• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2020 Google LLC.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/gpu/tessellate/shaders/GrStrokeTessellationShader.h"
9 
10 #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
11 #include "src/gpu/glsl/GrGLSLVarying.h"
12 #include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h"
13 #include "src/gpu/tessellate/StrokeTessellator.h"
14 
GrStrokeTessellationShader(const GrShaderCaps & shaderCaps,Mode mode,PatchAttribs attribs,const SkMatrix & viewMatrix,const SkStrokeRec & stroke,SkPMColor4f color,int8_t maxParametricSegments_log2)15 GrStrokeTessellationShader::GrStrokeTessellationShader(const GrShaderCaps& shaderCaps,
16                                                        Mode mode,
17                                                        PatchAttribs attribs,
18                                                        const SkMatrix& viewMatrix,
19                                                        const SkStrokeRec& stroke,
20                                                        SkPMColor4f color,
21                                                        int8_t maxParametricSegments_log2)
22         : GrTessellationShader(kTessellate_GrStrokeTessellationShader_ClassID,
23                                (mode == Mode::kHardwareTessellation)
24                                        ? GrPrimitiveType::kPatches
25                                        : GrPrimitiveType::kTriangleStrip,
26                                (mode == Mode::kHardwareTessellation) ? 1 : 0, viewMatrix, color)
27         , fMode(mode)
28         , fPatchAttribs(attribs)
29         , fStroke(stroke)
30         , fMaxParametricSegments_log2(maxParametricSegments_log2) {
31     // We should use explicit curve type when, and only when, there isn't infinity support.
32     // Otherwise the GPU can infer curve type based on infinity.
33     SkASSERT(shaderCaps.infinitySupport() != (attribs & PatchAttribs::kExplicitCurveType));
34     if (fMode == Mode::kHardwareTessellation) {
35         // Explicit curve type is not implemented for tessellation shaders.
36         SkASSERT(!(attribs & PatchAttribs::kExplicitCurveType));
37     }
38     if (fMode == Mode::kHardwareTessellation) {
39         // A join calculates its starting angle using prevCtrlPtAttr.
40         fAttribs.emplace_back("prevCtrlPtAttr", kFloat2_GrVertexAttribType, kFloat2_GrSLType);
41         // pts 0..3 define the stroke as a cubic bezier. If p3.y is infinity, then it's a conic
42         // with w=p3.x.
43         //
44         // If p0 == prevCtrlPtAttr, then no join is emitted.
45         //
46         // pts=[p0, p3, p3, p3] is a reserved pattern that means this patch is a join only,
47         // whose start and end tangents are (p0 - inputPrevCtrlPt) and (p3 - p0).
48         //
49         // pts=[p0, p0, p0, p3] is a reserved pattern that means this patch is a "bowtie", or
50         // double-sided round join, anchored on p0 and rotating from (p0 - prevCtrlPtAttr) to
51         // (p3 - p0).
52         fAttribs.emplace_back("pts01Attr", kFloat4_GrVertexAttribType, kFloat4_GrSLType);
53         fAttribs.emplace_back("pts23Attr", kFloat4_GrVertexAttribType, kFloat4_GrSLType);
54     } else {
55         // pts 0..3 define the stroke as a cubic bezier. If p3.y is infinity, then it's a conic
56         // with w=p3.x.
57         //
58         // An empty stroke (p0==p1==p2==p3) is a special case that denotes a circle, or
59         // 180-degree point stroke.
60         fAttribs.emplace_back("pts01Attr", kFloat4_GrVertexAttribType, kFloat4_GrSLType);
61         fAttribs.emplace_back("pts23Attr", kFloat4_GrVertexAttribType, kFloat4_GrSLType);
62         if (fMode == Mode::kLog2Indirect) {
63             // argsAttr.xy contains the lastControlPoint for setting up the join.
64             //
65             // "argsAttr.z=numTotalEdges" tells the shader the literal number of edges in the
66             // triangle strip being rendered (i.e., it should be vertexCount/2). If
67             // numTotalEdges is negative and the join type is "kRound", it also instructs the
68             // shader to only allocate one segment the preceding round join.
69             fAttribs.emplace_back("argsAttr", kFloat3_GrVertexAttribType, kFloat3_GrSLType);
70         } else {
71             SkASSERT(fMode == Mode::kFixedCount);
72             // argsAttr contains the lastControlPoint for setting up the join.
73             fAttribs.emplace_back("argsAttr", kFloat2_GrVertexAttribType, kFloat2_GrSLType);
74         }
75     }
76     if (fPatchAttribs & PatchAttribs::kStrokeParams) {
77         fAttribs.emplace_back("dynamicStrokeAttr", kFloat2_GrVertexAttribType,
78                               kFloat2_GrSLType);
79     }
80     if (fPatchAttribs & PatchAttribs::kColor) {
81         fAttribs.emplace_back("dynamicColorAttr",
82                               (fPatchAttribs & PatchAttribs::kWideColorIfEnabled)
83                                       ? kFloat4_GrVertexAttribType
84                                       : kUByte4_norm_GrVertexAttribType,
85                               kHalf4_GrSLType);
86     }
87     if (fPatchAttribs & PatchAttribs::kExplicitCurveType) {
88         // A conic curve is written out with p3=[w,Infinity], but GPUs that don't support
89         // infinity can't detect this. On these platforms we write out an extra float with each
90         // patch that explicitly tells the shader what type of curve it is.
91         fAttribs.emplace_back("curveTypeAttr", kFloat_GrVertexAttribType, kFloat_GrSLType);
92     }
93     if (fMode == Mode::kHardwareTessellation) {
94         this->setVertexAttributes(fAttribs.data(), fAttribs.count());
95         SkASSERT(this->vertexStride() == sizeof(SkPoint) * 5 + PatchAttribsStride(fPatchAttribs));
96     } else {
97         this->setInstanceAttributes(fAttribs.data(), fAttribs.count());
98         SkASSERT(this->instanceStride() == sizeof(SkPoint) * 5 + PatchAttribsStride(fPatchAttribs));
99         if (!shaderCaps.vertexIDSupport()) {
100             constexpr static Attribute kVertexAttrib("edgeID", kFloat_GrVertexAttribType,
101                                                      kFloat_GrSLType);
102             this->setVertexAttributes(&kVertexAttrib, 1);
103         }
104     }
105     SkASSERT(fAttribs.count() <= kMaxAttribCount);
106 }
107 
108 const char* GrStrokeTessellationShader::Impl::kCosineBetweenVectorsFn = R"(
109 float cosine_between_vectors(float2 a, float2 b) {
110     // FIXME(crbug.com/800804,skbug.com/11268): This can overflow if we don't normalize exponents.
111     float ab_cosTheta = dot(a,b);
112     float ab_pow2 = dot(a,a) * dot(b,b);
113     return (ab_pow2 == 0.0) ? 1.0 : clamp(ab_cosTheta * inversesqrt(ab_pow2), -1.0, 1.0);
114 })";
115 
116 // Extends the middle radius to either the miter point, or the bevel edge if we surpassed the miter
117 // limit and need to revert to a bevel join.
118 const char* GrStrokeTessellationShader::Impl::kMiterExtentFn = R"(
119 float miter_extent(float cosTheta, float miterLimit) {
120     float x = fma(cosTheta, .5, .5);
121     return (x * miterLimit * miterLimit >= 1.0) ? inversesqrt(x) : sqrt(x);
122 })";
123 
124 // Returns the number of radial segments required for each radian of rotation, in order for the
125 // curve to appear "smooth" as defined by the parametricPrecision.
126 const char* GrStrokeTessellationShader::Impl::kNumRadialSegmentsPerRadianFn = R"(
127 float num_radial_segments_per_radian(float parametricPrecision, float strokeRadius) {
128     return .5 / acos(max(1.0 - 1.0/(parametricPrecision * strokeRadius), -1.0));
129 })";
130 
131 // Unlike mix(), this does not return b when t==1. But it otherwise seems to get better
132 // precision than "a*(1 - t) + b*t" for things like chopping cubics on exact cusp points.
133 // We override this result anyway when t==1 so it shouldn't be a problem.
134 const char* GrStrokeTessellationShader::Impl::kUncheckedMixFn = R"(
135 float unchecked_mix(float a, float b, float T) {
136     return fma(b - a, T, a);
137 }
138 float2 unchecked_mix(float2 a, float2 b, float T) {
139     return fma(b - a, float2(T), a);
140 }
141 float4 unchecked_mix(float4 a, float4 b, float4 T) {
142     return fma(b - a, T, a);
143 })";
144 
emitTessellationCode(const GrStrokeTessellationShader & shader,SkString * code,GrGPArgs * gpArgs,const GrShaderCaps & shaderCaps) const145 void GrStrokeTessellationShader::Impl::emitTessellationCode(
146         const GrStrokeTessellationShader& shader, SkString* code, GrGPArgs* gpArgs,
147         const GrShaderCaps& shaderCaps) const {
148     // The subclass is responsible to define the following symbols before calling this method:
149     //
150     //     // Functions.
151     //     float2 unchecked_mix(float2, float2, float);
152     //     float unchecked_mix(float, float, float);
153     //
154     //     // Values provided by either uniforms or attribs.
155     //     float2 p0, p1, p2, p3;
156     //     float w;
157     //     float STROKE_RADIUS;
158     //     float 2x2 AFFINE_MATRIX;
159     //     float2 TRANSLATE;
160     //
161     //     // Values calculated by the specific subclass.
162     //     float combinedEdgeID;
163     //     bool isFinalEdge;
164     //     float numParametricSegments;
165     //     float radsPerSegment;
166     //     float2 tan0;
167     //     float2 tan1;
168     //     float strokeOutset;
169     //
170     code->appendf(R"(
171     float2 tangent, strokeCoord;
172     if (combinedEdgeID != 0 && !isFinalEdge) {
173         // Compute the location and tangent direction of the stroke edge with the integral id
174         // "combinedEdgeID", where combinedEdgeID is the sorted-order index of parametric and radial
175         // edges. Start by finding the tangent function's power basis coefficients. These define a
176         // tangent direction (scaled by some uniform value) as:
177         //                                                 |T^2|
178         //     Tangent_Direction(T) = dx,dy = |A  2B  C| * |T  |
179         //                                    |.   .  .|   |1  |
180         float2 A, B, C = p1 - p0;
181         float2 D = p3 - p0;
182         if (w >= 0.0) {
183             // P0..P2 represent a conic and P3==P2. The derivative of a conic has a cumbersome
184             // order-4 denominator. However, this isn't necessary if we are only interested in a
185             // vector in the same *direction* as a given tangent line. Since the denominator scales
186             // dx and dy uniformly, we can throw it out completely after evaluating the derivative
187             // with the standard quotient rule. This leaves us with a simpler quadratic function
188             // that we use to find a tangent.
189             C *= w;
190             B = .5*D - C;
191             A = (w - 1.0) * D;
192             p1 *= w;
193         } else {
194             float2 E = p2 - p1;
195             B = E - C;
196             A = fma(float2(-3), E, D);
197         }
198         // FIXME(crbug.com/800804,skbug.com/11268): Consider normalizing the exponents in A,B,C at
199         // this point in order to prevent fp32 overflow.
200 
201         // Now find the coefficients that give a tangent direction from a parametric edge ID:
202         //
203         //                                                                 |parametricEdgeID^2|
204         //     Tangent_Direction(parametricEdgeID) = dx,dy = |A  B_  C_| * |parametricEdgeID  |
205         //                                                   |.   .   .|   |1                 |
206         //
207         float2 B_ = B * (numParametricSegments * 2.0);
208         float2 C_ = C * (numParametricSegments * numParametricSegments);
209 
210         // Run a binary search to determine the highest parametric edge that is located on or before
211         // the combinedEdgeID. A combined ID is determined by the sum of complete parametric and
212         // radial segments behind it. i.e., find the highest parametric edge where:
213         //
214         //    parametricEdgeID + floor(numRadialSegmentsAtParametricT) <= combinedEdgeID
215         //
216         float lastParametricEdgeID = 0.0;
217         float maxParametricEdgeID = min(numParametricSegments - 1.0, combinedEdgeID);
218         // FIXME(crbug.com/800804,skbug.com/11268): This normalize() can overflow.
219         float2 tan0norm = normalize(tan0);
220         float negAbsRadsPerSegment = -abs(radsPerSegment);
221         float maxRotation0 = (1.0 + combinedEdgeID) * abs(radsPerSegment);
222         for (int exp = %i - 1; exp >= 0; --exp) {
223             // Test the parametric edge at lastParametricEdgeID + 2^exp.
224             float testParametricID = lastParametricEdgeID + exp2(float(exp));
225             if (testParametricID <= maxParametricEdgeID) {
226                 float2 testTan = fma(float2(testParametricID), A, B_);
227                 testTan = fma(float2(testParametricID), testTan, C_);
228                 float cosRotation = dot(normalize(testTan), tan0norm);
229                 float maxRotation = fma(testParametricID, negAbsRadsPerSegment, maxRotation0);
230                 maxRotation = min(maxRotation, PI);
231                 // Is rotation <= maxRotation? (i.e., is the number of complete radial segments
232                 // behind testT, + testParametricID <= combinedEdgeID?)
233                 if (cosRotation >= cos(maxRotation)) {
234                     // testParametricID is on or before the combinedEdgeID. Keep it!
235                     lastParametricEdgeID = testParametricID;
236                 }
237             }
238         }
239 
240         // Find the T value of the parametric edge at lastParametricEdgeID.
241         float parametricT = lastParametricEdgeID / numParametricSegments;
242 
243         // Now that we've identified the highest parametric edge on or before the
244         // combinedEdgeID, the highest radial edge is easy:
245         float lastRadialEdgeID = combinedEdgeID - lastParametricEdgeID;
246 
247         // Find the angle of tan0, or the angle between tan0norm and the positive x axis.
248         float angle0 = acos(clamp(tan0norm.x, -1.0, 1.0));
249         angle0 = tan0norm.y >= 0.0 ? angle0 : -angle0;
250 
251         // Find the tangent vector on the edge at lastRadialEdgeID.
252         float radialAngle = fma(lastRadialEdgeID, radsPerSegment, angle0);
253         tangent = float2(cos(radialAngle), sin(radialAngle));
254         float2 norm = float2(-tangent.y, tangent.x);
255 
256         // Find the T value where the tangent is orthogonal to norm. This is a quadratic:
257         //
258         //     dot(norm, Tangent_Direction(T)) == 0
259         //
260         //                         |T^2|
261         //     norm * |A  2B  C| * |T  | == 0
262         //            |.   .  .|   |1  |
263         //
264         float a=dot(norm,A), b_over_2=dot(norm,B), c=dot(norm,C);
265         float discr_over_4 = max(b_over_2*b_over_2 - a*c, 0.0);
266         float q = sqrt(discr_over_4);
267         if (b_over_2 > 0.0) {
268             q = -q;
269         }
270         q -= b_over_2;
271 
272         // Roots are q/a and c/q. Since each curve section does not inflect or rotate more than 180
273         // degrees, there can only be one tangent orthogonal to "norm" inside 0..1. Pick the root
274         // nearest .5.
275         float _5qa = -.5*q*a;
276         float2 root = (abs(fma(q,q,_5qa)) < abs(fma(a,c,_5qa))) ? float2(q,a) : float2(c,q);
277         float radialT = (root.t != 0.0) ? root.s / root.t : 0.0;
278         radialT = clamp(radialT, 0.0, 1.0);
279 
280         if (lastRadialEdgeID == 0.0) {
281             // The root finder above can become unstable when lastRadialEdgeID == 0 (e.g., if
282             // there are roots at exatly 0 and 1 both). radialT should always == 0 in this case.
283             radialT = 0.0;
284         }
285 
286         // Now that we've identified the T values of the last parametric and radial edges, our final
287         // T value for combinedEdgeID is whichever is larger.
288         float T = max(parametricT, radialT);
289 
290         // Evaluate the cubic at T. Use De Casteljau's for its accuracy and stability.
291         float2 ab = unchecked_mix(p0, p1, T);
292         float2 bc = unchecked_mix(p1, p2, T);
293         float2 cd = unchecked_mix(p2, p3, T);
294         float2 abc = unchecked_mix(ab, bc, T);
295         float2 bcd = unchecked_mix(bc, cd, T);
296         float2 abcd = unchecked_mix(abc, bcd, T);
297 
298         // Evaluate the conic weight at T.
299         float u = unchecked_mix(1.0, w, T);
300         float v = w + 1 - u;  // == mix(w, 1, T)
301         float uv = unchecked_mix(u, v, T);
302 
303         // If we went with T=parametricT, then update the tangent. Otherwise leave it at the radial
304         // tangent found previously. (In the event that parametricT == radialT, we keep the radial
305         // tangent.)
306         if (T != radialT) {
307             tangent = (w >= 0.0) ? bc*u - ab*v : bcd - abc;
308         }
309 
310         strokeCoord = (w >= 0.0) ? abc/uv : abcd;
311     } else {
312         // Edges at the beginning and end of the strip use exact endpoints and tangents. This
313         // ensures crack-free seaming between instances.
314         tangent = (combinedEdgeID == 0) ? tan0 : tan1;
315         strokeCoord = (combinedEdgeID == 0) ? p0 : p3;
316     })", shader.maxParametricSegments_log2() /* Parametric/radial sort loop count. */);
317 
318     code->append(R"(
319     // FIXME(crbug.com/800804,skbug.com/11268): This normalize() can overflow.
320     float2 ortho = normalize(float2(tangent.y, -tangent.x));
321     strokeCoord += ortho * (STROKE_RADIUS * strokeOutset);)");
322 
323     if (!shader.stroke().isHairlineStyle()) {
324         // Normal case. Do the transform after tessellation.
325         code->append(R"(
326         float2 devCoord = AFFINE_MATRIX * strokeCoord + TRANSLATE;)");
327         gpArgs->fPositionVar.set(kFloat2_GrSLType, "devCoord");
328         gpArgs->fLocalCoordVar.set(kFloat2_GrSLType, "strokeCoord");
329     } else {
330         // Hairline case. The scale and skew already happened before tessellation.
331         code->append(R"(
332         float2 devCoord = strokeCoord + TRANSLATE;
333         float2 localCoord = inverse(AFFINE_MATRIX) * strokeCoord;)");
334         gpArgs->fPositionVar.set(kFloat2_GrSLType, "devCoord");
335         gpArgs->fLocalCoordVar.set(kFloat2_GrSLType, "localCoord");
336     }
337 }
338 
emitFragmentCode(const GrStrokeTessellationShader & shader,const EmitArgs & args)339 void GrStrokeTessellationShader::Impl::emitFragmentCode(const GrStrokeTessellationShader& shader,
340                                                         const EmitArgs& args) {
341     if (!shader.hasDynamicColor()) {
342         // The fragment shader just outputs a uniform color.
343         const char* colorUniformName;
344         fColorUniform = args.fUniformHandler->addUniform(nullptr, kFragment_GrShaderFlag,
345                                                          kHalf4_GrSLType, "color",
346                                                          &colorUniformName);
347         args.fFragBuilder->codeAppendf("half4 %s = %s;", args.fOutputColor, colorUniformName);
348     } else {
349         args.fFragBuilder->codeAppendf("half4 %s = %s;", args.fOutputColor,
350                                        fDynamicColorName.c_str());
351     }
352     args.fFragBuilder->codeAppendf("const half4 %s = half4(1);", args.fOutputCoverage);
353 }
354 
setData(const GrGLSLProgramDataManager & pdman,const GrShaderCaps &,const GrGeometryProcessor & geomProc)355 void GrStrokeTessellationShader::Impl::setData(const GrGLSLProgramDataManager& pdman,
356                                                const GrShaderCaps&,
357                                                const GrGeometryProcessor& geomProc) {
358     const auto& shader = geomProc.cast<GrStrokeTessellationShader>();
359     const auto& stroke = shader.stroke();
360 
361     if (!shader.hasDynamicStroke()) {
362         // Set up the tessellation control uniforms.
363         skgpu::StrokeTolerances tolerances;
364         if (!stroke.isHairlineStyle()) {
365             tolerances = skgpu::StrokeTolerances::MakeNonHairline(shader.viewMatrix().getMaxScale(),
366                                                                   stroke.getWidth());
367         } else {
368             // In the hairline case we transform prior to tessellation. Set up tolerances for an
369             // identity viewMatrix and a strokeWidth of 1.
370             tolerances = skgpu::StrokeTolerances::MakeNonHairline(1, 1);
371         }
372         float strokeRadius = (stroke.isHairlineStyle()) ? .5f : stroke.getWidth() * .5;
373         pdman.set4f(fTessControlArgsUniform,
374                     tolerances.fParametricPrecision,  // PARAMETRIC_PRECISION
375                     tolerances.fNumRadialSegmentsPerRadian,  // NUM_RADIAL_SEGMENTS_PER_RADIAN
376                     skgpu::GetJoinType(stroke),  // JOIN_TYPE
377                     strokeRadius);  // STROKE_RADIUS
378     } else {
379         SkASSERT(!stroke.isHairlineStyle());
380         float maxScale = shader.viewMatrix().getMaxScale();
381         pdman.set1f(fTessControlArgsUniform,
382                     skgpu::StrokeTolerances::CalcParametricPrecision(maxScale));
383     }
384 
385     if (shader.mode() == GrStrokeTessellationShader::Mode::kFixedCount) {
386         SkASSERT(shader.fixedCountNumTotalEdges() != 0);
387         pdman.set1f(fEdgeCountUniform, (float)shader.fixedCountNumTotalEdges());
388     }
389 
390     // Set up the view matrix, if any.
391     const SkMatrix& m = shader.viewMatrix();
392     pdman.set2f(fTranslateUniform, m.getTranslateX(), m.getTranslateY());
393     pdman.set4f(fAffineMatrixUniform, m.getScaleX(), m.getSkewY(), m.getSkewX(),
394                 m.getScaleY());
395 
396     if (!shader.hasDynamicColor()) {
397         pdman.set4fv(fColorUniform, 1, shader.color().vec());
398     }
399 }
400 
addToKey(const GrShaderCaps &,GrProcessorKeyBuilder * b) const401 void GrStrokeTessellationShader::addToKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const {
402     bool keyNeedsJoin = (fMode != Mode::kHardwareTessellation) &&
403                         !(fPatchAttribs & PatchAttribs::kStrokeParams);
404     SkASSERT((int)fMode >> 2 == 0);
405     SkASSERT(fStroke.getJoin() >> 2 == 0);
406     // Attribs get worked into the key automatically during GrGeometryProcessor::getAttributeKey().
407     // When color is in a uniform, it's always wide. kWideColor doesn't need to be considered here.
408     uint32_t key = (uint32_t)(fPatchAttribs & ~PatchAttribs::kColor);
409     key = (key << 2) | (uint32_t)fMode;
410     key = (key << 2) | ((keyNeedsJoin) ? fStroke.getJoin() : 0);
411     key = (key << 1) | (uint32_t)fStroke.isHairlineStyle();
412     key = (key << 8) | fMaxParametricSegments_log2;
413     b->add32(key);
414 }
415 
makeProgramImpl(const GrShaderCaps &) const416 std::unique_ptr<GrGeometryProcessor::ProgramImpl> GrStrokeTessellationShader::makeProgramImpl(
417         const GrShaderCaps&) const {
418     switch (fMode) {
419         case Mode::kHardwareTessellation:
420             return std::make_unique<HardwareImpl>();
421         case Mode::kLog2Indirect:
422         case Mode::kFixedCount:
423             return std::make_unique<InstancedImpl>();
424     }
425     SkUNREACHABLE;
426 }
427