mutex_lock = &mbedtls_test_wrap_mutex_lock; 1040 mbedtls_mutex_unlock = &mbedtls_test_wrap_mutex_unlock; 1041} 1042 1043static void mbedtls_test_mutex_usage_check( void ) 1044{ 1045 if( live_mutexes != 0 ) 1046 { 1047 /* A positive number (more init than free) means that a mutex resource 1048 * is leaking (on platforms where a mutex consumes more than the 1049 * mbedtls_threading_mutex_t object itself). The rare case of a 1050 * negative number means a missing init somewhere. */ 1051 mbedtls_fprintf( stdout, "[mutex: %d leaked] ", live_mutexes ); 1052 live_mutexes = 0; 1053 if( test_info.mutex_usage_error == NULL ) 1054 test_info.mutex_usage_error = "missing free"; 1055 } 1056 if( test_info.mutex_usage_error != NULL && 1057 test_info.result != TEST_RESULT_FAILED ) 1058 { 1059 /* Functionally, the test passed. But there was a mutex usage error, 1060 * so mark the test as failed after all. */ 1061 test_fail( "Mutex usage error", __LINE__, __FILE__ ); 1062 } 1063 test_info.mutex_usage_error = NULL; 1064} 1065 1066#endif /* MBEDTLS_TEST_MUTEX_USAGE */ 1067