• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * (C) Copyright 2008
3  * Texas Instruments, <www.ti.com>
4  * Sukumar Ghorai <s-ghorai@ti.com>
5  *
6  * See file CREDITS for list of people who contributed to this
7  * project.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation's version 2 of
12  * the License.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
22  * MA 02111-1307 USA
23  */
24 
25 #include <config.h>
26 #include <common.h>
27 #include <cpu_func.h>
28 #include <malloc.h>
29 #include <memalign.h>
30 #include <mmc.h>
31 #include <part.h>
32 #include <i2c.h>
33 #if defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)
34 #include <palmas.h>
35 #endif
36 #include <asm/io.h>
37 #include <asm/arch/mmc_host_def.h>
38 #ifdef CONFIG_OMAP54XX
39 #include <asm/arch/mux_dra7xx.h>
40 #include <asm/arch/dra7xx_iodelay.h>
41 #endif
42 #if !defined(CONFIG_SOC_KEYSTONE)
43 #include <asm/gpio.h>
44 #include <asm/arch/sys_proto.h>
45 #endif
46 #ifdef CONFIG_MMC_OMAP36XX_PINS
47 #include <asm/arch/mux.h>
48 #endif
49 #include <dm.h>
50 #include <power/regulator.h>
51 #include <thermal.h>
52 
53 DECLARE_GLOBAL_DATA_PTR;
54 
55 /* simplify defines to OMAP_HSMMC_USE_GPIO */
56 #if (defined(CONFIG_OMAP_GPIO) && !defined(CONFIG_SPL_BUILD)) || \
57 	(defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_GPIO_SUPPORT))
58 #define OMAP_HSMMC_USE_GPIO
59 #else
60 #undef OMAP_HSMMC_USE_GPIO
61 #endif
62 
63 /* common definitions for all OMAPs */
64 #define SYSCTL_SRC	(1 << 25)
65 #define SYSCTL_SRD	(1 << 26)
66 
67 #ifdef CONFIG_IODELAY_RECALIBRATION
68 struct omap_hsmmc_pinctrl_state {
69 	struct pad_conf_entry *padconf;
70 	int npads;
71 	struct iodelay_cfg_entry *iodelay;
72 	int niodelays;
73 };
74 #endif
75 
76 struct omap_hsmmc_data {
77 	struct hsmmc *base_addr;
78 #if !CONFIG_IS_ENABLED(DM_MMC)
79 	struct mmc_config cfg;
80 #endif
81 	uint bus_width;
82 	uint clock;
83 	ushort last_cmd;
84 #ifdef OMAP_HSMMC_USE_GPIO
85 #if CONFIG_IS_ENABLED(DM_MMC)
86 	struct gpio_desc cd_gpio;	/* Change Detect GPIO */
87 	struct gpio_desc wp_gpio;	/* Write Protect GPIO */
88 #else
89 	int cd_gpio;
90 	int wp_gpio;
91 #endif
92 #endif
93 #if CONFIG_IS_ENABLED(DM_MMC)
94 	enum bus_mode mode;
95 #endif
96 	u8 controller_flags;
97 #ifdef CONFIG_MMC_OMAP_HS_ADMA
98 	struct omap_hsmmc_adma_desc *adma_desc_table;
99 	uint desc_slot;
100 #endif
101 	const char *hw_rev;
102 	struct udevice *pbias_supply;
103 	uint signal_voltage;
104 #ifdef CONFIG_IODELAY_RECALIBRATION
105 	struct omap_hsmmc_pinctrl_state *default_pinctrl_state;
106 	struct omap_hsmmc_pinctrl_state *hs_pinctrl_state;
107 	struct omap_hsmmc_pinctrl_state *hs200_1_8v_pinctrl_state;
108 	struct omap_hsmmc_pinctrl_state *ddr_1_8v_pinctrl_state;
109 	struct omap_hsmmc_pinctrl_state *sdr12_pinctrl_state;
110 	struct omap_hsmmc_pinctrl_state *sdr25_pinctrl_state;
111 	struct omap_hsmmc_pinctrl_state *ddr50_pinctrl_state;
112 	struct omap_hsmmc_pinctrl_state *sdr50_pinctrl_state;
113 	struct omap_hsmmc_pinctrl_state *sdr104_pinctrl_state;
114 #endif
115 };
116 
117 struct omap_mmc_of_data {
118 	u8 controller_flags;
119 };
120 
121 #ifdef CONFIG_MMC_OMAP_HS_ADMA
122 struct omap_hsmmc_adma_desc {
123 	u8 attr;
124 	u8 reserved;
125 	u16 len;
126 	u32 addr;
127 };
128 
129 #define ADMA_MAX_LEN	63488
130 
131 /* Decriptor table defines */
132 #define ADMA_DESC_ATTR_VALID		BIT(0)
133 #define ADMA_DESC_ATTR_END		BIT(1)
134 #define ADMA_DESC_ATTR_INT		BIT(2)
135 #define ADMA_DESC_ATTR_ACT1		BIT(4)
136 #define ADMA_DESC_ATTR_ACT2		BIT(5)
137 
138 #define ADMA_DESC_TRANSFER_DATA		ADMA_DESC_ATTR_ACT2
139 #define ADMA_DESC_LINK_DESC	(ADMA_DESC_ATTR_ACT1 | ADMA_DESC_ATTR_ACT2)
140 #endif
141 
142 /* If we fail after 1 second wait, something is really bad */
143 #define MAX_RETRY_MS	1000
144 #define MMC_TIMEOUT_MS	20
145 
146 /* DMA transfers can take a long time if a lot a data is transferred.
147  * The timeout must take in account the amount of data. Let's assume
148  * that the time will never exceed 333 ms per MB (in other word we assume
149  * that the bandwidth is always above 3MB/s).
150  */
151 #define DMA_TIMEOUT_PER_MB	333
152 #define OMAP_HSMMC_SUPPORTS_DUAL_VOLT		BIT(0)
153 #define OMAP_HSMMC_NO_1_8_V			BIT(1)
154 #define OMAP_HSMMC_USE_ADMA			BIT(2)
155 #define OMAP_HSMMC_REQUIRE_IODELAY		BIT(3)
156 
157 static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size);
158 static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
159 			unsigned int siz);
160 static void omap_hsmmc_start_clock(struct hsmmc *mmc_base);
161 static void omap_hsmmc_stop_clock(struct hsmmc *mmc_base);
162 static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit);
163 
omap_hsmmc_get_data(struct mmc * mmc)164 static inline struct omap_hsmmc_data *omap_hsmmc_get_data(struct mmc *mmc)
165 {
166 #if CONFIG_IS_ENABLED(DM_MMC)
167 	return dev_get_priv(mmc->dev);
168 #else
169 	return (struct omap_hsmmc_data *)mmc->priv;
170 #endif
171 }
omap_hsmmc_get_cfg(struct mmc * mmc)172 static inline struct mmc_config *omap_hsmmc_get_cfg(struct mmc *mmc)
173 {
174 #if CONFIG_IS_ENABLED(DM_MMC)
175 	struct omap_hsmmc_plat *plat = dev_get_platdata(mmc->dev);
176 	return &plat->cfg;
177 #else
178 	return &((struct omap_hsmmc_data *)mmc->priv)->cfg;
179 #endif
180 }
181 
182 #if defined(OMAP_HSMMC_USE_GPIO) && !CONFIG_IS_ENABLED(DM_MMC)
omap_mmc_setup_gpio_in(int gpio,const char * label)183 static int omap_mmc_setup_gpio_in(int gpio, const char *label)
184 {
185 	int ret;
186 
187 #ifndef CONFIG_DM_GPIO
188 	if (!gpio_is_valid(gpio))
189 		return -1;
190 #endif
191 	ret = gpio_request(gpio, label);
192 	if (ret)
193 		return ret;
194 
195 	ret = gpio_direction_input(gpio);
196 	if (ret)
197 		return ret;
198 
199 	return gpio;
200 }
201 #endif
202 
mmc_board_init(struct mmc * mmc)203 static unsigned char mmc_board_init(struct mmc *mmc)
204 {
205 #if defined(CONFIG_OMAP34XX)
206 	struct mmc_config *cfg = omap_hsmmc_get_cfg(mmc);
207 	t2_t *t2_base = (t2_t *)T2_BASE;
208 	struct prcm *prcm_base = (struct prcm *)PRCM_BASE;
209 	u32 pbias_lite;
210 #ifdef CONFIG_MMC_OMAP36XX_PINS
211 	u32 wkup_ctrl = readl(OMAP34XX_CTRL_WKUP_CTRL);
212 #endif
213 
214 	pbias_lite = readl(&t2_base->pbias_lite);
215 	pbias_lite &= ~(PBIASLITEPWRDNZ1 | PBIASLITEPWRDNZ0);
216 #ifdef CONFIG_TARGET_OMAP3_CAIRO
217 	/* for cairo board, we need to set up 1.8 Volt bias level on MMC1 */
218 	pbias_lite &= ~PBIASLITEVMODE0;
219 #endif
220 #ifdef CONFIG_TARGET_OMAP3_LOGIC
221 	/* For Logic PD board, 1.8V bias to go enable gpio127 for mmc_cd */
222 	pbias_lite &= ~PBIASLITEVMODE1;
223 #endif
224 #ifdef CONFIG_MMC_OMAP36XX_PINS
225 	if (get_cpu_family() == CPU_OMAP36XX) {
226 		/* Disable extended drain IO before changing PBIAS */
227 		wkup_ctrl &= ~OMAP34XX_CTRL_WKUP_CTRL_GPIO_IO_PWRDNZ;
228 		writel(wkup_ctrl, OMAP34XX_CTRL_WKUP_CTRL);
229 	}
230 #endif
231 	writel(pbias_lite, &t2_base->pbias_lite);
232 
233 	writel(pbias_lite | PBIASLITEPWRDNZ1 |
234 		PBIASSPEEDCTRL0 | PBIASLITEPWRDNZ0,
235 		&t2_base->pbias_lite);
236 
237 #ifdef CONFIG_MMC_OMAP36XX_PINS
238 	if (get_cpu_family() == CPU_OMAP36XX)
239 		/* Enable extended drain IO after changing PBIAS */
240 		writel(wkup_ctrl |
241 				OMAP34XX_CTRL_WKUP_CTRL_GPIO_IO_PWRDNZ,
242 				OMAP34XX_CTRL_WKUP_CTRL);
243 #endif
244 	writel(readl(&t2_base->devconf0) | MMCSDIO1ADPCLKISEL,
245 		&t2_base->devconf0);
246 
247 	writel(readl(&t2_base->devconf1) | MMCSDIO2ADPCLKISEL,
248 		&t2_base->devconf1);
249 
250 	/* Change from default of 52MHz to 26MHz if necessary */
251 	if (!(cfg->host_caps & MMC_MODE_HS_52MHz))
252 		writel(readl(&t2_base->ctl_prog_io1) & ~CTLPROGIO1SPEEDCTRL,
253 			&t2_base->ctl_prog_io1);
254 
255 	writel(readl(&prcm_base->fclken1_core) |
256 		EN_MMC1 | EN_MMC2 | EN_MMC3,
257 		&prcm_base->fclken1_core);
258 
259 	writel(readl(&prcm_base->iclken1_core) |
260 		EN_MMC1 | EN_MMC2 | EN_MMC3,
261 		&prcm_base->iclken1_core);
262 #endif
263 
264 #if (defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)) &&\
265 	!CONFIG_IS_ENABLED(DM_REGULATOR)
266 	/* PBIAS config needed for MMC1 only */
267 	if (mmc_get_blk_desc(mmc)->devnum == 0)
268 		vmmc_pbias_config(LDO_VOLT_3V3);
269 #endif
270 
271 	return 0;
272 }
273 
mmc_init_stream(struct hsmmc * mmc_base)274 void mmc_init_stream(struct hsmmc *mmc_base)
275 {
276 	ulong start;
277 
278 	writel(readl(&mmc_base->con) | INIT_INITSTREAM, &mmc_base->con);
279 
280 	writel(MMC_CMD0, &mmc_base->cmd);
281 	start = get_timer(0);
282 	while (!(readl(&mmc_base->stat) & CC_MASK)) {
283 		if (get_timer(0) - start > MAX_RETRY_MS) {
284 			printf("%s: timedout waiting for cc!\n", __func__);
285 			return;
286 		}
287 	}
288 	writel(CC_MASK, &mmc_base->stat)
289 		;
290 	writel(MMC_CMD0, &mmc_base->cmd)
291 		;
292 	start = get_timer(0);
293 	while (!(readl(&mmc_base->stat) & CC_MASK)) {
294 		if (get_timer(0) - start > MAX_RETRY_MS) {
295 			printf("%s: timedout waiting for cc2!\n", __func__);
296 			return;
297 		}
298 	}
299 	writel(readl(&mmc_base->con) & ~INIT_INITSTREAM, &mmc_base->con);
300 }
301 
302 #if CONFIG_IS_ENABLED(DM_MMC)
303 #ifdef CONFIG_IODELAY_RECALIBRATION
omap_hsmmc_io_recalibrate(struct mmc * mmc)304 static void omap_hsmmc_io_recalibrate(struct mmc *mmc)
305 {
306 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
307 	struct omap_hsmmc_pinctrl_state *pinctrl_state;
308 
309 	switch (priv->mode) {
310 	case MMC_HS_200:
311 		pinctrl_state = priv->hs200_1_8v_pinctrl_state;
312 		break;
313 	case UHS_SDR104:
314 		pinctrl_state = priv->sdr104_pinctrl_state;
315 		break;
316 	case UHS_SDR50:
317 		pinctrl_state = priv->sdr50_pinctrl_state;
318 		break;
319 	case UHS_DDR50:
320 		pinctrl_state = priv->ddr50_pinctrl_state;
321 		break;
322 	case UHS_SDR25:
323 		pinctrl_state = priv->sdr25_pinctrl_state;
324 		break;
325 	case UHS_SDR12:
326 		pinctrl_state = priv->sdr12_pinctrl_state;
327 		break;
328 	case SD_HS:
329 	case MMC_HS:
330 	case MMC_HS_52:
331 		pinctrl_state = priv->hs_pinctrl_state;
332 		break;
333 	case MMC_DDR_52:
334 		pinctrl_state = priv->ddr_1_8v_pinctrl_state;
335 	default:
336 		pinctrl_state = priv->default_pinctrl_state;
337 		break;
338 	}
339 
340 	if (!pinctrl_state)
341 		pinctrl_state = priv->default_pinctrl_state;
342 
343 	if (priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY) {
344 		if (pinctrl_state->iodelay)
345 			late_recalibrate_iodelay(pinctrl_state->padconf,
346 						 pinctrl_state->npads,
347 						 pinctrl_state->iodelay,
348 						 pinctrl_state->niodelays);
349 		else
350 			do_set_mux32((*ctrl)->control_padconf_core_base,
351 				     pinctrl_state->padconf,
352 				     pinctrl_state->npads);
353 	}
354 }
355 #endif
omap_hsmmc_set_timing(struct mmc * mmc)356 static void omap_hsmmc_set_timing(struct mmc *mmc)
357 {
358 	u32 val;
359 	struct hsmmc *mmc_base;
360 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
361 
362 	mmc_base = priv->base_addr;
363 
364 	omap_hsmmc_stop_clock(mmc_base);
365 	val = readl(&mmc_base->ac12);
366 	val &= ~AC12_UHSMC_MASK;
367 	priv->mode = mmc->selected_mode;
368 
369 	if (mmc_is_mode_ddr(priv->mode))
370 		writel(readl(&mmc_base->con) | DDR, &mmc_base->con);
371 	else
372 		writel(readl(&mmc_base->con) & ~DDR, &mmc_base->con);
373 
374 	switch (priv->mode) {
375 	case MMC_HS_200:
376 	case UHS_SDR104:
377 		val |= AC12_UHSMC_SDR104;
378 		break;
379 	case UHS_SDR50:
380 		val |= AC12_UHSMC_SDR50;
381 		break;
382 	case MMC_DDR_52:
383 	case UHS_DDR50:
384 		val |= AC12_UHSMC_DDR50;
385 		break;
386 	case SD_HS:
387 	case MMC_HS_52:
388 	case UHS_SDR25:
389 		val |= AC12_UHSMC_SDR25;
390 		break;
391 	case MMC_LEGACY:
392 	case MMC_HS:
393 	case SD_LEGACY:
394 	case UHS_SDR12:
395 		val |= AC12_UHSMC_SDR12;
396 		break;
397 	default:
398 		val |= AC12_UHSMC_RES;
399 		break;
400 	}
401 	writel(val, &mmc_base->ac12);
402 
403 #ifdef CONFIG_IODELAY_RECALIBRATION
404 	omap_hsmmc_io_recalibrate(mmc);
405 #endif
406 	omap_hsmmc_start_clock(mmc_base);
407 }
408 
omap_hsmmc_conf_bus_power(struct mmc * mmc,uint signal_voltage)409 static void omap_hsmmc_conf_bus_power(struct mmc *mmc, uint signal_voltage)
410 {
411 	struct hsmmc *mmc_base;
412 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
413 	u32 hctl, ac12;
414 
415 	mmc_base = priv->base_addr;
416 
417 	hctl = readl(&mmc_base->hctl) & ~SDVS_MASK;
418 	ac12 = readl(&mmc_base->ac12) & ~AC12_V1V8_SIGEN;
419 
420 	switch (signal_voltage) {
421 	case MMC_SIGNAL_VOLTAGE_330:
422 		hctl |= SDVS_3V3;
423 		break;
424 	case MMC_SIGNAL_VOLTAGE_180:
425 		hctl |= SDVS_1V8;
426 		ac12 |= AC12_V1V8_SIGEN;
427 		break;
428 	}
429 
430 	writel(hctl, &mmc_base->hctl);
431 	writel(ac12, &mmc_base->ac12);
432 }
433 
omap_hsmmc_wait_dat0(struct udevice * dev,int state,int timeout_us)434 static int omap_hsmmc_wait_dat0(struct udevice *dev, int state, int timeout_us)
435 {
436 	int ret = -ETIMEDOUT;
437 	u32 con;
438 	bool dat0_high;
439 	bool target_dat0_high = !!state;
440 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
441 	struct hsmmc *mmc_base = priv->base_addr;
442 
443 	con = readl(&mmc_base->con);
444 	writel(con | CON_CLKEXTFREE | CON_PADEN, &mmc_base->con);
445 
446 	timeout_us = DIV_ROUND_UP(timeout_us, 10); /* check every 10 us. */
447 	while (timeout_us--) {
448 		dat0_high = !!(readl(&mmc_base->pstate) & PSTATE_DLEV_DAT0);
449 		if (dat0_high == target_dat0_high) {
450 			ret = 0;
451 			break;
452 		}
453 		udelay(10);
454 	}
455 	writel(con, &mmc_base->con);
456 
457 	return ret;
458 }
459 
460 #if CONFIG_IS_ENABLED(MMC_IO_VOLTAGE)
461 #if CONFIG_IS_ENABLED(DM_REGULATOR)
omap_hsmmc_set_io_regulator(struct mmc * mmc,int mV)462 static int omap_hsmmc_set_io_regulator(struct mmc *mmc, int mV)
463 {
464 	int ret = 0;
465 	int uV = mV * 1000;
466 
467 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
468 
469 	if (!mmc->vqmmc_supply)
470 		return 0;
471 
472 	/* Disable PBIAS */
473 	ret = regulator_set_enable_if_allowed(priv->pbias_supply, false);
474 	if (ret)
475 		return ret;
476 
477 	/* Turn off IO voltage */
478 	ret = regulator_set_enable_if_allowed(mmc->vqmmc_supply, false);
479 	if (ret)
480 		return ret;
481 	/* Program a new IO voltage value */
482 	ret = regulator_set_value(mmc->vqmmc_supply, uV);
483 	if (ret)
484 		return ret;
485 	/* Turn on IO voltage */
486 	ret = regulator_set_enable_if_allowed(mmc->vqmmc_supply, true);
487 	if (ret)
488 		return ret;
489 
490 	/* Program PBIAS voltage*/
491 	ret = regulator_set_value(priv->pbias_supply, uV);
492 	if (ret && ret != -ENOSYS)
493 		return ret;
494 	/* Enable PBIAS */
495 	ret = regulator_set_enable_if_allowed(priv->pbias_supply, true);
496 	if (ret)
497 		return ret;
498 
499 	return 0;
500 }
501 #endif
502 
omap_hsmmc_set_signal_voltage(struct mmc * mmc)503 static int omap_hsmmc_set_signal_voltage(struct mmc *mmc)
504 {
505 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
506 	struct hsmmc *mmc_base = priv->base_addr;
507 	int mv = mmc_voltage_to_mv(mmc->signal_voltage);
508 	u32 capa_mask;
509 	__maybe_unused u8 palmas_ldo_volt;
510 	u32 val;
511 
512 	if (mv < 0)
513 		return -EINVAL;
514 
515 	if (mmc->signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
516 		mv = 3300;
517 		capa_mask = VS33_3V3SUP;
518 		palmas_ldo_volt = LDO_VOLT_3V3;
519 	} else if (mmc->signal_voltage == MMC_SIGNAL_VOLTAGE_180) {
520 		capa_mask = VS18_1V8SUP;
521 		palmas_ldo_volt = LDO_VOLT_1V8;
522 	} else {
523 		return -EOPNOTSUPP;
524 	}
525 
526 	val = readl(&mmc_base->capa);
527 	if (!(val & capa_mask))
528 		return -EOPNOTSUPP;
529 
530 	priv->signal_voltage = mmc->signal_voltage;
531 
532 	omap_hsmmc_conf_bus_power(mmc, mmc->signal_voltage);
533 
534 #if CONFIG_IS_ENABLED(DM_REGULATOR)
535 	return omap_hsmmc_set_io_regulator(mmc, mv);
536 #elif (defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)) && \
537 	defined(CONFIG_PALMAS_POWER)
538 	if (mmc_get_blk_desc(mmc)->devnum == 0)
539 		vmmc_pbias_config(palmas_ldo_volt);
540 	return 0;
541 #else
542 	return 0;
543 #endif
544 }
545 #endif
546 
omap_hsmmc_set_capabilities(struct mmc * mmc)547 static uint32_t omap_hsmmc_set_capabilities(struct mmc *mmc)
548 {
549 	struct hsmmc *mmc_base;
550 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
551 	u32 val;
552 
553 	mmc_base = priv->base_addr;
554 	val = readl(&mmc_base->capa);
555 
556 	if (priv->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
557 		val |= (VS33_3V3SUP | VS18_1V8SUP);
558 	} else if (priv->controller_flags & OMAP_HSMMC_NO_1_8_V) {
559 		val |= VS33_3V3SUP;
560 		val &= ~VS18_1V8SUP;
561 	} else {
562 		val |= VS18_1V8SUP;
563 		val &= ~VS33_3V3SUP;
564 	}
565 
566 	writel(val, &mmc_base->capa);
567 
568 	return val;
569 }
570 
571 #ifdef MMC_SUPPORTS_TUNING
omap_hsmmc_disable_tuning(struct mmc * mmc)572 static void omap_hsmmc_disable_tuning(struct mmc *mmc)
573 {
574 	struct hsmmc *mmc_base;
575 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
576 	u32 val;
577 
578 	mmc_base = priv->base_addr;
579 	val = readl(&mmc_base->ac12);
580 	val &= ~(AC12_SCLK_SEL);
581 	writel(val, &mmc_base->ac12);
582 
583 	val = readl(&mmc_base->dll);
584 	val &= ~(DLL_FORCE_VALUE | DLL_SWT);
585 	writel(val, &mmc_base->dll);
586 }
587 
omap_hsmmc_set_dll(struct mmc * mmc,int count)588 static void omap_hsmmc_set_dll(struct mmc *mmc, int count)
589 {
590 	int i;
591 	struct hsmmc *mmc_base;
592 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
593 	u32 val;
594 
595 	mmc_base = priv->base_addr;
596 	val = readl(&mmc_base->dll);
597 	val |= DLL_FORCE_VALUE;
598 	val &= ~(DLL_FORCE_SR_C_MASK << DLL_FORCE_SR_C_SHIFT);
599 	val |= (count << DLL_FORCE_SR_C_SHIFT);
600 	writel(val, &mmc_base->dll);
601 
602 	val |= DLL_CALIB;
603 	writel(val, &mmc_base->dll);
604 	for (i = 0; i < 1000; i++) {
605 		if (readl(&mmc_base->dll) & DLL_CALIB)
606 			break;
607 	}
608 	val &= ~DLL_CALIB;
609 	writel(val, &mmc_base->dll);
610 }
611 
omap_hsmmc_execute_tuning(struct udevice * dev,uint opcode)612 static int omap_hsmmc_execute_tuning(struct udevice *dev, uint opcode)
613 {
614 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
615 	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
616 	struct mmc *mmc = upriv->mmc;
617 	struct hsmmc *mmc_base;
618 	u32 val;
619 	u8 cur_match, prev_match = 0;
620 	int ret;
621 	u32 phase_delay = 0;
622 	u32 start_window = 0, max_window = 0;
623 	u32 length = 0, max_len = 0;
624 	bool single_point_failure = false;
625 	struct udevice *thermal_dev;
626 	int temperature;
627 	int i;
628 
629 	mmc_base = priv->base_addr;
630 	val = readl(&mmc_base->capa2);
631 
632 	/* clock tuning is not needed for upto 52MHz */
633 	if (!((mmc->selected_mode == MMC_HS_200) ||
634 	      (mmc->selected_mode == UHS_SDR104) ||
635 	      ((mmc->selected_mode == UHS_SDR50) && (val & CAPA2_TSDR50))))
636 		return 0;
637 
638 	ret = uclass_first_device(UCLASS_THERMAL, &thermal_dev);
639 	if (ret) {
640 		printf("Couldn't get thermal device for tuning\n");
641 		return ret;
642 	}
643 	ret = thermal_get_temp(thermal_dev, &temperature);
644 	if (ret) {
645 		printf("Couldn't get temperature for tuning\n");
646 		return ret;
647 	}
648 	val = readl(&mmc_base->dll);
649 	val |= DLL_SWT;
650 	writel(val, &mmc_base->dll);
651 
652 	/*
653 	 * Stage 1: Search for a maximum pass window ignoring any
654 	 * any single point failures. If the tuning value ends up
655 	 * near it, move away from it in stage 2 below
656 	 */
657 	while (phase_delay <= MAX_PHASE_DELAY) {
658 		omap_hsmmc_set_dll(mmc, phase_delay);
659 
660 		cur_match = !mmc_send_tuning(mmc, opcode, NULL);
661 
662 		if (cur_match) {
663 			if (prev_match) {
664 				length++;
665 			} else if (single_point_failure) {
666 				/* ignore single point failure */
667 				length++;
668 				single_point_failure = false;
669 			} else {
670 				start_window = phase_delay;
671 				length = 1;
672 			}
673 		} else {
674 			single_point_failure = prev_match;
675 		}
676 
677 		if (length > max_len) {
678 			max_window = start_window;
679 			max_len = length;
680 		}
681 
682 		prev_match = cur_match;
683 		phase_delay += 4;
684 	}
685 
686 	if (!max_len) {
687 		ret = -EIO;
688 		goto tuning_error;
689 	}
690 
691 	val = readl(&mmc_base->ac12);
692 	if (!(val & AC12_SCLK_SEL)) {
693 		ret = -EIO;
694 		goto tuning_error;
695 	}
696 	/*
697 	 * Assign tuning value as a ratio of maximum pass window based
698 	 * on temperature
699 	 */
700 	if (temperature < -20000)
701 		phase_delay = min(max_window + 4 * max_len - 24,
702 				  max_window +
703 				  DIV_ROUND_UP(13 * max_len, 16) * 4);
704 	else if (temperature < 20000)
705 		phase_delay = max_window + DIV_ROUND_UP(9 * max_len, 16) * 4;
706 	else if (temperature < 40000)
707 		phase_delay = max_window + DIV_ROUND_UP(8 * max_len, 16) * 4;
708 	else if (temperature < 70000)
709 		phase_delay = max_window + DIV_ROUND_UP(7 * max_len, 16) * 4;
710 	else if (temperature < 90000)
711 		phase_delay = max_window + DIV_ROUND_UP(5 * max_len, 16) * 4;
712 	else if (temperature < 120000)
713 		phase_delay = max_window + DIV_ROUND_UP(4 * max_len, 16) * 4;
714 	else
715 		phase_delay = max_window + DIV_ROUND_UP(3 * max_len, 16) * 4;
716 
717 	/*
718 	 * Stage 2: Search for a single point failure near the chosen tuning
719 	 * value in two steps. First in the +3 to +10 range and then in the
720 	 * +2 to -10 range. If found, move away from it in the appropriate
721 	 * direction by the appropriate amount depending on the temperature.
722 	 */
723 	for (i = 3; i <= 10; i++) {
724 		omap_hsmmc_set_dll(mmc, phase_delay + i);
725 		if (mmc_send_tuning(mmc, opcode, NULL)) {
726 			if (temperature < 10000)
727 				phase_delay += i + 6;
728 			else if (temperature < 20000)
729 				phase_delay += i - 12;
730 			else if (temperature < 70000)
731 				phase_delay += i - 8;
732 			else if (temperature < 90000)
733 				phase_delay += i - 6;
734 			else
735 				phase_delay += i - 6;
736 
737 			goto single_failure_found;
738 		}
739 	}
740 
741 	for (i = 2; i >= -10; i--) {
742 		omap_hsmmc_set_dll(mmc, phase_delay + i);
743 		if (mmc_send_tuning(mmc, opcode, NULL)) {
744 			if (temperature < 10000)
745 				phase_delay += i + 12;
746 			else if (temperature < 20000)
747 				phase_delay += i + 8;
748 			else if (temperature < 70000)
749 				phase_delay += i + 8;
750 			else if (temperature < 90000)
751 				phase_delay += i + 10;
752 			else
753 				phase_delay += i + 12;
754 
755 			goto single_failure_found;
756 		}
757 	}
758 
759 single_failure_found:
760 
761 	omap_hsmmc_set_dll(mmc, phase_delay);
762 
763 	mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
764 	mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
765 
766 	return 0;
767 
768 tuning_error:
769 
770 	omap_hsmmc_disable_tuning(mmc);
771 	mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
772 	mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
773 
774 	return ret;
775 }
776 #endif
777 #endif
778 
mmc_enable_irq(struct mmc * mmc,struct mmc_cmd * cmd)779 static void mmc_enable_irq(struct mmc *mmc, struct mmc_cmd *cmd)
780 {
781 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
782 	struct hsmmc *mmc_base = priv->base_addr;
783 	u32 irq_mask = INT_EN_MASK;
784 
785 	/*
786 	 * TODO: Errata i802 indicates only DCRC interrupts can occur during
787 	 * tuning procedure and DCRC should be disabled. But see occurences
788 	 * of DEB, CIE, CEB, CCRC interupts during tuning procedure. These
789 	 * interrupts occur along with BRR, so the data is actually in the
790 	 * buffer. It has to be debugged why these interrutps occur
791 	 */
792 	if (cmd && mmc_is_tuning_cmd(cmd->cmdidx))
793 		irq_mask &= ~(IE_DEB | IE_DCRC | IE_CIE | IE_CEB | IE_CCRC);
794 
795 	writel(irq_mask, &mmc_base->ie);
796 }
797 
omap_hsmmc_init_setup(struct mmc * mmc)798 static int omap_hsmmc_init_setup(struct mmc *mmc)
799 {
800 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
801 	struct hsmmc *mmc_base;
802 	unsigned int reg_val;
803 	unsigned int dsor;
804 	ulong start;
805 
806 	mmc_base = priv->base_addr;
807 	mmc_board_init(mmc);
808 
809 	writel(readl(&mmc_base->sysconfig) | MMC_SOFTRESET,
810 		&mmc_base->sysconfig);
811 	start = get_timer(0);
812 	while ((readl(&mmc_base->sysstatus) & RESETDONE) == 0) {
813 		if (get_timer(0) - start > MAX_RETRY_MS) {
814 			printf("%s: timedout waiting for cc2!\n", __func__);
815 			return -ETIMEDOUT;
816 		}
817 	}
818 	writel(readl(&mmc_base->sysctl) | SOFTRESETALL, &mmc_base->sysctl);
819 	start = get_timer(0);
820 	while ((readl(&mmc_base->sysctl) & SOFTRESETALL) != 0x0) {
821 		if (get_timer(0) - start > MAX_RETRY_MS) {
822 			printf("%s: timedout waiting for softresetall!\n",
823 				__func__);
824 			return -ETIMEDOUT;
825 		}
826 	}
827 #ifdef CONFIG_MMC_OMAP_HS_ADMA
828 	reg_val = readl(&mmc_base->hl_hwinfo);
829 	if (reg_val & MADMA_EN)
830 		priv->controller_flags |= OMAP_HSMMC_USE_ADMA;
831 #endif
832 
833 #if CONFIG_IS_ENABLED(DM_MMC)
834 	reg_val = omap_hsmmc_set_capabilities(mmc);
835 	omap_hsmmc_conf_bus_power(mmc, (reg_val & VS33_3V3SUP) ?
836 			  MMC_SIGNAL_VOLTAGE_330 : MMC_SIGNAL_VOLTAGE_180);
837 #else
838 	writel(DTW_1_BITMODE | SDBP_PWROFF | SDVS_3V0, &mmc_base->hctl);
839 	writel(readl(&mmc_base->capa) | VS33_3V3SUP | VS18_1V8SUP,
840 		&mmc_base->capa);
841 #endif
842 
843 	reg_val = readl(&mmc_base->con) & RESERVED_MASK;
844 
845 	writel(CTPL_MMC_SD | reg_val | WPP_ACTIVEHIGH | CDP_ACTIVEHIGH |
846 		MIT_CTO | DW8_1_4BITMODE | MODE_FUNC | STR_BLOCK |
847 		HR_NOHOSTRESP | INIT_NOINIT | NOOPENDRAIN, &mmc_base->con);
848 
849 	dsor = 240;
850 	mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK | CEN_MASK),
851 		(ICE_STOP | DTO_15THDTO));
852 	mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
853 		(dsor << CLKD_OFFSET) | ICE_OSCILLATE);
854 	start = get_timer(0);
855 	while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
856 		if (get_timer(0) - start > MAX_RETRY_MS) {
857 			printf("%s: timedout waiting for ics!\n", __func__);
858 			return -ETIMEDOUT;
859 		}
860 	}
861 	writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
862 
863 	writel(readl(&mmc_base->hctl) | SDBP_PWRON, &mmc_base->hctl);
864 
865 	mmc_enable_irq(mmc, NULL);
866 
867 #if !CONFIG_IS_ENABLED(DM_MMC)
868 	mmc_init_stream(mmc_base);
869 #endif
870 
871 	return 0;
872 }
873 
874 /*
875  * MMC controller internal finite state machine reset
876  *
877  * Used to reset command or data internal state machines, using respectively
878  * SRC or SRD bit of SYSCTL register
879  */
mmc_reset_controller_fsm(struct hsmmc * mmc_base,u32 bit)880 static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit)
881 {
882 	ulong start;
883 
884 	mmc_reg_out(&mmc_base->sysctl, bit, bit);
885 
886 	/*
887 	 * CMD(DAT) lines reset procedures are slightly different
888 	 * for OMAP3 and OMAP4(AM335x,OMAP5,DRA7xx).
889 	 * According to OMAP3 TRM:
890 	 * Set SRC(SRD) bit in MMCHS_SYSCTL register to 0x1 and wait until it
891 	 * returns to 0x0.
892 	 * According to OMAP4(AM335x,OMAP5,DRA7xx) TRMs, CMD(DATA) lines reset
893 	 * procedure steps must be as follows:
894 	 * 1. Initiate CMD(DAT) line reset by writing 0x1 to SRC(SRD) bit in
895 	 *    MMCHS_SYSCTL register (SD_SYSCTL for AM335x).
896 	 * 2. Poll the SRC(SRD) bit until it is set to 0x1.
897 	 * 3. Wait until the SRC (SRD) bit returns to 0x0
898 	 *    (reset procedure is completed).
899 	 */
900 #if defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \
901 	defined(CONFIG_AM33XX) || defined(CONFIG_AM43XX)
902 	if (!(readl(&mmc_base->sysctl) & bit)) {
903 		start = get_timer(0);
904 		while (!(readl(&mmc_base->sysctl) & bit)) {
905 			if (get_timer(0) - start > MMC_TIMEOUT_MS)
906 				return;
907 		}
908 	}
909 #endif
910 	start = get_timer(0);
911 	while ((readl(&mmc_base->sysctl) & bit) != 0) {
912 		if (get_timer(0) - start > MAX_RETRY_MS) {
913 			printf("%s: timedout waiting for sysctl %x to clear\n",
914 				__func__, bit);
915 			return;
916 		}
917 	}
918 }
919 
920 #ifdef CONFIG_MMC_OMAP_HS_ADMA
omap_hsmmc_adma_desc(struct mmc * mmc,char * buf,u16 len,bool end)921 static void omap_hsmmc_adma_desc(struct mmc *mmc, char *buf, u16 len, bool end)
922 {
923 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
924 	struct omap_hsmmc_adma_desc *desc;
925 	u8 attr;
926 
927 	desc = &priv->adma_desc_table[priv->desc_slot];
928 
929 	attr = ADMA_DESC_ATTR_VALID | ADMA_DESC_TRANSFER_DATA;
930 	if (!end)
931 		priv->desc_slot++;
932 	else
933 		attr |= ADMA_DESC_ATTR_END;
934 
935 	desc->len = len;
936 	desc->addr = (u32)buf;
937 	desc->reserved = 0;
938 	desc->attr = attr;
939 }
940 
omap_hsmmc_prepare_adma_table(struct mmc * mmc,struct mmc_data * data)941 static void omap_hsmmc_prepare_adma_table(struct mmc *mmc,
942 					  struct mmc_data *data)
943 {
944 	uint total_len = data->blocksize * data->blocks;
945 	uint desc_count = DIV_ROUND_UP(total_len, ADMA_MAX_LEN);
946 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
947 	int i = desc_count;
948 	char *buf;
949 
950 	priv->desc_slot = 0;
951 	priv->adma_desc_table = (struct omap_hsmmc_adma_desc *)
952 				memalign(ARCH_DMA_MINALIGN, desc_count *
953 				sizeof(struct omap_hsmmc_adma_desc));
954 
955 	if (data->flags & MMC_DATA_READ)
956 		buf = data->dest;
957 	else
958 		buf = (char *)data->src;
959 
960 	while (--i) {
961 		omap_hsmmc_adma_desc(mmc, buf, ADMA_MAX_LEN, false);
962 		buf += ADMA_MAX_LEN;
963 		total_len -= ADMA_MAX_LEN;
964 	}
965 
966 	omap_hsmmc_adma_desc(mmc, buf, total_len, true);
967 
968 	flush_dcache_range((long)priv->adma_desc_table,
969 			   (long)priv->adma_desc_table +
970 			   ROUND(desc_count *
971 			   sizeof(struct omap_hsmmc_adma_desc),
972 			   ARCH_DMA_MINALIGN));
973 }
974 
omap_hsmmc_prepare_data(struct mmc * mmc,struct mmc_data * data)975 static void omap_hsmmc_prepare_data(struct mmc *mmc, struct mmc_data *data)
976 {
977 	struct hsmmc *mmc_base;
978 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
979 	u32 val;
980 	char *buf;
981 
982 	mmc_base = priv->base_addr;
983 	omap_hsmmc_prepare_adma_table(mmc, data);
984 
985 	if (data->flags & MMC_DATA_READ)
986 		buf = data->dest;
987 	else
988 		buf = (char *)data->src;
989 
990 	val = readl(&mmc_base->hctl);
991 	val |= DMA_SELECT;
992 	writel(val, &mmc_base->hctl);
993 
994 	val = readl(&mmc_base->con);
995 	val |= DMA_MASTER;
996 	writel(val, &mmc_base->con);
997 
998 	writel((u32)priv->adma_desc_table, &mmc_base->admasal);
999 
1000 	flush_dcache_range((u32)buf,
1001 			   (u32)buf +
1002 			   ROUND(data->blocksize * data->blocks,
1003 				 ARCH_DMA_MINALIGN));
1004 }
1005 
omap_hsmmc_dma_cleanup(struct mmc * mmc)1006 static void omap_hsmmc_dma_cleanup(struct mmc *mmc)
1007 {
1008 	struct hsmmc *mmc_base;
1009 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1010 	u32 val;
1011 
1012 	mmc_base = priv->base_addr;
1013 
1014 	val = readl(&mmc_base->con);
1015 	val &= ~DMA_MASTER;
1016 	writel(val, &mmc_base->con);
1017 
1018 	val = readl(&mmc_base->hctl);
1019 	val &= ~DMA_SELECT;
1020 	writel(val, &mmc_base->hctl);
1021 
1022 	kfree(priv->adma_desc_table);
1023 }
1024 #else
1025 #define omap_hsmmc_adma_desc
1026 #define omap_hsmmc_prepare_adma_table
1027 #define omap_hsmmc_prepare_data
1028 #define omap_hsmmc_dma_cleanup
1029 #endif
1030 
1031 #if !CONFIG_IS_ENABLED(DM_MMC)
omap_hsmmc_send_cmd(struct mmc * mmc,struct mmc_cmd * cmd,struct mmc_data * data)1032 static int omap_hsmmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
1033 			struct mmc_data *data)
1034 {
1035 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1036 #else
1037 static int omap_hsmmc_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
1038 			struct mmc_data *data)
1039 {
1040 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
1041 	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
1042 	struct mmc *mmc = upriv->mmc;
1043 #endif
1044 	struct hsmmc *mmc_base;
1045 	unsigned int flags, mmc_stat;
1046 	ulong start;
1047 	priv->last_cmd = cmd->cmdidx;
1048 
1049 	mmc_base = priv->base_addr;
1050 
1051 	if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION)
1052 		return 0;
1053 
1054 	start = get_timer(0);
1055 	while ((readl(&mmc_base->pstate) & (DATI_MASK | CMDI_MASK)) != 0) {
1056 		if (get_timer(0) - start > MAX_RETRY_MS) {
1057 			printf("%s: timedout waiting on cmd inhibit to clear\n",
1058 					__func__);
1059 			mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
1060 			mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
1061 			return -ETIMEDOUT;
1062 		}
1063 	}
1064 	writel(0xFFFFFFFF, &mmc_base->stat);
1065 	if (readl(&mmc_base->stat)) {
1066 		mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
1067 		mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
1068 	}
1069 
1070 	/*
1071 	 * CMDREG
1072 	 * CMDIDX[13:8]	: Command index
1073 	 * DATAPRNT[5]	: Data Present Select
1074 	 * ENCMDIDX[4]	: Command Index Check Enable
1075 	 * ENCMDCRC[3]	: Command CRC Check Enable
1076 	 * RSPTYP[1:0]
1077 	 *	00 = No Response
1078 	 *	01 = Length 136
1079 	 *	10 = Length 48
1080 	 *	11 = Length 48 Check busy after response
1081 	 */
1082 	/* Delay added before checking the status of frq change
1083 	 * retry not supported by mmc.c(core file)
1084 	 */
1085 	if (cmd->cmdidx == SD_CMD_APP_SEND_SCR)
1086 		udelay(50000); /* wait 50 ms */
1087 
1088 	if (!(cmd->resp_type & MMC_RSP_PRESENT))
1089 		flags = 0;
1090 	else if (cmd->resp_type & MMC_RSP_136)
1091 		flags = RSP_TYPE_LGHT136 | CICE_NOCHECK;
1092 	else if (cmd->resp_type & MMC_RSP_BUSY)
1093 		flags = RSP_TYPE_LGHT48B;
1094 	else
1095 		flags = RSP_TYPE_LGHT48;
1096 
1097 	/* enable default flags */
1098 	flags =	flags | (CMD_TYPE_NORMAL | CICE_NOCHECK | CCCE_NOCHECK |
1099 			MSBS_SGLEBLK);
1100 	flags &= ~(ACEN_ENABLE | BCE_ENABLE | DE_ENABLE);
1101 
1102 	if (cmd->resp_type & MMC_RSP_CRC)
1103 		flags |= CCCE_CHECK;
1104 	if (cmd->resp_type & MMC_RSP_OPCODE)
1105 		flags |= CICE_CHECK;
1106 
1107 	if (data) {
1108 		if ((cmd->cmdidx == MMC_CMD_READ_MULTIPLE_BLOCK) ||
1109 			 (cmd->cmdidx == MMC_CMD_WRITE_MULTIPLE_BLOCK)) {
1110 			flags |= (MSBS_MULTIBLK | BCE_ENABLE | ACEN_ENABLE);
1111 			data->blocksize = 512;
1112 			writel(data->blocksize | (data->blocks << 16),
1113 							&mmc_base->blk);
1114 		} else
1115 			writel(data->blocksize | NBLK_STPCNT, &mmc_base->blk);
1116 
1117 		if (data->flags & MMC_DATA_READ)
1118 			flags |= (DP_DATA | DDIR_READ);
1119 		else
1120 			flags |= (DP_DATA | DDIR_WRITE);
1121 
1122 #ifdef CONFIG_MMC_OMAP_HS_ADMA
1123 		if ((priv->controller_flags & OMAP_HSMMC_USE_ADMA) &&
1124 		    !mmc_is_tuning_cmd(cmd->cmdidx)) {
1125 			omap_hsmmc_prepare_data(mmc, data);
1126 			flags |= DE_ENABLE;
1127 		}
1128 #endif
1129 	}
1130 
1131 	mmc_enable_irq(mmc, cmd);
1132 
1133 	writel(cmd->cmdarg, &mmc_base->arg);
1134 	udelay(20);		/* To fix "No status update" error on eMMC */
1135 	writel((cmd->cmdidx << 24) | flags, &mmc_base->cmd);
1136 
1137 	start = get_timer(0);
1138 	do {
1139 		mmc_stat = readl(&mmc_base->stat);
1140 		if (get_timer(start) > MAX_RETRY_MS) {
1141 			printf("%s : timeout: No status update\n", __func__);
1142 			return -ETIMEDOUT;
1143 		}
1144 	} while (!mmc_stat);
1145 
1146 	if ((mmc_stat & IE_CTO) != 0) {
1147 		mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
1148 		return -ETIMEDOUT;
1149 	} else if ((mmc_stat & ERRI_MASK) != 0)
1150 		return -1;
1151 
1152 	if (mmc_stat & CC_MASK) {
1153 		writel(CC_MASK, &mmc_base->stat);
1154 		if (cmd->resp_type & MMC_RSP_PRESENT) {
1155 			if (cmd->resp_type & MMC_RSP_136) {
1156 				/* response type 2 */
1157 				cmd->response[3] = readl(&mmc_base->rsp10);
1158 				cmd->response[2] = readl(&mmc_base->rsp32);
1159 				cmd->response[1] = readl(&mmc_base->rsp54);
1160 				cmd->response[0] = readl(&mmc_base->rsp76);
1161 			} else
1162 				/* response types 1, 1b, 3, 4, 5, 6 */
1163 				cmd->response[0] = readl(&mmc_base->rsp10);
1164 		}
1165 	}
1166 
1167 #ifdef CONFIG_MMC_OMAP_HS_ADMA
1168 	if ((priv->controller_flags & OMAP_HSMMC_USE_ADMA) && data &&
1169 	    !mmc_is_tuning_cmd(cmd->cmdidx)) {
1170 		u32 sz_mb, timeout;
1171 
1172 		if (mmc_stat & IE_ADMAE) {
1173 			omap_hsmmc_dma_cleanup(mmc);
1174 			return -EIO;
1175 		}
1176 
1177 		sz_mb = DIV_ROUND_UP(data->blocksize *  data->blocks, 1 << 20);
1178 		timeout = sz_mb * DMA_TIMEOUT_PER_MB;
1179 		if (timeout < MAX_RETRY_MS)
1180 			timeout = MAX_RETRY_MS;
1181 
1182 		start = get_timer(0);
1183 		do {
1184 			mmc_stat = readl(&mmc_base->stat);
1185 			if (mmc_stat & TC_MASK) {
1186 				writel(readl(&mmc_base->stat) | TC_MASK,
1187 				       &mmc_base->stat);
1188 				break;
1189 			}
1190 			if (get_timer(start) > timeout) {
1191 				printf("%s : DMA timeout: No status update\n",
1192 				       __func__);
1193 				return -ETIMEDOUT;
1194 			}
1195 		} while (1);
1196 
1197 		omap_hsmmc_dma_cleanup(mmc);
1198 		return 0;
1199 	}
1200 #endif
1201 
1202 	if (data && (data->flags & MMC_DATA_READ)) {
1203 		mmc_read_data(mmc_base,	data->dest,
1204 				data->blocksize * data->blocks);
1205 	} else if (data && (data->flags & MMC_DATA_WRITE)) {
1206 		mmc_write_data(mmc_base, data->src,
1207 				data->blocksize * data->blocks);
1208 	}
1209 	return 0;
1210 }
1211 
1212 static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size)
1213 {
1214 	unsigned int *output_buf = (unsigned int *)buf;
1215 	unsigned int mmc_stat;
1216 	unsigned int count;
1217 
1218 	/*
1219 	 * Start Polled Read
1220 	 */
1221 	count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
1222 	count /= 4;
1223 
1224 	while (size) {
1225 		ulong start = get_timer(0);
1226 		do {
1227 			mmc_stat = readl(&mmc_base->stat);
1228 			if (get_timer(0) - start > MAX_RETRY_MS) {
1229 				printf("%s: timedout waiting for status!\n",
1230 						__func__);
1231 				return -ETIMEDOUT;
1232 			}
1233 		} while (mmc_stat == 0);
1234 
1235 		if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
1236 			mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
1237 
1238 		if ((mmc_stat & ERRI_MASK) != 0)
1239 			return 1;
1240 
1241 		if (mmc_stat & BRR_MASK) {
1242 			unsigned int k;
1243 
1244 			writel(readl(&mmc_base->stat) | BRR_MASK,
1245 				&mmc_base->stat);
1246 			for (k = 0; k < count; k++) {
1247 				*output_buf = readl(&mmc_base->data);
1248 				output_buf++;
1249 			}
1250 			size -= (count*4);
1251 		}
1252 
1253 		if (mmc_stat & BWR_MASK)
1254 			writel(readl(&mmc_base->stat) | BWR_MASK,
1255 				&mmc_base->stat);
1256 
1257 		if (mmc_stat & TC_MASK) {
1258 			writel(readl(&mmc_base->stat) | TC_MASK,
1259 				&mmc_base->stat);
1260 			break;
1261 		}
1262 	}
1263 	return 0;
1264 }
1265 
1266 #if CONFIG_IS_ENABLED(MMC_WRITE)
1267 static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
1268 			  unsigned int size)
1269 {
1270 	unsigned int *input_buf = (unsigned int *)buf;
1271 	unsigned int mmc_stat;
1272 	unsigned int count;
1273 
1274 	/*
1275 	 * Start Polled Write
1276 	 */
1277 	count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
1278 	count /= 4;
1279 
1280 	while (size) {
1281 		ulong start = get_timer(0);
1282 		do {
1283 			mmc_stat = readl(&mmc_base->stat);
1284 			if (get_timer(0) - start > MAX_RETRY_MS) {
1285 				printf("%s: timedout waiting for status!\n",
1286 						__func__);
1287 				return -ETIMEDOUT;
1288 			}
1289 		} while (mmc_stat == 0);
1290 
1291 		if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
1292 			mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
1293 
1294 		if ((mmc_stat & ERRI_MASK) != 0)
1295 			return 1;
1296 
1297 		if (mmc_stat & BWR_MASK) {
1298 			unsigned int k;
1299 
1300 			writel(readl(&mmc_base->stat) | BWR_MASK,
1301 					&mmc_base->stat);
1302 			for (k = 0; k < count; k++) {
1303 				writel(*input_buf, &mmc_base->data);
1304 				input_buf++;
1305 			}
1306 			size -= (count*4);
1307 		}
1308 
1309 		if (mmc_stat & BRR_MASK)
1310 			writel(readl(&mmc_base->stat) | BRR_MASK,
1311 				&mmc_base->stat);
1312 
1313 		if (mmc_stat & TC_MASK) {
1314 			writel(readl(&mmc_base->stat) | TC_MASK,
1315 				&mmc_base->stat);
1316 			break;
1317 		}
1318 	}
1319 	return 0;
1320 }
1321 #else
1322 static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
1323 			  unsigned int size)
1324 {
1325 	return -ENOTSUPP;
1326 }
1327 #endif
1328 static void omap_hsmmc_stop_clock(struct hsmmc *mmc_base)
1329 {
1330 	writel(readl(&mmc_base->sysctl) & ~CEN_ENABLE, &mmc_base->sysctl);
1331 }
1332 
1333 static void omap_hsmmc_start_clock(struct hsmmc *mmc_base)
1334 {
1335 	writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
1336 }
1337 
1338 static void omap_hsmmc_set_clock(struct mmc *mmc)
1339 {
1340 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1341 	struct hsmmc *mmc_base;
1342 	unsigned int dsor = 0;
1343 	ulong start;
1344 
1345 	mmc_base = priv->base_addr;
1346 	omap_hsmmc_stop_clock(mmc_base);
1347 
1348 	/* TODO: Is setting DTO required here? */
1349 	mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK),
1350 		    (ICE_STOP | DTO_15THDTO));
1351 
1352 	if (mmc->clock != 0) {
1353 		dsor = DIV_ROUND_UP(MMC_CLOCK_REFERENCE * 1000000, mmc->clock);
1354 		if (dsor > CLKD_MAX)
1355 			dsor = CLKD_MAX;
1356 	} else {
1357 		dsor = CLKD_MAX;
1358 	}
1359 
1360 	mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
1361 		    (dsor << CLKD_OFFSET) | ICE_OSCILLATE);
1362 
1363 	start = get_timer(0);
1364 	while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
1365 		if (get_timer(0) - start > MAX_RETRY_MS) {
1366 			printf("%s: timedout waiting for ics!\n", __func__);
1367 			return;
1368 		}
1369 	}
1370 
1371 	priv->clock = MMC_CLOCK_REFERENCE * 1000000 / dsor;
1372 	mmc->clock = priv->clock;
1373 	omap_hsmmc_start_clock(mmc_base);
1374 }
1375 
1376 static void omap_hsmmc_set_bus_width(struct mmc *mmc)
1377 {
1378 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1379 	struct hsmmc *mmc_base;
1380 
1381 	mmc_base = priv->base_addr;
1382 	/* configue bus width */
1383 	switch (mmc->bus_width) {
1384 	case 8:
1385 		writel(readl(&mmc_base->con) | DTW_8_BITMODE,
1386 			&mmc_base->con);
1387 		break;
1388 
1389 	case 4:
1390 		writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
1391 			&mmc_base->con);
1392 		writel(readl(&mmc_base->hctl) | DTW_4_BITMODE,
1393 			&mmc_base->hctl);
1394 		break;
1395 
1396 	case 1:
1397 	default:
1398 		writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
1399 			&mmc_base->con);
1400 		writel(readl(&mmc_base->hctl) & ~DTW_4_BITMODE,
1401 			&mmc_base->hctl);
1402 		break;
1403 	}
1404 
1405 	priv->bus_width = mmc->bus_width;
1406 }
1407 
1408 #if !CONFIG_IS_ENABLED(DM_MMC)
1409 static int omap_hsmmc_set_ios(struct mmc *mmc)
1410 {
1411 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1412 #else
1413 static int omap_hsmmc_set_ios(struct udevice *dev)
1414 {
1415 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
1416 	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
1417 	struct mmc *mmc = upriv->mmc;
1418 #endif
1419 	struct hsmmc *mmc_base = priv->base_addr;
1420 	int ret = 0;
1421 
1422 	if (priv->bus_width != mmc->bus_width)
1423 		omap_hsmmc_set_bus_width(mmc);
1424 
1425 	if (priv->clock != mmc->clock)
1426 		omap_hsmmc_set_clock(mmc);
1427 
1428 	if (mmc->clk_disable)
1429 		omap_hsmmc_stop_clock(mmc_base);
1430 	else
1431 		omap_hsmmc_start_clock(mmc_base);
1432 
1433 #if CONFIG_IS_ENABLED(DM_MMC)
1434 	if (priv->mode != mmc->selected_mode)
1435 		omap_hsmmc_set_timing(mmc);
1436 
1437 #if CONFIG_IS_ENABLED(MMC_IO_VOLTAGE)
1438 	if (priv->signal_voltage != mmc->signal_voltage)
1439 		ret = omap_hsmmc_set_signal_voltage(mmc);
1440 #endif
1441 #endif
1442 	return ret;
1443 }
1444 
1445 #ifdef OMAP_HSMMC_USE_GPIO
1446 #if CONFIG_IS_ENABLED(DM_MMC)
1447 static int omap_hsmmc_getcd(struct udevice *dev)
1448 {
1449 	int value = -1;
1450 #if CONFIG_IS_ENABLED(DM_GPIO)
1451 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
1452 	value = dm_gpio_get_value(&priv->cd_gpio);
1453 #endif
1454 	/* if no CD return as 1 */
1455 	if (value < 0)
1456 		return 1;
1457 
1458 	return value;
1459 }
1460 
1461 static int omap_hsmmc_getwp(struct udevice *dev)
1462 {
1463 	int value = 0;
1464 #if CONFIG_IS_ENABLED(DM_GPIO)
1465 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
1466 	value = dm_gpio_get_value(&priv->wp_gpio);
1467 #endif
1468 	/* if no WP return as 0 */
1469 	if (value < 0)
1470 		return 0;
1471 	return value;
1472 }
1473 #else
1474 static int omap_hsmmc_getcd(struct mmc *mmc)
1475 {
1476 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1477 	int cd_gpio;
1478 
1479 	/* if no CD return as 1 */
1480 	cd_gpio = priv->cd_gpio;
1481 	if (cd_gpio < 0)
1482 		return 1;
1483 
1484 	/* NOTE: assumes card detect signal is active-low */
1485 	return !gpio_get_value(cd_gpio);
1486 }
1487 
1488 static int omap_hsmmc_getwp(struct mmc *mmc)
1489 {
1490 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1491 	int wp_gpio;
1492 
1493 	/* if no WP return as 0 */
1494 	wp_gpio = priv->wp_gpio;
1495 	if (wp_gpio < 0)
1496 		return 0;
1497 
1498 	/* NOTE: assumes write protect signal is active-high */
1499 	return gpio_get_value(wp_gpio);
1500 }
1501 #endif
1502 #endif
1503 
1504 #if CONFIG_IS_ENABLED(DM_MMC)
1505 static const struct dm_mmc_ops omap_hsmmc_ops = {
1506 	.send_cmd	= omap_hsmmc_send_cmd,
1507 	.set_ios	= omap_hsmmc_set_ios,
1508 #ifdef OMAP_HSMMC_USE_GPIO
1509 	.get_cd		= omap_hsmmc_getcd,
1510 	.get_wp		= omap_hsmmc_getwp,
1511 #endif
1512 #ifdef MMC_SUPPORTS_TUNING
1513 	.execute_tuning = omap_hsmmc_execute_tuning,
1514 #endif
1515 	.wait_dat0	= omap_hsmmc_wait_dat0,
1516 };
1517 #else
1518 static const struct mmc_ops omap_hsmmc_ops = {
1519 	.send_cmd	= omap_hsmmc_send_cmd,
1520 	.set_ios	= omap_hsmmc_set_ios,
1521 	.init		= omap_hsmmc_init_setup,
1522 #ifdef OMAP_HSMMC_USE_GPIO
1523 	.getcd		= omap_hsmmc_getcd,
1524 	.getwp		= omap_hsmmc_getwp,
1525 #endif
1526 };
1527 #endif
1528 
1529 #if !CONFIG_IS_ENABLED(DM_MMC)
1530 int omap_mmc_init(int dev_index, uint host_caps_mask, uint f_max, int cd_gpio,
1531 		int wp_gpio)
1532 {
1533 	struct mmc *mmc;
1534 	struct omap_hsmmc_data *priv;
1535 	struct mmc_config *cfg;
1536 	uint host_caps_val;
1537 
1538 	priv = calloc(1, sizeof(*priv));
1539 	if (priv == NULL)
1540 		return -1;
1541 
1542 	host_caps_val = MMC_MODE_4BIT | MMC_MODE_HS_52MHz | MMC_MODE_HS;
1543 
1544 	switch (dev_index) {
1545 	case 0:
1546 		priv->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
1547 		break;
1548 #ifdef OMAP_HSMMC2_BASE
1549 	case 1:
1550 		priv->base_addr = (struct hsmmc *)OMAP_HSMMC2_BASE;
1551 #if (defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \
1552 	defined(CONFIG_DRA7XX) || defined(CONFIG_AM33XX) || \
1553 	defined(CONFIG_AM43XX) || defined(CONFIG_SOC_KEYSTONE)) && \
1554 		defined(CONFIG_HSMMC2_8BIT)
1555 		/* Enable 8-bit interface for eMMC on OMAP4/5 or DRA7XX */
1556 		host_caps_val |= MMC_MODE_8BIT;
1557 #endif
1558 		break;
1559 #endif
1560 #ifdef OMAP_HSMMC3_BASE
1561 	case 2:
1562 		priv->base_addr = (struct hsmmc *)OMAP_HSMMC3_BASE;
1563 #if defined(CONFIG_DRA7XX) && defined(CONFIG_HSMMC3_8BIT)
1564 		/* Enable 8-bit interface for eMMC on DRA7XX */
1565 		host_caps_val |= MMC_MODE_8BIT;
1566 #endif
1567 		break;
1568 #endif
1569 	default:
1570 		priv->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
1571 		return 1;
1572 	}
1573 #ifdef OMAP_HSMMC_USE_GPIO
1574 	/* on error gpio values are set to -1, which is what we want */
1575 	priv->cd_gpio = omap_mmc_setup_gpio_in(cd_gpio, "mmc_cd");
1576 	priv->wp_gpio = omap_mmc_setup_gpio_in(wp_gpio, "mmc_wp");
1577 #endif
1578 
1579 	cfg = &priv->cfg;
1580 
1581 	cfg->name = "OMAP SD/MMC";
1582 	cfg->ops = &omap_hsmmc_ops;
1583 
1584 	cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
1585 	cfg->host_caps = host_caps_val & ~host_caps_mask;
1586 
1587 	cfg->f_min = 400000;
1588 
1589 	if (f_max != 0)
1590 		cfg->f_max = f_max;
1591 	else {
1592 		if (cfg->host_caps & MMC_MODE_HS) {
1593 			if (cfg->host_caps & MMC_MODE_HS_52MHz)
1594 				cfg->f_max = 52000000;
1595 			else
1596 				cfg->f_max = 26000000;
1597 		} else
1598 			cfg->f_max = 20000000;
1599 	}
1600 
1601 	cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
1602 
1603 #if defined(CONFIG_OMAP34XX)
1604 	/*
1605 	 * Silicon revs 2.1 and older do not support multiblock transfers.
1606 	 */
1607 	if ((get_cpu_family() == CPU_OMAP34XX) && (get_cpu_rev() <= CPU_3XX_ES21))
1608 		cfg->b_max = 1;
1609 #endif
1610 
1611 	mmc = mmc_create(cfg, priv);
1612 	if (mmc == NULL)
1613 		return -1;
1614 
1615 	return 0;
1616 }
1617 #else
1618 
1619 #ifdef CONFIG_IODELAY_RECALIBRATION
1620 static struct pad_conf_entry *
1621 omap_hsmmc_get_pad_conf_entry(const fdt32_t *pinctrl, int count)
1622 {
1623 	int index = 0;
1624 	struct pad_conf_entry *padconf;
1625 
1626 	padconf = (struct pad_conf_entry *)malloc(sizeof(*padconf) * count);
1627 	if (!padconf) {
1628 		debug("failed to allocate memory\n");
1629 		return 0;
1630 	}
1631 
1632 	while (index < count) {
1633 		padconf[index].offset = fdt32_to_cpu(pinctrl[2 * index]);
1634 		padconf[index].val = fdt32_to_cpu(pinctrl[2 * index + 1]);
1635 		index++;
1636 	}
1637 
1638 	return padconf;
1639 }
1640 
1641 static struct iodelay_cfg_entry *
1642 omap_hsmmc_get_iodelay_cfg_entry(const fdt32_t *pinctrl, int count)
1643 {
1644 	int index = 0;
1645 	struct iodelay_cfg_entry *iodelay;
1646 
1647 	iodelay = (struct iodelay_cfg_entry *)malloc(sizeof(*iodelay) * count);
1648 	if (!iodelay) {
1649 		debug("failed to allocate memory\n");
1650 		return 0;
1651 	}
1652 
1653 	while (index < count) {
1654 		iodelay[index].offset = fdt32_to_cpu(pinctrl[3 * index]);
1655 		iodelay[index].a_delay = fdt32_to_cpu(pinctrl[3 * index + 1]);
1656 		iodelay[index].g_delay = fdt32_to_cpu(pinctrl[3 * index + 2]);
1657 		index++;
1658 	}
1659 
1660 	return iodelay;
1661 }
1662 
1663 static const fdt32_t *omap_hsmmc_get_pinctrl_entry(u32  phandle,
1664 						   const char *name, int *len)
1665 {
1666 	const void *fdt = gd->fdt_blob;
1667 	int offset;
1668 	const fdt32_t *pinctrl;
1669 
1670 	offset = fdt_node_offset_by_phandle(fdt, phandle);
1671 	if (offset < 0) {
1672 		debug("failed to get pinctrl node %s.\n",
1673 		      fdt_strerror(offset));
1674 		return 0;
1675 	}
1676 
1677 	pinctrl = fdt_getprop(fdt, offset, name, len);
1678 	if (!pinctrl) {
1679 		debug("failed to get property %s\n", name);
1680 		return 0;
1681 	}
1682 
1683 	return pinctrl;
1684 }
1685 
1686 static uint32_t omap_hsmmc_get_pad_conf_phandle(struct mmc *mmc,
1687 						char *prop_name)
1688 {
1689 	const void *fdt = gd->fdt_blob;
1690 	const __be32 *phandle;
1691 	int node = dev_of_offset(mmc->dev);
1692 
1693 	phandle = fdt_getprop(fdt, node, prop_name, NULL);
1694 	if (!phandle) {
1695 		debug("failed to get property %s\n", prop_name);
1696 		return 0;
1697 	}
1698 
1699 	return fdt32_to_cpu(*phandle);
1700 }
1701 
1702 static uint32_t omap_hsmmc_get_iodelay_phandle(struct mmc *mmc,
1703 					       char *prop_name)
1704 {
1705 	const void *fdt = gd->fdt_blob;
1706 	const __be32 *phandle;
1707 	int len;
1708 	int count;
1709 	int node = dev_of_offset(mmc->dev);
1710 
1711 	phandle = fdt_getprop(fdt, node, prop_name, &len);
1712 	if (!phandle) {
1713 		debug("failed to get property %s\n", prop_name);
1714 		return 0;
1715 	}
1716 
1717 	/* No manual mode iodelay values if count < 2 */
1718 	count = len / sizeof(*phandle);
1719 	if (count < 2)
1720 		return 0;
1721 
1722 	return fdt32_to_cpu(*(phandle + 1));
1723 }
1724 
1725 static struct pad_conf_entry *
1726 omap_hsmmc_get_pad_conf(struct mmc *mmc, char *prop_name, int *npads)
1727 {
1728 	int len;
1729 	int count;
1730 	struct pad_conf_entry *padconf;
1731 	u32 phandle;
1732 	const fdt32_t *pinctrl;
1733 
1734 	phandle = omap_hsmmc_get_pad_conf_phandle(mmc, prop_name);
1735 	if (!phandle)
1736 		return ERR_PTR(-EINVAL);
1737 
1738 	pinctrl = omap_hsmmc_get_pinctrl_entry(phandle, "pinctrl-single,pins",
1739 					       &len);
1740 	if (!pinctrl)
1741 		return ERR_PTR(-EINVAL);
1742 
1743 	count = (len / sizeof(*pinctrl)) / 2;
1744 	padconf = omap_hsmmc_get_pad_conf_entry(pinctrl, count);
1745 	if (!padconf)
1746 		return ERR_PTR(-EINVAL);
1747 
1748 	*npads = count;
1749 
1750 	return padconf;
1751 }
1752 
1753 static struct iodelay_cfg_entry *
1754 omap_hsmmc_get_iodelay(struct mmc *mmc, char *prop_name, int *niodelay)
1755 {
1756 	int len;
1757 	int count;
1758 	struct iodelay_cfg_entry *iodelay;
1759 	u32 phandle;
1760 	const fdt32_t *pinctrl;
1761 
1762 	phandle = omap_hsmmc_get_iodelay_phandle(mmc, prop_name);
1763 	/* Not all modes have manual mode iodelay values. So its not fatal */
1764 	if (!phandle)
1765 		return 0;
1766 
1767 	pinctrl = omap_hsmmc_get_pinctrl_entry(phandle, "pinctrl-pin-array",
1768 					       &len);
1769 	if (!pinctrl)
1770 		return ERR_PTR(-EINVAL);
1771 
1772 	count = (len / sizeof(*pinctrl)) / 3;
1773 	iodelay = omap_hsmmc_get_iodelay_cfg_entry(pinctrl, count);
1774 	if (!iodelay)
1775 		return ERR_PTR(-EINVAL);
1776 
1777 	*niodelay = count;
1778 
1779 	return iodelay;
1780 }
1781 
1782 static struct omap_hsmmc_pinctrl_state *
1783 omap_hsmmc_get_pinctrl_by_mode(struct mmc *mmc, char *mode)
1784 {
1785 	int index;
1786 	int npads = 0;
1787 	int niodelays = 0;
1788 	const void *fdt = gd->fdt_blob;
1789 	int node = dev_of_offset(mmc->dev);
1790 	char prop_name[11];
1791 	struct omap_hsmmc_pinctrl_state *pinctrl_state;
1792 
1793 	pinctrl_state = (struct omap_hsmmc_pinctrl_state *)
1794 			 malloc(sizeof(*pinctrl_state));
1795 	if (!pinctrl_state) {
1796 		debug("failed to allocate memory\n");
1797 		return 0;
1798 	}
1799 
1800 	index = fdt_stringlist_search(fdt, node, "pinctrl-names", mode);
1801 	if (index < 0) {
1802 		debug("fail to find %s mode %s\n", mode, fdt_strerror(index));
1803 		goto err_pinctrl_state;
1804 	}
1805 
1806 	sprintf(prop_name, "pinctrl-%d", index);
1807 
1808 	pinctrl_state->padconf = omap_hsmmc_get_pad_conf(mmc, prop_name,
1809 							 &npads);
1810 	if (IS_ERR(pinctrl_state->padconf))
1811 		goto err_pinctrl_state;
1812 	pinctrl_state->npads = npads;
1813 
1814 	pinctrl_state->iodelay = omap_hsmmc_get_iodelay(mmc, prop_name,
1815 							&niodelays);
1816 	if (IS_ERR(pinctrl_state->iodelay))
1817 		goto err_padconf;
1818 	pinctrl_state->niodelays = niodelays;
1819 
1820 	return pinctrl_state;
1821 
1822 err_padconf:
1823 	kfree(pinctrl_state->padconf);
1824 
1825 err_pinctrl_state:
1826 	kfree(pinctrl_state);
1827 	return 0;
1828 }
1829 
1830 #define OMAP_HSMMC_SETUP_PINCTRL(capmask, mode, optional)		\
1831 	do {								\
1832 		struct omap_hsmmc_pinctrl_state *s = NULL;		\
1833 		char str[20];						\
1834 		if (!(cfg->host_caps & capmask))			\
1835 			break;						\
1836 									\
1837 		if (priv->hw_rev) {					\
1838 			sprintf(str, "%s-%s", #mode, priv->hw_rev);	\
1839 			s = omap_hsmmc_get_pinctrl_by_mode(mmc, str);	\
1840 		}							\
1841 									\
1842 		if (!s)							\
1843 			s = omap_hsmmc_get_pinctrl_by_mode(mmc, #mode);	\
1844 									\
1845 		if (!s && !optional) {					\
1846 			debug("%s: no pinctrl for %s\n",		\
1847 			      mmc->dev->name, #mode);			\
1848 			cfg->host_caps &= ~(capmask);			\
1849 		} else {						\
1850 			priv->mode##_pinctrl_state = s;			\
1851 		}							\
1852 	} while (0)
1853 
1854 static int omap_hsmmc_get_pinctrl_state(struct mmc *mmc)
1855 {
1856 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1857 	struct mmc_config *cfg = omap_hsmmc_get_cfg(mmc);
1858 	struct omap_hsmmc_pinctrl_state *default_pinctrl;
1859 
1860 	if (!(priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY))
1861 		return 0;
1862 
1863 	default_pinctrl = omap_hsmmc_get_pinctrl_by_mode(mmc, "default");
1864 	if (!default_pinctrl) {
1865 		printf("no pinctrl state for default mode\n");
1866 		return -EINVAL;
1867 	}
1868 
1869 	priv->default_pinctrl_state = default_pinctrl;
1870 
1871 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR104), sdr104, false);
1872 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR50), sdr50, false);
1873 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_DDR50), ddr50, false);
1874 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR25), sdr25, false);
1875 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR12), sdr12, false);
1876 
1877 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(MMC_HS_200), hs200_1_8v, false);
1878 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(MMC_DDR_52), ddr_1_8v, false);
1879 	OMAP_HSMMC_SETUP_PINCTRL(MMC_MODE_HS, hs, true);
1880 
1881 	return 0;
1882 }
1883 #endif
1884 
1885 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
1886 #ifdef CONFIG_OMAP54XX
1887 __weak const struct mmc_platform_fixups *platform_fixups_mmc(uint32_t addr)
1888 {
1889 	return NULL;
1890 }
1891 #endif
1892 
1893 static int omap_hsmmc_ofdata_to_platdata(struct udevice *dev)
1894 {
1895 	struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
1896 	struct omap_mmc_of_data *of_data = (void *)dev_get_driver_data(dev);
1897 
1898 	struct mmc_config *cfg = &plat->cfg;
1899 #ifdef CONFIG_OMAP54XX
1900 	const struct mmc_platform_fixups *fixups;
1901 #endif
1902 	const void *fdt = gd->fdt_blob;
1903 	int node = dev_of_offset(dev);
1904 	int ret;
1905 
1906 	plat->base_addr = map_physmem(devfdt_get_addr(dev),
1907 				      sizeof(struct hsmmc *),
1908 				      MAP_NOCACHE);
1909 
1910 	ret = mmc_of_parse(dev, cfg);
1911 	if (ret < 0)
1912 		return ret;
1913 
1914 	if (!cfg->f_max)
1915 		cfg->f_max = 52000000;
1916 	cfg->host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
1917 	cfg->f_min = 400000;
1918 	cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
1919 	cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
1920 	if (fdtdec_get_bool(fdt, node, "ti,dual-volt"))
1921 		plat->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1922 	if (fdtdec_get_bool(fdt, node, "no-1-8-v"))
1923 		plat->controller_flags |= OMAP_HSMMC_NO_1_8_V;
1924 	if (of_data)
1925 		plat->controller_flags |= of_data->controller_flags;
1926 
1927 #ifdef CONFIG_OMAP54XX
1928 	fixups = platform_fixups_mmc(devfdt_get_addr(dev));
1929 	if (fixups) {
1930 		plat->hw_rev = fixups->hw_rev;
1931 		cfg->host_caps &= ~fixups->unsupported_caps;
1932 		cfg->f_max = fixups->max_freq;
1933 	}
1934 #endif
1935 
1936 	return 0;
1937 }
1938 #endif
1939 
1940 #ifdef CONFIG_BLK
1941 
1942 static int omap_hsmmc_bind(struct udevice *dev)
1943 {
1944 	struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
1945 	plat->mmc = calloc(1, sizeof(struct mmc));
1946 	return mmc_bind(dev, plat->mmc, &plat->cfg);
1947 }
1948 #endif
1949 static int omap_hsmmc_probe(struct udevice *dev)
1950 {
1951 	struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
1952 	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
1953 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
1954 	struct mmc_config *cfg = &plat->cfg;
1955 	struct mmc *mmc;
1956 #ifdef CONFIG_IODELAY_RECALIBRATION
1957 	int ret;
1958 #endif
1959 
1960 	cfg->name = "OMAP SD/MMC";
1961 	priv->base_addr = plat->base_addr;
1962 	priv->controller_flags = plat->controller_flags;
1963 	priv->hw_rev = plat->hw_rev;
1964 
1965 #ifdef CONFIG_BLK
1966 	mmc = plat->mmc;
1967 #else
1968 	mmc = mmc_create(cfg, priv);
1969 	if (mmc == NULL)
1970 		return -1;
1971 #endif
1972 #if CONFIG_IS_ENABLED(DM_REGULATOR)
1973 	device_get_supply_regulator(dev, "pbias-supply",
1974 				    &priv->pbias_supply);
1975 #endif
1976 #if defined(OMAP_HSMMC_USE_GPIO)
1977 #if CONFIG_IS_ENABLED(OF_CONTROL) && CONFIG_IS_ENABLED(DM_GPIO)
1978 	gpio_request_by_name(dev, "cd-gpios", 0, &priv->cd_gpio, GPIOD_IS_IN);
1979 	gpio_request_by_name(dev, "wp-gpios", 0, &priv->wp_gpio, GPIOD_IS_IN);
1980 #endif
1981 #endif
1982 
1983 	mmc->dev = dev;
1984 	upriv->mmc = mmc;
1985 
1986 #ifdef CONFIG_IODELAY_RECALIBRATION
1987 	ret = omap_hsmmc_get_pinctrl_state(mmc);
1988 	/*
1989 	 * disable high speed modes for the platforms that require IO delay
1990 	 * and for which we don't have this information
1991 	 */
1992 	if ((ret < 0) &&
1993 	    (priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY)) {
1994 		priv->controller_flags &= ~OMAP_HSMMC_REQUIRE_IODELAY;
1995 		cfg->host_caps &= ~(MMC_CAP(MMC_HS_200) | MMC_CAP(MMC_DDR_52) |
1996 				    UHS_CAPS);
1997 	}
1998 #endif
1999 
2000 	return omap_hsmmc_init_setup(mmc);
2001 }
2002 
2003 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
2004 
2005 static const struct omap_mmc_of_data dra7_mmc_of_data = {
2006 	.controller_flags = OMAP_HSMMC_REQUIRE_IODELAY,
2007 };
2008 
2009 static const struct udevice_id omap_hsmmc_ids[] = {
2010 	{ .compatible = "ti,omap3-hsmmc" },
2011 	{ .compatible = "ti,omap4-hsmmc" },
2012 	{ .compatible = "ti,am33xx-hsmmc" },
2013 	{ .compatible = "ti,dra7-hsmmc", .data = (ulong)&dra7_mmc_of_data },
2014 	{ }
2015 };
2016 #endif
2017 
2018 U_BOOT_DRIVER(omap_hsmmc) = {
2019 	.name	= "omap_hsmmc",
2020 	.id	= UCLASS_MMC,
2021 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
2022 	.of_match = omap_hsmmc_ids,
2023 	.ofdata_to_platdata = omap_hsmmc_ofdata_to_platdata,
2024 	.platdata_auto_alloc_size = sizeof(struct omap_hsmmc_plat),
2025 #endif
2026 #ifdef CONFIG_BLK
2027 	.bind = omap_hsmmc_bind,
2028 #endif
2029 	.ops = &omap_hsmmc_ops,
2030 	.probe	= omap_hsmmc_probe,
2031 	.priv_auto_alloc_size = sizeof(struct omap_hsmmc_data),
2032 #if !CONFIG_IS_ENABLED(OF_CONTROL)
2033 	.flags	= DM_FLAG_PRE_RELOC,
2034 #endif
2035 };
2036 #endif
2037