1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Freescale i.MX28 NAND flash driver
4 *
5 * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
6 * on behalf of DENX Software Engineering GmbH
7 *
8 * Based on code from LTIB:
9 * Freescale GPMI NFC NAND Flash Driver
10 *
11 * Copyright (C) 2010 Freescale Semiconductor, Inc.
12 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
13 */
14
15 #include <common.h>
16 #include <cpu_func.h>
17 #include <dm.h>
18 #include <linux/mtd/rawnand.h>
19 #include <linux/sizes.h>
20 #include <linux/types.h>
21 #include <malloc.h>
22 #include <linux/errno.h>
23 #include <asm/io.h>
24 #include <asm/arch/clock.h>
25 #include <asm/arch/imx-regs.h>
26 #include <asm/mach-imx/regs-bch.h>
27 #include <asm/mach-imx/regs-gpmi.h>
28 #include <asm/arch/sys_proto.h>
29 #include <mxs_nand.h>
30
31 #define MXS_NAND_DMA_DESCRIPTOR_COUNT 4
32
33 #if (defined(CONFIG_MX6) || defined(CONFIG_MX7))
34 #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 2
35 #else
36 #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 0
37 #endif
38 #define MXS_NAND_METADATA_SIZE 10
39 #define MXS_NAND_BITS_PER_ECC_LEVEL 13
40
41 #if !defined(CONFIG_SYS_CACHELINE_SIZE) || CONFIG_SYS_CACHELINE_SIZE < 32
42 #define MXS_NAND_COMMAND_BUFFER_SIZE 32
43 #else
44 #define MXS_NAND_COMMAND_BUFFER_SIZE CONFIG_SYS_CACHELINE_SIZE
45 #endif
46
47 #define MXS_NAND_BCH_TIMEOUT 10000
48
49 struct nand_ecclayout fake_ecc_layout;
50
51 /*
52 * Cache management functions
53 */
54 #if !CONFIG_IS_ENABLED(SYS_DCACHE_OFF)
mxs_nand_flush_data_buf(struct mxs_nand_info * info)55 static void mxs_nand_flush_data_buf(struct mxs_nand_info *info)
56 {
57 uint32_t addr = (uint32_t)info->data_buf;
58
59 flush_dcache_range(addr, addr + info->data_buf_size);
60 }
61
mxs_nand_inval_data_buf(struct mxs_nand_info * info)62 static void mxs_nand_inval_data_buf(struct mxs_nand_info *info)
63 {
64 uint32_t addr = (uint32_t)info->data_buf;
65
66 invalidate_dcache_range(addr, addr + info->data_buf_size);
67 }
68
mxs_nand_flush_cmd_buf(struct mxs_nand_info * info)69 static void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info)
70 {
71 uint32_t addr = (uint32_t)info->cmd_buf;
72
73 flush_dcache_range(addr, addr + MXS_NAND_COMMAND_BUFFER_SIZE);
74 }
75 #else
mxs_nand_flush_data_buf(struct mxs_nand_info * info)76 static inline void mxs_nand_flush_data_buf(struct mxs_nand_info *info) {}
mxs_nand_inval_data_buf(struct mxs_nand_info * info)77 static inline void mxs_nand_inval_data_buf(struct mxs_nand_info *info) {}
mxs_nand_flush_cmd_buf(struct mxs_nand_info * info)78 static inline void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) {}
79 #endif
80
mxs_nand_get_dma_desc(struct mxs_nand_info * info)81 static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info)
82 {
83 struct mxs_dma_desc *desc;
84
85 if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) {
86 printf("MXS NAND: Too many DMA descriptors requested\n");
87 return NULL;
88 }
89
90 desc = info->desc[info->desc_index];
91 info->desc_index++;
92
93 return desc;
94 }
95
mxs_nand_return_dma_descs(struct mxs_nand_info * info)96 static void mxs_nand_return_dma_descs(struct mxs_nand_info *info)
97 {
98 int i;
99 struct mxs_dma_desc *desc;
100
101 for (i = 0; i < info->desc_index; i++) {
102 desc = info->desc[i];
103 memset(desc, 0, sizeof(struct mxs_dma_desc));
104 desc->address = (dma_addr_t)desc;
105 }
106
107 info->desc_index = 0;
108 }
109
mxs_nand_aux_status_offset(void)110 static uint32_t mxs_nand_aux_status_offset(void)
111 {
112 return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3;
113 }
114
mxs_nand_calc_mark_offset(struct bch_geometry * geo,uint32_t page_data_size)115 static inline int mxs_nand_calc_mark_offset(struct bch_geometry *geo,
116 uint32_t page_data_size)
117 {
118 uint32_t chunk_data_size_in_bits = geo->ecc_chunk_size * 8;
119 uint32_t chunk_ecc_size_in_bits = geo->ecc_strength * geo->gf_len;
120 uint32_t chunk_total_size_in_bits;
121 uint32_t block_mark_chunk_number;
122 uint32_t block_mark_chunk_bit_offset;
123 uint32_t block_mark_bit_offset;
124
125 chunk_total_size_in_bits =
126 chunk_data_size_in_bits + chunk_ecc_size_in_bits;
127
128 /* Compute the bit offset of the block mark within the physical page. */
129 block_mark_bit_offset = page_data_size * 8;
130
131 /* Subtract the metadata bits. */
132 block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8;
133
134 /*
135 * Compute the chunk number (starting at zero) in which the block mark
136 * appears.
137 */
138 block_mark_chunk_number =
139 block_mark_bit_offset / chunk_total_size_in_bits;
140
141 /*
142 * Compute the bit offset of the block mark within its chunk, and
143 * validate it.
144 */
145 block_mark_chunk_bit_offset = block_mark_bit_offset -
146 (block_mark_chunk_number * chunk_total_size_in_bits);
147
148 if (block_mark_chunk_bit_offset > chunk_data_size_in_bits)
149 return -EINVAL;
150
151 /*
152 * Now that we know the chunk number in which the block mark appears,
153 * we can subtract all the ECC bits that appear before it.
154 */
155 block_mark_bit_offset -=
156 block_mark_chunk_number * chunk_ecc_size_in_bits;
157
158 geo->block_mark_byte_offset = block_mark_bit_offset >> 3;
159 geo->block_mark_bit_offset = block_mark_bit_offset & 0x7;
160
161 return 0;
162 }
163
mxs_nand_calc_ecc_layout_by_info(struct bch_geometry * geo,struct mtd_info * mtd,unsigned int ecc_strength,unsigned int ecc_step)164 static inline int mxs_nand_calc_ecc_layout_by_info(struct bch_geometry *geo,
165 struct mtd_info *mtd,
166 unsigned int ecc_strength,
167 unsigned int ecc_step)
168 {
169 struct nand_chip *chip = mtd_to_nand(mtd);
170 struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
171
172 switch (ecc_step) {
173 case SZ_512:
174 geo->gf_len = 13;
175 break;
176 case SZ_1K:
177 geo->gf_len = 14;
178 break;
179 default:
180 return -EINVAL;
181 }
182
183 geo->ecc_chunk_size = ecc_step;
184 geo->ecc_strength = round_up(ecc_strength, 2);
185
186 /* Keep the C >= O */
187 if (geo->ecc_chunk_size < mtd->oobsize)
188 return -EINVAL;
189
190 if (geo->ecc_strength > nand_info->max_ecc_strength_supported)
191 return -EINVAL;
192
193 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
194
195 return 0;
196 }
197
mxs_nand_calc_ecc_layout(struct bch_geometry * geo,struct mtd_info * mtd)198 static inline int mxs_nand_calc_ecc_layout(struct bch_geometry *geo,
199 struct mtd_info *mtd)
200 {
201 struct nand_chip *chip = mtd_to_nand(mtd);
202 struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
203
204 /* The default for the length of Galois Field. */
205 geo->gf_len = 13;
206
207 /* The default for chunk size. */
208 geo->ecc_chunk_size = 512;
209
210 if (geo->ecc_chunk_size < mtd->oobsize) {
211 geo->gf_len = 14;
212 geo->ecc_chunk_size *= 2;
213 }
214
215 if (mtd->oobsize > geo->ecc_chunk_size) {
216 printf("Not support the NAND chips whose oob size is larger then %d bytes!\n",
217 geo->ecc_chunk_size);
218 return -EINVAL;
219 }
220
221 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
222
223 /*
224 * Determine the ECC layout with the formula:
225 * ECC bits per chunk = (total page spare data bits) /
226 * (bits per ECC level) / (chunks per page)
227 * where:
228 * total page spare data bits =
229 * (page oob size - meta data size) * (bits per byte)
230 */
231 geo->ecc_strength = ((mtd->oobsize - MXS_NAND_METADATA_SIZE) * 8)
232 / (geo->gf_len * geo->ecc_chunk_count);
233
234 geo->ecc_strength = min(round_down(geo->ecc_strength, 2),
235 nand_info->max_ecc_strength_supported);
236
237 return 0;
238 }
239
240 /*
241 * Wait for BCH complete IRQ and clear the IRQ
242 */
mxs_nand_wait_for_bch_complete(struct mxs_nand_info * nand_info)243 static int mxs_nand_wait_for_bch_complete(struct mxs_nand_info *nand_info)
244 {
245 int timeout = MXS_NAND_BCH_TIMEOUT;
246 int ret;
247
248 ret = mxs_wait_mask_set(&nand_info->bch_regs->hw_bch_ctrl_reg,
249 BCH_CTRL_COMPLETE_IRQ, timeout);
250
251 writel(BCH_CTRL_COMPLETE_IRQ, &nand_info->bch_regs->hw_bch_ctrl_clr);
252
253 return ret;
254 }
255
256 /*
257 * This is the function that we install in the cmd_ctrl function pointer of the
258 * owning struct nand_chip. The only functions in the reference implementation
259 * that use these functions pointers are cmdfunc and select_chip.
260 *
261 * In this driver, we implement our own select_chip, so this function will only
262 * be called by the reference implementation's cmdfunc. For this reason, we can
263 * ignore the chip enable bit and concentrate only on sending bytes to the NAND
264 * Flash.
265 */
mxs_nand_cmd_ctrl(struct mtd_info * mtd,int data,unsigned int ctrl)266 static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
267 {
268 struct nand_chip *nand = mtd_to_nand(mtd);
269 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
270 struct mxs_dma_desc *d;
271 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
272 int ret;
273
274 /*
275 * If this condition is true, something is _VERY_ wrong in MTD
276 * subsystem!
277 */
278 if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) {
279 printf("MXS NAND: Command queue too long\n");
280 return;
281 }
282
283 /*
284 * Every operation begins with a command byte and a series of zero or
285 * more address bytes. These are distinguished by either the Address
286 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
287 * asserted. When MTD is ready to execute the command, it will
288 * deasert both latch enables.
289 *
290 * Rather than run a separate DMA operation for every single byte, we
291 * queue them up and run a single DMA operation for the entire series
292 * of command and data bytes.
293 */
294 if (ctrl & (NAND_ALE | NAND_CLE)) {
295 if (data != NAND_CMD_NONE)
296 nand_info->cmd_buf[nand_info->cmd_queue_len++] = data;
297 return;
298 }
299
300 /*
301 * If control arrives here, MTD has deasserted both the ALE and CLE,
302 * which means it's ready to run an operation. Check if we have any
303 * bytes to send.
304 */
305 if (nand_info->cmd_queue_len == 0)
306 return;
307
308 /* Compile the DMA descriptor -- a descriptor that sends command. */
309 d = mxs_nand_get_dma_desc(nand_info);
310 d->cmd.data =
311 MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
312 MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM |
313 MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
314 (nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET);
315
316 d->cmd.address = (dma_addr_t)nand_info->cmd_buf;
317
318 d->cmd.pio_words[0] =
319 GPMI_CTRL0_COMMAND_MODE_WRITE |
320 GPMI_CTRL0_WORD_LENGTH |
321 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
322 GPMI_CTRL0_ADDRESS_NAND_CLE |
323 GPMI_CTRL0_ADDRESS_INCREMENT |
324 nand_info->cmd_queue_len;
325
326 mxs_dma_desc_append(channel, d);
327
328 /* Flush caches */
329 mxs_nand_flush_cmd_buf(nand_info);
330
331 /* Execute the DMA chain. */
332 ret = mxs_dma_go(channel);
333 if (ret)
334 printf("MXS NAND: Error sending command\n");
335
336 mxs_nand_return_dma_descs(nand_info);
337
338 /* Reset the command queue. */
339 nand_info->cmd_queue_len = 0;
340 }
341
342 /*
343 * Test if the NAND flash is ready.
344 */
mxs_nand_device_ready(struct mtd_info * mtd)345 static int mxs_nand_device_ready(struct mtd_info *mtd)
346 {
347 struct nand_chip *chip = mtd_to_nand(mtd);
348 struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
349 uint32_t tmp;
350
351 tmp = readl(&nand_info->gpmi_regs->hw_gpmi_stat);
352 tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip);
353
354 return tmp & 1;
355 }
356
357 /*
358 * Select the NAND chip.
359 */
mxs_nand_select_chip(struct mtd_info * mtd,int chip)360 static void mxs_nand_select_chip(struct mtd_info *mtd, int chip)
361 {
362 struct nand_chip *nand = mtd_to_nand(mtd);
363 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
364
365 nand_info->cur_chip = chip;
366 }
367
368 /*
369 * Handle block mark swapping.
370 *
371 * Note that, when this function is called, it doesn't know whether it's
372 * swapping the block mark, or swapping it *back* -- but it doesn't matter
373 * because the the operation is the same.
374 */
mxs_nand_swap_block_mark(struct bch_geometry * geo,uint8_t * data_buf,uint8_t * oob_buf)375 static void mxs_nand_swap_block_mark(struct bch_geometry *geo,
376 uint8_t *data_buf, uint8_t *oob_buf)
377 {
378 uint32_t bit_offset = geo->block_mark_bit_offset;
379 uint32_t buf_offset = geo->block_mark_byte_offset;
380
381 uint32_t src;
382 uint32_t dst;
383
384 /*
385 * Get the byte from the data area that overlays the block mark. Since
386 * the ECC engine applies its own view to the bits in the page, the
387 * physical block mark won't (in general) appear on a byte boundary in
388 * the data.
389 */
390 src = data_buf[buf_offset] >> bit_offset;
391 src |= data_buf[buf_offset + 1] << (8 - bit_offset);
392
393 dst = oob_buf[0];
394
395 oob_buf[0] = src;
396
397 data_buf[buf_offset] &= ~(0xff << bit_offset);
398 data_buf[buf_offset + 1] &= 0xff << bit_offset;
399
400 data_buf[buf_offset] |= dst << bit_offset;
401 data_buf[buf_offset + 1] |= dst >> (8 - bit_offset);
402 }
403
404 /*
405 * Read data from NAND.
406 */
mxs_nand_read_buf(struct mtd_info * mtd,uint8_t * buf,int length)407 static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length)
408 {
409 struct nand_chip *nand = mtd_to_nand(mtd);
410 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
411 struct mxs_dma_desc *d;
412 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
413 int ret;
414
415 if (length > NAND_MAX_PAGESIZE) {
416 printf("MXS NAND: DMA buffer too big\n");
417 return;
418 }
419
420 if (!buf) {
421 printf("MXS NAND: DMA buffer is NULL\n");
422 return;
423 }
424
425 /* Compile the DMA descriptor - a descriptor that reads data. */
426 d = mxs_nand_get_dma_desc(nand_info);
427 d->cmd.data =
428 MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ |
429 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
430 (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
431 (length << MXS_DMA_DESC_BYTES_OFFSET);
432
433 d->cmd.address = (dma_addr_t)nand_info->data_buf;
434
435 d->cmd.pio_words[0] =
436 GPMI_CTRL0_COMMAND_MODE_READ |
437 GPMI_CTRL0_WORD_LENGTH |
438 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
439 GPMI_CTRL0_ADDRESS_NAND_DATA |
440 length;
441
442 mxs_dma_desc_append(channel, d);
443
444 /*
445 * A DMA descriptor that waits for the command to end and the chip to
446 * become ready.
447 *
448 * I think we actually should *not* be waiting for the chip to become
449 * ready because, after all, we don't care. I think the original code
450 * did that and no one has re-thought it yet.
451 */
452 d = mxs_nand_get_dma_desc(nand_info);
453 d->cmd.data =
454 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
455 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM |
456 MXS_DMA_DESC_WAIT4END | (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
457
458 d->cmd.address = 0;
459
460 d->cmd.pio_words[0] =
461 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
462 GPMI_CTRL0_WORD_LENGTH |
463 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
464 GPMI_CTRL0_ADDRESS_NAND_DATA;
465
466 mxs_dma_desc_append(channel, d);
467
468 /* Invalidate caches */
469 mxs_nand_inval_data_buf(nand_info);
470
471 /* Execute the DMA chain. */
472 ret = mxs_dma_go(channel);
473 if (ret) {
474 printf("MXS NAND: DMA read error\n");
475 goto rtn;
476 }
477
478 /* Invalidate caches */
479 mxs_nand_inval_data_buf(nand_info);
480
481 memcpy(buf, nand_info->data_buf, length);
482
483 rtn:
484 mxs_nand_return_dma_descs(nand_info);
485 }
486
487 /*
488 * Write data to NAND.
489 */
mxs_nand_write_buf(struct mtd_info * mtd,const uint8_t * buf,int length)490 static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
491 int length)
492 {
493 struct nand_chip *nand = mtd_to_nand(mtd);
494 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
495 struct mxs_dma_desc *d;
496 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
497 int ret;
498
499 if (length > NAND_MAX_PAGESIZE) {
500 printf("MXS NAND: DMA buffer too big\n");
501 return;
502 }
503
504 if (!buf) {
505 printf("MXS NAND: DMA buffer is NULL\n");
506 return;
507 }
508
509 memcpy(nand_info->data_buf, buf, length);
510
511 /* Compile the DMA descriptor - a descriptor that writes data. */
512 d = mxs_nand_get_dma_desc(nand_info);
513 d->cmd.data =
514 MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
515 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
516 (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
517 (length << MXS_DMA_DESC_BYTES_OFFSET);
518
519 d->cmd.address = (dma_addr_t)nand_info->data_buf;
520
521 d->cmd.pio_words[0] =
522 GPMI_CTRL0_COMMAND_MODE_WRITE |
523 GPMI_CTRL0_WORD_LENGTH |
524 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
525 GPMI_CTRL0_ADDRESS_NAND_DATA |
526 length;
527
528 mxs_dma_desc_append(channel, d);
529
530 /* Flush caches */
531 mxs_nand_flush_data_buf(nand_info);
532
533 /* Execute the DMA chain. */
534 ret = mxs_dma_go(channel);
535 if (ret)
536 printf("MXS NAND: DMA write error\n");
537
538 mxs_nand_return_dma_descs(nand_info);
539 }
540
541 /*
542 * Read a single byte from NAND.
543 */
mxs_nand_read_byte(struct mtd_info * mtd)544 static uint8_t mxs_nand_read_byte(struct mtd_info *mtd)
545 {
546 uint8_t buf;
547 mxs_nand_read_buf(mtd, &buf, 1);
548 return buf;
549 }
550
551 /*
552 * Read a page from NAND.
553 */
mxs_nand_ecc_read_page(struct mtd_info * mtd,struct nand_chip * nand,uint8_t * buf,int oob_required,int page)554 static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
555 uint8_t *buf, int oob_required,
556 int page)
557 {
558 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
559 struct bch_geometry *geo = &nand_info->bch_geometry;
560 struct mxs_dma_desc *d;
561 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
562 uint32_t corrected = 0, failed = 0;
563 uint8_t *status;
564 int i, ret;
565
566 /* Compile the DMA descriptor - wait for ready. */
567 d = mxs_nand_get_dma_desc(nand_info);
568 d->cmd.data =
569 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
570 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
571 (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
572
573 d->cmd.address = 0;
574
575 d->cmd.pio_words[0] =
576 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
577 GPMI_CTRL0_WORD_LENGTH |
578 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
579 GPMI_CTRL0_ADDRESS_NAND_DATA;
580
581 mxs_dma_desc_append(channel, d);
582
583 /* Compile the DMA descriptor - enable the BCH block and read. */
584 d = mxs_nand_get_dma_desc(nand_info);
585 d->cmd.data =
586 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
587 MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
588
589 d->cmd.address = 0;
590
591 d->cmd.pio_words[0] =
592 GPMI_CTRL0_COMMAND_MODE_READ |
593 GPMI_CTRL0_WORD_LENGTH |
594 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
595 GPMI_CTRL0_ADDRESS_NAND_DATA |
596 (mtd->writesize + mtd->oobsize);
597 d->cmd.pio_words[1] = 0;
598 d->cmd.pio_words[2] =
599 GPMI_ECCCTRL_ENABLE_ECC |
600 GPMI_ECCCTRL_ECC_CMD_DECODE |
601 GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
602 d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize;
603 d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
604 d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
605
606 mxs_dma_desc_append(channel, d);
607
608 /* Compile the DMA descriptor - disable the BCH block. */
609 d = mxs_nand_get_dma_desc(nand_info);
610 d->cmd.data =
611 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
612 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
613 (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
614
615 d->cmd.address = 0;
616
617 d->cmd.pio_words[0] =
618 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
619 GPMI_CTRL0_WORD_LENGTH |
620 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
621 GPMI_CTRL0_ADDRESS_NAND_DATA |
622 (mtd->writesize + mtd->oobsize);
623 d->cmd.pio_words[1] = 0;
624 d->cmd.pio_words[2] = 0;
625
626 mxs_dma_desc_append(channel, d);
627
628 /* Compile the DMA descriptor - deassert the NAND lock and interrupt. */
629 d = mxs_nand_get_dma_desc(nand_info);
630 d->cmd.data =
631 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
632 MXS_DMA_DESC_DEC_SEM;
633
634 d->cmd.address = 0;
635
636 mxs_dma_desc_append(channel, d);
637
638 /* Invalidate caches */
639 mxs_nand_inval_data_buf(nand_info);
640
641 /* Execute the DMA chain. */
642 ret = mxs_dma_go(channel);
643 if (ret) {
644 printf("MXS NAND: DMA read error\n");
645 goto rtn;
646 }
647
648 ret = mxs_nand_wait_for_bch_complete(nand_info);
649 if (ret) {
650 printf("MXS NAND: BCH read timeout\n");
651 goto rtn;
652 }
653
654 /* Invalidate caches */
655 mxs_nand_inval_data_buf(nand_info);
656
657 /* Read DMA completed, now do the mark swapping. */
658 mxs_nand_swap_block_mark(geo, nand_info->data_buf, nand_info->oob_buf);
659
660 /* Loop over status bytes, accumulating ECC status. */
661 status = nand_info->oob_buf + mxs_nand_aux_status_offset();
662 for (i = 0; i < geo->ecc_chunk_count; i++) {
663 if (status[i] == 0x00)
664 continue;
665
666 if (status[i] == 0xff)
667 continue;
668
669 if (status[i] == 0xfe) {
670 failed++;
671 continue;
672 }
673
674 corrected += status[i];
675 }
676
677 /* Propagate ECC status to the owning MTD. */
678 mtd->ecc_stats.failed += failed;
679 mtd->ecc_stats.corrected += corrected;
680
681 /*
682 * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for
683 * details about our policy for delivering the OOB.
684 *
685 * We fill the caller's buffer with set bits, and then copy the block
686 * mark to the caller's buffer. Note that, if block mark swapping was
687 * necessary, it has already been done, so we can rely on the first
688 * byte of the auxiliary buffer to contain the block mark.
689 */
690 memset(nand->oob_poi, 0xff, mtd->oobsize);
691
692 nand->oob_poi[0] = nand_info->oob_buf[0];
693
694 memcpy(buf, nand_info->data_buf, mtd->writesize);
695
696 rtn:
697 mxs_nand_return_dma_descs(nand_info);
698
699 return ret;
700 }
701
702 /*
703 * Write a page to NAND.
704 */
mxs_nand_ecc_write_page(struct mtd_info * mtd,struct nand_chip * nand,const uint8_t * buf,int oob_required,int page)705 static int mxs_nand_ecc_write_page(struct mtd_info *mtd,
706 struct nand_chip *nand, const uint8_t *buf,
707 int oob_required, int page)
708 {
709 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
710 struct bch_geometry *geo = &nand_info->bch_geometry;
711 struct mxs_dma_desc *d;
712 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
713 int ret;
714
715 memcpy(nand_info->data_buf, buf, mtd->writesize);
716 memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize);
717
718 /* Handle block mark swapping. */
719 mxs_nand_swap_block_mark(geo, nand_info->data_buf, nand_info->oob_buf);
720
721 /* Compile the DMA descriptor - write data. */
722 d = mxs_nand_get_dma_desc(nand_info);
723 d->cmd.data =
724 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
725 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
726 (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
727
728 d->cmd.address = 0;
729
730 d->cmd.pio_words[0] =
731 GPMI_CTRL0_COMMAND_MODE_WRITE |
732 GPMI_CTRL0_WORD_LENGTH |
733 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
734 GPMI_CTRL0_ADDRESS_NAND_DATA;
735 d->cmd.pio_words[1] = 0;
736 d->cmd.pio_words[2] =
737 GPMI_ECCCTRL_ENABLE_ECC |
738 GPMI_ECCCTRL_ECC_CMD_ENCODE |
739 GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
740 d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize);
741 d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
742 d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
743
744 if (is_mx7() && nand_info->en_randomizer) {
745 d->cmd.pio_words[2] |= GPMI_ECCCTRL_RANDOMIZER_ENABLE |
746 GPMI_ECCCTRL_RANDOMIZER_TYPE2;
747 /*
748 * Write NAND page number needed to be randomized
749 * to GPMI_ECCCOUNT register.
750 *
751 * The value is between 0-255. For additional details
752 * check 9.6.6.4 of i.MX7D Applications Processor reference
753 */
754 d->cmd.pio_words[3] |= (page % 255) << 16;
755 }
756
757 mxs_dma_desc_append(channel, d);
758
759 /* Flush caches */
760 mxs_nand_flush_data_buf(nand_info);
761
762 /* Execute the DMA chain. */
763 ret = mxs_dma_go(channel);
764 if (ret) {
765 printf("MXS NAND: DMA write error\n");
766 goto rtn;
767 }
768
769 ret = mxs_nand_wait_for_bch_complete(nand_info);
770 if (ret) {
771 printf("MXS NAND: BCH write timeout\n");
772 goto rtn;
773 }
774
775 rtn:
776 mxs_nand_return_dma_descs(nand_info);
777 return 0;
778 }
779
780 /*
781 * Read OOB from NAND.
782 *
783 * This function is a veneer that replaces the function originally installed by
784 * the NAND Flash MTD code.
785 */
mxs_nand_hook_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)786 static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from,
787 struct mtd_oob_ops *ops)
788 {
789 struct nand_chip *chip = mtd_to_nand(mtd);
790 struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
791 int ret;
792
793 if (ops->mode == MTD_OPS_RAW)
794 nand_info->raw_oob_mode = 1;
795 else
796 nand_info->raw_oob_mode = 0;
797
798 ret = nand_info->hooked_read_oob(mtd, from, ops);
799
800 nand_info->raw_oob_mode = 0;
801
802 return ret;
803 }
804
805 /*
806 * Write OOB to NAND.
807 *
808 * This function is a veneer that replaces the function originally installed by
809 * the NAND Flash MTD code.
810 */
mxs_nand_hook_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)811 static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to,
812 struct mtd_oob_ops *ops)
813 {
814 struct nand_chip *chip = mtd_to_nand(mtd);
815 struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
816 int ret;
817
818 if (ops->mode == MTD_OPS_RAW)
819 nand_info->raw_oob_mode = 1;
820 else
821 nand_info->raw_oob_mode = 0;
822
823 ret = nand_info->hooked_write_oob(mtd, to, ops);
824
825 nand_info->raw_oob_mode = 0;
826
827 return ret;
828 }
829
830 /*
831 * Mark a block bad in NAND.
832 *
833 * This function is a veneer that replaces the function originally installed by
834 * the NAND Flash MTD code.
835 */
mxs_nand_hook_block_markbad(struct mtd_info * mtd,loff_t ofs)836 static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
837 {
838 struct nand_chip *chip = mtd_to_nand(mtd);
839 struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
840 int ret;
841
842 nand_info->marking_block_bad = 1;
843
844 ret = nand_info->hooked_block_markbad(mtd, ofs);
845
846 nand_info->marking_block_bad = 0;
847
848 return ret;
849 }
850
851 /*
852 * There are several places in this driver where we have to handle the OOB and
853 * block marks. This is the function where things are the most complicated, so
854 * this is where we try to explain it all. All the other places refer back to
855 * here.
856 *
857 * These are the rules, in order of decreasing importance:
858 *
859 * 1) Nothing the caller does can be allowed to imperil the block mark, so all
860 * write operations take measures to protect it.
861 *
862 * 2) In read operations, the first byte of the OOB we return must reflect the
863 * true state of the block mark, no matter where that block mark appears in
864 * the physical page.
865 *
866 * 3) ECC-based read operations return an OOB full of set bits (since we never
867 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
868 * return).
869 *
870 * 4) "Raw" read operations return a direct view of the physical bytes in the
871 * page, using the conventional definition of which bytes are data and which
872 * are OOB. This gives the caller a way to see the actual, physical bytes
873 * in the page, without the distortions applied by our ECC engine.
874 *
875 * What we do for this specific read operation depends on whether we're doing
876 * "raw" read, or an ECC-based read.
877 *
878 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
879 * easy. When reading a page, for example, the NAND Flash MTD code calls our
880 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
881 * ECC-based or raw view of the page is implicit in which function it calls
882 * (there is a similar pair of ECC-based/raw functions for writing).
883 *
884 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
885 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
886 * caller wants an ECC-based or raw view of the page is not propagated down to
887 * this driver.
888 *
889 * Since our OOB *is* covered by ECC, we need this information. So, we hook the
890 * ecc.read_oob and ecc.write_oob function pointers in the owning
891 * struct mtd_info with our own functions. These hook functions set the
892 * raw_oob_mode field so that, when control finally arrives here, we'll know
893 * what to do.
894 */
mxs_nand_ecc_read_oob(struct mtd_info * mtd,struct nand_chip * nand,int page)895 static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
896 int page)
897 {
898 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
899
900 /*
901 * First, fill in the OOB buffer. If we're doing a raw read, we need to
902 * get the bytes from the physical page. If we're not doing a raw read,
903 * we need to fill the buffer with set bits.
904 */
905 if (nand_info->raw_oob_mode) {
906 /*
907 * If control arrives here, we're doing a "raw" read. Send the
908 * command to read the conventional OOB and read it.
909 */
910 nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
911 nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
912 } else {
913 /*
914 * If control arrives here, we're not doing a "raw" read. Fill
915 * the OOB buffer with set bits and correct the block mark.
916 */
917 memset(nand->oob_poi, 0xff, mtd->oobsize);
918
919 nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
920 mxs_nand_read_buf(mtd, nand->oob_poi, 1);
921 }
922
923 return 0;
924
925 }
926
927 /*
928 * Write OOB data to NAND.
929 */
mxs_nand_ecc_write_oob(struct mtd_info * mtd,struct nand_chip * nand,int page)930 static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
931 int page)
932 {
933 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
934 uint8_t block_mark = 0;
935
936 /*
937 * There are fundamental incompatibilities between the i.MX GPMI NFC and
938 * the NAND Flash MTD model that make it essentially impossible to write
939 * the out-of-band bytes.
940 *
941 * We permit *ONE* exception. If the *intent* of writing the OOB is to
942 * mark a block bad, we can do that.
943 */
944
945 if (!nand_info->marking_block_bad) {
946 printf("NXS NAND: Writing OOB isn't supported\n");
947 return -EIO;
948 }
949
950 /* Write the block mark. */
951 nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
952 nand->write_buf(mtd, &block_mark, 1);
953 nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
954
955 /* Check if it worked. */
956 if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL)
957 return -EIO;
958
959 return 0;
960 }
961
962 /*
963 * Claims all blocks are good.
964 *
965 * In principle, this function is *only* called when the NAND Flash MTD system
966 * isn't allowed to keep an in-memory bad block table, so it is forced to ask
967 * the driver for bad block information.
968 *
969 * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
970 * this function is *only* called when we take it away.
971 *
972 * Thus, this function is only called when we want *all* blocks to look good,
973 * so it *always* return success.
974 */
mxs_nand_block_bad(struct mtd_info * mtd,loff_t ofs)975 static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs)
976 {
977 return 0;
978 }
979
mxs_nand_set_geometry(struct mtd_info * mtd,struct bch_geometry * geo)980 static int mxs_nand_set_geometry(struct mtd_info *mtd, struct bch_geometry *geo)
981 {
982 struct nand_chip *chip = mtd_to_nand(mtd);
983 struct nand_chip *nand = mtd_to_nand(mtd);
984 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
985
986 if (chip->ecc.strength > 0 && chip->ecc.size > 0)
987 return mxs_nand_calc_ecc_layout_by_info(geo, mtd,
988 chip->ecc.strength, chip->ecc.size);
989
990 if (nand_info->use_minimum_ecc ||
991 mxs_nand_calc_ecc_layout(geo, mtd)) {
992 if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0))
993 return -EINVAL;
994
995 return mxs_nand_calc_ecc_layout_by_info(geo, mtd,
996 chip->ecc_strength_ds, chip->ecc_step_ds);
997 }
998
999 return 0;
1000 }
1001
1002 /*
1003 * At this point, the physical NAND Flash chips have been identified and
1004 * counted, so we know the physical geometry. This enables us to make some
1005 * important configuration decisions.
1006 *
1007 * The return value of this function propagates directly back to this driver's
1008 * board_nand_init(). Anything other than zero will cause this driver to
1009 * tear everything down and declare failure.
1010 */
mxs_nand_setup_ecc(struct mtd_info * mtd)1011 int mxs_nand_setup_ecc(struct mtd_info *mtd)
1012 {
1013 struct nand_chip *nand = mtd_to_nand(mtd);
1014 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
1015 struct bch_geometry *geo = &nand_info->bch_geometry;
1016 struct mxs_bch_regs *bch_regs = nand_info->bch_regs;
1017 uint32_t tmp;
1018 int ret;
1019
1020 nand_info->en_randomizer = 0;
1021 nand_info->oobsize = mtd->oobsize;
1022 nand_info->writesize = mtd->writesize;
1023
1024 ret = mxs_nand_set_geometry(mtd, geo);
1025 if (ret)
1026 return ret;
1027
1028 mxs_nand_calc_mark_offset(geo, mtd->writesize);
1029
1030 /* Configure BCH and set NFC geometry */
1031 mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
1032
1033 /* Configure layout 0 */
1034 tmp = (geo->ecc_chunk_count - 1) << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
1035 tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
1036 tmp |= (geo->ecc_strength >> 1) << BCH_FLASHLAYOUT0_ECC0_OFFSET;
1037 tmp |= geo->ecc_chunk_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
1038 tmp |= (geo->gf_len == 14 ? 1 : 0) <<
1039 BCH_FLASHLAYOUT0_GF13_0_GF14_1_OFFSET;
1040 writel(tmp, &bch_regs->hw_bch_flash0layout0);
1041 nand_info->bch_flash0layout0 = tmp;
1042
1043 tmp = (mtd->writesize + mtd->oobsize)
1044 << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
1045 tmp |= (geo->ecc_strength >> 1) << BCH_FLASHLAYOUT1_ECCN_OFFSET;
1046 tmp |= geo->ecc_chunk_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
1047 tmp |= (geo->gf_len == 14 ? 1 : 0) <<
1048 BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET;
1049 writel(tmp, &bch_regs->hw_bch_flash0layout1);
1050 nand_info->bch_flash0layout1 = tmp;
1051
1052 /* Set *all* chip selects to use layout 0 */
1053 writel(0, &bch_regs->hw_bch_layoutselect);
1054
1055 /* Enable BCH complete interrupt */
1056 writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set);
1057
1058 /* Hook some operations at the MTD level. */
1059 if (mtd->_read_oob != mxs_nand_hook_read_oob) {
1060 nand_info->hooked_read_oob = mtd->_read_oob;
1061 mtd->_read_oob = mxs_nand_hook_read_oob;
1062 }
1063
1064 if (mtd->_write_oob != mxs_nand_hook_write_oob) {
1065 nand_info->hooked_write_oob = mtd->_write_oob;
1066 mtd->_write_oob = mxs_nand_hook_write_oob;
1067 }
1068
1069 if (mtd->_block_markbad != mxs_nand_hook_block_markbad) {
1070 nand_info->hooked_block_markbad = mtd->_block_markbad;
1071 mtd->_block_markbad = mxs_nand_hook_block_markbad;
1072 }
1073
1074 return 0;
1075 }
1076
1077 /*
1078 * Allocate DMA buffers
1079 */
mxs_nand_alloc_buffers(struct mxs_nand_info * nand_info)1080 int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info)
1081 {
1082 uint8_t *buf;
1083 const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE;
1084
1085 nand_info->data_buf_size = roundup(size, MXS_DMA_ALIGNMENT);
1086
1087 /* DMA buffers */
1088 buf = memalign(MXS_DMA_ALIGNMENT, nand_info->data_buf_size);
1089 if (!buf) {
1090 printf("MXS NAND: Error allocating DMA buffers\n");
1091 return -ENOMEM;
1092 }
1093
1094 memset(buf, 0, nand_info->data_buf_size);
1095
1096 nand_info->data_buf = buf;
1097 nand_info->oob_buf = buf + NAND_MAX_PAGESIZE;
1098 /* Command buffers */
1099 nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT,
1100 MXS_NAND_COMMAND_BUFFER_SIZE);
1101 if (!nand_info->cmd_buf) {
1102 free(buf);
1103 printf("MXS NAND: Error allocating command buffers\n");
1104 return -ENOMEM;
1105 }
1106 memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE);
1107 nand_info->cmd_queue_len = 0;
1108
1109 return 0;
1110 }
1111
1112 /*
1113 * Initializes the NFC hardware.
1114 */
mxs_nand_init_dma(struct mxs_nand_info * info)1115 static int mxs_nand_init_dma(struct mxs_nand_info *info)
1116 {
1117 int i = 0, j, ret = 0;
1118
1119 info->desc = malloc(sizeof(struct mxs_dma_desc *) *
1120 MXS_NAND_DMA_DESCRIPTOR_COUNT);
1121 if (!info->desc) {
1122 ret = -ENOMEM;
1123 goto err1;
1124 }
1125
1126 /* Allocate the DMA descriptors. */
1127 for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) {
1128 info->desc[i] = mxs_dma_desc_alloc();
1129 if (!info->desc[i]) {
1130 ret = -ENOMEM;
1131 goto err2;
1132 }
1133 }
1134
1135 /* Init the DMA controller. */
1136 mxs_dma_init();
1137 for (j = MXS_DMA_CHANNEL_AHB_APBH_GPMI0;
1138 j <= MXS_DMA_CHANNEL_AHB_APBH_GPMI7; j++) {
1139 ret = mxs_dma_init_channel(j);
1140 if (ret)
1141 goto err3;
1142 }
1143
1144 /* Reset the GPMI block. */
1145 mxs_reset_block(&info->gpmi_regs->hw_gpmi_ctrl0_reg);
1146 mxs_reset_block(&info->bch_regs->hw_bch_ctrl_reg);
1147
1148 /*
1149 * Choose NAND mode, set IRQ polarity, disable write protection and
1150 * select BCH ECC.
1151 */
1152 clrsetbits_le32(&info->gpmi_regs->hw_gpmi_ctrl1,
1153 GPMI_CTRL1_GPMI_MODE,
1154 GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET |
1155 GPMI_CTRL1_BCH_MODE);
1156
1157 return 0;
1158
1159 err3:
1160 for (--j; j >= MXS_DMA_CHANNEL_AHB_APBH_GPMI0; j--)
1161 mxs_dma_release(j);
1162 err2:
1163 for (--i; i >= 0; i--)
1164 mxs_dma_desc_free(info->desc[i]);
1165 free(info->desc);
1166 err1:
1167 if (ret == -ENOMEM)
1168 printf("MXS NAND: Unable to allocate DMA descriptors\n");
1169 return ret;
1170 }
1171
mxs_nand_init_spl(struct nand_chip * nand)1172 int mxs_nand_init_spl(struct nand_chip *nand)
1173 {
1174 struct mxs_nand_info *nand_info;
1175 int err;
1176
1177 nand_info = malloc(sizeof(struct mxs_nand_info));
1178 if (!nand_info) {
1179 printf("MXS NAND: Failed to allocate private data\n");
1180 return -ENOMEM;
1181 }
1182 memset(nand_info, 0, sizeof(struct mxs_nand_info));
1183
1184 nand_info->gpmi_regs = (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
1185 nand_info->bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
1186
1187 if (is_mx6sx() || is_mx7())
1188 nand_info->max_ecc_strength_supported = 62;
1189 else
1190 nand_info->max_ecc_strength_supported = 40;
1191
1192 err = mxs_nand_alloc_buffers(nand_info);
1193 if (err)
1194 return err;
1195
1196 err = mxs_nand_init_dma(nand_info);
1197 if (err)
1198 return err;
1199
1200 nand_set_controller_data(nand, nand_info);
1201
1202 nand->options |= NAND_NO_SUBPAGE_WRITE;
1203
1204 nand->cmd_ctrl = mxs_nand_cmd_ctrl;
1205 nand->dev_ready = mxs_nand_device_ready;
1206 nand->select_chip = mxs_nand_select_chip;
1207
1208 nand->read_byte = mxs_nand_read_byte;
1209 nand->read_buf = mxs_nand_read_buf;
1210
1211 nand->ecc.read_page = mxs_nand_ecc_read_page;
1212
1213 nand->ecc.mode = NAND_ECC_HW;
1214
1215 return 0;
1216 }
1217
mxs_nand_init_ctrl(struct mxs_nand_info * nand_info)1218 int mxs_nand_init_ctrl(struct mxs_nand_info *nand_info)
1219 {
1220 struct mtd_info *mtd;
1221 struct nand_chip *nand;
1222 int err;
1223
1224 nand = &nand_info->chip;
1225 mtd = nand_to_mtd(nand);
1226 err = mxs_nand_alloc_buffers(nand_info);
1227 if (err)
1228 return err;
1229
1230 err = mxs_nand_init_dma(nand_info);
1231 if (err)
1232 goto err_free_buffers;
1233
1234 memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout));
1235
1236 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1237 nand->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
1238 #endif
1239
1240 nand_set_controller_data(nand, nand_info);
1241 nand->options |= NAND_NO_SUBPAGE_WRITE;
1242
1243 if (nand_info->dev)
1244 nand->flash_node = dev_of_offset(nand_info->dev);
1245
1246 nand->cmd_ctrl = mxs_nand_cmd_ctrl;
1247
1248 nand->dev_ready = mxs_nand_device_ready;
1249 nand->select_chip = mxs_nand_select_chip;
1250 nand->block_bad = mxs_nand_block_bad;
1251
1252 nand->read_byte = mxs_nand_read_byte;
1253
1254 nand->read_buf = mxs_nand_read_buf;
1255 nand->write_buf = mxs_nand_write_buf;
1256
1257 /* first scan to find the device and get the page size */
1258 if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL))
1259 goto err_free_buffers;
1260
1261 if (mxs_nand_setup_ecc(mtd))
1262 goto err_free_buffers;
1263
1264 nand->ecc.read_page = mxs_nand_ecc_read_page;
1265 nand->ecc.write_page = mxs_nand_ecc_write_page;
1266 nand->ecc.read_oob = mxs_nand_ecc_read_oob;
1267 nand->ecc.write_oob = mxs_nand_ecc_write_oob;
1268
1269 nand->ecc.layout = &fake_ecc_layout;
1270 nand->ecc.mode = NAND_ECC_HW;
1271 nand->ecc.size = nand_info->bch_geometry.ecc_chunk_size;
1272 nand->ecc.strength = nand_info->bch_geometry.ecc_strength;
1273
1274 /* second phase scan */
1275 err = nand_scan_tail(mtd);
1276 if (err)
1277 goto err_free_buffers;
1278
1279 err = nand_register(0, mtd);
1280 if (err)
1281 goto err_free_buffers;
1282
1283 return 0;
1284
1285 err_free_buffers:
1286 free(nand_info->data_buf);
1287 free(nand_info->cmd_buf);
1288
1289 return err;
1290 }
1291
1292 #ifndef CONFIG_NAND_MXS_DT
board_nand_init(void)1293 void board_nand_init(void)
1294 {
1295 struct mxs_nand_info *nand_info;
1296
1297 nand_info = malloc(sizeof(struct mxs_nand_info));
1298 if (!nand_info) {
1299 printf("MXS NAND: Failed to allocate private data\n");
1300 return;
1301 }
1302 memset(nand_info, 0, sizeof(struct mxs_nand_info));
1303
1304 nand_info->gpmi_regs = (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
1305 nand_info->bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
1306
1307 /* Refer to Chapter 17 for i.MX6DQ, Chapter 18 for i.MX6SX */
1308 if (is_mx6sx() || is_mx7())
1309 nand_info->max_ecc_strength_supported = 62;
1310 else
1311 nand_info->max_ecc_strength_supported = 40;
1312
1313 #ifdef CONFIG_NAND_MXS_USE_MINIMUM_ECC
1314 nand_info->use_minimum_ecc = true;
1315 #endif
1316
1317 if (mxs_nand_init_ctrl(nand_info) < 0)
1318 goto err;
1319
1320 return;
1321
1322 err:
1323 free(nand_info);
1324 }
1325 #endif
1326
1327 /*
1328 * Read NAND layout for FCB block generation.
1329 */
mxs_nand_get_layout(struct mtd_info * mtd,struct mxs_nand_layout * l)1330 void mxs_nand_get_layout(struct mtd_info *mtd, struct mxs_nand_layout *l)
1331 {
1332 struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
1333 u32 tmp;
1334
1335 tmp = readl(&bch_regs->hw_bch_flash0layout0);
1336 l->nblocks = (tmp & BCH_FLASHLAYOUT0_NBLOCKS_MASK) >>
1337 BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
1338 l->meta_size = (tmp & BCH_FLASHLAYOUT0_META_SIZE_MASK) >>
1339 BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
1340
1341 tmp = readl(&bch_regs->hw_bch_flash0layout1);
1342 l->data0_size = 4 * ((tmp & BCH_FLASHLAYOUT0_DATA0_SIZE_MASK) >>
1343 BCH_FLASHLAYOUT0_DATA0_SIZE_OFFSET);
1344 l->ecc0 = (tmp & BCH_FLASHLAYOUT0_ECC0_MASK) >>
1345 BCH_FLASHLAYOUT0_ECC0_OFFSET;
1346 l->datan_size = 4 * ((tmp & BCH_FLASHLAYOUT1_DATAN_SIZE_MASK) >>
1347 BCH_FLASHLAYOUT1_DATAN_SIZE_OFFSET);
1348 l->eccn = (tmp & BCH_FLASHLAYOUT1_ECCN_MASK) >>
1349 BCH_FLASHLAYOUT1_ECCN_OFFSET;
1350 }
1351
1352 /*
1353 * Set BCH to specific layout used by ROM bootloader to read FCB.
1354 */
mxs_nand_mode_fcb(struct mtd_info * mtd)1355 void mxs_nand_mode_fcb(struct mtd_info *mtd)
1356 {
1357 u32 tmp;
1358 struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
1359 struct nand_chip *nand = mtd_to_nand(mtd);
1360 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
1361
1362 nand_info->en_randomizer = 1;
1363
1364 mtd->writesize = 1024;
1365 mtd->oobsize = 1862 - 1024;
1366
1367 /* 8 ecc_chunks_*/
1368 tmp = 7 << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
1369 /* 32 bytes for metadata */
1370 tmp |= 32 << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
1371 /* using ECC62 level to be performed */
1372 tmp |= 0x1F << BCH_FLASHLAYOUT0_ECC0_OFFSET;
1373 /* 0x20 * 4 bytes of the data0 block */
1374 tmp |= 0x20 << BCH_FLASHLAYOUT0_DATA0_SIZE_OFFSET;
1375 tmp |= 0 << BCH_FLASHLAYOUT0_GF13_0_GF14_1_OFFSET;
1376 writel(tmp, &bch_regs->hw_bch_flash0layout0);
1377
1378 /* 1024 for data + 838 for OOB */
1379 tmp = 1862 << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
1380 /* using ECC62 level to be performed */
1381 tmp |= 0x1F << BCH_FLASHLAYOUT1_ECCN_OFFSET;
1382 /* 0x20 * 4 bytes of the data0 block */
1383 tmp |= 0x20 << BCH_FLASHLAYOUT1_DATAN_SIZE_OFFSET;
1384 tmp |= 0 << BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET;
1385 writel(tmp, &bch_regs->hw_bch_flash0layout1);
1386 }
1387
1388 /*
1389 * Restore BCH to normal settings.
1390 */
mxs_nand_mode_normal(struct mtd_info * mtd)1391 void mxs_nand_mode_normal(struct mtd_info *mtd)
1392 {
1393 struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
1394 struct nand_chip *nand = mtd_to_nand(mtd);
1395 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
1396
1397 nand_info->en_randomizer = 0;
1398
1399 mtd->writesize = nand_info->writesize;
1400 mtd->oobsize = nand_info->oobsize;
1401
1402 writel(nand_info->bch_flash0layout0, &bch_regs->hw_bch_flash0layout0);
1403 writel(nand_info->bch_flash0layout1, &bch_regs->hw_bch_flash0layout1);
1404 }
1405
mxs_nand_mark_byte_offset(struct mtd_info * mtd)1406 uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd)
1407 {
1408 struct nand_chip *chip = mtd_to_nand(mtd);
1409 struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
1410 struct bch_geometry *geo = &nand_info->bch_geometry;
1411
1412 return geo->block_mark_byte_offset;
1413 }
1414
mxs_nand_mark_bit_offset(struct mtd_info * mtd)1415 uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd)
1416 {
1417 struct nand_chip *chip = mtd_to_nand(mtd);
1418 struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
1419 struct bch_geometry *geo = &nand_info->bch_geometry;
1420
1421 return geo->block_mark_bit_offset;
1422 }
1423