1 /*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include <algorithm>
9 #include "include/core/SkMallocPixelRef.h"
10 #include "include/private/SkFloatBits.h"
11 #include "include/private/SkHalf.h"
12 #include "include/private/SkTPin.h"
13 #include "include/private/SkVx.h"
14 #include "src/core/SkColorSpacePriv.h"
15 #include "src/core/SkConvertPixels.h"
16 #include "src/core/SkMatrixProvider.h"
17 #include "src/core/SkReadBuffer.h"
18 #include "src/core/SkVM.h"
19 #include "src/core/SkWriteBuffer.h"
20 #include "src/shaders/gradients/Sk4fLinearGradient.h"
21 #include "src/shaders/gradients/SkGradientShaderPriv.h"
22 #include "src/shaders/gradients/SkLinearGradient.h"
23 #include "src/shaders/gradients/SkRadialGradient.h"
24 #include "src/shaders/gradients/SkSweepGradient.h"
25 #include "src/shaders/gradients/SkTwoPointConicalGradient.h"
26
27 enum GradientSerializationFlags {
28 // Bits 29:31 used for various boolean flags
29 kHasPosition_GSF = 0x80000000,
30 kHasLocalMatrix_GSF = 0x40000000,
31 kHasColorSpace_GSF = 0x20000000,
32
33 // Bits 12:28 unused
34
35 // Bits 8:11 for fTileMode
36 kTileModeShift_GSF = 8,
37 kTileModeMask_GSF = 0xF,
38
39 // Bits 0:7 for fGradFlags (note that kForce4fContext_PrivateFlag is 0x80)
40 kGradFlagsShift_GSF = 0,
41 kGradFlagsMask_GSF = 0xFF,
42 };
43
flatten(SkWriteBuffer & buffer) const44 void SkGradientShaderBase::Descriptor::flatten(SkWriteBuffer& buffer) const {
45 uint32_t flags = 0;
46 if (fPos) {
47 flags |= kHasPosition_GSF;
48 }
49 if (fLocalMatrix) {
50 flags |= kHasLocalMatrix_GSF;
51 }
52 sk_sp<SkData> colorSpaceData = fColorSpace ? fColorSpace->serialize() : nullptr;
53 if (colorSpaceData) {
54 flags |= kHasColorSpace_GSF;
55 }
56 SkASSERT(static_cast<uint32_t>(fTileMode) <= kTileModeMask_GSF);
57 flags |= ((unsigned)fTileMode << kTileModeShift_GSF);
58 SkASSERT(fGradFlags <= kGradFlagsMask_GSF);
59 flags |= (fGradFlags << kGradFlagsShift_GSF);
60
61 buffer.writeUInt(flags);
62
63 buffer.writeColor4fArray(fColors, fCount);
64 if (colorSpaceData) {
65 buffer.writeDataAsByteArray(colorSpaceData.get());
66 }
67 if (fPos) {
68 buffer.writeScalarArray(fPos, fCount);
69 }
70 if (fLocalMatrix) {
71 buffer.writeMatrix(*fLocalMatrix);
72 }
73 }
74
75 template <int N, typename T, bool MEM_MOVE>
validate_array(SkReadBuffer & buffer,size_t count,SkSTArray<N,T,MEM_MOVE> * array)76 static bool validate_array(SkReadBuffer& buffer, size_t count, SkSTArray<N, T, MEM_MOVE>* array) {
77 if (!buffer.validateCanReadN<T>(count)) {
78 return false;
79 }
80
81 array->resize_back(count);
82 return true;
83 }
84
unflatten(SkReadBuffer & buffer)85 bool SkGradientShaderBase::DescriptorScope::unflatten(SkReadBuffer& buffer) {
86 // New gradient format. Includes floating point color, color space, densely packed flags
87 uint32_t flags = buffer.readUInt();
88
89 fTileMode = (SkTileMode)((flags >> kTileModeShift_GSF) & kTileModeMask_GSF);
90 fGradFlags = (flags >> kGradFlagsShift_GSF) & kGradFlagsMask_GSF;
91
92 fCount = buffer.getArrayCount();
93
94 if (!(validate_array(buffer, fCount, &fColorStorage) &&
95 buffer.readColor4fArray(fColorStorage.begin(), fCount))) {
96 return false;
97 }
98 fColors = fColorStorage.begin();
99
100 if (SkToBool(flags & kHasColorSpace_GSF)) {
101 sk_sp<SkData> data = buffer.readByteArrayAsData();
102 fColorSpace = data ? SkColorSpace::Deserialize(data->data(), data->size()) : nullptr;
103 } else {
104 fColorSpace = nullptr;
105 }
106 if (SkToBool(flags & kHasPosition_GSF)) {
107 if (!(validate_array(buffer, fCount, &fPosStorage) &&
108 buffer.readScalarArray(fPosStorage.begin(), fCount))) {
109 return false;
110 }
111 fPos = fPosStorage.begin();
112 } else {
113 fPos = nullptr;
114 }
115 if (SkToBool(flags & kHasLocalMatrix_GSF)) {
116 fLocalMatrix = &fLocalMatrixStorage;
117 buffer.readMatrix(&fLocalMatrixStorage);
118 } else {
119 fLocalMatrix = nullptr;
120 }
121 return buffer.isValid();
122 }
123
124 ////////////////////////////////////////////////////////////////////////////////////////////
125
SkGradientShaderBase(const Descriptor & desc,const SkMatrix & ptsToUnit)126 SkGradientShaderBase::SkGradientShaderBase(const Descriptor& desc, const SkMatrix& ptsToUnit)
127 : INHERITED(desc.fLocalMatrix)
128 , fPtsToUnit(ptsToUnit)
129 , fColorSpace(desc.fColorSpace ? desc.fColorSpace : SkColorSpace::MakeSRGB())
130 , fColorsAreOpaque(true)
131 {
132 fPtsToUnit.getType(); // Precache so reads are threadsafe.
133 SkASSERT(desc.fCount > 1);
134
135 fGradFlags = static_cast<uint8_t>(desc.fGradFlags);
136
137 SkASSERT((unsigned)desc.fTileMode < kSkTileModeCount);
138 fTileMode = desc.fTileMode;
139
140 /* Note: we let the caller skip the first and/or last position.
141 i.e. pos[0] = 0.3, pos[1] = 0.7
142 In these cases, we insert entries to ensure that the final data
143 will be bracketed by [0, 1].
144 i.e. our_pos[0] = 0, our_pos[1] = 0.3, our_pos[2] = 0.7, our_pos[3] = 1
145
146 Thus colorCount (the caller's value, and fColorCount (our value) may
147 differ by up to 2. In the above example:
148 colorCount = 2
149 fColorCount = 4
150 */
151 fColorCount = desc.fCount;
152 // check if we need to add in start and/or end position/colors
153 bool needsFirst = false;
154 bool needsLast = false;
155 if (desc.fPos) {
156 needsFirst = desc.fPos[0] != 0;
157 needsLast = desc.fPos[desc.fCount - 1] != SK_Scalar1;
158 fColorCount += needsFirst + needsLast;
159 }
160
161 size_t storageSize = fColorCount * (sizeof(SkColor4f) + (desc.fPos ? sizeof(SkScalar) : 0));
162 fOrigColors4f = reinterpret_cast<SkColor4f*>(fStorage.reset(storageSize));
163 fOrigPos = desc.fPos ? reinterpret_cast<SkScalar*>(fOrigColors4f + fColorCount)
164 : nullptr;
165
166 // Now copy over the colors, adding the dummies as needed
167 SkColor4f* origColors = fOrigColors4f;
168 if (needsFirst) {
169 *origColors++ = desc.fColors[0];
170 }
171 for (int i = 0; i < desc.fCount; ++i) {
172 origColors[i] = desc.fColors[i];
173 fColorsAreOpaque = fColorsAreOpaque && (desc.fColors[i].fA == 1);
174 }
175 if (needsLast) {
176 origColors += desc.fCount;
177 *origColors = desc.fColors[desc.fCount - 1];
178 }
179
180 if (desc.fPos) {
181 SkScalar prev = 0;
182 SkScalar* origPosPtr = fOrigPos;
183 *origPosPtr++ = prev; // force the first pos to 0
184
185 int startIndex = needsFirst ? 0 : 1;
186 int count = desc.fCount + needsLast;
187
188 bool uniformStops = true;
189 const SkScalar uniformStep = desc.fPos[startIndex] - prev;
190 for (int i = startIndex; i < count; i++) {
191 // Pin the last value to 1.0, and make sure pos is monotonic.
192 auto curr = (i == desc.fCount) ? 1 : SkTPin(desc.fPos[i], prev, 1.0f);
193 uniformStops &= SkScalarNearlyEqual(uniformStep, curr - prev);
194
195 *origPosPtr++ = prev = curr;
196 }
197
198 // If the stops are uniform, treat them as implicit.
199 if (uniformStops) {
200 fOrigPos = nullptr;
201 }
202 }
203 }
204
~SkGradientShaderBase()205 SkGradientShaderBase::~SkGradientShaderBase() {}
206
flatten(SkWriteBuffer & buffer) const207 void SkGradientShaderBase::flatten(SkWriteBuffer& buffer) const {
208 Descriptor desc;
209 desc.fColors = fOrigColors4f;
210 desc.fColorSpace = fColorSpace;
211 desc.fPos = fOrigPos;
212 desc.fCount = fColorCount;
213 desc.fTileMode = fTileMode;
214 desc.fGradFlags = fGradFlags;
215
216 const SkMatrix& m = this->getLocalMatrix();
217 desc.fLocalMatrix = m.isIdentity() ? nullptr : &m;
218 desc.flatten(buffer);
219 }
220
add_stop_color(SkRasterPipeline_GradientCtx * ctx,size_t stop,SkPMColor4f Fs,SkPMColor4f Bs)221 static void add_stop_color(SkRasterPipeline_GradientCtx* ctx, size_t stop, SkPMColor4f Fs, SkPMColor4f Bs) {
222 (ctx->fs[0])[stop] = Fs.fR;
223 (ctx->fs[1])[stop] = Fs.fG;
224 (ctx->fs[2])[stop] = Fs.fB;
225 (ctx->fs[3])[stop] = Fs.fA;
226
227 (ctx->bs[0])[stop] = Bs.fR;
228 (ctx->bs[1])[stop] = Bs.fG;
229 (ctx->bs[2])[stop] = Bs.fB;
230 (ctx->bs[3])[stop] = Bs.fA;
231 }
232
add_const_color(SkRasterPipeline_GradientCtx * ctx,size_t stop,SkPMColor4f color)233 static void add_const_color(SkRasterPipeline_GradientCtx* ctx, size_t stop, SkPMColor4f color) {
234 add_stop_color(ctx, stop, { 0, 0, 0, 0 }, color);
235 }
236
237 // Calculate a factor F and a bias B so that color = F*t + B when t is in range of
238 // the stop. Assume that the distance between stops is 1/gapCount.
init_stop_evenly(SkRasterPipeline_GradientCtx * ctx,float gapCount,size_t stop,SkPMColor4f c_l,SkPMColor4f c_r)239 static void init_stop_evenly(
240 SkRasterPipeline_GradientCtx* ctx, float gapCount, size_t stop, SkPMColor4f c_l, SkPMColor4f c_r) {
241 // Clankium's GCC 4.9 targeting ARMv7 is barfing when we use Sk4f math here, so go scalar...
242 SkPMColor4f Fs = {
243 (c_r.fR - c_l.fR) * gapCount,
244 (c_r.fG - c_l.fG) * gapCount,
245 (c_r.fB - c_l.fB) * gapCount,
246 (c_r.fA - c_l.fA) * gapCount,
247 };
248 SkPMColor4f Bs = {
249 c_l.fR - Fs.fR*(stop/gapCount),
250 c_l.fG - Fs.fG*(stop/gapCount),
251 c_l.fB - Fs.fB*(stop/gapCount),
252 c_l.fA - Fs.fA*(stop/gapCount),
253 };
254 add_stop_color(ctx, stop, Fs, Bs);
255 }
256
257 // For each stop we calculate a bias B and a scale factor F, such that
258 // for any t between stops n and n+1, the color we want is B[n] + F[n]*t.
init_stop_pos(SkRasterPipeline_GradientCtx * ctx,size_t stop,float t_l,float t_r,SkPMColor4f c_l,SkPMColor4f c_r)259 static void init_stop_pos(
260 SkRasterPipeline_GradientCtx* ctx, size_t stop, float t_l, float t_r, SkPMColor4f c_l, SkPMColor4f c_r) {
261 // See note about Clankium's old compiler in init_stop_evenly().
262 SkPMColor4f Fs = {
263 (c_r.fR - c_l.fR) / (t_r - t_l),
264 (c_r.fG - c_l.fG) / (t_r - t_l),
265 (c_r.fB - c_l.fB) / (t_r - t_l),
266 (c_r.fA - c_l.fA) / (t_r - t_l),
267 };
268 SkPMColor4f Bs = {
269 c_l.fR - Fs.fR*t_l,
270 c_l.fG - Fs.fG*t_l,
271 c_l.fB - Fs.fB*t_l,
272 c_l.fA - Fs.fA*t_l,
273 };
274 ctx->ts[stop] = t_l;
275 add_stop_color(ctx, stop, Fs, Bs);
276 }
277
onAppendStages(const SkStageRec & rec) const278 bool SkGradientShaderBase::onAppendStages(const SkStageRec& rec) const {
279 SkRasterPipeline* p = rec.fPipeline;
280 SkArenaAlloc* alloc = rec.fAlloc;
281 SkRasterPipeline_DecalTileCtx* decal_ctx = nullptr;
282
283 SkMatrix matrix;
284 if (!this->computeTotalInverse(rec.fMatrixProvider.localToDevice(), rec.fLocalM, &matrix)) {
285 return false;
286 }
287 matrix.postConcat(fPtsToUnit);
288
289 SkRasterPipeline_<256> postPipeline;
290
291 p->append(SkRasterPipeline::seed_shader);
292 p->append_matrix(alloc, matrix);
293 this->appendGradientStages(alloc, p, &postPipeline);
294
295 switch(fTileMode) {
296 case SkTileMode::kMirror: p->append(SkRasterPipeline::mirror_x_1); break;
297 case SkTileMode::kRepeat: p->append(SkRasterPipeline::repeat_x_1); break;
298 case SkTileMode::kDecal:
299 decal_ctx = alloc->make<SkRasterPipeline_DecalTileCtx>();
300 decal_ctx->limit_x = SkBits2Float(SkFloat2Bits(1.0f) + 1);
301 // reuse mask + limit_x stage, or create a custom decal_1 that just stores the mask
302 p->append(SkRasterPipeline::decal_x, decal_ctx);
303 [[fallthrough]];
304
305 case SkTileMode::kClamp:
306 if (!fOrigPos) {
307 // We clamp only when the stops are evenly spaced.
308 // If not, there may be hard stops, and clamping ruins hard stops at 0 and/or 1.
309 // In that case, we must make sure we're using the general "gradient" stage,
310 // which is the only stage that will correctly handle unclamped t.
311 p->append(SkRasterPipeline::clamp_x_1);
312 }
313 break;
314 }
315
316 const bool premulGrad = fGradFlags & SkGradientShader::kInterpolateColorsInPremul_Flag;
317
318 // Transform all of the colors to destination color space
319 SkColor4fXformer xformedColors(fOrigColors4f, fColorCount, fColorSpace.get(), rec.fDstCS);
320
321 auto prepareColor = [premulGrad, &xformedColors](int i) {
322 SkColor4f c = xformedColors.fColors[i];
323 return premulGrad ? c.premul()
324 : SkPMColor4f{ c.fR, c.fG, c.fB, c.fA };
325 };
326
327 // The two-stop case with stops at 0 and 1.
328 if (fColorCount == 2 && fOrigPos == nullptr) {
329 const SkPMColor4f c_l = prepareColor(0),
330 c_r = prepareColor(1);
331
332 // See F and B below.
333 auto ctx = alloc->make<SkRasterPipeline_EvenlySpaced2StopGradientCtx>();
334 (Sk4f::Load(c_r.vec()) - Sk4f::Load(c_l.vec())).store(ctx->f);
335 ( Sk4f::Load(c_l.vec())).store(ctx->b);
336 ctx->interpolatedInPremul = premulGrad;
337
338 p->append(SkRasterPipeline::evenly_spaced_2_stop_gradient, ctx);
339 } else {
340 auto* ctx = alloc->make<SkRasterPipeline_GradientCtx>();
341 ctx->interpolatedInPremul = premulGrad;
342
343 // Note: In order to handle clamps in search, the search assumes a stop conceptully placed
344 // at -inf. Therefore, the max number of stops is fColorCount+1.
345 for (int i = 0; i < 4; i++) {
346 // Allocate at least at for the AVX2 gather from a YMM register.
347 ctx->fs[i] = alloc->makeArray<float>(std::max(fColorCount+1, 8));
348 ctx->bs[i] = alloc->makeArray<float>(std::max(fColorCount+1, 8));
349 }
350
351 if (fOrigPos == nullptr) {
352 // Handle evenly distributed stops.
353
354 size_t stopCount = fColorCount;
355 float gapCount = stopCount - 1;
356
357 SkPMColor4f c_l = prepareColor(0);
358 for (size_t i = 0; i < stopCount - 1; i++) {
359 SkPMColor4f c_r = prepareColor(i + 1);
360 init_stop_evenly(ctx, gapCount, i, c_l, c_r);
361 c_l = c_r;
362 }
363 add_const_color(ctx, stopCount - 1, c_l);
364
365 ctx->stopCount = stopCount;
366 p->append(SkRasterPipeline::evenly_spaced_gradient, ctx);
367 } else {
368 // Handle arbitrary stops.
369
370 ctx->ts = alloc->makeArray<float>(fColorCount+1);
371
372 // Remove the default stops inserted by SkGradientShaderBase::SkGradientShaderBase
373 // because they are naturally handled by the search method.
374 int firstStop;
375 int lastStop;
376 if (fColorCount > 2) {
377 firstStop = fOrigColors4f[0] != fOrigColors4f[1] ? 0 : 1;
378 lastStop = fOrigColors4f[fColorCount - 2] != fOrigColors4f[fColorCount - 1]
379 ? fColorCount - 1 : fColorCount - 2;
380 } else {
381 firstStop = 0;
382 lastStop = 1;
383 }
384
385 size_t stopCount = 0;
386 float t_l = fOrigPos[firstStop];
387 SkPMColor4f c_l = prepareColor(firstStop);
388 add_const_color(ctx, stopCount++, c_l);
389 // N.B. lastStop is the index of the last stop, not one after.
390 for (int i = firstStop; i < lastStop; i++) {
391 float t_r = fOrigPos[i + 1];
392 SkPMColor4f c_r = prepareColor(i + 1);
393 SkASSERT(t_l <= t_r);
394 if (t_l < t_r) {
395 init_stop_pos(ctx, stopCount, t_l, t_r, c_l, c_r);
396 stopCount += 1;
397 }
398 t_l = t_r;
399 c_l = c_r;
400 }
401
402 ctx->ts[stopCount] = t_l;
403 add_const_color(ctx, stopCount++, c_l);
404
405 ctx->stopCount = stopCount;
406 p->append(SkRasterPipeline::gradient, ctx);
407 }
408 }
409
410 if (decal_ctx) {
411 p->append(SkRasterPipeline::check_decal_mask, decal_ctx);
412 }
413
414 if (!premulGrad && !this->colorsAreOpaque()) {
415 p->append(SkRasterPipeline::premul);
416 }
417
418 p->extend(postPipeline);
419
420 return true;
421 }
422
onProgram(skvm::Builder * p,skvm::Coord device,skvm::Coord local,skvm::Color,const SkMatrixProvider & mats,const SkMatrix * localM,const SkColorInfo & dstInfo,skvm::Uniforms * uniforms,SkArenaAlloc * alloc) const423 skvm::Color SkGradientShaderBase::onProgram(skvm::Builder* p,
424 skvm::Coord device, skvm::Coord local,
425 skvm::Color /*paint*/,
426 const SkMatrixProvider& mats, const SkMatrix* localM,
427 const SkColorInfo& dstInfo,
428 skvm::Uniforms* uniforms, SkArenaAlloc* alloc) const {
429 SkMatrix inv;
430 if (!this->computeTotalInverse(mats.localToDevice(), localM, &inv)) {
431 return {};
432 }
433 inv.postConcat(fPtsToUnit);
434 inv.normalizePerspective();
435
436 local = SkShaderBase::ApplyMatrix(p, inv, local, uniforms);
437
438 skvm::I32 mask = p->splat(~0);
439 skvm::F32 t = this->transformT(p,uniforms, local, &mask);
440
441 // Perhaps unexpectedly, clamping is handled naturally by our search, so we
442 // don't explicitly clamp t to [0,1]. That clamp would break hard stops
443 // right at 0 or 1 boundaries in kClamp mode. (kRepeat and kMirror always
444 // produce values in [0,1].)
445 switch(fTileMode) {
446 case SkTileMode::kClamp:
447 break;
448
449 case SkTileMode::kDecal:
450 mask &= (t == clamp01(t));
451 break;
452
453 case SkTileMode::kRepeat:
454 t = fract(t);
455 break;
456
457 case SkTileMode::kMirror: {
458 // t = | (t-1) - 2*(floor( (t-1)*0.5 )) - 1 |
459 // {-A-} {--------B-------}
460 skvm::F32 A = t - 1.0f,
461 B = floor(A * 0.5f);
462 t = abs(A - (B + B) - 1.0f);
463 } break;
464 }
465
466 // Transform our colors as we want them interpolated, in dst color space, possibly premul.
467 SkImageInfo common = SkImageInfo::Make(fColorCount,1, kRGBA_F32_SkColorType
468 , kUnpremul_SkAlphaType),
469 src = common.makeColorSpace(fColorSpace),
470 dst = common.makeColorSpace(dstInfo.refColorSpace());
471 if (fGradFlags & SkGradientShader::kInterpolateColorsInPremul_Flag) {
472 dst = dst.makeAlphaType(kPremul_SkAlphaType);
473 }
474
475 std::vector<float> rgba(4*fColorCount); // TODO: SkSTArray?
476 SkAssertResult(SkConvertPixels(dst, rgba.data(), dst.minRowBytes(),
477 src, fOrigColors4f, src.minRowBytes()));
478
479 // Transform our colors into a scale factor f and bias b such that for
480 // any t between stops i and i+1, the color we want is mad(t, f[i], b[i]).
481 using F4 = skvx::Vec<4,float>;
482 struct FB { F4 f,b; };
483 skvm::Color color;
484
485 auto uniformF = [&](float x) { return p->uniformF(uniforms->pushF(x)); };
486
487 if (fColorCount == 2) {
488 // 2-stop gradients have colors at 0 and 1, and so must be evenly spaced.
489 SkASSERT(fOrigPos == nullptr);
490
491 // With 2 stops, we upload the single FB as uniforms and interpolate directly with t.
492 F4 lo = F4::Load(rgba.data() + 0),
493 hi = F4::Load(rgba.data() + 4);
494 F4 F = hi - lo,
495 B = lo;
496
497 auto T = clamp01(t);
498 color = {
499 T * uniformF(F[0]) + uniformF(B[0]),
500 T * uniformF(F[1]) + uniformF(B[1]),
501 T * uniformF(F[2]) + uniformF(B[2]),
502 T * uniformF(F[3]) + uniformF(B[3]),
503 };
504 } else {
505 // To handle clamps in search we add a conceptual stop at t=-inf, so we
506 // may need up to fColorCount+1 FBs and fColorCount t stops between them:
507 //
508 // FBs: [color 0] [color 0->1] [color 1->2] [color 2->3] ...
509 // stops: (-inf) t0 t1 t2 ...
510 //
511 // Both these arrays could end up shorter if any hard stops share the same t.
512 FB* fb = alloc->makeArrayDefault<FB>(fColorCount+1);
513 std::vector<float> stops; // TODO: SkSTArray?
514 stops.reserve(fColorCount);
515
516 // Here's our conceptual stop at t=-inf covering all t<=0, clamping to our first color.
517 float t_lo = this->getPos(0);
518 F4 color_lo = F4::Load(rgba.data());
519 fb[0] = { 0.0f, color_lo };
520 // N.B. No stops[] entry for this implicit -inf.
521
522 // Now the non-edge cases, calculating scale and bias between adjacent normal stops.
523 for (int i = 1; i < fColorCount; i++) {
524 float t_hi = this->getPos(i);
525 F4 color_hi = F4::Load(rgba.data() + 4*i);
526
527 // If t_lo == t_hi, we're on a hard stop, and transition immediately to the next color.
528 SkASSERT(t_lo <= t_hi);
529 if (t_lo < t_hi) {
530 F4 f = (color_hi - color_lo) / (t_hi - t_lo),
531 b = color_lo - f*t_lo;
532 stops.push_back(t_lo);
533 fb[stops.size()] = {f,b};
534 }
535
536 t_lo = t_hi;
537 color_lo = color_hi;
538 }
539 // Anything >= our final t clamps to our final color.
540 stops.push_back(t_lo);
541 fb[stops.size()] = { 0.0f, color_lo };
542
543 // We'll gather FBs from that array we just created.
544 skvm::Uniform fbs = uniforms->pushPtr(fb);
545
546 // Find the two stops we need to interpolate.
547 skvm::I32 ix;
548 if (fOrigPos == nullptr) {
549 // Evenly spaced stops... we can calculate ix directly.
550 // Of note: we need to clamp t and skip over that conceptual -inf stop we made up.
551 ix = trunc(clamp01(t) * uniformF(stops.size() - 1) + 1.0f);
552 } else {
553 // Starting ix at 0 bakes in our conceptual first stop at -inf.
554 // TODO: good place to experiment with a loop in skvm.... stops.size() can be huge.
555 ix = p->splat(0);
556 for (float stop : stops) {
557 // ix += (t >= stop) ? +1 : 0 ~~>
558 // ix -= (t >= stop) ? -1 : 0
559 ix -= (t >= uniformF(stop));
560 }
561 // TODO: we could skip any of the default stops GradientShaderBase's ctor added
562 // to ensure the full [0,1] span is covered. This linear search doesn't need
563 // them for correctness, and it'd be up to two fewer stops to check.
564 // N.B. we do still need those stops for the fOrigPos == nullptr direct math path.
565 }
566
567 // A scale factor and bias for each lane, 8 total.
568 // TODO: simpler, faster, tidier to push 8 uniform pointers, one for each struct lane?
569 ix = shl(ix, 3);
570 skvm::F32 Fr = gatherF(fbs, ix + 0);
571 skvm::F32 Fg = gatherF(fbs, ix + 1);
572 skvm::F32 Fb = gatherF(fbs, ix + 2);
573 skvm::F32 Fa = gatherF(fbs, ix + 3);
574
575 skvm::F32 Br = gatherF(fbs, ix + 4);
576 skvm::F32 Bg = gatherF(fbs, ix + 5);
577 skvm::F32 Bb = gatherF(fbs, ix + 6);
578 skvm::F32 Ba = gatherF(fbs, ix + 7);
579
580 // This is what we've been building towards!
581 color = {
582 t * Fr + Br,
583 t * Fg + Bg,
584 t * Fb + Bb,
585 t * Fa + Ba,
586 };
587 }
588
589 // If we interpolated unpremul, premul now to match our output convention.
590 if (0 == (fGradFlags & SkGradientShader::kInterpolateColorsInPremul_Flag)
591 && !fColorsAreOpaque) {
592 color = premul(color);
593 }
594
595 return {
596 pun_to_F32(mask & pun_to_I32(color.r)),
597 pun_to_F32(mask & pun_to_I32(color.g)),
598 pun_to_F32(mask & pun_to_I32(color.b)),
599 pun_to_F32(mask & pun_to_I32(color.a)),
600 };
601 }
602
603
isOpaque() const604 bool SkGradientShaderBase::isOpaque() const {
605 return fColorsAreOpaque && (this->getTileMode() != SkTileMode::kDecal);
606 }
607
rounded_divide(unsigned numer,unsigned denom)608 static unsigned rounded_divide(unsigned numer, unsigned denom) {
609 return (numer + (denom >> 1)) / denom;
610 }
611
onAsLuminanceColor(SkColor * lum) const612 bool SkGradientShaderBase::onAsLuminanceColor(SkColor* lum) const {
613 // we just compute an average color.
614 // possibly we could weight this based on the proportional width for each color
615 // assuming they are not evenly distributed in the fPos array.
616 int r = 0;
617 int g = 0;
618 int b = 0;
619 const int n = fColorCount;
620 // TODO: use linear colors?
621 for (int i = 0; i < n; ++i) {
622 SkColor c = this->getLegacyColor(i);
623 r += SkColorGetR(c);
624 g += SkColorGetG(c);
625 b += SkColorGetB(c);
626 }
627 *lum = SkColorSetRGB(rounded_divide(r, n), rounded_divide(g, n), rounded_divide(b, n));
628 return true;
629 }
630
SkColor4fXformer(const SkColor4f * colors,int colorCount,SkColorSpace * src,SkColorSpace * dst)631 SkColor4fXformer::SkColor4fXformer(const SkColor4f* colors, int colorCount,
632 SkColorSpace* src, SkColorSpace* dst) {
633 fColors = colors;
634
635 if (dst && !SkColorSpace::Equals(src, dst)) {
636 fStorage.reset(colorCount);
637
638 auto info = SkImageInfo::Make(colorCount,1, kRGBA_F32_SkColorType, kUnpremul_SkAlphaType);
639
640 auto dstInfo = info.makeColorSpace(sk_ref_sp(dst));
641 auto srcInfo = info.makeColorSpace(sk_ref_sp(src));
642 SkAssertResult(SkConvertPixels(dstInfo, fStorage.begin(), info.minRowBytes(),
643 srcInfo, fColors , info.minRowBytes()));
644
645 fColors = fStorage.begin();
646 }
647 }
648
commonAsAGradient(GradientInfo * info) const649 void SkGradientShaderBase::commonAsAGradient(GradientInfo* info) const {
650 if (info) {
651 if (info->fColorCount >= fColorCount) {
652 if (info->fColors) {
653 for (int i = 0; i < fColorCount; ++i) {
654 info->fColors[i] = this->getLegacyColor(i);
655 }
656 }
657 if (info->fColorOffsets) {
658 for (int i = 0; i < fColorCount; ++i) {
659 info->fColorOffsets[i] = this->getPos(i);
660 }
661 }
662 }
663 info->fColorCount = fColorCount;
664 info->fTileMode = fTileMode;
665 info->fGradientFlags = fGradFlags;
666 }
667 }
668
669 ///////////////////////////////////////////////////////////////////////////////
670 ///////////////////////////////////////////////////////////////////////////////
671
672 // Return true if these parameters are valid/legal/safe to construct a gradient
673 //
valid_grad(const SkColor4f colors[],const SkScalar pos[],int count,SkTileMode tileMode)674 static bool valid_grad(const SkColor4f colors[], const SkScalar pos[], int count,
675 SkTileMode tileMode) {
676 return nullptr != colors && count >= 1 && (unsigned)tileMode < kSkTileModeCount;
677 }
678
desc_init(SkGradientShaderBase::Descriptor * desc,const SkColor4f colors[],sk_sp<SkColorSpace> colorSpace,const SkScalar pos[],int colorCount,SkTileMode mode,uint32_t flags,const SkMatrix * localMatrix)679 static void desc_init(SkGradientShaderBase::Descriptor* desc,
680 const SkColor4f colors[], sk_sp<SkColorSpace> colorSpace,
681 const SkScalar pos[], int colorCount,
682 SkTileMode mode, uint32_t flags, const SkMatrix* localMatrix) {
683 SkASSERT(colorCount > 1);
684
685 desc->fColors = colors;
686 desc->fColorSpace = std::move(colorSpace);
687 desc->fPos = pos;
688 desc->fCount = colorCount;
689 desc->fTileMode = mode;
690 desc->fGradFlags = flags;
691 desc->fLocalMatrix = localMatrix;
692 }
693
average_gradient_color(const SkColor4f colors[],const SkScalar pos[],int colorCount)694 static SkColor4f average_gradient_color(const SkColor4f colors[], const SkScalar pos[],
695 int colorCount) {
696 // The gradient is a piecewise linear interpolation between colors. For a given interval,
697 // the integral between the two endpoints is 0.5 * (ci + cj) * (pj - pi), which provides that
698 // intervals average color. The overall average color is thus the sum of each piece. The thing
699 // to keep in mind is that the provided gradient definition may implicitly use p=0 and p=1.
700 Sk4f blend(0.0f);
701 for (int i = 0; i < colorCount - 1; ++i) {
702 // Calculate the average color for the interval between pos(i) and pos(i+1)
703 Sk4f c0 = Sk4f::Load(&colors[i]);
704 Sk4f c1 = Sk4f::Load(&colors[i + 1]);
705
706 // when pos == null, there are colorCount uniformly distributed stops, going from 0 to 1,
707 // so pos[i + 1] - pos[i] = 1/(colorCount-1)
708 SkScalar w;
709 if (pos) {
710 // Match position fixing in SkGradientShader's constructor, clamping positions outside
711 // [0, 1] and forcing the sequence to be monotonic
712 SkScalar p0 = SkTPin(pos[i], 0.f, 1.f);
713 SkScalar p1 = SkTPin(pos[i + 1], p0, 1.f);
714 w = p1 - p0;
715
716 // And account for any implicit intervals at the start or end of the positions
717 if (i == 0) {
718 if (p0 > 0.0f) {
719 // The first color is fixed between p = 0 to pos[0], so 0.5*(ci + cj)*(pj - pi)
720 // becomes 0.5*(c + c)*(pj - 0) = c * pj
721 Sk4f c = Sk4f::Load(&colors[0]);
722 blend += p0 * c;
723 }
724 }
725 if (i == colorCount - 2) {
726 if (p1 < 1.f) {
727 // The last color is fixed between pos[n-1] to p = 1, so 0.5*(ci + cj)*(pj - pi)
728 // becomes 0.5*(c + c)*(1 - pi) = c * (1 - pi)
729 Sk4f c = Sk4f::Load(&colors[colorCount - 1]);
730 blend += (1.f - p1) * c;
731 }
732 }
733 } else {
734 w = 1.f / (colorCount - 1);
735 }
736
737 blend += 0.5f * w * (c1 + c0);
738 }
739
740 SkColor4f avg;
741 blend.store(&avg);
742 return avg;
743 }
744
745 // The default SkScalarNearlyZero threshold of .0024 is too big and causes regressions for svg
746 // gradients defined in the wild.
747 static constexpr SkScalar kDegenerateThreshold = SK_Scalar1 / (1 << 15);
748
749 // Except for special circumstances of clamped gradients, every gradient shape--when degenerate--
750 // can be mapped to the same fallbacks. The specific shape factories must account for special
751 // clamped conditions separately, this will always return the last color for clamped gradients.
make_degenerate_gradient(const SkColor4f colors[],const SkScalar pos[],int colorCount,sk_sp<SkColorSpace> colorSpace,SkTileMode mode)752 static sk_sp<SkShader> make_degenerate_gradient(const SkColor4f colors[], const SkScalar pos[],
753 int colorCount, sk_sp<SkColorSpace> colorSpace,
754 SkTileMode mode) {
755 switch(mode) {
756 case SkTileMode::kDecal:
757 // normally this would reject the area outside of the interpolation region, so since
758 // inside region is empty when the radii are equal, the entire draw region is empty
759 return SkShaders::Empty();
760 case SkTileMode::kRepeat:
761 case SkTileMode::kMirror:
762 // repeat and mirror are treated the same: the border colors are never visible,
763 // but approximate the final color as infinite repetitions of the colors, so
764 // it can be represented as the average color of the gradient.
765 return SkShaders::Color(
766 average_gradient_color(colors, pos, colorCount), std::move(colorSpace));
767 case SkTileMode::kClamp:
768 // Depending on how the gradient shape degenerates, there may be a more specialized
769 // fallback representation for the factories to use, but this is a reasonable default.
770 return SkShaders::Color(colors[colorCount - 1], std::move(colorSpace));
771 }
772 SkDEBUGFAIL("Should not be reached");
773 return nullptr;
774 }
775
776 // assumes colors is SkColor4f* and pos is SkScalar*
777 #define EXPAND_1_COLOR(count) \
778 SkColor4f tmp[2]; \
779 do { \
780 if (1 == count) { \
781 tmp[0] = tmp[1] = colors[0]; \
782 colors = tmp; \
783 pos = nullptr; \
784 count = 2; \
785 } \
786 } while (0)
787
788 struct ColorStopOptimizer {
ColorStopOptimizerColorStopOptimizer789 ColorStopOptimizer(const SkColor4f* colors, const SkScalar* pos, int count, SkTileMode mode)
790 : fColors(colors)
791 , fPos(pos)
792 , fCount(count) {
793
794 if (!pos || count != 3) {
795 return;
796 }
797
798 if (SkScalarNearlyEqual(pos[0], 0.0f) &&
799 SkScalarNearlyEqual(pos[1], 0.0f) &&
800 SkScalarNearlyEqual(pos[2], 1.0f)) {
801
802 if (SkTileMode::kRepeat == mode || SkTileMode::kMirror == mode ||
803 colors[0] == colors[1]) {
804
805 // Ignore the leftmost color/pos.
806 fColors += 1;
807 fPos += 1;
808 fCount = 2;
809 }
810 } else if (SkScalarNearlyEqual(pos[0], 0.0f) &&
811 SkScalarNearlyEqual(pos[1], 1.0f) &&
812 SkScalarNearlyEqual(pos[2], 1.0f)) {
813
814 if (SkTileMode::kRepeat == mode || SkTileMode::kMirror == mode ||
815 colors[1] == colors[2]) {
816
817 // Ignore the rightmost color/pos.
818 fCount = 2;
819 }
820 }
821 }
822
823 const SkColor4f* fColors;
824 const SkScalar* fPos;
825 int fCount;
826 };
827
828 struct ColorConverter {
ColorConverterColorConverter829 ColorConverter(const SkColor* colors, int count) {
830 const float ONE_OVER_255 = 1.f / 255;
831 for (int i = 0; i < count; ++i) {
832 fColors4f.push_back({
833 SkColorGetR(colors[i]) * ONE_OVER_255,
834 SkColorGetG(colors[i]) * ONE_OVER_255,
835 SkColorGetB(colors[i]) * ONE_OVER_255,
836 SkColorGetA(colors[i]) * ONE_OVER_255 });
837 }
838 }
839
840 SkSTArray<2, SkColor4f, true> fColors4f;
841 };
842
MakeLinear(const SkPoint pts[2],const SkColor colors[],const SkScalar pos[],int colorCount,SkTileMode mode,uint32_t flags,const SkMatrix * localMatrix)843 sk_sp<SkShader> SkGradientShader::MakeLinear(const SkPoint pts[2],
844 const SkColor colors[],
845 const SkScalar pos[], int colorCount,
846 SkTileMode mode,
847 uint32_t flags,
848 const SkMatrix* localMatrix) {
849 ColorConverter converter(colors, colorCount);
850 return MakeLinear(pts, converter.fColors4f.begin(), nullptr, pos, colorCount, mode, flags,
851 localMatrix);
852 }
853
MakeLinear(const SkPoint pts[2],const SkColor4f colors[],sk_sp<SkColorSpace> colorSpace,const SkScalar pos[],int colorCount,SkTileMode mode,uint32_t flags,const SkMatrix * localMatrix)854 sk_sp<SkShader> SkGradientShader::MakeLinear(const SkPoint pts[2],
855 const SkColor4f colors[],
856 sk_sp<SkColorSpace> colorSpace,
857 const SkScalar pos[], int colorCount,
858 SkTileMode mode,
859 uint32_t flags,
860 const SkMatrix* localMatrix) {
861 if (!pts || !SkScalarIsFinite((pts[1] - pts[0]).length())) {
862 return nullptr;
863 }
864 if (!valid_grad(colors, pos, colorCount, mode)) {
865 return nullptr;
866 }
867 if (1 == colorCount) {
868 return SkShaders::Color(colors[0], std::move(colorSpace));
869 }
870 if (localMatrix && !localMatrix->invert(nullptr)) {
871 return nullptr;
872 }
873
874 if (SkScalarNearlyZero((pts[1] - pts[0]).length(), kDegenerateThreshold)) {
875 // Degenerate gradient, the only tricky complication is when in clamp mode, the limit of
876 // the gradient approaches two half planes of solid color (first and last). However, they
877 // are divided by the line perpendicular to the start and end point, which becomes undefined
878 // once start and end are exactly the same, so just use the end color for a stable solution.
879 return make_degenerate_gradient(colors, pos, colorCount, std::move(colorSpace), mode);
880 }
881
882 ColorStopOptimizer opt(colors, pos, colorCount, mode);
883
884 SkGradientShaderBase::Descriptor desc;
885 desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags,
886 localMatrix);
887 return sk_make_sp<SkLinearGradient>(pts, desc);
888 }
889
MakeRadial(const SkPoint & center,SkScalar radius,const SkColor colors[],const SkScalar pos[],int colorCount,SkTileMode mode,uint32_t flags,const SkMatrix * localMatrix)890 sk_sp<SkShader> SkGradientShader::MakeRadial(const SkPoint& center, SkScalar radius,
891 const SkColor colors[],
892 const SkScalar pos[], int colorCount,
893 SkTileMode mode,
894 uint32_t flags,
895 const SkMatrix* localMatrix) {
896 ColorConverter converter(colors, colorCount);
897 return MakeRadial(center, radius, converter.fColors4f.begin(), nullptr, pos, colorCount, mode,
898 flags, localMatrix);
899 }
900
MakeRadial(const SkPoint & center,SkScalar radius,const SkColor4f colors[],sk_sp<SkColorSpace> colorSpace,const SkScalar pos[],int colorCount,SkTileMode mode,uint32_t flags,const SkMatrix * localMatrix)901 sk_sp<SkShader> SkGradientShader::MakeRadial(const SkPoint& center, SkScalar radius,
902 const SkColor4f colors[],
903 sk_sp<SkColorSpace> colorSpace,
904 const SkScalar pos[], int colorCount,
905 SkTileMode mode,
906 uint32_t flags,
907 const SkMatrix* localMatrix) {
908 if (radius < 0) {
909 return nullptr;
910 }
911 if (!valid_grad(colors, pos, colorCount, mode)) {
912 return nullptr;
913 }
914 if (1 == colorCount) {
915 return SkShaders::Color(colors[0], std::move(colorSpace));
916 }
917 if (localMatrix && !localMatrix->invert(nullptr)) {
918 return nullptr;
919 }
920
921 if (SkScalarNearlyZero(radius, kDegenerateThreshold)) {
922 // Degenerate gradient optimization, and no special logic needed for clamped radial gradient
923 return make_degenerate_gradient(colors, pos, colorCount, std::move(colorSpace), mode);
924 }
925
926 ColorStopOptimizer opt(colors, pos, colorCount, mode);
927
928 SkGradientShaderBase::Descriptor desc;
929 desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags,
930 localMatrix);
931 return sk_make_sp<SkRadialGradient>(center, radius, desc);
932 }
933
MakeTwoPointConical(const SkPoint & start,SkScalar startRadius,const SkPoint & end,SkScalar endRadius,const SkColor colors[],const SkScalar pos[],int colorCount,SkTileMode mode,uint32_t flags,const SkMatrix * localMatrix)934 sk_sp<SkShader> SkGradientShader::MakeTwoPointConical(const SkPoint& start,
935 SkScalar startRadius,
936 const SkPoint& end,
937 SkScalar endRadius,
938 const SkColor colors[],
939 const SkScalar pos[],
940 int colorCount,
941 SkTileMode mode,
942 uint32_t flags,
943 const SkMatrix* localMatrix) {
944 ColorConverter converter(colors, colorCount);
945 return MakeTwoPointConical(start, startRadius, end, endRadius, converter.fColors4f.begin(),
946 nullptr, pos, colorCount, mode, flags, localMatrix);
947 }
948
MakeTwoPointConical(const SkPoint & start,SkScalar startRadius,const SkPoint & end,SkScalar endRadius,const SkColor4f colors[],sk_sp<SkColorSpace> colorSpace,const SkScalar pos[],int colorCount,SkTileMode mode,uint32_t flags,const SkMatrix * localMatrix)949 sk_sp<SkShader> SkGradientShader::MakeTwoPointConical(const SkPoint& start,
950 SkScalar startRadius,
951 const SkPoint& end,
952 SkScalar endRadius,
953 const SkColor4f colors[],
954 sk_sp<SkColorSpace> colorSpace,
955 const SkScalar pos[],
956 int colorCount,
957 SkTileMode mode,
958 uint32_t flags,
959 const SkMatrix* localMatrix) {
960 if (startRadius < 0 || endRadius < 0) {
961 return nullptr;
962 }
963 if (!valid_grad(colors, pos, colorCount, mode)) {
964 return nullptr;
965 }
966 if (SkScalarNearlyZero((start - end).length(), kDegenerateThreshold)) {
967 // If the center positions are the same, then the gradient is the radial variant of a 2 pt
968 // conical gradient, an actual radial gradient (startRadius == 0), or it is fully degenerate
969 // (startRadius == endRadius).
970 if (SkScalarNearlyEqual(startRadius, endRadius, kDegenerateThreshold)) {
971 // Degenerate case, where the interpolation region area approaches zero. The proper
972 // behavior depends on the tile mode, which is consistent with the default degenerate
973 // gradient behavior, except when mode = clamp and the radii > 0.
974 if (mode == SkTileMode::kClamp && endRadius > kDegenerateThreshold) {
975 // The interpolation region becomes an infinitely thin ring at the radius, so the
976 // final gradient will be the first color repeated from p=0 to 1, and then a hard
977 // stop switching to the last color at p=1.
978 static constexpr SkScalar circlePos[3] = {0, 1, 1};
979 SkColor4f reColors[3] = {colors[0], colors[0], colors[colorCount - 1]};
980 return MakeRadial(start, endRadius, reColors, std::move(colorSpace),
981 circlePos, 3, mode, flags, localMatrix);
982 } else {
983 // Otherwise use the default degenerate case
984 return make_degenerate_gradient(
985 colors, pos, colorCount, std::move(colorSpace), mode);
986 }
987 } else if (SkScalarNearlyZero(startRadius, kDegenerateThreshold)) {
988 // We can treat this gradient as radial, which is faster. If we got here, we know
989 // that endRadius is not equal to 0, so this produces a meaningful gradient
990 return MakeRadial(start, endRadius, colors, std::move(colorSpace), pos, colorCount,
991 mode, flags, localMatrix);
992 }
993 // Else it's the 2pt conical radial variant with no degenerate radii, so fall through to the
994 // regular 2pt constructor.
995 }
996
997 if (localMatrix && !localMatrix->invert(nullptr)) {
998 return nullptr;
999 }
1000 EXPAND_1_COLOR(colorCount);
1001
1002 ColorStopOptimizer opt(colors, pos, colorCount, mode);
1003
1004 SkGradientShaderBase::Descriptor desc;
1005 desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags,
1006 localMatrix);
1007 return SkTwoPointConicalGradient::Create(start, startRadius, end, endRadius, desc);
1008 }
1009
MakeSweep(SkScalar cx,SkScalar cy,const SkColor colors[],const SkScalar pos[],int colorCount,SkTileMode mode,SkScalar startAngle,SkScalar endAngle,uint32_t flags,const SkMatrix * localMatrix)1010 sk_sp<SkShader> SkGradientShader::MakeSweep(SkScalar cx, SkScalar cy,
1011 const SkColor colors[],
1012 const SkScalar pos[],
1013 int colorCount,
1014 SkTileMode mode,
1015 SkScalar startAngle,
1016 SkScalar endAngle,
1017 uint32_t flags,
1018 const SkMatrix* localMatrix) {
1019 ColorConverter converter(colors, colorCount);
1020 return MakeSweep(cx, cy, converter.fColors4f.begin(), nullptr, pos, colorCount,
1021 mode, startAngle, endAngle, flags, localMatrix);
1022 }
1023
MakeSweep(SkScalar cx,SkScalar cy,const SkColor4f colors[],sk_sp<SkColorSpace> colorSpace,const SkScalar pos[],int colorCount,SkTileMode mode,SkScalar startAngle,SkScalar endAngle,uint32_t flags,const SkMatrix * localMatrix)1024 sk_sp<SkShader> SkGradientShader::MakeSweep(SkScalar cx, SkScalar cy,
1025 const SkColor4f colors[],
1026 sk_sp<SkColorSpace> colorSpace,
1027 const SkScalar pos[],
1028 int colorCount,
1029 SkTileMode mode,
1030 SkScalar startAngle,
1031 SkScalar endAngle,
1032 uint32_t flags,
1033 const SkMatrix* localMatrix) {
1034 if (!valid_grad(colors, pos, colorCount, mode)) {
1035 return nullptr;
1036 }
1037 if (1 == colorCount) {
1038 return SkShaders::Color(colors[0], std::move(colorSpace));
1039 }
1040 if (!SkScalarIsFinite(startAngle) || !SkScalarIsFinite(endAngle) || startAngle > endAngle) {
1041 return nullptr;
1042 }
1043 if (localMatrix && !localMatrix->invert(nullptr)) {
1044 return nullptr;
1045 }
1046
1047 if (SkScalarNearlyEqual(startAngle, endAngle, kDegenerateThreshold)) {
1048 // Degenerate gradient, which should follow default degenerate behavior unless it is
1049 // clamped and the angle is greater than 0.
1050 if (mode == SkTileMode::kClamp && endAngle > kDegenerateThreshold) {
1051 // In this case, the first color is repeated from 0 to the angle, then a hardstop
1052 // switches to the last color (all other colors are compressed to the infinitely thin
1053 // interpolation region).
1054 static constexpr SkScalar clampPos[3] = {0, 1, 1};
1055 SkColor4f reColors[3] = {colors[0], colors[0], colors[colorCount - 1]};
1056 return MakeSweep(cx, cy, reColors, std::move(colorSpace), clampPos, 3, mode, 0,
1057 endAngle, flags, localMatrix);
1058 } else {
1059 return make_degenerate_gradient(colors, pos, colorCount, std::move(colorSpace), mode);
1060 }
1061 }
1062
1063 if (startAngle <= 0 && endAngle >= 360) {
1064 // If the t-range includes [0,1], then we can always use clamping (presumably faster).
1065 mode = SkTileMode::kClamp;
1066 }
1067
1068 ColorStopOptimizer opt(colors, pos, colorCount, mode);
1069
1070 SkGradientShaderBase::Descriptor desc;
1071 desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags,
1072 localMatrix);
1073
1074 const SkScalar t0 = startAngle / 360,
1075 t1 = endAngle / 360;
1076
1077 return sk_make_sp<SkSweepGradient>(SkPoint::Make(cx, cy), t0, t1, desc);
1078 }
1079
RegisterFlattenables()1080 void SkGradientShader::RegisterFlattenables() {
1081 SK_REGISTER_FLATTENABLE(SkLinearGradient);
1082 SK_REGISTER_FLATTENABLE(SkRadialGradient);
1083 SK_REGISTER_FLATTENABLE(SkSweepGradient);
1084 SK_REGISTER_FLATTENABLE(SkTwoPointConicalGradient);
1085 }
1086