• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * This file has no copyright assigned and is placed in the Public Domain.
3  * This file is part of the mingw-w64 runtime package.
4  * No warranty is given; refer to the file DISCLAIMER.PD within this package.
5  */
6 #include "cephes_mconf.h"
7 
8 #if defined(__arm__) || defined(_ARM_) || defined(__aarch64__) || defined(_ARM64_)
9 double lgamma(double x);
10 
lgammal(long double x)11 long double lgammal(long double x)
12 {
13 	return lgamma(x);
14 }
15 #else
16 
17 #if UNK
18 static uLD S[9] = {
19   { { -1.193945051381510095614E-3L } },
20   { {  7.220599478036909672331E-3L } },
21   { { -9.622023360406271645744E-3L } },
22   { { -4.219773360705915470089E-2L } },
23   { {  1.665386113720805206758E-1L } },
24   { { -4.200263503403344054473E-2L } },
25   { { -6.558780715202540684668E-1L } },
26   { {  5.772156649015328608253E-1L } },
27   { {  1.000000000000000000000E0L } }
28 };
29 #endif
30 #if IBMPC
31 static const uLD S[] = {
32   { { 0xbaeb,0xd6d3,0x25e5,0x9c7e,0xbff5, 0, 0, 0 } },
33   { { 0xfe9a,0xceb4,0xc74e,0xec9a,0x3ff7, 0, 0, 0 } },
34   { { 0x9225,0xdfef,0xb0e9,0x9da5,0xbff8, 0, 0, 0 } },
35   { { 0x10b0,0xec17,0x87dc,0xacd7,0xbffa, 0, 0, 0 } },
36   { { 0x6b8d,0x7515,0x1905,0xaa89,0x3ffc, 0, 0, 0 } },
37   { { 0xf183,0x126b,0xf47d,0xac0a,0xbffa, 0, 0, 0 } },
38   { { 0x7bf6,0x57d1,0xa013,0xa7e7,0xbffe, 0, 0, 0 } },
39   { { 0xc7a9,0x7db0,0x67e3,0x93c4,0x3ffe, 0, 0, 0 } },
40   { { 0x0000,0x0000,0x0000,0x8000,0x3fff, 0, 0, 0 } }
41 };
42 #endif
43 #if MIEEE
44 static uLD S[27] = {
45   { { 0xbff50000,0x9c7e25e5,0xd6d3baeb, 0 } },
46   { { 0x3ff70000,0xec9ac74e,0xceb4fe9a, 0 } },
47   { { 0xbff80000,0x9da5b0e9,0xdfef9225, 0 } },
48   { { 0xbffa0000,0xacd787dc,0xec1710b0, 0 } },
49   { { 0x3ffc0000,0xaa891905,0x75156b8d, 0 } },
50   { { 0xbffa0000,0xac0af47d,0x126bf183, 0 } },
51   { { 0xbffe0000,0xa7e7a013,0x57d17bf6, 0 } },
52   { { 0x3ffe0000,0x93c467e3,0x7db0c7a9, 0 } },
53   { { 0x3fff0000,0x80000000,0x00000000, 0 } }
54 };
55 #endif
56 
57 #if UNK
58 static uLD SN[9] = {
59   { {  1.133374167243894382010E-3L } },
60   { {  7.220837261893170325704E-3L } },
61   { {  9.621911155035976733706E-3L } },
62   { { -4.219773343731191721664E-2L } },
63   { { -1.665386113944413519335E-1L } },
64   { { -4.200263503402112910504E-2L } },
65   { {  6.558780715202536547116E-1L } },
66   { {  5.772156649015328608727E-1L } },
67   { { -1.000000000000000000000E0L } }
68 };
69 #endif
70 #if IBMPC
71 static const uLD SN[] = {
72   { { 0x5dd1,0x02de,0xb9f7,0x948d,0x3ff5, 0, 0, 0 } },
73   { { 0x989b,0xdd68,0xc5f1,0xec9c,0x3ff7, 0, 0, 0 } },
74   { { 0x2ca1,0x18f0,0x386f,0x9da5,0x3ff8, 0, 0, 0 } },
75   { { 0x783f,0x41dd,0x87d1,0xacd7,0xbffa, 0, 0, 0 } },
76   { { 0x7a5b,0xd76d,0x1905,0xaa89,0xbffc, 0, 0, 0 } },
77   { { 0x7f64,0x1234,0xf47d,0xac0a,0xbffa, 0, 0, 0 } },
78   { { 0x5e26,0x57d1,0xa013,0xa7e7,0x3ffe, 0, 0, 0 } },
79   { { 0xc7aa,0x7db0,0x67e3,0x93c4,0x3ffe, 0, 0, 0 } },
80   { { 0x0000,0x0000,0x0000,0x8000,0xbfff, 0, 0, 0 } }
81 };
82 #endif
83 #if MIEEE
84 static uLD SN[] = {
85   { { 0x3ff50000,0x948db9f7,0x02de5dd1, 0 } },
86   { { 0x3ff70000,0xec9cc5f1,0xdd68989b, 0 } },
87   { { 0x3ff80000,0x9da5386f,0x18f02ca1, 0 } },
88   { { 0xbffa0000,0xacd787d1,0x41dd783f, 0 } },
89   { { 0xbffc0000,0xaa891905,0xd76d7a5b, 0 } },
90   { { 0xbffa0000,0xac0af47d,0x12347f64, 0 } },
91   { { 0x3ffe0000,0xa7e7a013,0x57d15e26, 0 } },
92   { { 0x3ffe0000,0x93c467e3,0x7db0c7aa, 0 } },
93   { { 0xbfff0000,0x80000000,0x00000000, 0 } }
94 };
95 #endif
96 
97 
98 /* A[]: Stirling's formula expansion of log gamma
99  * B[], C[]: log gamma function between 2 and 3
100  */
101 
102 
103 /* log gamma(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x A(1/x^2)
104  * x >= 8
105  * Peak relative error 1.51e-21
106  * Relative spread of error peaks 5.67e-21
107  */
108 #if UNK
109 static uLD A[7] = {
110   { {  4.885026142432270781165E-3L } },
111   { { -1.880801938119376907179E-3L } },
112   { {  8.412723297322498080632E-4L } },
113   { { -5.952345851765688514613E-4L } },
114   { {  7.936507795855070755671E-4L } },
115   { { -2.777777777750349603440E-3L } },
116   { {  8.333333333333331447505E-2L } }
117 };
118 #endif
119 #if IBMPC
120 static const uLD A[] = {
121   { { 0xd984,0xcc08,0x91c2,0xa012,0x3ff7, 0, 0, 0 } },
122   { { 0x3d91,0x0304,0x3da1,0xf685,0xbff5, 0, 0, 0 } },
123   { { 0x3bdc,0xaad1,0xd492,0xdc88,0x3ff4, 0, 0, 0 } },
124   { { 0x8b20,0x9fce,0x844e,0x9c09,0xbff4, 0, 0, 0 } },
125   { { 0xf8f2,0x30e5,0x0092,0xd00d,0x3ff4, 0, 0, 0 } },
126   { { 0x4d88,0x03a8,0x60b6,0xb60b,0xbff6, 0, 0, 0 } },
127   { { 0x9fcc,0xaaaa,0xaaaa,0xaaaa,0x3ffb, 0, 0, 0 } }
128 };
129 #endif
130 #if MIEEE
131 static uLD A[] = {
132   { { 0x3ff70000,0xa01291c2,0xcc08d984, 0 } },
133   { { 0xbff50000,0xf6853da1,0x03043d91, 0 } },
134   { { 0x3ff40000,0xdc88d492,0xaad13bdc, 0 } },
135   { { 0xbff40000,0x9c09844e,0x9fce8b20, 0 } },
136   { { 0x3ff40000,0xd00d0092,0x30e5f8f2, 0 } },
137   { { 0xbff60000,0xb60b60b6,0x03a84d88, 0 } },
138   { { 0x3ffb0000,0xaaaaaaaa,0xaaaa9fcc, 0 } }
139 };
140 #endif
141 
142 /* log gamma(x+2) = x B(x)/C(x)
143  * 0 <= x <= 1
144  * Peak relative error 7.16e-22
145  * Relative spread of error peaks 4.78e-20
146  */
147 #if UNK
148 static uLD B[7] = {
149   { { -2.163690827643812857640E3L } },
150   { { -8.723871522843511459790E4L } },
151   { { -1.104326814691464261197E6L } },
152   { { -6.111225012005214299996E6L } },
153   { { -1.625568062543700591014E7L } },
154   { { -2.003937418103815175475E7L } },
155   { { -8.875666783650703802159E6L } }
156 };
157 static uLD C[7] = {
158   { { -5.139481484435370143617E2L } },
159   { { -3.403570840534304670537E4L } },
160   { { -6.227441164066219501697E5L } },
161   { { -4.814940379411882186630E6L } },
162   { { -1.785433287045078156959E7L } },
163   { { -3.138646407656182662088E7L } },
164   { { -2.099336717757895876142E7L } }
165 };
166 #endif
167 #if IBMPC
168 static const uLD B[] = {
169   { { 0x9557,0x4995,0x0da1,0x873b,0xc00a, 0, 0, 0 } },
170   { { 0xfe44,0x9af8,0x5b8c,0xaa63,0xc00f, 0, 0, 0 } },
171   { { 0x5aa8,0x7cf5,0x3684,0x86ce,0xc013, 0, 0, 0 } },
172   { { 0x259a,0x258c,0xf206,0xba7f,0xc015, 0, 0, 0 } },
173   { { 0xbe18,0x1ca3,0xc0a0,0xf80a,0xc016, 0, 0, 0 } },
174   { { 0x168f,0x2c42,0x6717,0x98e3,0xc017, 0, 0, 0 } },
175   { { 0x2051,0x9d55,0x92c8,0x876e,0xc016, 0, 0, 0 } }
176 };
177 static const uLD C[] = {
178   { { 0xaa77,0xcf2f,0xae76,0x807c,0xc008, 0, 0, 0 } },
179   { { 0xb280,0x0d74,0xb55a,0x84f3,0xc00e, 0, 0, 0 } },
180   { { 0xa505,0xcd30,0x81dc,0x9809,0xc012, 0, 0, 0 } },
181   { { 0x3369,0x4246,0xb8c2,0x92f0,0xc015, 0, 0, 0 } },
182   { { 0x63cf,0x6aee,0xbe6f,0x8837,0xc017, 0, 0, 0 } },
183   { { 0x26bb,0xccc7,0xb009,0xef75,0xc017, 0, 0, 0 } },
184   { { 0x462b,0xbae8,0xab96,0xa02a,0xc017, 0, 0, 0 } }
185 };
186 #endif
187 #if MIEEE
188 static uLD B[] = {
189   { { 0xc00a0000,0x873b0da1,0x49959557, 0 } },
190   { { 0xc00f0000,0xaa635b8c,0x9af8fe44, 0 } },
191   { { 0xc0130000,0x86ce3684,0x7cf55aa8, 0 } },
192   { { 0xc0150000,0xba7ff206,0x258c259a, 0 } },
193   { { 0xc0160000,0xf80ac0a0,0x1ca3be18, 0 } },
194   { { 0xc0170000,0x98e36717,0x2c42168f, 0 } },
195   { { 0xc0160000,0x876e92c8,0x9d552051, 0 } }
196 };
197 static uLD C[] = {
198   { { 0xc0080000,0x807cae76,0xcf2faa77, 0 } },
199   { { 0xc00e0000,0x84f3b55a,0x0d74b280, 0 } },
200   { { 0xc0120000,0x980981dc,0xcd30a505, 0 } },
201   { { 0xc0150000,0x92f0b8c2,0x42463369, 0 } },
202   { { 0xc0170000,0x8837be6f,0x6aee63cf, 0 } },
203   { { 0xc0170000,0xef75b009,0xccc726bb, 0 } },
204   { { 0xc0170000,0xa02aab96,0xbae8462b, 0 } }
205 };
206 #endif
207 
208 /* log( sqrt( 2*pi ) ) */
209 static const long double LS2PI  =  0.91893853320467274178L;
210 #if defined(__arm__) || defined(_ARM_) || defined(__aarch64__) || defined(_ARM64_)
211 #define MAXLGM 2.035093e36
212 #else
213 #define MAXLGM 1.04848146839019521116e+4928L
214 #endif /* defined(__arm__) || defined(_ARM_) || defined(__aarch64__) || defined(_ARM64_) */
215 
216 /* Logarithm of gamma function */
217 /* Reentrant version */
218 long double __lgammal_r(long double x, int* sgngaml);
219 
__lgammal_r(long double x,int * sgngaml)220 long double __lgammal_r(long double x, int* sgngaml)
221 {
222 	long double p, q, w, z, f, nx;
223 	int i;
224 
225 	*sgngaml = 1;
226 #ifdef NANS
227 	if (isnanl(x))
228 		return x;
229 #endif
230 #ifdef INFINITIES
231 	if (!isfinitel(x))
232 		return (INFINITYL);
233 #endif
234 	if (x < -34.0L)
235 	{
236 		q = -x;
237 		w = __lgammal_r(q, sgngaml); /* note this modifies sgngam! */
238 		p = floorl(q);
239 		if (p == q)
240 		{
241 lgsing:
242 			_SET_ERRNO(EDOM);
243 			mtherr( "lgammal", SING );
244 #ifdef INFINITIES
245 			return (INFINITYL);
246 #else
247 			return (MAXNUML);
248 #endif
249 		}
250 		i = p;
251 		if ((i & 1) == 0)
252 			*sgngaml = -1;
253 		else
254 			*sgngaml = 1;
255 		z = q - p;
256 		if (z > 0.5L)
257 		{
258 			p += 1.0L;
259 			z = p - q;
260 		}
261 		z = q * sinl(PIL * z);
262 		if (z == 0.0L)
263 			goto lgsing;
264 	/*	z = LOGPI - logl( z ) - w; */
265 		z = logl(PIL/z) - w;
266 		return (z);
267 	}
268 
269 	if (x < 13.0L)
270 	{
271 		z = 1.0L;
272 		nx = floorl(x +  0.5L);
273 		f = x - nx;
274 		while (x >= 3.0L)
275 		{
276 			nx -= 1.0L;
277 			x = nx + f;
278 			z *= x;
279 		}
280 		while (x < 2.0L)
281 		{
282 			if (fabsl(x) <= 0.03125)
283 				goto lsmall;
284 			z /= nx +  f;
285 			nx += 1.0L;
286 			x = nx + f;
287 		}
288 		if (z < 0.0L)
289 		{
290 			*sgngaml = -1;
291 			z = -z;
292 		}
293 		else
294 			*sgngaml = 1;
295 		if (x == 2.0L)
296 			return ( logl(z) );
297 		x = (nx - 2.0L) + f;
298 		p = x * polevll(x, B, 6) / p1evll(x, C, 7);
299 		return ( logl(z) + p );
300 	}
301 
302 	if (x > MAXLGM)
303 	{
304 		_SET_ERRNO(ERANGE);
305 		mtherr("lgammal", OVERFLOW);
306 #ifdef INFINITIES
307 		return (*sgngaml * INFINITYL);
308 #else
309 		return (*sgngaml * MAXNUML);
310 #endif
311 	}
312 
313 	q = (x - 0.5L) * logl(x) - x + LS2PI;
314 	if (x > 1.0e10L)
315 		return(q);
316 	p = 1.0L/(x*x);
317 	q += polevll(p, A, 6) / x;
318 	return (q);
319 
320 lsmall:
321 	if (x == 0.0L)
322 		goto lgsing;
323 	if (x < 0.0L)
324 	{
325 		x = -x;
326 		q = z / (x * polevll(x, SN, 8));
327 	}
328 	else
329 		q = z / (x * polevll(x, S, 8));
330 	if (q < 0.0L)
331 	{
332 		*sgngaml = -1;
333 		q = -q;
334 	}
335 	else
336 		*sgngaml = 1;
337 	q = logl(q);
338 	return (q);
339 }
340 
341 /* This is the C99 version */
lgammal(long double x)342 long double lgammal(long double x)
343 {
344 	return (__lgammal_r (x, &signgam));
345 }
346 #endif
347