1 /*
2 * Tiny arbitrary precision floating point library
3 *
4 * Copyright (c) 2017-2020 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #ifndef LIBBF_H
25 #define LIBBF_H
26
27 #include <stddef.h>
28 #include <stdint.h>
29
30 #if INTPTR_MAX >= INT64_MAX
31 #define LIMB_LOG2_BITS 6
32 #else
33 #define LIMB_LOG2_BITS 5
34 #endif
35
36 #define LIMB_BITS (1 << LIMB_LOG2_BITS)
37
38 #if LIMB_BITS == 64
39 typedef __int128 int128_t;
40 typedef unsigned __int128 uint128_t;
41 typedef int64_t slimb_t;
42 typedef uint64_t limb_t;
43 typedef uint128_t dlimb_t;
44 #define BF_RAW_EXP_MIN INT64_MIN
45 #define BF_RAW_EXP_MAX INT64_MAX
46
47 #define LIMB_DIGITS 19
48 #define BF_DEC_BASE UINT64_C(10000000000000000000)
49
50 #else
51
52 typedef int32_t slimb_t;
53 typedef uint32_t limb_t;
54 typedef uint64_t dlimb_t;
55 #define BF_RAW_EXP_MIN INT32_MIN
56 #define BF_RAW_EXP_MAX INT32_MAX
57
58 #define LIMB_DIGITS 9
59 #define BF_DEC_BASE 1000000000U
60
61 #endif
62
63 /* in bits */
64 /* minimum number of bits for the exponent */
65 #define BF_EXP_BITS_MIN 3
66 /* maximum number of bits for the exponent */
67 #define BF_EXP_BITS_MAX (LIMB_BITS - 3)
68 /* extended range for exponent, used internally */
69 #define BF_EXT_EXP_BITS_MAX (BF_EXP_BITS_MAX + 1)
70 /* minimum possible precision */
71 #define BF_PREC_MIN 2
72 /* minimum possible precision */
73 #define BF_PREC_MAX (((limb_t)1 << (LIMB_BITS - 2)) - 2)
74 /* some operations support infinite precision */
75 #define BF_PREC_INF (BF_PREC_MAX + 1) /* infinite precision */
76
77 #if LIMB_BITS == 64
78 #define BF_CHKSUM_MOD (UINT64_C(975620677) * UINT64_C(9795002197))
79 #else
80 #define BF_CHKSUM_MOD 975620677U
81 #endif
82
83 #define BF_EXP_ZERO BF_RAW_EXP_MIN
84 #define BF_EXP_INF (BF_RAW_EXP_MAX - 1)
85 #define BF_EXP_NAN BF_RAW_EXP_MAX
86
87 /* +/-zero is represented with expn = BF_EXP_ZERO and len = 0,
88 +/-infinity is represented with expn = BF_EXP_INF and len = 0,
89 NaN is represented with expn = BF_EXP_NAN and len = 0 (sign is ignored)
90 */
91 typedef struct {
92 struct bf_context_t *ctx;
93 int sign;
94 slimb_t expn;
95 limb_t len;
96 limb_t *tab;
97 } bf_t;
98
99 typedef struct {
100 /* must be kept identical to bf_t */
101 struct bf_context_t *ctx;
102 int sign;
103 slimb_t expn;
104 limb_t len;
105 limb_t *tab;
106 } bfdec_t;
107
108 typedef enum {
109 BF_RNDN, /* round to nearest, ties to even */
110 BF_RNDZ, /* round to zero */
111 BF_RNDD, /* round to -inf (the code relies on (BF_RNDD xor BF_RNDU) = 1) */
112 BF_RNDU, /* round to +inf */
113 BF_RNDNA, /* round to nearest, ties away from zero */
114 BF_RNDA, /* round away from zero */
115 BF_RNDF, /* faithful rounding (nondeterministic, either RNDD or RNDU,
116 inexact flag is always set) */
117 } bf_rnd_t;
118
119 /* allow subnormal numbers. Only available if the number of exponent
120 bits is <= BF_EXP_BITS_USER_MAX and prec != BF_PREC_INF. */
121 #define BF_FLAG_SUBNORMAL (1 << 3)
122 /* 'prec' is the precision after the radix point instead of the whole
123 mantissa. Can only be used with bf_round() and
124 bfdec_[add|sub|mul|div|sqrt|round](). */
125 #define BF_FLAG_RADPNT_PREC (1 << 4)
126
127 #define BF_RND_MASK 0x7
128 #define BF_EXP_BITS_SHIFT 5
129 #define BF_EXP_BITS_MASK 0x3f
130
131 /* shortcut for bf_set_exp_bits(BF_EXT_EXP_BITS_MAX) */
132 #define BF_FLAG_EXT_EXP (BF_EXP_BITS_MASK << BF_EXP_BITS_SHIFT)
133
134 /* contains the rounding mode and number of exponents bits */
135 typedef uint32_t bf_flags_t;
136
137 typedef void *bf_realloc_func_t(void *opaque, void *ptr, size_t size);
138
139 typedef struct {
140 bf_t val;
141 limb_t prec;
142 } BFConstCache;
143
144 typedef struct bf_context_t {
145 void *realloc_opaque;
146 bf_realloc_func_t *realloc_func;
147 BFConstCache log2_cache;
148 BFConstCache pi_cache;
149 struct BFNTTState *ntt_state;
150 } bf_context_t;
151
bf_get_exp_bits(bf_flags_t flags)152 static inline int bf_get_exp_bits(bf_flags_t flags)
153 {
154 int e;
155 e = (flags >> BF_EXP_BITS_SHIFT) & BF_EXP_BITS_MASK;
156 if (e == BF_EXP_BITS_MASK)
157 return BF_EXP_BITS_MAX + 1;
158 else
159 return BF_EXP_BITS_MAX - e;
160 }
161
bf_set_exp_bits(int n)162 static inline bf_flags_t bf_set_exp_bits(int n)
163 {
164 return ((BF_EXP_BITS_MAX - n) & BF_EXP_BITS_MASK) << BF_EXP_BITS_SHIFT;
165 }
166
167 /* returned status */
168 #define BF_ST_INVALID_OP (1 << 0)
169 #define BF_ST_DIVIDE_ZERO (1 << 1)
170 #define BF_ST_OVERFLOW (1 << 2)
171 #define BF_ST_UNDERFLOW (1 << 3)
172 #define BF_ST_INEXACT (1 << 4)
173 /* indicate that a memory allocation error occured. NaN is returned */
174 #define BF_ST_MEM_ERROR (1 << 5)
175
176 #define BF_RADIX_MAX 36 /* maximum radix for bf_atof() and bf_ftoa() */
177
bf_max(slimb_t a,slimb_t b)178 static inline slimb_t bf_max(slimb_t a, slimb_t b)
179 {
180 if (a > b)
181 return a;
182 else
183 return b;
184 }
185
bf_min(slimb_t a,slimb_t b)186 static inline slimb_t bf_min(slimb_t a, slimb_t b)
187 {
188 if (a < b)
189 return a;
190 else
191 return b;
192 }
193
194 void bf_context_init(bf_context_t *s, bf_realloc_func_t *realloc_func,
195 void *realloc_opaque);
196 void bf_context_end(bf_context_t *s);
197 /* free memory allocated for the bf cache data */
198 void bf_clear_cache(bf_context_t *s);
199
bf_realloc(bf_context_t * s,void * ptr,size_t size)200 static inline void *bf_realloc(bf_context_t *s, void *ptr, size_t size)
201 {
202 return s->realloc_func(s->realloc_opaque, ptr, size);
203 }
204
205 /* 'size' must be != 0 */
bf_malloc(bf_context_t * s,size_t size)206 static inline void *bf_malloc(bf_context_t *s, size_t size)
207 {
208 return bf_realloc(s, NULL, size);
209 }
210
bf_free(bf_context_t * s,void * ptr)211 static inline void bf_free(bf_context_t *s, void *ptr)
212 {
213 /* must test ptr otherwise equivalent to malloc(0) */
214 if (ptr)
215 bf_realloc(s, ptr, 0);
216 }
217
218 void bf_init(bf_context_t *s, bf_t *r);
219
bf_delete(bf_t * r)220 static inline void bf_delete(bf_t *r)
221 {
222 bf_context_t *s = r->ctx;
223 /* we accept to delete a zeroed bf_t structure */
224 if (s && r->tab) {
225 bf_realloc(s, r->tab, 0);
226 }
227 }
228
bf_neg(bf_t * r)229 static inline void bf_neg(bf_t *r)
230 {
231 r->sign ^= 1;
232 }
233
bf_is_finite(const bf_t * a)234 static inline int bf_is_finite(const bf_t *a)
235 {
236 return (a->expn < BF_EXP_INF);
237 }
238
bf_is_nan(const bf_t * a)239 static inline int bf_is_nan(const bf_t *a)
240 {
241 return (a->expn == BF_EXP_NAN);
242 }
243
bf_is_zero(const bf_t * a)244 static inline int bf_is_zero(const bf_t *a)
245 {
246 return (a->expn == BF_EXP_ZERO);
247 }
248
bf_memcpy(bf_t * r,const bf_t * a)249 static inline void bf_memcpy(bf_t *r, const bf_t *a)
250 {
251 *r = *a;
252 }
253
254 int bf_set_ui(bf_t *r, uint64_t a);
255 int bf_set_si(bf_t *r, int64_t a);
256 void bf_set_nan(bf_t *r);
257 void bf_set_zero(bf_t *r, int is_neg);
258 void bf_set_inf(bf_t *r, int is_neg);
259 int bf_set(bf_t *r, const bf_t *a);
260 void bf_move(bf_t *r, bf_t *a);
261 int bf_get_float64(const bf_t *a, double *pres, bf_rnd_t rnd_mode);
262 int bf_set_float64(bf_t *a, double d);
263
264 int bf_cmpu(const bf_t *a, const bf_t *b);
265 int bf_cmp_full(const bf_t *a, const bf_t *b);
266 int bf_cmp(const bf_t *a, const bf_t *b);
bf_cmp_eq(const bf_t * a,const bf_t * b)267 static inline int bf_cmp_eq(const bf_t *a, const bf_t *b)
268 {
269 return bf_cmp(a, b) == 0;
270 }
271
bf_cmp_le(const bf_t * a,const bf_t * b)272 static inline int bf_cmp_le(const bf_t *a, const bf_t *b)
273 {
274 return bf_cmp(a, b) <= 0;
275 }
276
bf_cmp_lt(const bf_t * a,const bf_t * b)277 static inline int bf_cmp_lt(const bf_t *a, const bf_t *b)
278 {
279 return bf_cmp(a, b) < 0;
280 }
281
282 int bf_add(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec, bf_flags_t flags);
283 int bf_sub(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec, bf_flags_t flags);
284 int bf_add_si(bf_t *r, const bf_t *a, int64_t b1, limb_t prec, bf_flags_t flags);
285 int bf_mul(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec, bf_flags_t flags);
286 int bf_mul_ui(bf_t *r, const bf_t *a, uint64_t b1, limb_t prec, bf_flags_t flags);
287 int bf_mul_si(bf_t *r, const bf_t *a, int64_t b1, limb_t prec,
288 bf_flags_t flags);
289 int bf_mul_2exp(bf_t *r, slimb_t e, limb_t prec, bf_flags_t flags);
290 int bf_div(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec, bf_flags_t flags);
291 #define BF_DIVREM_EUCLIDIAN BF_RNDF
292 int bf_divrem(bf_t *q, bf_t *r, const bf_t *a, const bf_t *b,
293 limb_t prec, bf_flags_t flags, int rnd_mode);
294 int bf_rem(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
295 bf_flags_t flags, int rnd_mode);
296 int bf_remquo(slimb_t *pq, bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
297 bf_flags_t flags, int rnd_mode);
298 /* round to integer with infinite precision */
299 int bf_rint(bf_t *r, int rnd_mode);
300 int bf_round(bf_t *r, limb_t prec, bf_flags_t flags);
301 int bf_sqrtrem(bf_t *r, bf_t *rem1, const bf_t *a);
302 int bf_sqrt(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
303 slimb_t bf_get_exp_min(const bf_t *a);
304 int bf_logic_or(bf_t *r, const bf_t *a, const bf_t *b);
305 int bf_logic_xor(bf_t *r, const bf_t *a, const bf_t *b);
306 int bf_logic_and(bf_t *r, const bf_t *a, const bf_t *b);
307
308 /* additional flags for bf_atof */
309 /* do not accept hex radix prefix (0x or 0X) if radix = 0 or radix = 16 */
310 #define BF_ATOF_NO_HEX (1 << 16)
311 /* accept binary (0b or 0B) or octal (0o or 0O) radix prefix if radix = 0 */
312 #define BF_ATOF_BIN_OCT (1 << 17)
313 /* Do not parse NaN or Inf */
314 #define BF_ATOF_NO_NAN_INF (1 << 18)
315 /* return the exponent separately */
316 #define BF_ATOF_EXPONENT (1 << 19)
317
318 int bf_atof(bf_t *a, const char *str, const char **pnext, int radix,
319 limb_t prec, bf_flags_t flags);
320 /* this version accepts prec = BF_PREC_INF and returns the radix
321 exponent */
322 int bf_atof2(bf_t *r, slimb_t *pexponent,
323 const char *str, const char **pnext, int radix,
324 limb_t prec, bf_flags_t flags);
325 int bf_mul_pow_radix(bf_t *r, const bf_t *T, limb_t radix,
326 slimb_t expn, limb_t prec, bf_flags_t flags);
327
328
329 /* Conversion of floating point number to string. Return a null
330 terminated string or NULL if memory error. *plen contains its
331 length if plen != NULL. The exponent letter is "e" for base 10,
332 "p" for bases 2, 8, 16 with a binary exponent and "@" for the other
333 bases. */
334
335 #define BF_FTOA_FORMAT_MASK (3 << 16)
336
337 /* fixed format: prec significant digits rounded with (flags &
338 BF_RND_MASK). Exponential notation is used if too many zeros are
339 needed.*/
340 #define BF_FTOA_FORMAT_FIXED (0 << 16)
341 /* fractional format: prec digits after the decimal point rounded with
342 (flags & BF_RND_MASK) */
343 #define BF_FTOA_FORMAT_FRAC (1 << 16)
344 /* free format:
345
346 For binary radices with bf_ftoa() and for bfdec_ftoa(): use the minimum
347 number of digits to represent 'a'. The precision and the rounding
348 mode are ignored.
349
350 For the non binary radices with bf_ftoa(): use as many digits as
351 necessary so that bf_atof() return the same number when using
352 precision 'prec', rounding to nearest and the subnormal
353 configuration of 'flags'. The result is meaningful only if 'a' is
354 already rounded to 'prec' bits. If the subnormal flag is set, the
355 exponent in 'flags' must also be set to the desired exponent range.
356 */
357 #define BF_FTOA_FORMAT_FREE (2 << 16)
358 /* same as BF_FTOA_FORMAT_FREE but uses the minimum number of digits
359 (takes more computation time). Identical to BF_FTOA_FORMAT_FREE for
360 binary radices with bf_ftoa() and for bfdec_ftoa(). */
361 #define BF_FTOA_FORMAT_FREE_MIN (3 << 16)
362
363 /* force exponential notation for fixed or free format */
364 #define BF_FTOA_FORCE_EXP (1 << 20)
365 /* add 0x prefix for base 16, 0o prefix for base 8 or 0b prefix for
366 base 2 if non zero value */
367 #define BF_FTOA_ADD_PREFIX (1 << 21)
368 /* return "Infinity" instead of "Inf" and add a "+" for positive
369 exponents */
370 #define BF_FTOA_JS_QUIRKS (1 << 22)
371
372 char *bf_ftoa(size_t *plen, const bf_t *a, int radix, limb_t prec,
373 bf_flags_t flags);
374
375 /* modulo 2^n instead of saturation. NaN and infinity return 0 */
376 #define BF_GET_INT_MOD (1 << 0)
377 int bf_get_int32(int *pres, const bf_t *a, int flags);
378 int bf_get_int64(int64_t *pres, const bf_t *a, int flags);
379 int bf_get_uint64(uint64_t *pres, const bf_t *a);
380
381 /* the following functions are exported for testing only. */
382 void mp_print_str(const char *str, const limb_t *tab, limb_t n);
383 void bf_print_str(const char *str, const bf_t *a);
384 int bf_resize(bf_t *r, limb_t len);
385 int bf_get_fft_size(int *pdpl, int *pnb_mods, limb_t len);
386 int bf_normalize_and_round(bf_t *r, limb_t prec1, bf_flags_t flags);
387 int bf_can_round(const bf_t *a, slimb_t prec, bf_rnd_t rnd_mode, slimb_t k);
388 slimb_t bf_mul_log2_radix(slimb_t a1, unsigned int radix, int is_inv,
389 int is_ceil1);
390 int mp_mul(bf_context_t *s, limb_t *result,
391 const limb_t *op1, limb_t op1_size,
392 const limb_t *op2, limb_t op2_size);
393 limb_t mp_add(limb_t *res, const limb_t *op1, const limb_t *op2,
394 limb_t n, limb_t carry);
395 limb_t mp_add_ui(limb_t *tab, limb_t b, size_t n);
396 int mp_sqrtrem(bf_context_t *s, limb_t *tabs, limb_t *taba, limb_t n);
397 int mp_recip(bf_context_t *s, limb_t *tabr, const limb_t *taba, limb_t n);
398 limb_t bf_isqrt(limb_t a);
399
400 /* transcendental functions */
401 int bf_const_log2(bf_t *T, limb_t prec, bf_flags_t flags);
402 int bf_const_pi(bf_t *T, limb_t prec, bf_flags_t flags);
403 int bf_exp(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
404 int bf_log(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
405 #define BF_POW_JS_QUIRKS (1 << 16) /* (+/-1)^(+/-Inf) = NaN, 1^NaN = NaN */
406 int bf_pow(bf_t *r, const bf_t *x, const bf_t *y, limb_t prec, bf_flags_t flags);
407 int bf_cos(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
408 int bf_sin(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
409 int bf_tan(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
410 int bf_atan(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
411 int bf_atan2(bf_t *r, const bf_t *y, const bf_t *x,
412 limb_t prec, bf_flags_t flags);
413 int bf_asin(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
414 int bf_acos(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
415
416 /* decimal floating point */
417
bfdec_init(bf_context_t * s,bfdec_t * r)418 static inline void bfdec_init(bf_context_t *s, bfdec_t *r)
419 {
420 bf_init(s, (bf_t *)r);
421 }
bfdec_delete(bfdec_t * r)422 static inline void bfdec_delete(bfdec_t *r)
423 {
424 bf_delete((bf_t *)r);
425 }
426
bfdec_neg(bfdec_t * r)427 static inline void bfdec_neg(bfdec_t *r)
428 {
429 r->sign ^= 1;
430 }
431
bfdec_is_finite(const bfdec_t * a)432 static inline int bfdec_is_finite(const bfdec_t *a)
433 {
434 return (a->expn < BF_EXP_INF);
435 }
436
bfdec_is_nan(const bfdec_t * a)437 static inline int bfdec_is_nan(const bfdec_t *a)
438 {
439 return (a->expn == BF_EXP_NAN);
440 }
441
bfdec_is_zero(const bfdec_t * a)442 static inline int bfdec_is_zero(const bfdec_t *a)
443 {
444 return (a->expn == BF_EXP_ZERO);
445 }
446
bfdec_memcpy(bfdec_t * r,const bfdec_t * a)447 static inline void bfdec_memcpy(bfdec_t *r, const bfdec_t *a)
448 {
449 bf_memcpy((bf_t *)r, (const bf_t *)a);
450 }
451
452 int bfdec_set_ui(bfdec_t *r, uint64_t a);
453 int bfdec_set_si(bfdec_t *r, int64_t a);
454
bfdec_set_nan(bfdec_t * r)455 static inline void bfdec_set_nan(bfdec_t *r)
456 {
457 bf_set_nan((bf_t *)r);
458 }
bfdec_set_zero(bfdec_t * r,int is_neg)459 static inline void bfdec_set_zero(bfdec_t *r, int is_neg)
460 {
461 bf_set_zero((bf_t *)r, is_neg);
462 }
bfdec_set_inf(bfdec_t * r,int is_neg)463 static inline void bfdec_set_inf(bfdec_t *r, int is_neg)
464 {
465 bf_set_inf((bf_t *)r, is_neg);
466 }
bfdec_set(bfdec_t * r,const bfdec_t * a)467 static inline int bfdec_set(bfdec_t *r, const bfdec_t *a)
468 {
469 return bf_set((bf_t *)r, (bf_t *)a);
470 }
bfdec_move(bfdec_t * r,bfdec_t * a)471 static inline void bfdec_move(bfdec_t *r, bfdec_t *a)
472 {
473 bf_move((bf_t *)r, (bf_t *)a);
474 }
bfdec_cmpu(const bfdec_t * a,const bfdec_t * b)475 static inline int bfdec_cmpu(const bfdec_t *a, const bfdec_t *b)
476 {
477 return bf_cmpu((const bf_t *)a, (const bf_t *)b);
478 }
bfdec_cmp_full(const bfdec_t * a,const bfdec_t * b)479 static inline int bfdec_cmp_full(const bfdec_t *a, const bfdec_t *b)
480 {
481 return bf_cmp_full((const bf_t *)a, (const bf_t *)b);
482 }
bfdec_cmp(const bfdec_t * a,const bfdec_t * b)483 static inline int bfdec_cmp(const bfdec_t *a, const bfdec_t *b)
484 {
485 return bf_cmp((const bf_t *)a, (const bf_t *)b);
486 }
bfdec_cmp_eq(const bfdec_t * a,const bfdec_t * b)487 static inline int bfdec_cmp_eq(const bfdec_t *a, const bfdec_t *b)
488 {
489 return bfdec_cmp(a, b) == 0;
490 }
bfdec_cmp_le(const bfdec_t * a,const bfdec_t * b)491 static inline int bfdec_cmp_le(const bfdec_t *a, const bfdec_t *b)
492 {
493 return bfdec_cmp(a, b) <= 0;
494 }
bfdec_cmp_lt(const bfdec_t * a,const bfdec_t * b)495 static inline int bfdec_cmp_lt(const bfdec_t *a, const bfdec_t *b)
496 {
497 return bfdec_cmp(a, b) < 0;
498 }
499
500 int bfdec_add(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
501 bf_flags_t flags);
502 int bfdec_sub(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
503 bf_flags_t flags);
504 int bfdec_add_si(bfdec_t *r, const bfdec_t *a, int64_t b1, limb_t prec,
505 bf_flags_t flags);
506 int bfdec_mul(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
507 bf_flags_t flags);
508 int bfdec_mul_si(bfdec_t *r, const bfdec_t *a, int64_t b1, limb_t prec,
509 bf_flags_t flags);
510 int bfdec_div(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
511 bf_flags_t flags);
512 int bfdec_divrem(bfdec_t *q, bfdec_t *r, const bfdec_t *a, const bfdec_t *b,
513 limb_t prec, bf_flags_t flags, int rnd_mode);
514 int bfdec_rem(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
515 bf_flags_t flags, int rnd_mode);
516 int bfdec_rint(bfdec_t *r, int rnd_mode);
517 int bfdec_sqrt(bfdec_t *r, const bfdec_t *a, limb_t prec, bf_flags_t flags);
518 int bfdec_round(bfdec_t *r, limb_t prec, bf_flags_t flags);
519 int bfdec_get_int32(int *pres, const bfdec_t *a);
520 int bfdec_pow_ui(bfdec_t *r, const bfdec_t *a, limb_t b);
521
522 char *bfdec_ftoa(size_t *plen, const bfdec_t *a, limb_t prec, bf_flags_t flags);
523 int bfdec_atof(bfdec_t *r, const char *str, const char **pnext,
524 limb_t prec, bf_flags_t flags);
525
526 /* the following functions are exported for testing only. */
527 extern const limb_t mp_pow_dec[LIMB_DIGITS + 1];
528 void bfdec_print_str(const char *str, const bfdec_t *a);
bfdec_resize(bfdec_t * r,limb_t len)529 static inline int bfdec_resize(bfdec_t *r, limb_t len)
530 {
531 return bf_resize((bf_t *)r, len);
532 }
533 int bfdec_normalize_and_round(bfdec_t *r, limb_t prec1, bf_flags_t flags);
534
535 #endif /* LIBBF_H */
536