1 /*
2 * Overview:
3 * This is the generic MTD driver for NAND flash devices. It should be
4 * capable of working with almost all NAND chips currently available.
5 *
6 * Additional technical information is available on
7 * http://www.linux-mtd.infradead.org/doc/nand.html
8 *
9 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
10 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
11 *
12 * Credits:
13 * David Woodhouse for adding multichip support
14 *
15 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16 * rework for 2K page size chips
17 *
18 * TODO:
19 * Enable cached programming for 2k page size chips
20 * Check, if mtd->ecctype should be set to MTD_ECC_HW
21 * if we have HW ECC support.
22 * BBT table is not serialized, has to be fixed
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
27 *
28 */
29
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <common.h>
32 #if CONFIG_IS_ENABLED(OF_CONTROL)
33 #include <fdtdec.h>
34 #endif
35 #include <malloc.h>
36 #include <watchdog.h>
37 #include <linux/err.h>
38 #include <linux/compat.h>
39 #include <linux/mtd/mtd.h>
40 #include <linux/mtd/rawnand.h>
41 #include <linux/mtd/nand_ecc.h>
42 #include <linux/mtd/nand_bch.h>
43 #ifdef CONFIG_MTD_PARTITIONS
44 #include <linux/mtd/partitions.h>
45 #endif
46 #include <asm/io.h>
47 #include <linux/errno.h>
48 #include <hinfc_common.h>
49
50 /* Define default oob placement schemes for large and small page devices */
51 #ifndef CONFIG_SYS_NAND_DRIVER_ECC_LAYOUT
52 static struct nand_ecclayout nand_oob_8 = {
53 .eccbytes = 3,
54 .eccpos = {0, 1, 2},
55 .oobfree = {
56 {.offset = 3,
57 .length = 2},
58 {.offset = 6,
59 .length = 2} }
60 };
61
62 static struct nand_ecclayout nand_oob_16 = {
63 .eccbytes = 6,
64 .eccpos = {0, 1, 2, 3, 6, 7},
65 .oobfree = {
66 {.offset = 8,
67 . length = 8} }
68 };
69
70 static struct nand_ecclayout nand_oob_64 = {
71 .eccbytes = 24,
72 .eccpos = {
73 40, 41, 42, 43, 44, 45, 46, 47,
74 48, 49, 50, 51, 52, 53, 54, 55,
75 56, 57, 58, 59, 60, 61, 62, 63},
76 .oobfree = {
77 {.offset = 2,
78 .length = 38} }
79 };
80
81 static struct nand_ecclayout nand_oob_128 = {
82 .eccbytes = 48,
83 .eccpos = {
84 80, 81, 82, 83, 84, 85, 86, 87,
85 88, 89, 90, 91, 92, 93, 94, 95,
86 96, 97, 98, 99, 100, 101, 102, 103,
87 104, 105, 106, 107, 108, 109, 110, 111,
88 112, 113, 114, 115, 116, 117, 118, 119,
89 120, 121, 122, 123, 124, 125, 126, 127},
90 .oobfree = {
91 {.offset = 2,
92 .length = 78} }
93 };
94 #endif
95
96 static int nand_get_device(struct mtd_info *mtd, int new_state);
97
98 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
99 struct mtd_oob_ops *ops);
100
101 /*
102 * For devices which display every fart in the system on a separate LED. Is
103 * compiled away when LED support is disabled.
104 */
105 DEFINE_LED_TRIGGER(nand_led_trigger);
106
check_offs_len(struct mtd_info * mtd,loff_t ofs,uint64_t len)107 static int check_offs_len(struct mtd_info *mtd,
108 loff_t ofs, uint64_t len)
109 {
110 struct nand_chip *chip = mtd_to_nand(mtd);
111 int ret = 0;
112
113 /* Start address must align on block boundary */
114 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
115 pr_debug("%s: unaligned address\n", __func__);
116 ret = -EINVAL;
117 }
118
119 /* Length must align on block boundary */
120 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
121 pr_debug("%s: length not block aligned\n", __func__);
122 ret = -EINVAL;
123 }
124
125 return ret;
126 }
127
128 /**
129 * nand_release_device - [GENERIC] release chip
130 * @mtd: MTD device structure
131 *
132 * Release chip lock and wake up anyone waiting on the device.
133 */
nand_release_device(struct mtd_info * mtd)134 static void nand_release_device(struct mtd_info *mtd)
135 {
136 struct nand_chip *chip = mtd_to_nand(mtd);
137
138 /* De-select the NAND device */
139 chip->select_chip(mtd, -1);
140 }
141
142 /**
143 * nand_read_byte - [DEFAULT] read one byte from the chip
144 * @mtd: MTD device structure
145 *
146 * Default read function for 8bit buswidth
147 */
nand_read_byte(struct mtd_info * mtd)148 uint8_t nand_read_byte(struct mtd_info *mtd)
149 {
150 struct nand_chip *chip = mtd_to_nand(mtd);
151 return readb(chip->IO_ADDR_R);
152 }
153
154 /**
155 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
156 * @mtd: MTD device structure
157 *
158 * Default read function for 16bit buswidth with endianness conversion.
159 *
160 */
nand_read_byte16(struct mtd_info * mtd)161 static uint8_t nand_read_byte16(struct mtd_info *mtd)
162 {
163 struct nand_chip *chip = mtd_to_nand(mtd);
164 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
165 }
166
167 /**
168 * nand_read_word - [DEFAULT] read one word from the chip
169 * @mtd: MTD device structure
170 *
171 * Default read function for 16bit buswidth without endianness conversion.
172 */
nand_read_word(struct mtd_info * mtd)173 static u16 nand_read_word(struct mtd_info *mtd)
174 {
175 struct nand_chip *chip = mtd_to_nand(mtd);
176 return readw(chip->IO_ADDR_R);
177 }
178
179 /**
180 * nand_select_chip - [DEFAULT] control CE line
181 * @mtd: MTD device structure
182 * @chipnr: chipnumber to select, -1 for deselect
183 *
184 * Default select function for 1 chip devices.
185 */
nand_select_chip(struct mtd_info * mtd,int chipnr)186 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
187 {
188 struct nand_chip *chip = mtd_to_nand(mtd);
189
190 switch (chipnr) {
191 case -1:
192 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
193 break;
194 case 0:
195 break;
196
197 default:
198 BUG();
199 }
200 }
201
202 /**
203 * nand_write_byte - [DEFAULT] write single byte to chip
204 * @mtd: MTD device structure
205 * @byte: value to write
206 *
207 * Default function to write a byte to I/O[7:0]
208 */
nand_write_byte(struct mtd_info * mtd,uint8_t byte)209 static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
210 {
211 struct nand_chip *chip = mtd_to_nand(mtd);
212
213 chip->write_buf(mtd, &byte, 1);
214 }
215
216 /**
217 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
218 * @mtd: MTD device structure
219 * @byte: value to write
220 *
221 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
222 */
nand_write_byte16(struct mtd_info * mtd,uint8_t byte)223 static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
224 {
225 struct nand_chip *chip = mtd_to_nand(mtd);
226 uint16_t word = byte;
227
228 /*
229 * It's not entirely clear what should happen to I/O[15:8] when writing
230 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
231 *
232 * When the host supports a 16-bit bus width, only data is
233 * transferred at the 16-bit width. All address and command line
234 * transfers shall use only the lower 8-bits of the data bus. During
235 * command transfers, the host may place any value on the upper
236 * 8-bits of the data bus. During address transfers, the host shall
237 * set the upper 8-bits of the data bus to 00h.
238 *
239 * One user of the write_byte callback is nand_onfi_set_features. The
240 * four parameters are specified to be written to I/O[7:0], but this is
241 * neither an address nor a command transfer. Let's assume a 0 on the
242 * upper I/O lines is OK.
243 */
244 chip->write_buf(mtd, (uint8_t *)&word, 2);
245 }
246
iowrite8_rep(void * addr,const uint8_t * buf,int len)247 static void iowrite8_rep(void *addr, const uint8_t *buf, int len)
248 {
249 int i;
250
251 for (i = 0; i < len; i++)
252 writeb(buf[i], addr);
253 }
ioread8_rep(void * addr,uint8_t * buf,int len)254 static void ioread8_rep(void *addr, uint8_t *buf, int len)
255 {
256 int i;
257
258 for (i = 0; i < len; i++)
259 buf[i] = readb(addr);
260 }
261
ioread16_rep(void * addr,void * buf,int len)262 static void ioread16_rep(void *addr, void *buf, int len)
263 {
264 int i;
265 u16 *p = (u16 *) buf;
266
267 for (i = 0; i < len; i++)
268 p[i] = readw(addr);
269 }
270
iowrite16_rep(void * addr,void * buf,int len)271 static void iowrite16_rep(void *addr, void *buf, int len)
272 {
273 int i;
274 u16 *p = (u16 *) buf;
275
276 for (i = 0; i < len; i++)
277 writew(p[i], addr);
278 }
279
280 /**
281 * nand_write_buf - [DEFAULT] write buffer to chip
282 * @mtd: MTD device structure
283 * @buf: data buffer
284 * @len: number of bytes to write
285 *
286 * Default write function for 8bit buswidth.
287 */
nand_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)288 void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
289 {
290 struct nand_chip *chip = mtd_to_nand(mtd);
291
292 iowrite8_rep(chip->IO_ADDR_W, buf, len);
293 }
294
295 /**
296 * nand_read_buf - [DEFAULT] read chip data into buffer
297 * @mtd: MTD device structure
298 * @buf: buffer to store date
299 * @len: number of bytes to read
300 *
301 * Default read function for 8bit buswidth.
302 */
nand_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)303 void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
304 {
305 struct nand_chip *chip = mtd_to_nand(mtd);
306
307 ioread8_rep(chip->IO_ADDR_R, buf, len);
308 }
309
310 /**
311 * nand_write_buf16 - [DEFAULT] write buffer to chip
312 * @mtd: MTD device structure
313 * @buf: data buffer
314 * @len: number of bytes to write
315 *
316 * Default write function for 16bit buswidth.
317 */
nand_write_buf16(struct mtd_info * mtd,const uint8_t * buf,int len)318 void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
319 {
320 struct nand_chip *chip = mtd_to_nand(mtd);
321 u16 *p = (u16 *) buf;
322
323 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
324 }
325
326 /**
327 * nand_read_buf16 - [DEFAULT] read chip data into buffer
328 * @mtd: MTD device structure
329 * @buf: buffer to store date
330 * @len: number of bytes to read
331 *
332 * Default read function for 16bit buswidth.
333 */
nand_read_buf16(struct mtd_info * mtd,uint8_t * buf,int len)334 void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
335 {
336 struct nand_chip *chip = mtd_to_nand(mtd);
337 u16 *p = (u16 *) buf;
338
339 ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
340 }
341
342 /**
343 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
344 * @mtd: MTD device structure
345 * @ofs: offset from device start
346 *
347 * Check, if the block is bad.
348 */
nand_block_bad(struct mtd_info * mtd,loff_t ofs)349 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
350 {
351 int page, res = 0, i = 0;
352 struct nand_chip *chip = mtd_to_nand(mtd);
353 u16 bad;
354
355 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
356 ofs += mtd->erasesize - mtd->writesize;
357
358 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
359
360 do {
361 if (chip->options & NAND_BUSWIDTH_16) {
362 chip->cmdfunc(mtd, NAND_CMD_READOOB,
363 chip->badblockpos & 0xFE, page);
364 bad = cpu_to_le16(chip->read_word(mtd));
365 if (chip->badblockpos & 0x1)
366 bad >>= 8;
367 else
368 bad &= 0xFF;
369 } else {
370 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
371 page);
372 bad = chip->read_byte(mtd);
373 }
374
375 if (likely(chip->badblockbits == 8))
376 res = bad != 0xFF;
377 else
378 res = hweight8(bad) < chip->badblockbits;
379 ofs += mtd->writesize;
380 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
381 i++;
382 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
383
384 return res;
385 }
386
387 /**
388 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
389 * @mtd: MTD device structure
390 * @ofs: offset from device start
391 *
392 * This is the default implementation, which can be overridden by a hardware
393 * specific driver. It provides the details for writing a bad block marker to a
394 * block.
395 */
nand_default_block_markbad(struct mtd_info * mtd,loff_t ofs)396 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
397 {
398 struct nand_chip *chip = mtd_to_nand(mtd);
399 struct mtd_oob_ops ops;
400 uint8_t buf[2] = { 0, 0 };
401 int ret = 0, res, i = 0;
402
403 memset(&ops, 0, sizeof(ops));
404 ops.oobbuf = buf;
405 ops.ooboffs = chip->badblockpos;
406 if (chip->options & NAND_BUSWIDTH_16) {
407 ops.ooboffs &= ~0x01;
408 ops.len = ops.ooblen = 2;
409 } else {
410 ops.len = ops.ooblen = 1;
411 }
412 ops.mode = MTD_OPS_PLACE_OOB;
413
414 /* Write to first/last page(s) if necessary */
415 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
416 ofs += mtd->erasesize - mtd->writesize;
417 do {
418 res = nand_do_write_oob(mtd, ofs, &ops);
419 if (!ret)
420 ret = res;
421
422 i++;
423 ofs += mtd->writesize;
424 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
425
426 return ret;
427 }
428
429 /**
430 * nand_block_markbad_lowlevel - mark a block bad
431 * @mtd: MTD device structure
432 * @ofs: offset from device start
433 *
434 * This function performs the generic NAND bad block marking steps (i.e., bad
435 * block table(s) and/or marker(s)). We only allow the hardware driver to
436 * specify how to write bad block markers to OOB (chip->block_markbad).
437 *
438 * We try operations in the following order:
439 * (1) erase the affected block, to allow OOB marker to be written cleanly
440 * (2) write bad block marker to OOB area of affected block (unless flag
441 * NAND_BBT_NO_OOB_BBM is present)
442 * (3) update the BBT
443 * Note that we retain the first error encountered in (2) or (3), finish the
444 * procedures, and dump the error in the end.
445 */
nand_block_markbad_lowlevel(struct mtd_info * mtd,loff_t ofs)446 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
447 {
448 struct nand_chip *chip = mtd_to_nand(mtd);
449 int res, ret = 0;
450
451 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
452 struct erase_info einfo;
453
454 /* Attempt erase before marking OOB */
455 memset(&einfo, 0, sizeof(einfo));
456 einfo.mtd = mtd;
457 einfo.addr = ofs;
458 einfo.len = 1ULL << chip->phys_erase_shift;
459 nand_erase_nand(mtd, &einfo, 0);
460
461 /* Write bad block marker to OOB */
462 nand_get_device(mtd, FL_WRITING);
463 ret = chip->block_markbad(mtd, ofs);
464 nand_release_device(mtd);
465 }
466
467 /* Mark block bad in BBT */
468 if (chip->bbt) {
469 res = nand_markbad_bbt(mtd, ofs);
470 if (!ret)
471 ret = res;
472 }
473
474 if (!ret)
475 mtd->ecc_stats.badblocks++;
476
477 return ret;
478 }
479
480 /**
481 * nand_check_wp - [GENERIC] check if the chip is write protected
482 * @mtd: MTD device structure
483 *
484 * Check, if the device is write protected. The function expects, that the
485 * device is already selected.
486 */
nand_check_wp(struct mtd_info * mtd)487 static int nand_check_wp(struct mtd_info *mtd)
488 {
489 struct nand_chip *chip = mtd_to_nand(mtd);
490 u8 status;
491 int ret;
492
493 /* Broken xD cards report WP despite being writable */
494 if (chip->options & NAND_BROKEN_XD)
495 return 0;
496
497 /* Check the WP bit */
498 ret = nand_status_op(chip, &status);
499 if (ret)
500 return ret;
501
502 return status & NAND_STATUS_WP ? 0 : 1;
503 }
504
505 /**
506 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
507 * @mtd: MTD device structure
508 * @ofs: offset from device start
509 *
510 * Check if the block is marked as reserved.
511 */
nand_block_isreserved(struct mtd_info * mtd,loff_t ofs)512 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
513 {
514 struct nand_chip *chip = mtd_to_nand(mtd);
515
516 if (!chip->bbt)
517 return 0;
518 /* Return info from the table */
519 return nand_isreserved_bbt(mtd, ofs);
520 }
521
522 /**
523 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
524 * @mtd: MTD device structure
525 * @ofs: offset from device start
526 * @allowbbt: 1, if its allowed to access the bbt area
527 *
528 * Check, if the block is bad. Either by reading the bad block table or
529 * calling of the scan function.
530 */
nand_block_checkbad(struct mtd_info * mtd,loff_t ofs,int allowbbt)531 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
532 {
533 struct nand_chip *chip = mtd_to_nand(mtd);
534
535 if (!(chip->options & NAND_SKIP_BBTSCAN) &&
536 !(chip->options & NAND_BBT_SCANNED)) {
537 chip->options |= NAND_BBT_SCANNED;
538 chip->scan_bbt(mtd);
539 }
540
541 if (!chip->bbt)
542 return chip->block_bad(mtd, ofs);
543
544 /* Return info from the table */
545 return nand_isbad_bbt(mtd, ofs, allowbbt);
546 }
547
548 /**
549 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
550 * @mtd: MTD device structure
551 *
552 * Wait for the ready pin after a command, and warn if a timeout occurs.
553 */
nand_wait_ready(struct mtd_info * mtd)554 void nand_wait_ready(struct mtd_info *mtd)
555 {
556 struct nand_chip *chip = mtd_to_nand(mtd);
557 u32 timeo = (CONFIG_SYS_HZ * 400) / 1000;
558 u32 time_start;
559
560 time_start = get_timer(0);
561 /* Wait until command is processed or timeout occurs */
562 while (get_timer(time_start) < timeo) {
563 if (chip->dev_ready)
564 if (chip->dev_ready(mtd))
565 break;
566 }
567
568 if (!chip->dev_ready(mtd))
569 pr_warn("timeout while waiting for chip to become ready\n");
570 }
571 EXPORT_SYMBOL_GPL(nand_wait_ready);
572
573 /**
574 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
575 * @mtd: MTD device structure
576 * @timeo: Timeout in ms
577 *
578 * Wait for status ready (i.e. command done) or timeout.
579 */
nand_wait_status_ready(struct mtd_info * mtd,unsigned long timeo)580 static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
581 {
582 register struct nand_chip *chip = mtd_to_nand(mtd);
583 u32 time_start;
584 int ret;
585
586 timeo = (CONFIG_SYS_HZ * timeo) / 1000;
587 time_start = get_timer(0);
588 while (get_timer(time_start) < timeo) {
589 u8 status;
590
591 ret = nand_read_data_op(chip, &status, sizeof(status), true);
592 if (ret)
593 return;
594
595 if (status & NAND_STATUS_READY)
596 break;
597 WATCHDOG_RESET();
598 }
599 };
600
601 /**
602 * nand_command - [DEFAULT] Send command to NAND device
603 * @mtd: MTD device structure
604 * @command: the command to be sent
605 * @column: the column address for this command, -1 if none
606 * @page_addr: the page address for this command, -1 if none
607 *
608 * Send command to NAND device. This function is used for small page devices
609 * (512 Bytes per page).
610 */
nand_command(struct mtd_info * mtd,unsigned int command,int column,int page_addr)611 static void nand_command(struct mtd_info *mtd, unsigned int command,
612 int column, int page_addr)
613 {
614 register struct nand_chip *chip = mtd_to_nand(mtd);
615 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
616
617 /* Write out the command to the device */
618 if (command == NAND_CMD_SEQIN) {
619 int readcmd;
620
621 if (column >= mtd->writesize) {
622 /* OOB area */
623 column -= mtd->writesize;
624 readcmd = NAND_CMD_READOOB;
625 } else if (column < 256) {
626 /* First 256 bytes --> READ0 */
627 readcmd = NAND_CMD_READ0;
628 } else {
629 column -= 256;
630 readcmd = NAND_CMD_READ1;
631 }
632 chip->cmd_ctrl(mtd, readcmd, ctrl);
633 ctrl &= ~NAND_CTRL_CHANGE;
634 }
635 chip->cmd_ctrl(mtd, command, ctrl);
636
637 /* Address cycle, when necessary */
638 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
639 /* Serially input address */
640 if (column != -1) {
641 /* Adjust columns for 16 bit buswidth */
642 if (chip->options & NAND_BUSWIDTH_16 &&
643 !nand_opcode_8bits(command))
644 column >>= 1;
645 chip->cmd_ctrl(mtd, column, ctrl);
646 ctrl &= ~NAND_CTRL_CHANGE;
647 }
648 if (page_addr != -1) {
649 chip->cmd_ctrl(mtd, page_addr, ctrl);
650 ctrl &= ~NAND_CTRL_CHANGE;
651 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
652 if (chip->options & NAND_ROW_ADDR_3)
653 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
654 }
655 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
656
657 /*
658 * Program and erase have their own busy handlers status and sequential
659 * in needs no delay
660 */
661 switch (command) {
662
663 case NAND_CMD_PAGEPROG:
664 case NAND_CMD_ERASE1:
665 case NAND_CMD_ERASE2:
666 case NAND_CMD_SEQIN:
667 case NAND_CMD_STATUS:
668 case NAND_CMD_READID:
669 case NAND_CMD_SET_FEATURES:
670 return;
671
672 case NAND_CMD_RESET:
673 if (chip->dev_ready)
674 break;
675 udelay(chip->chip_delay);
676 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
677 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
678 chip->cmd_ctrl(mtd,
679 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
680 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
681 nand_wait_status_ready(mtd, 250);
682 return;
683
684 /* This applies to read commands */
685 default:
686 /*
687 * If we don't have access to the busy pin, we apply the given
688 * command delay
689 */
690 if (!chip->dev_ready) {
691 udelay(chip->chip_delay);
692 return;
693 }
694 }
695 /*
696 * Apply this short delay always to ensure that we do wait tWB in
697 * any case on any machine.
698 */
699 ndelay(100);
700
701 nand_wait_ready(mtd);
702 }
703
704 /**
705 * nand_command_lp - [DEFAULT] Send command to NAND large page device
706 * @mtd: MTD device structure
707 * @command: the command to be sent
708 * @column: the column address for this command, -1 if none
709 * @page_addr: the page address for this command, -1 if none
710 *
711 * Send command to NAND device. This is the version for the new large page
712 * devices. We don't have the separate regions as we have in the small page
713 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
714 */
nand_command_lp(struct mtd_info * mtd,unsigned int command,int column,int page_addr)715 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
716 int column, int page_addr)
717 {
718 register struct nand_chip *chip = mtd_to_nand(mtd);
719
720 /* Emulate NAND_CMD_READOOB */
721 if (command == NAND_CMD_READOOB) {
722 column += mtd->writesize;
723 command = NAND_CMD_READ0;
724 }
725
726 /* Command latch cycle */
727 chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
728
729 if (column != -1 || page_addr != -1) {
730 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
731
732 /* Serially input address */
733 if (column != -1) {
734 /* Adjust columns for 16 bit buswidth */
735 if (chip->options & NAND_BUSWIDTH_16 &&
736 !nand_opcode_8bits(command))
737 column >>= 1;
738 chip->cmd_ctrl(mtd, column, ctrl);
739 ctrl &= ~NAND_CTRL_CHANGE;
740 chip->cmd_ctrl(mtd, column >> 8, ctrl);
741 }
742 if (page_addr != -1) {
743 chip->cmd_ctrl(mtd, page_addr, ctrl);
744 chip->cmd_ctrl(mtd, page_addr >> 8,
745 NAND_NCE | NAND_ALE);
746 if (chip->options & NAND_ROW_ADDR_3)
747 chip->cmd_ctrl(mtd, page_addr >> 16,
748 NAND_NCE | NAND_ALE);
749 }
750 }
751 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
752
753 /*
754 * Program and erase have their own busy handlers status, sequential
755 * in and status need no delay.
756 */
757 switch (command) {
758
759 case NAND_CMD_CACHEDPROG:
760 case NAND_CMD_PAGEPROG:
761 case NAND_CMD_ERASE1:
762 case NAND_CMD_ERASE2:
763 case NAND_CMD_SEQIN:
764 case NAND_CMD_RNDIN:
765 case NAND_CMD_STATUS:
766 case NAND_CMD_READID:
767 case NAND_CMD_SET_FEATURES:
768 return;
769
770 case NAND_CMD_RESET:
771 if (chip->dev_ready)
772 break;
773 udelay(chip->chip_delay);
774 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
775 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
776 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
777 NAND_NCE | NAND_CTRL_CHANGE);
778 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
779 nand_wait_status_ready(mtd, 250);
780 return;
781
782 case NAND_CMD_RNDOUT:
783 /* No ready / busy check necessary */
784 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
785 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
786 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
787 NAND_NCE | NAND_CTRL_CHANGE);
788 return;
789
790 case NAND_CMD_READ0:
791 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
792 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
793 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
794 NAND_NCE | NAND_CTRL_CHANGE);
795
796 /* This applies to read commands */
797 default:
798 /*
799 * If we don't have access to the busy pin, we apply the given
800 * command delay.
801 */
802 if (!chip->dev_ready) {
803 udelay(chip->chip_delay);
804 return;
805 }
806 }
807
808 /*
809 * Apply this short delay always to ensure that we do wait tWB in
810 * any case on any machine.
811 */
812 ndelay(100);
813
814 nand_wait_ready(mtd);
815 }
816
817 /**
818 * panic_nand_get_device - [GENERIC] Get chip for selected access
819 * @chip: the nand chip descriptor
820 * @mtd: MTD device structure
821 * @new_state: the state which is requested
822 *
823 * Used when in panic, no locks are taken.
824 */
panic_nand_get_device(struct nand_chip * chip,struct mtd_info * mtd,int new_state)825 static void panic_nand_get_device(struct nand_chip *chip,
826 struct mtd_info *mtd, int new_state)
827 {
828 /* Hardware controller shared among independent devices */
829 chip->controller->active = chip;
830 chip->state = new_state;
831 }
832
833 /**
834 * nand_get_device - [GENERIC] Get chip for selected access
835 * @mtd: MTD device structure
836 * @new_state: the state which is requested
837 *
838 * Get the device and lock it for exclusive access
839 */
840 static int
nand_get_device(struct mtd_info * mtd,int new_state)841 nand_get_device(struct mtd_info *mtd, int new_state)
842 {
843 struct nand_chip *chip = mtd_to_nand(mtd);
844 chip->state = new_state;
845 return 0;
846 }
847
848 /**
849 * panic_nand_wait - [GENERIC] wait until the command is done
850 * @mtd: MTD device structure
851 * @chip: NAND chip structure
852 * @timeo: timeout
853 *
854 * Wait for command done. This is a helper function for nand_wait used when
855 * we are in interrupt context. May happen when in panic and trying to write
856 * an oops through mtdoops.
857 */
panic_nand_wait(struct mtd_info * mtd,struct nand_chip * chip,unsigned long timeo)858 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
859 unsigned long timeo)
860 {
861 int i;
862 for (i = 0; i < timeo; i++) {
863 if (chip->dev_ready) {
864 if (chip->dev_ready(mtd))
865 break;
866 } else {
867 int ret;
868 u8 status;
869
870 ret = nand_read_data_op(chip, &status, sizeof(status),
871 true);
872 if (ret)
873 return;
874
875 if (status & NAND_STATUS_READY)
876 break;
877 }
878 mdelay(1);
879 }
880 }
881
882 /**
883 * nand_wait - [DEFAULT] wait until the command is done
884 * @mtd: MTD device structure
885 * @chip: NAND chip structure
886 *
887 * Wait for command done. This applies to erase and program only.
888 */
nand_wait(struct mtd_info * mtd,struct nand_chip * chip)889 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
890 {
891 unsigned long timeo = 400;
892 u8 status;
893 int ret;
894
895 led_trigger_event(nand_led_trigger, LED_FULL);
896
897 /*
898 * Apply this short delay always to ensure that we do wait tWB in any
899 * case on any machine.
900 */
901 ndelay(100);
902
903 ret = nand_status_op(chip, NULL);
904 if (ret)
905 return ret;
906
907 u32 timer = (CONFIG_SYS_HZ * timeo) / 1000;
908 u32 time_start;
909
910 time_start = get_timer(0);
911 while (get_timer(time_start) < timer) {
912 if (chip->dev_ready) {
913 if (chip->dev_ready(mtd))
914 break;
915 } else {
916 ret = nand_read_data_op(chip, &status,
917 sizeof(status), true);
918 if (ret)
919 return ret;
920
921 if (status & NAND_STATUS_READY)
922 break;
923 }
924 }
925 led_trigger_event(nand_led_trigger, LED_OFF);
926
927 ret = nand_read_data_op(chip, &status, sizeof(status), true);
928 if (ret)
929 return ret;
930
931 /* This can happen if in case of timeout or buggy dev_ready */
932 WARN_ON(!(status & NAND_STATUS_READY));
933 return status;
934 }
935
936 /**
937 * nand_reset_data_interface - Reset data interface and timings
938 * @chip: The NAND chip
939 * @chipnr: Internal die id
940 *
941 * Reset the Data interface and timings to ONFI mode 0.
942 *
943 * Returns 0 for success or negative error code otherwise.
944 */
nand_reset_data_interface(struct nand_chip * chip,int chipnr)945 static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
946 {
947 struct mtd_info *mtd = nand_to_mtd(chip);
948 const struct nand_data_interface *conf;
949 int ret;
950
951 if (!chip->setup_data_interface)
952 return 0;
953
954 /*
955 * The ONFI specification says:
956 * "
957 * To transition from NV-DDR or NV-DDR2 to the SDR data
958 * interface, the host shall use the Reset (FFh) command
959 * using SDR timing mode 0. A device in any timing mode is
960 * required to recognize Reset (FFh) command issued in SDR
961 * timing mode 0.
962 * "
963 *
964 * Configure the data interface in SDR mode and set the
965 * timings to timing mode 0.
966 */
967
968 conf = nand_get_default_data_interface();
969 ret = chip->setup_data_interface(mtd, chipnr, conf);
970 if (ret)
971 pr_err("Failed to configure data interface to SDR timing mode 0\n");
972
973 return ret;
974 }
975
976 /**
977 * nand_setup_data_interface - Setup the best data interface and timings
978 * @chip: The NAND chip
979 * @chipnr: Internal die id
980 *
981 * Find and configure the best data interface and NAND timings supported by
982 * the chip and the driver.
983 * First tries to retrieve supported timing modes from ONFI information,
984 * and if the NAND chip does not support ONFI, relies on the
985 * ->onfi_timing_mode_default specified in the nand_ids table.
986 *
987 * Returns 0 for success or negative error code otherwise.
988 */
nand_setup_data_interface(struct nand_chip * chip,int chipnr)989 static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
990 {
991 struct mtd_info *mtd = nand_to_mtd(chip);
992 int ret;
993
994 if (!chip->setup_data_interface || !chip->data_interface)
995 return 0;
996
997 /*
998 * Ensure the timing mode has been changed on the chip side
999 * before changing timings on the controller side.
1000 */
1001 if (chip->onfi_version) {
1002 u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
1003 chip->onfi_timing_mode_default,
1004 };
1005
1006 ret = chip->onfi_set_features(mtd, chip,
1007 ONFI_FEATURE_ADDR_TIMING_MODE,
1008 tmode_param);
1009 if (ret)
1010 goto err;
1011 }
1012
1013 ret = chip->setup_data_interface(mtd, chipnr, chip->data_interface);
1014 err:
1015 return ret;
1016 }
1017
1018 /**
1019 * nand_init_data_interface - find the best data interface and timings
1020 * @chip: The NAND chip
1021 *
1022 * Find the best data interface and NAND timings supported by the chip
1023 * and the driver.
1024 * First tries to retrieve supported timing modes from ONFI information,
1025 * and if the NAND chip does not support ONFI, relies on the
1026 * ->onfi_timing_mode_default specified in the nand_ids table. After this
1027 * function nand_chip->data_interface is initialized with the best timing mode
1028 * available.
1029 *
1030 * Returns 0 for success or negative error code otherwise.
1031 */
nand_init_data_interface(struct nand_chip * chip)1032 static int nand_init_data_interface(struct nand_chip *chip)
1033 {
1034 struct mtd_info *mtd = nand_to_mtd(chip);
1035 int modes, mode, ret;
1036
1037 if (!chip->setup_data_interface)
1038 return 0;
1039
1040 /*
1041 * First try to identify the best timings from ONFI parameters and
1042 * if the NAND does not support ONFI, fallback to the default ONFI
1043 * timing mode.
1044 */
1045 modes = onfi_get_async_timing_mode(chip);
1046 if (modes == ONFI_TIMING_MODE_UNKNOWN) {
1047 if (!chip->onfi_timing_mode_default)
1048 return 0;
1049
1050 modes = GENMASK(chip->onfi_timing_mode_default, 0);
1051 }
1052
1053 chip->data_interface = kzalloc(sizeof(*chip->data_interface),
1054 GFP_KERNEL);
1055 if (!chip->data_interface)
1056 return -ENOMEM;
1057
1058 for (mode = fls(modes) - 1; mode >= 0; mode--) {
1059 ret = onfi_init_data_interface(chip, chip->data_interface,
1060 NAND_SDR_IFACE, mode);
1061 if (ret)
1062 continue;
1063
1064 /* Pass -1 to only */
1065 ret = chip->setup_data_interface(mtd,
1066 NAND_DATA_IFACE_CHECK_ONLY,
1067 chip->data_interface);
1068 if (!ret) {
1069 chip->onfi_timing_mode_default = mode;
1070 break;
1071 }
1072 }
1073
1074 return 0;
1075 }
1076
nand_release_data_interface(struct nand_chip * chip)1077 static void __maybe_unused nand_release_data_interface(struct nand_chip *chip)
1078 {
1079 kfree(chip->data_interface);
1080 }
1081
1082 /**
1083 * nand_read_page_op - Do a READ PAGE operation
1084 * @chip: The NAND chip
1085 * @page: page to read
1086 * @offset_in_page: offset within the page
1087 * @buf: buffer used to store the data
1088 * @len: length of the buffer
1089 *
1090 * This function issues a READ PAGE operation.
1091 * This function does not select/unselect the CS line.
1092 *
1093 * Returns 0 on success, a negative error code otherwise.
1094 */
nand_read_page_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,void * buf,unsigned int len)1095 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1096 unsigned int offset_in_page, void *buf, unsigned int len)
1097 {
1098 struct mtd_info *mtd = nand_to_mtd(chip);
1099
1100 if (len && !buf)
1101 return -EINVAL;
1102
1103 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1104 return -EINVAL;
1105
1106 chip->cmdfunc(mtd, NAND_CMD_READ0, offset_in_page, page);
1107 if (len)
1108 chip->read_buf(mtd, buf, len);
1109
1110 return 0;
1111 }
1112 EXPORT_SYMBOL_GPL(nand_read_page_op);
1113
1114 /**
1115 * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1116 * @chip: The NAND chip
1117 * @page: parameter page to read
1118 * @buf: buffer used to store the data
1119 * @len: length of the buffer
1120 *
1121 * This function issues a READ PARAMETER PAGE operation.
1122 * This function does not select/unselect the CS line.
1123 *
1124 * Returns 0 on success, a negative error code otherwise.
1125 */
nand_read_param_page_op(struct nand_chip * chip,u8 page,void * buf,unsigned int len)1126 static int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1127 unsigned int len)
1128 {
1129 struct mtd_info *mtd = nand_to_mtd(chip);
1130 unsigned int i;
1131 u8 *p = buf;
1132
1133 if (len && !buf)
1134 return -EINVAL;
1135
1136 chip->cmdfunc(mtd, NAND_CMD_PARAM, page, -1);
1137 for (i = 0; i < len; i++)
1138 p[i] = chip->read_byte(mtd);
1139
1140 return 0;
1141 }
1142
1143 /**
1144 * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1145 * @chip: The NAND chip
1146 * @offset_in_page: offset within the page
1147 * @buf: buffer used to store the data
1148 * @len: length of the buffer
1149 * @force_8bit: force 8-bit bus access
1150 *
1151 * This function issues a CHANGE READ COLUMN operation.
1152 * This function does not select/unselect the CS line.
1153 *
1154 * Returns 0 on success, a negative error code otherwise.
1155 */
nand_change_read_column_op(struct nand_chip * chip,unsigned int offset_in_page,void * buf,unsigned int len,bool force_8bit)1156 int nand_change_read_column_op(struct nand_chip *chip,
1157 unsigned int offset_in_page, void *buf,
1158 unsigned int len, bool force_8bit)
1159 {
1160 struct mtd_info *mtd = nand_to_mtd(chip);
1161
1162 if (len && !buf)
1163 return -EINVAL;
1164
1165 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1166 return -EINVAL;
1167
1168 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset_in_page, -1);
1169 if (len)
1170 chip->read_buf(mtd, buf, len);
1171
1172 return 0;
1173 }
1174 EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1175
1176 /**
1177 * nand_read_oob_op - Do a READ OOB operation
1178 * @chip: The NAND chip
1179 * @page: page to read
1180 * @offset_in_oob: offset within the OOB area
1181 * @buf: buffer used to store the data
1182 * @len: length of the buffer
1183 *
1184 * This function issues a READ OOB operation.
1185 * This function does not select/unselect the CS line.
1186 *
1187 * Returns 0 on success, a negative error code otherwise.
1188 */
nand_read_oob_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_oob,void * buf,unsigned int len)1189 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1190 unsigned int offset_in_oob, void *buf, unsigned int len)
1191 {
1192 struct mtd_info *mtd = nand_to_mtd(chip);
1193
1194 if (len && !buf)
1195 return -EINVAL;
1196
1197 if (offset_in_oob + len > mtd->oobsize)
1198 return -EINVAL;
1199
1200 chip->cmdfunc(mtd, NAND_CMD_READOOB, offset_in_oob, page);
1201 if (len)
1202 chip->read_buf(mtd, buf, len);
1203
1204 return 0;
1205 }
1206 EXPORT_SYMBOL_GPL(nand_read_oob_op);
1207
1208 /**
1209 * nand_prog_page_begin_op - starts a PROG PAGE operation
1210 * @chip: The NAND chip
1211 * @page: page to write
1212 * @offset_in_page: offset within the page
1213 * @buf: buffer containing the data to write to the page
1214 * @len: length of the buffer
1215 *
1216 * This function issues the first half of a PROG PAGE operation.
1217 * This function does not select/unselect the CS line.
1218 *
1219 * Returns 0 on success, a negative error code otherwise.
1220 */
nand_prog_page_begin_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,const void * buf,unsigned int len)1221 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1222 unsigned int offset_in_page, const void *buf,
1223 unsigned int len)
1224 {
1225 struct mtd_info *mtd = nand_to_mtd(chip);
1226
1227 if (len && !buf)
1228 return -EINVAL;
1229
1230 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1231 return -EINVAL;
1232
1233 chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page);
1234
1235 if (buf)
1236 chip->write_buf(mtd, buf, len);
1237
1238 return 0;
1239 }
1240 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1241
1242 /**
1243 * nand_prog_page_end_op - ends a PROG PAGE operation
1244 * @chip: The NAND chip
1245 *
1246 * This function issues the second half of a PROG PAGE operation.
1247 * This function does not select/unselect the CS line.
1248 *
1249 * Returns 0 on success, a negative error code otherwise.
1250 */
nand_prog_page_end_op(struct nand_chip * chip)1251 int nand_prog_page_end_op(struct nand_chip *chip)
1252 {
1253 struct mtd_info *mtd = nand_to_mtd(chip);
1254 int status;
1255
1256 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1257
1258 status = chip->waitfunc(mtd, chip);
1259 if (status & NAND_STATUS_FAIL)
1260 return -EIO;
1261
1262 return 0;
1263 }
1264 EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1265
1266 /**
1267 * nand_prog_page_op - Do a full PROG PAGE operation
1268 * @chip: The NAND chip
1269 * @page: page to write
1270 * @offset_in_page: offset within the page
1271 * @buf: buffer containing the data to write to the page
1272 * @len: length of the buffer
1273 *
1274 * This function issues a full PROG PAGE operation.
1275 * This function does not select/unselect the CS line.
1276 *
1277 * Returns 0 on success, a negative error code otherwise.
1278 */
nand_prog_page_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,const void * buf,unsigned int len)1279 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1280 unsigned int offset_in_page, const void *buf,
1281 unsigned int len)
1282 {
1283 struct mtd_info *mtd = nand_to_mtd(chip);
1284 int status;
1285
1286 if (!len || !buf)
1287 return -EINVAL;
1288
1289 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1290 return -EINVAL;
1291
1292 chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page);
1293 chip->write_buf(mtd, buf, len);
1294 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1295
1296 status = chip->waitfunc(mtd, chip);
1297 if (status & NAND_STATUS_FAIL)
1298 return -EIO;
1299
1300 return 0;
1301 }
1302 EXPORT_SYMBOL_GPL(nand_prog_page_op);
1303
1304 /**
1305 * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1306 * @chip: The NAND chip
1307 * @offset_in_page: offset within the page
1308 * @buf: buffer containing the data to send to the NAND
1309 * @len: length of the buffer
1310 * @force_8bit: force 8-bit bus access
1311 *
1312 * This function issues a CHANGE WRITE COLUMN operation.
1313 * This function does not select/unselect the CS line.
1314 *
1315 * Returns 0 on success, a negative error code otherwise.
1316 */
nand_change_write_column_op(struct nand_chip * chip,unsigned int offset_in_page,const void * buf,unsigned int len,bool force_8bit)1317 int nand_change_write_column_op(struct nand_chip *chip,
1318 unsigned int offset_in_page,
1319 const void *buf, unsigned int len,
1320 bool force_8bit)
1321 {
1322 struct mtd_info *mtd = nand_to_mtd(chip);
1323
1324 if (len && !buf)
1325 return -EINVAL;
1326
1327 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1328 return -EINVAL;
1329
1330 chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset_in_page, -1);
1331 if (len)
1332 chip->write_buf(mtd, buf, len);
1333
1334 return 0;
1335 }
1336 EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1337
1338 /**
1339 * nand_readid_op - Do a READID operation
1340 * @chip: The NAND chip
1341 * @addr: address cycle to pass after the READID command
1342 * @buf: buffer used to store the ID
1343 * @len: length of the buffer
1344 *
1345 * This function sends a READID command and reads back the ID returned by the
1346 * NAND.
1347 * This function does not select/unselect the CS line.
1348 *
1349 * Returns 0 on success, a negative error code otherwise.
1350 */
nand_readid_op(struct nand_chip * chip,u8 addr,void * buf,unsigned int len)1351 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1352 unsigned int len)
1353 {
1354 struct mtd_info *mtd = nand_to_mtd(chip);
1355 unsigned int i;
1356 u8 *id = buf;
1357
1358 if (len && !buf)
1359 return -EINVAL;
1360
1361 chip->cmdfunc(mtd, NAND_CMD_READID, addr, -1);
1362
1363 for (i = 0; i < len; i++)
1364 id[i] = chip->read_byte(mtd);
1365
1366 return 0;
1367 }
1368 EXPORT_SYMBOL_GPL(nand_readid_op);
1369
1370 /**
1371 * nand_status_op - Do a STATUS operation
1372 * @chip: The NAND chip
1373 * @status: out variable to store the NAND status
1374 *
1375 * This function sends a STATUS command and reads back the status returned by
1376 * the NAND.
1377 * This function does not select/unselect the CS line.
1378 *
1379 * Returns 0 on success, a negative error code otherwise.
1380 */
nand_status_op(struct nand_chip * chip,u8 * status)1381 int nand_status_op(struct nand_chip *chip, u8 *status)
1382 {
1383 struct mtd_info *mtd = nand_to_mtd(chip);
1384
1385 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
1386 if (status)
1387 *status = chip->read_byte(mtd);
1388
1389 return 0;
1390 }
1391 EXPORT_SYMBOL_GPL(nand_status_op);
1392
1393 /**
1394 * nand_exit_status_op - Exit a STATUS operation
1395 * @chip: The NAND chip
1396 *
1397 * This function sends a READ0 command to cancel the effect of the STATUS
1398 * command to avoid reading only the status until a new read command is sent.
1399 *
1400 * This function does not select/unselect the CS line.
1401 *
1402 * Returns 0 on success, a negative error code otherwise.
1403 */
nand_exit_status_op(struct nand_chip * chip)1404 int nand_exit_status_op(struct nand_chip *chip)
1405 {
1406 struct mtd_info *mtd = nand_to_mtd(chip);
1407
1408 chip->cmdfunc(mtd, NAND_CMD_READ0, -1, -1);
1409
1410 return 0;
1411 }
1412 EXPORT_SYMBOL_GPL(nand_exit_status_op);
1413
1414 /**
1415 * nand_erase_op - Do an erase operation
1416 * @chip: The NAND chip
1417 * @eraseblock: block to erase
1418 *
1419 * This function sends an ERASE command and waits for the NAND to be ready
1420 * before returning.
1421 * This function does not select/unselect the CS line.
1422 *
1423 * Returns 0 on success, a negative error code otherwise.
1424 */
nand_erase_op(struct nand_chip * chip,unsigned int eraseblock)1425 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1426 {
1427 struct mtd_info *mtd = nand_to_mtd(chip);
1428 unsigned int page = eraseblock <<
1429 (chip->phys_erase_shift - chip->page_shift);
1430 int status;
1431
1432 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1433 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1434
1435 status = chip->waitfunc(mtd, chip);
1436 if (status < 0)
1437 return status;
1438
1439 if (status & NAND_STATUS_FAIL)
1440 return -EIO;
1441
1442 return 0;
1443 }
1444 EXPORT_SYMBOL_GPL(nand_erase_op);
1445
1446 /**
1447 * nand_set_features_op - Do a SET FEATURES operation
1448 * @chip: The NAND chip
1449 * @feature: feature id
1450 * @data: 4 bytes of data
1451 *
1452 * This function sends a SET FEATURES command and waits for the NAND to be
1453 * ready before returning.
1454 * This function does not select/unselect the CS line.
1455 *
1456 * Returns 0 on success, a negative error code otherwise.
1457 */
nand_set_features_op(struct nand_chip * chip,u8 feature,const void * data)1458 static int nand_set_features_op(struct nand_chip *chip, u8 feature,
1459 const void *data)
1460 {
1461 struct mtd_info *mtd = nand_to_mtd(chip);
1462 const u8 *params = data;
1463 int i, status;
1464
1465 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, feature, -1);
1466 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1467 chip->write_byte(mtd, params[i]);
1468
1469 status = chip->waitfunc(mtd, chip);
1470 if (status & NAND_STATUS_FAIL)
1471 return -EIO;
1472
1473 return 0;
1474 }
1475
1476 /**
1477 * nand_get_features_op - Do a GET FEATURES operation
1478 * @chip: The NAND chip
1479 * @feature: feature id
1480 * @data: 4 bytes of data
1481 *
1482 * This function sends a GET FEATURES command and waits for the NAND to be
1483 * ready before returning.
1484 * This function does not select/unselect the CS line.
1485 *
1486 * Returns 0 on success, a negative error code otherwise.
1487 */
nand_get_features_op(struct nand_chip * chip,u8 feature,void * data)1488 static int nand_get_features_op(struct nand_chip *chip, u8 feature,
1489 void *data)
1490 {
1491 struct mtd_info *mtd = nand_to_mtd(chip);
1492 u8 *params = data;
1493 int i;
1494
1495 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, feature, -1);
1496 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1497 params[i] = chip->read_byte(mtd);
1498
1499 return 0;
1500 }
1501
1502 /**
1503 * nand_reset_op - Do a reset operation
1504 * @chip: The NAND chip
1505 *
1506 * This function sends a RESET command and waits for the NAND to be ready
1507 * before returning.
1508 * This function does not select/unselect the CS line.
1509 *
1510 * Returns 0 on success, a negative error code otherwise.
1511 */
nand_reset_op(struct nand_chip * chip)1512 int nand_reset_op(struct nand_chip *chip)
1513 {
1514 struct mtd_info *mtd = nand_to_mtd(chip);
1515
1516 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1517
1518 return 0;
1519 }
1520 EXPORT_SYMBOL_GPL(nand_reset_op);
1521
1522 /**
1523 * nand_read_data_op - Read data from the NAND
1524 * @chip: The NAND chip
1525 * @buf: buffer used to store the data
1526 * @len: length of the buffer
1527 * @force_8bit: force 8-bit bus access
1528 *
1529 * This function does a raw data read on the bus. Usually used after launching
1530 * another NAND operation like nand_read_page_op().
1531 * This function does not select/unselect the CS line.
1532 *
1533 * Returns 0 on success, a negative error code otherwise.
1534 */
nand_read_data_op(struct nand_chip * chip,void * buf,unsigned int len,bool force_8bit)1535 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1536 bool force_8bit)
1537 {
1538 struct mtd_info *mtd = nand_to_mtd(chip);
1539
1540 if (!len || !buf)
1541 return -EINVAL;
1542
1543 if (force_8bit) {
1544 u8 *p = buf;
1545 unsigned int i;
1546
1547 for (i = 0; i < len; i++)
1548 p[i] = chip->read_byte(mtd);
1549 } else {
1550 chip->read_buf(mtd, buf, len);
1551 }
1552
1553 return 0;
1554 }
1555 EXPORT_SYMBOL_GPL(nand_read_data_op);
1556
1557 /**
1558 * nand_write_data_op - Write data from the NAND
1559 * @chip: The NAND chip
1560 * @buf: buffer containing the data to send on the bus
1561 * @len: length of the buffer
1562 * @force_8bit: force 8-bit bus access
1563 *
1564 * This function does a raw data write on the bus. Usually used after launching
1565 * another NAND operation like nand_write_page_begin_op().
1566 * This function does not select/unselect the CS line.
1567 *
1568 * Returns 0 on success, a negative error code otherwise.
1569 */
nand_write_data_op(struct nand_chip * chip,const void * buf,unsigned int len,bool force_8bit)1570 int nand_write_data_op(struct nand_chip *chip, const void *buf,
1571 unsigned int len, bool force_8bit)
1572 {
1573 struct mtd_info *mtd = nand_to_mtd(chip);
1574
1575 if (!len || !buf)
1576 return -EINVAL;
1577
1578 if (force_8bit) {
1579 const u8 *p = buf;
1580 unsigned int i;
1581
1582 for (i = 0; i < len; i++)
1583 chip->write_byte(mtd, p[i]);
1584 } else {
1585 chip->write_buf(mtd, buf, len);
1586 }
1587
1588 return 0;
1589 }
1590 EXPORT_SYMBOL_GPL(nand_write_data_op);
1591
1592 /**
1593 * nand_reset - Reset and initialize a NAND device
1594 * @chip: The NAND chip
1595 * @chipnr: Internal die id
1596 *
1597 * Returns 0 for success or negative error code otherwise
1598 */
nand_reset(struct nand_chip * chip,int chipnr)1599 int nand_reset(struct nand_chip *chip, int chipnr)
1600 {
1601 struct mtd_info *mtd = nand_to_mtd(chip);
1602 int ret;
1603
1604 ret = nand_reset_data_interface(chip, chipnr);
1605 if (ret)
1606 return ret;
1607
1608 /*
1609 * The CS line has to be released before we can apply the new NAND
1610 * interface settings, hence this weird ->select_chip() dance.
1611 */
1612 chip->select_chip(mtd, chipnr);
1613 ret = nand_reset_op(chip);
1614 chip->select_chip(mtd, -1);
1615 if (ret)
1616 return ret;
1617
1618 chip->select_chip(mtd, chipnr);
1619 ret = nand_setup_data_interface(chip, chipnr);
1620 chip->select_chip(mtd, -1);
1621 if (ret)
1622 return ret;
1623
1624 return 0;
1625 }
1626
1627 /**
1628 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
1629 * @buf: buffer to test
1630 * @len: buffer length
1631 * @bitflips_threshold: maximum number of bitflips
1632 *
1633 * Check if a buffer contains only 0xff, which means the underlying region
1634 * has been erased and is ready to be programmed.
1635 * The bitflips_threshold specify the maximum number of bitflips before
1636 * considering the region is not erased.
1637 * Note: The logic of this function has been extracted from the memweight
1638 * implementation, except that nand_check_erased_buf function exit before
1639 * testing the whole buffer if the number of bitflips exceed the
1640 * bitflips_threshold value.
1641 *
1642 * Returns a positive number of bitflips less than or equal to
1643 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1644 * threshold.
1645 */
nand_check_erased_buf(void * buf,int len,int bitflips_threshold)1646 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
1647 {
1648 const unsigned char *bitmap = buf;
1649 int bitflips = 0;
1650 int weight;
1651
1652 for (; len && ((uintptr_t)bitmap) % sizeof(long);
1653 len--, bitmap++) {
1654 weight = hweight8(*bitmap);
1655 bitflips += BITS_PER_BYTE - weight;
1656 if (unlikely(bitflips > bitflips_threshold))
1657 return -EBADMSG;
1658 }
1659
1660 for (; len >= 4; len -= 4, bitmap += 4) {
1661 weight = hweight32(*((u32 *)bitmap));
1662 bitflips += 32 - weight;
1663 if (unlikely(bitflips > bitflips_threshold))
1664 return -EBADMSG;
1665 }
1666
1667 for (; len > 0; len--, bitmap++) {
1668 weight = hweight8(*bitmap);
1669 bitflips += BITS_PER_BYTE - weight;
1670 if (unlikely(bitflips > bitflips_threshold))
1671 return -EBADMSG;
1672 }
1673
1674 return bitflips;
1675 }
1676
1677 /**
1678 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
1679 * 0xff data
1680 * @data: data buffer to test
1681 * @datalen: data length
1682 * @ecc: ECC buffer
1683 * @ecclen: ECC length
1684 * @extraoob: extra OOB buffer
1685 * @extraooblen: extra OOB length
1686 * @bitflips_threshold: maximum number of bitflips
1687 *
1688 * Check if a data buffer and its associated ECC and OOB data contains only
1689 * 0xff pattern, which means the underlying region has been erased and is
1690 * ready to be programmed.
1691 * The bitflips_threshold specify the maximum number of bitflips before
1692 * considering the region as not erased.
1693 *
1694 * Note:
1695 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
1696 * different from the NAND page size. When fixing bitflips, ECC engines will
1697 * report the number of errors per chunk, and the NAND core infrastructure
1698 * expect you to return the maximum number of bitflips for the whole page.
1699 * This is why you should always use this function on a single chunk and
1700 * not on the whole page. After checking each chunk you should update your
1701 * max_bitflips value accordingly.
1702 * 2/ When checking for bitflips in erased pages you should not only check
1703 * the payload data but also their associated ECC data, because a user might
1704 * have programmed almost all bits to 1 but a few. In this case, we
1705 * shouldn't consider the chunk as erased, and checking ECC bytes prevent
1706 * this case.
1707 * 3/ The extraoob argument is optional, and should be used if some of your OOB
1708 * data are protected by the ECC engine.
1709 * It could also be used if you support subpages and want to attach some
1710 * extra OOB data to an ECC chunk.
1711 *
1712 * Returns a positive number of bitflips less than or equal to
1713 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1714 * threshold. In case of success, the passed buffers are filled with 0xff.
1715 */
nand_check_erased_ecc_chunk(void * data,int datalen,void * ecc,int ecclen,void * extraoob,int extraooblen,int bitflips_threshold)1716 int nand_check_erased_ecc_chunk(void *data, int datalen,
1717 void *ecc, int ecclen,
1718 void *extraoob, int extraooblen,
1719 int bitflips_threshold)
1720 {
1721 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
1722
1723 data_bitflips = nand_check_erased_buf(data, datalen,
1724 bitflips_threshold);
1725 if (data_bitflips < 0)
1726 return data_bitflips;
1727
1728 bitflips_threshold -= data_bitflips;
1729
1730 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
1731 if (ecc_bitflips < 0)
1732 return ecc_bitflips;
1733
1734 bitflips_threshold -= ecc_bitflips;
1735
1736 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
1737 bitflips_threshold);
1738 if (extraoob_bitflips < 0)
1739 return extraoob_bitflips;
1740
1741 if (data_bitflips)
1742 memset(data, 0xff, datalen);
1743
1744 if (ecc_bitflips)
1745 memset(ecc, 0xff, ecclen);
1746
1747 if (extraoob_bitflips)
1748 memset(extraoob, 0xff, extraooblen);
1749
1750 return data_bitflips + ecc_bitflips + extraoob_bitflips;
1751 }
1752 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
1753
1754 /**
1755 * nand_read_page_raw - [INTERN] read raw page data without ecc
1756 * @mtd: mtd info structure
1757 * @chip: nand chip info structure
1758 * @buf: buffer to store read data
1759 * @oob_required: caller requires OOB data read to chip->oob_poi
1760 * @page: page number to read
1761 *
1762 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1763 */
nand_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1764 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1765 uint8_t *buf, int oob_required, int page)
1766 {
1767 int ret;
1768
1769 ret = nand_read_data_op(chip, buf, mtd->writesize, false);
1770 if (ret)
1771 return ret;
1772
1773 if (oob_required) {
1774 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
1775 false);
1776 if (ret)
1777 return ret;
1778 }
1779
1780 return 0;
1781 }
1782
1783 /**
1784 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1785 * @mtd: mtd info structure
1786 * @chip: nand chip info structure
1787 * @buf: buffer to store read data
1788 * @oob_required: caller requires OOB data read to chip->oob_poi
1789 * @page: page number to read
1790 *
1791 * We need a special oob layout and handling even when OOB isn't used.
1792 */
nand_read_page_raw_syndrome(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1793 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1794 struct nand_chip *chip, uint8_t *buf,
1795 int oob_required, int page)
1796 {
1797 int eccsize = chip->ecc.size;
1798 int eccbytes = chip->ecc.bytes;
1799 uint8_t *oob = chip->oob_poi;
1800 int steps, size, ret;
1801
1802 for (steps = chip->ecc.steps; steps > 0; steps--) {
1803 ret = nand_read_data_op(chip, buf, eccsize, false);
1804 if (ret)
1805 return ret;
1806
1807 buf += eccsize;
1808
1809 if (chip->ecc.prepad) {
1810 ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
1811 false);
1812 if (ret)
1813 return ret;
1814
1815 oob += chip->ecc.prepad;
1816 }
1817
1818 ret = nand_read_data_op(chip, oob, eccbytes, false);
1819 if (ret)
1820 return ret;
1821
1822 oob += eccbytes;
1823
1824 if (chip->ecc.postpad) {
1825 ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
1826 false);
1827 if (ret)
1828 return ret;
1829
1830 oob += chip->ecc.postpad;
1831 }
1832 }
1833
1834 size = mtd->oobsize - (oob - chip->oob_poi);
1835 if (size) {
1836 ret = nand_read_data_op(chip, oob, size, false);
1837 if (ret)
1838 return ret;
1839 }
1840
1841 return 0;
1842 }
1843
1844 /**
1845 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1846 * @mtd: mtd info structure
1847 * @chip: nand chip info structure
1848 * @buf: buffer to store read data
1849 * @oob_required: caller requires OOB data read to chip->oob_poi
1850 * @page: page number to read
1851 */
nand_read_page_swecc(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1852 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1853 uint8_t *buf, int oob_required, int page)
1854 {
1855 int i, eccsize = chip->ecc.size;
1856 int eccbytes = chip->ecc.bytes;
1857 int eccsteps = chip->ecc.steps;
1858 uint8_t *p = buf;
1859 uint8_t *ecc_calc = chip->buffers->ecccalc;
1860 uint8_t *ecc_code = chip->buffers->ecccode;
1861 uint32_t *eccpos = chip->ecc.layout->eccpos;
1862 unsigned int max_bitflips = 0;
1863
1864 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1865
1866 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1867 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1868
1869 for (i = 0; i < chip->ecc.total; i++)
1870 ecc_code[i] = chip->oob_poi[eccpos[i]];
1871
1872 eccsteps = chip->ecc.steps;
1873 p = buf;
1874
1875 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1876 int stat;
1877
1878 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1879 if (stat < 0) {
1880 mtd->ecc_stats.failed++;
1881 } else {
1882 mtd->ecc_stats.corrected += stat;
1883 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1884 }
1885 }
1886 return max_bitflips;
1887 }
1888
1889 /**
1890 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1891 * @mtd: mtd info structure
1892 * @chip: nand chip info structure
1893 * @data_offs: offset of requested data within the page
1894 * @readlen: data length
1895 * @bufpoi: buffer to store read data
1896 * @page: page number to read
1897 */
nand_read_subpage(struct mtd_info * mtd,struct nand_chip * chip,uint32_t data_offs,uint32_t readlen,uint8_t * bufpoi,int page)1898 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1899 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1900 int page)
1901 {
1902 int start_step, end_step, num_steps;
1903 uint32_t *eccpos = chip->ecc.layout->eccpos;
1904 uint8_t *p;
1905 int data_col_addr, i, gaps = 0;
1906 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1907 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1908 int index;
1909 unsigned int max_bitflips = 0;
1910 int ret;
1911
1912 /* Column address within the page aligned to ECC size (256bytes) */
1913 start_step = data_offs / chip->ecc.size;
1914 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1915 num_steps = end_step - start_step + 1;
1916 index = start_step * chip->ecc.bytes;
1917
1918 /* Data size aligned to ECC ecc.size */
1919 datafrag_len = num_steps * chip->ecc.size;
1920 eccfrag_len = num_steps * chip->ecc.bytes;
1921
1922 data_col_addr = start_step * chip->ecc.size;
1923 /* If we read not a page aligned data */
1924 if (data_col_addr != 0)
1925 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1926
1927 p = bufpoi + data_col_addr;
1928 ret = nand_read_data_op(chip, p, datafrag_len, false);
1929 if (ret)
1930 return ret;
1931
1932 /* Calculate ECC */
1933 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1934 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1935
1936 /*
1937 * The performance is faster if we position offsets according to
1938 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1939 */
1940 for (i = 0; i < eccfrag_len - 1; i++) {
1941 if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
1942 gaps = 1;
1943 break;
1944 }
1945 }
1946 if (gaps) {
1947 ret = nand_change_read_column_op(chip, mtd->writesize,
1948 chip->oob_poi, mtd->oobsize,
1949 false);
1950 if (ret)
1951 return ret;
1952 } else {
1953 /*
1954 * Send the command to read the particular ECC bytes take care
1955 * about buswidth alignment in read_buf.
1956 */
1957 aligned_pos = eccpos[index] & ~(busw - 1);
1958 aligned_len = eccfrag_len;
1959 if (eccpos[index] & (busw - 1))
1960 aligned_len++;
1961 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1962 aligned_len++;
1963
1964 ret = nand_change_read_column_op(chip,
1965 mtd->writesize + aligned_pos,
1966 &chip->oob_poi[aligned_pos],
1967 aligned_len, false);
1968 if (ret)
1969 return ret;
1970 }
1971
1972 for (i = 0; i < eccfrag_len; i++)
1973 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1974
1975 p = bufpoi + data_col_addr;
1976 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1977 int stat;
1978
1979 stat = chip->ecc.correct(mtd, p,
1980 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1981 if (stat == -EBADMSG &&
1982 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1983 /* check for empty pages with bitflips */
1984 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1985 &chip->buffers->ecccode[i],
1986 chip->ecc.bytes,
1987 NULL, 0,
1988 chip->ecc.strength);
1989 }
1990
1991 if (stat < 0) {
1992 mtd->ecc_stats.failed++;
1993 } else {
1994 mtd->ecc_stats.corrected += stat;
1995 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1996 }
1997 }
1998 return max_bitflips;
1999 }
2000
2001 /**
2002 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
2003 * @mtd: mtd info structure
2004 * @chip: nand chip info structure
2005 * @buf: buffer to store read data
2006 * @oob_required: caller requires OOB data read to chip->oob_poi
2007 * @page: page number to read
2008 *
2009 * Not for syndrome calculating ECC controllers which need a special oob layout.
2010 */
nand_read_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2011 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2012 uint8_t *buf, int oob_required, int page)
2013 {
2014 int i, eccsize = chip->ecc.size;
2015 int eccbytes = chip->ecc.bytes;
2016 int eccsteps = chip->ecc.steps;
2017 uint8_t *p = buf;
2018 uint8_t *ecc_calc = chip->buffers->ecccalc;
2019 uint8_t *ecc_code = chip->buffers->ecccode;
2020 uint32_t *eccpos = chip->ecc.layout->eccpos;
2021 unsigned int max_bitflips = 0;
2022 int ret;
2023
2024 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2025 chip->ecc.hwctl(mtd, NAND_ECC_READ);
2026
2027 ret = nand_read_data_op(chip, p, eccsize, false);
2028 if (ret)
2029 return ret;
2030
2031 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2032 }
2033
2034 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false);
2035 if (ret)
2036 return ret;
2037
2038 for (i = 0; i < chip->ecc.total; i++)
2039 ecc_code[i] = chip->oob_poi[eccpos[i]];
2040
2041 eccsteps = chip->ecc.steps;
2042 p = buf;
2043
2044 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2045 int stat;
2046
2047 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
2048 if (stat == -EBADMSG &&
2049 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2050 /* check for empty pages with bitflips */
2051 stat = nand_check_erased_ecc_chunk(p, eccsize,
2052 &ecc_code[i], eccbytes,
2053 NULL, 0,
2054 chip->ecc.strength);
2055 }
2056
2057 if (stat < 0) {
2058 mtd->ecc_stats.failed++;
2059 } else {
2060 mtd->ecc_stats.corrected += stat;
2061 max_bitflips = max_t(unsigned int, max_bitflips, stat);
2062 }
2063 }
2064 return max_bitflips;
2065 }
2066
2067 /**
2068 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
2069 * @mtd: mtd info structure
2070 * @chip: nand chip info structure
2071 * @buf: buffer to store read data
2072 * @oob_required: caller requires OOB data read to chip->oob_poi
2073 * @page: page number to read
2074 *
2075 * Hardware ECC for large page chips, require OOB to be read first. For this
2076 * ECC mode, the write_page method is re-used from ECC_HW. These methods
2077 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
2078 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
2079 * the data area, by overwriting the NAND manufacturer bad block markings.
2080 */
nand_read_page_hwecc_oob_first(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2081 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
2082 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
2083 {
2084 int i, eccsize = chip->ecc.size;
2085 int eccbytes = chip->ecc.bytes;
2086 int eccsteps = chip->ecc.steps;
2087 uint8_t *p = buf;
2088 uint8_t *ecc_code = chip->buffers->ecccode;
2089 uint32_t *eccpos = chip->ecc.layout->eccpos;
2090 uint8_t *ecc_calc = chip->buffers->ecccalc;
2091 unsigned int max_bitflips = 0;
2092 int ret;
2093
2094 /* Read the OOB area first */
2095 ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
2096 if (ret)
2097 return ret;
2098
2099 ret = nand_read_page_op(chip, page, 0, NULL, 0);
2100 if (ret)
2101 return ret;
2102
2103 for (i = 0; i < chip->ecc.total; i++)
2104 ecc_code[i] = chip->oob_poi[eccpos[i]];
2105
2106 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2107 int stat;
2108
2109 chip->ecc.hwctl(mtd, NAND_ECC_READ);
2110
2111 ret = nand_read_data_op(chip, p, eccsize, false);
2112 if (ret)
2113 return ret;
2114
2115 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2116
2117 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
2118 if (stat == -EBADMSG &&
2119 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2120 /* check for empty pages with bitflips */
2121 stat = nand_check_erased_ecc_chunk(p, eccsize,
2122 &ecc_code[i], eccbytes,
2123 NULL, 0,
2124 chip->ecc.strength);
2125 }
2126
2127 if (stat < 0) {
2128 mtd->ecc_stats.failed++;
2129 } else {
2130 mtd->ecc_stats.corrected += stat;
2131 max_bitflips = max_t(unsigned int, max_bitflips, stat);
2132 }
2133 }
2134 return max_bitflips;
2135 }
2136
2137 /**
2138 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
2139 * @mtd: mtd info structure
2140 * @chip: nand chip info structure
2141 * @buf: buffer to store read data
2142 * @oob_required: caller requires OOB data read to chip->oob_poi
2143 * @page: page number to read
2144 *
2145 * The hw generator calculates the error syndrome automatically. Therefore we
2146 * need a special oob layout and handling.
2147 */
nand_read_page_syndrome(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2148 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
2149 uint8_t *buf, int oob_required, int page)
2150 {
2151 int ret, i, eccsize = chip->ecc.size;
2152 int eccbytes = chip->ecc.bytes;
2153 int eccsteps = chip->ecc.steps;
2154 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
2155 uint8_t *p = buf;
2156 uint8_t *oob = chip->oob_poi;
2157 unsigned int max_bitflips = 0;
2158
2159 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2160 int stat;
2161
2162 chip->ecc.hwctl(mtd, NAND_ECC_READ);
2163
2164 ret = nand_read_data_op(chip, p, eccsize, false);
2165 if (ret)
2166 return ret;
2167
2168 if (chip->ecc.prepad) {
2169 ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
2170 false);
2171 if (ret)
2172 return ret;
2173
2174 oob += chip->ecc.prepad;
2175 }
2176
2177 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
2178
2179 ret = nand_read_data_op(chip, oob, eccbytes, false);
2180 if (ret)
2181 return ret;
2182
2183 stat = chip->ecc.correct(mtd, p, oob, NULL);
2184
2185 oob += eccbytes;
2186
2187 if (chip->ecc.postpad) {
2188 ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
2189 false);
2190 if (ret)
2191 return ret;
2192
2193 oob += chip->ecc.postpad;
2194 }
2195
2196 if (stat == -EBADMSG &&
2197 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2198 /* check for empty pages with bitflips */
2199 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
2200 oob - eccpadbytes,
2201 eccpadbytes,
2202 NULL, 0,
2203 chip->ecc.strength);
2204 }
2205
2206 if (stat < 0) {
2207 mtd->ecc_stats.failed++;
2208 } else {
2209 mtd->ecc_stats.corrected += stat;
2210 max_bitflips = max_t(unsigned int, max_bitflips, stat);
2211 }
2212 }
2213
2214 /* Calculate remaining oob bytes */
2215 i = mtd->oobsize - (oob - chip->oob_poi);
2216 if (i) {
2217 ret = nand_read_data_op(chip, oob, i, false);
2218 if (ret)
2219 return ret;
2220 }
2221
2222 return max_bitflips;
2223 }
2224
2225 /**
2226 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
2227 * @chip: nand chip structure
2228 * @oob: oob destination address
2229 * @ops: oob ops structure
2230 * @len: size of oob to transfer
2231 */
nand_transfer_oob(struct nand_chip * chip,uint8_t * oob,struct mtd_oob_ops * ops,size_t len)2232 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
2233 struct mtd_oob_ops *ops, size_t len)
2234 {
2235 switch (ops->mode) {
2236
2237 case MTD_OPS_PLACE_OOB:
2238 case MTD_OPS_RAW:
2239 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
2240 return oob + len;
2241
2242 case MTD_OPS_AUTO_OOB: {
2243 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2244 uint32_t boffs = 0, roffs = ops->ooboffs;
2245 size_t bytes = 0;
2246
2247 for (; free->length && len; free++, len -= bytes) {
2248 /* Read request not from offset 0? */
2249 if (unlikely(roffs)) {
2250 if (roffs >= free->length) {
2251 roffs -= free->length;
2252 continue;
2253 }
2254 boffs = free->offset + roffs;
2255 bytes = min_t(size_t, len,
2256 (free->length - roffs));
2257 roffs = 0;
2258 } else {
2259 bytes = min_t(size_t, len, free->length);
2260 boffs = free->offset;
2261 }
2262 memcpy(oob, chip->oob_poi + boffs, bytes);
2263 oob += bytes;
2264 }
2265 return oob;
2266 }
2267 default:
2268 BUG();
2269 }
2270 return NULL;
2271 }
2272
2273 /**
2274 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
2275 * @mtd: MTD device structure
2276 * @retry_mode: the retry mode to use
2277 *
2278 * Some vendors supply a special command to shift the Vt threshold, to be used
2279 * when there are too many bitflips in a page (i.e., ECC error). After setting
2280 * a new threshold, the host should retry reading the page.
2281 */
nand_setup_read_retry(struct mtd_info * mtd,int retry_mode)2282 static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
2283 {
2284 struct nand_chip *chip = mtd_to_nand(mtd);
2285
2286 pr_debug("setting READ RETRY mode %d\n", retry_mode);
2287
2288 if (retry_mode >= chip->read_retries)
2289 return -EINVAL;
2290
2291 if (!chip->setup_read_retry)
2292 return -EOPNOTSUPP;
2293
2294 return chip->setup_read_retry(mtd, retry_mode);
2295 }
2296
2297 /**
2298 * nand_do_read_ops - [INTERN] Read data with ECC
2299 * @mtd: MTD device structure
2300 * @from: offset to read from
2301 * @ops: oob ops structure
2302 *
2303 * Internal function. Called with chip held.
2304 */
nand_do_read_ops(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)2305 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
2306 struct mtd_oob_ops *ops)
2307 {
2308 int chipnr, page, realpage, col, bytes, aligned, oob_required;
2309 struct nand_chip *chip = mtd_to_nand(mtd);
2310 int ret = 0;
2311 uint32_t readlen = ops->len;
2312 uint32_t oobreadlen = ops->ooblen;
2313 uint32_t max_oobsize = mtd_oobavail(mtd, ops);
2314
2315 uint8_t *bufpoi, *oob, *buf;
2316 int use_bufpoi;
2317 unsigned int max_bitflips = 0;
2318 int retry_mode = 0;
2319 bool ecc_fail = false;
2320
2321 chipnr = (int)(from >> chip->chip_shift);
2322 chip->select_chip(mtd, chipnr);
2323
2324 realpage = (int)(from >> chip->page_shift);
2325 page = realpage & chip->pagemask;
2326
2327 col = (int)(from & (mtd->writesize - 1));
2328
2329 buf = ops->datbuf;
2330 oob = ops->oobbuf;
2331 oob_required = oob ? 1 : 0;
2332
2333 while (1) {
2334 unsigned int ecc_failures = mtd->ecc_stats.failed;
2335
2336 WATCHDOG_RESET();
2337 bytes = min(mtd->writesize - col, readlen);
2338 aligned = (bytes == mtd->writesize);
2339
2340 if (!aligned)
2341 use_bufpoi = 1;
2342 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2343 use_bufpoi = !IS_ALIGNED((unsigned long)buf,
2344 chip->buf_align);
2345 else
2346 use_bufpoi = 0;
2347
2348 /* Is the current page in the buffer? */
2349 if (realpage != chip->pagebuf || oob) {
2350 bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
2351
2352 if (use_bufpoi && aligned)
2353 pr_debug("%s: using read bounce buffer for buf@%p\n",
2354 __func__, buf);
2355
2356 read_retry:
2357 if (nand_standard_page_accessors(&chip->ecc)) {
2358 ret = nand_read_page_op(chip, page, 0, NULL, 0);
2359 if (ret)
2360 break;
2361 }
2362
2363 /*
2364 * Now read the page into the buffer. Absent an error,
2365 * the read methods return max bitflips per ecc step.
2366 */
2367 if (unlikely(ops->mode == MTD_OPS_RAW))
2368 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
2369 oob_required,
2370 page);
2371 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
2372 !oob)
2373 ret = chip->ecc.read_subpage(mtd, chip,
2374 col, bytes, bufpoi,
2375 page);
2376 else
2377 ret = chip->ecc.read_page(mtd, chip, bufpoi,
2378 oob_required, page);
2379 if (ret < 0) {
2380 if (use_bufpoi)
2381 /* Invalidate page cache */
2382 chip->pagebuf = -1;
2383 break;
2384 }
2385
2386 max_bitflips = max_t(unsigned int, max_bitflips, ret);
2387
2388 /* Transfer not aligned data */
2389 if (use_bufpoi) {
2390 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
2391 !(mtd->ecc_stats.failed - ecc_failures) &&
2392 (ops->mode != MTD_OPS_RAW)) {
2393 chip->pagebuf = realpage;
2394 chip->pagebuf_bitflips = ret;
2395 } else {
2396 /* Invalidate page cache */
2397 chip->pagebuf = -1;
2398 }
2399 memcpy(buf, chip->buffers->databuf + col, bytes);
2400 }
2401
2402 if (unlikely(oob)) {
2403 int toread = min(oobreadlen, max_oobsize);
2404
2405 if (toread) {
2406 oob = nand_transfer_oob(chip,
2407 oob, ops, toread);
2408 oobreadlen -= toread;
2409 }
2410 }
2411
2412 if (chip->options & NAND_NEED_READRDY) {
2413 /* Apply delay or wait for ready/busy pin */
2414 if (!chip->dev_ready)
2415 udelay(chip->chip_delay);
2416 else
2417 nand_wait_ready(mtd);
2418 }
2419
2420 if (mtd->ecc_stats.failed - ecc_failures) {
2421 if (retry_mode + 1 < chip->read_retries) {
2422 retry_mode++;
2423 ret = nand_setup_read_retry(mtd,
2424 retry_mode);
2425 if (ret < 0)
2426 break;
2427
2428 /* Reset failures; retry */
2429 mtd->ecc_stats.failed = ecc_failures;
2430 goto read_retry;
2431 } else {
2432 /* No more retry modes; real failure */
2433 ecc_fail = true;
2434 }
2435 }
2436
2437 buf += bytes;
2438 } else {
2439 memcpy(buf, chip->buffers->databuf + col, bytes);
2440 buf += bytes;
2441 max_bitflips = max_t(unsigned int, max_bitflips,
2442 chip->pagebuf_bitflips);
2443 }
2444
2445 readlen -= bytes;
2446
2447 /* Reset to retry mode 0 */
2448 if (retry_mode) {
2449 ret = nand_setup_read_retry(mtd, 0);
2450 if (ret < 0)
2451 break;
2452 retry_mode = 0;
2453 }
2454
2455 if (!readlen)
2456 break;
2457
2458 /* For subsequent reads align to page boundary */
2459 col = 0;
2460 /* Increment page address */
2461 realpage++;
2462
2463 page = realpage & chip->pagemask;
2464 /* Check, if we cross a chip boundary */
2465 if (!page) {
2466 chipnr++;
2467 chip->select_chip(mtd, -1);
2468 chip->select_chip(mtd, chipnr);
2469 }
2470 }
2471 chip->select_chip(mtd, -1);
2472
2473 ops->retlen = ops->len - (size_t) readlen;
2474 if (oob)
2475 ops->oobretlen = ops->ooblen - oobreadlen;
2476
2477 if (ret < 0)
2478 return ret;
2479
2480 if (ecc_fail)
2481 return -EBADMSG;
2482
2483 return max_bitflips;
2484 }
2485
2486 /**
2487 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
2488 * @mtd: mtd info structure
2489 * @chip: nand chip info structure
2490 * @page: page number to read
2491 */
nand_read_oob_std(struct mtd_info * mtd,struct nand_chip * chip,int page)2492 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
2493 int page)
2494 {
2495 return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
2496 }
2497
2498 /**
2499 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
2500 * with syndromes
2501 * @mtd: mtd info structure
2502 * @chip: nand chip info structure
2503 * @page: page number to read
2504 */
nand_read_oob_syndrome(struct mtd_info * mtd,struct nand_chip * chip,int page)2505 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
2506 int page)
2507 {
2508 int length = mtd->oobsize;
2509 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
2510 int eccsize = chip->ecc.size;
2511 uint8_t *bufpoi = chip->oob_poi;
2512 int i, toread, sndrnd = 0, pos, ret;
2513
2514 ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
2515 if (ret)
2516 return ret;
2517
2518 for (i = 0; i < chip->ecc.steps; i++) {
2519 if (sndrnd) {
2520 int ret;
2521
2522 pos = eccsize + i * (eccsize + chunk);
2523 if (mtd->writesize > 512)
2524 ret = nand_change_read_column_op(chip, pos,
2525 NULL, 0,
2526 false);
2527 else
2528 ret = nand_read_page_op(chip, page, pos, NULL,
2529 0);
2530
2531 if (ret)
2532 return ret;
2533 } else
2534 sndrnd = 1;
2535 toread = min_t(int, length, chunk);
2536
2537 ret = nand_read_data_op(chip, bufpoi, toread, false);
2538 if (ret)
2539 return ret;
2540
2541 bufpoi += toread;
2542 length -= toread;
2543 }
2544 if (length > 0) {
2545 ret = nand_read_data_op(chip, bufpoi, length, false);
2546 if (ret)
2547 return ret;
2548 }
2549
2550 return 0;
2551 }
2552
2553 /**
2554 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
2555 * @mtd: mtd info structure
2556 * @chip: nand chip info structure
2557 * @page: page number to write
2558 */
nand_write_oob_std(struct mtd_info * mtd,struct nand_chip * chip,int page)2559 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
2560 int page)
2561 {
2562 return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
2563 mtd->oobsize);
2564 }
2565
2566 /**
2567 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
2568 * with syndrome - only for large page flash
2569 * @mtd: mtd info structure
2570 * @chip: nand chip info structure
2571 * @page: page number to write
2572 */
nand_write_oob_syndrome(struct mtd_info * mtd,struct nand_chip * chip,int page)2573 static int nand_write_oob_syndrome(struct mtd_info *mtd,
2574 struct nand_chip *chip, int page)
2575 {
2576 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
2577 int eccsize = chip->ecc.size, length = mtd->oobsize;
2578 int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
2579 const uint8_t *bufpoi = chip->oob_poi;
2580
2581 /*
2582 * data-ecc-data-ecc ... ecc-oob
2583 * or
2584 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
2585 */
2586 if (!chip->ecc.prepad && !chip->ecc.postpad) {
2587 pos = steps * (eccsize + chunk);
2588 steps = 0;
2589 } else
2590 pos = eccsize;
2591
2592 ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
2593 if (ret)
2594 return ret;
2595
2596 for (i = 0; i < steps; i++) {
2597 if (sndcmd) {
2598 if (mtd->writesize <= 512) {
2599 uint32_t fill = 0xFFFFFFFF;
2600
2601 len = eccsize;
2602 while (len > 0) {
2603 int num = min_t(int, len, 4);
2604
2605 ret = nand_write_data_op(chip, &fill,
2606 num, false);
2607 if (ret)
2608 return ret;
2609
2610 len -= num;
2611 }
2612 } else {
2613 pos = eccsize + i * (eccsize + chunk);
2614 ret = nand_change_write_column_op(chip, pos,
2615 NULL, 0,
2616 false);
2617 if (ret)
2618 return ret;
2619 }
2620 } else
2621 sndcmd = 1;
2622 len = min_t(int, length, chunk);
2623
2624 ret = nand_write_data_op(chip, bufpoi, len, false);
2625 if (ret)
2626 return ret;
2627
2628 bufpoi += len;
2629 length -= len;
2630 }
2631 if (length > 0) {
2632 ret = nand_write_data_op(chip, bufpoi, length, false);
2633 if (ret)
2634 return ret;
2635 }
2636
2637 return nand_prog_page_end_op(chip);
2638 }
2639
2640 /**
2641 * nand_do_read_oob - [INTERN] NAND read out-of-band
2642 * @mtd: MTD device structure
2643 * @from: offset to read from
2644 * @ops: oob operations description structure
2645 *
2646 * NAND read out-of-band data from the spare area.
2647 */
nand_do_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)2648 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
2649 struct mtd_oob_ops *ops)
2650 {
2651 int page, realpage, chipnr;
2652 struct nand_chip *chip = mtd_to_nand(mtd);
2653 struct mtd_ecc_stats stats;
2654 int readlen = ops->ooblen;
2655 int len;
2656 uint8_t *buf = ops->oobbuf;
2657 int ret = 0;
2658
2659 pr_debug("%s: from = 0x%08Lx, len = %i\n",
2660 __func__, (unsigned long long)from, readlen);
2661
2662 stats = mtd->ecc_stats;
2663
2664 len = mtd_oobavail(mtd, ops);
2665
2666 if (unlikely(ops->ooboffs >= len)) {
2667 pr_debug("%s: attempt to start read outside oob\n",
2668 __func__);
2669 return -EINVAL;
2670 }
2671
2672 /* Do not allow reads past end of device */
2673 if (unlikely(from >= mtd->size ||
2674 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
2675 (from >> chip->page_shift)) * len)) {
2676 pr_debug("%s: attempt to read beyond end of device\n",
2677 __func__);
2678 return -EINVAL;
2679 }
2680
2681 chipnr = (int)(from >> chip->chip_shift);
2682 chip->select_chip(mtd, chipnr);
2683
2684 /* Shift to get page */
2685 realpage = (int)(from >> chip->page_shift);
2686 page = realpage & chip->pagemask;
2687
2688 while (1) {
2689 WATCHDOG_RESET();
2690
2691 if (ops->mode == MTD_OPS_RAW)
2692 ret = chip->ecc.read_oob_raw(mtd, chip, page);
2693 else
2694 ret = chip->ecc.read_oob(mtd, chip, page);
2695
2696 if (ret < 0)
2697 break;
2698
2699 len = min(len, readlen);
2700 buf = nand_transfer_oob(chip, buf, ops, len);
2701
2702 if (chip->options & NAND_NEED_READRDY) {
2703 /* Apply delay or wait for ready/busy pin */
2704 if (!chip->dev_ready)
2705 udelay(chip->chip_delay);
2706 else
2707 nand_wait_ready(mtd);
2708 }
2709
2710 readlen -= len;
2711 if (!readlen)
2712 break;
2713
2714 /* Increment page address */
2715 realpage++;
2716
2717 page = realpage & chip->pagemask;
2718 /* Check, if we cross a chip boundary */
2719 if (!page) {
2720 chipnr++;
2721 chip->select_chip(mtd, -1);
2722 chip->select_chip(mtd, chipnr);
2723 }
2724 }
2725 chip->select_chip(mtd, -1);
2726
2727 ops->oobretlen = ops->ooblen - readlen;
2728
2729 if (ret < 0)
2730 return ret;
2731
2732 if (mtd->ecc_stats.failed - stats.failed)
2733 return -EBADMSG;
2734
2735 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
2736 }
2737
2738 /**
2739 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
2740 * @mtd: MTD device structure
2741 * @from: offset to read from
2742 * @ops: oob operation description structure
2743 *
2744 * NAND read data and/or out-of-band data.
2745 */
nand_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)2746 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
2747 struct mtd_oob_ops *ops)
2748 {
2749 int ret = -ENOTSUPP;
2750
2751 ops->retlen = 0;
2752
2753 /* Do not allow reads past end of device */
2754 if (ops->datbuf && (from + ops->len) > mtd->size) {
2755 pr_debug("%s: attempt to read beyond end of device\n",
2756 __func__);
2757 return -EINVAL;
2758 }
2759
2760 nand_get_device(mtd, FL_READING);
2761
2762 switch (ops->mode) {
2763 case MTD_OPS_PLACE_OOB:
2764 case MTD_OPS_AUTO_OOB:
2765 case MTD_OPS_RAW:
2766 break;
2767
2768 default:
2769 goto out;
2770 }
2771
2772 if (!ops->datbuf)
2773 ret = nand_do_read_oob(mtd, from, ops);
2774 else
2775 ret = nand_do_read_ops(mtd, from, ops);
2776
2777 out:
2778 nand_release_device(mtd);
2779 return ret;
2780 }
2781
2782
2783 /**
2784 * nand_write_page_raw - [INTERN] raw page write function
2785 * @mtd: mtd info structure
2786 * @chip: nand chip info structure
2787 * @buf: data buffer
2788 * @oob_required: must write chip->oob_poi to OOB
2789 * @page: page number to write
2790 *
2791 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2792 */
nand_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2793 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2794 const uint8_t *buf, int oob_required, int page)
2795 {
2796 int ret;
2797
2798 ret = nand_write_data_op(chip, buf, mtd->writesize, false);
2799 if (ret)
2800 return ret;
2801
2802 if (oob_required) {
2803 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
2804 false);
2805 if (ret)
2806 return ret;
2807 }
2808
2809 return 0;
2810 }
2811
2812 /**
2813 * nand_write_page_raw_syndrome - [INTERN] raw page write function
2814 * @mtd: mtd info structure
2815 * @chip: nand chip info structure
2816 * @buf: data buffer
2817 * @oob_required: must write chip->oob_poi to OOB
2818 * @page: page number to write
2819 *
2820 * We need a special oob layout and handling even when ECC isn't checked.
2821 */
nand_write_page_raw_syndrome(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2822 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2823 struct nand_chip *chip,
2824 const uint8_t *buf, int oob_required,
2825 int page)
2826 {
2827 int eccsize = chip->ecc.size;
2828 int eccbytes = chip->ecc.bytes;
2829 uint8_t *oob = chip->oob_poi;
2830 int steps, size, ret;
2831
2832 for (steps = chip->ecc.steps; steps > 0; steps--) {
2833 ret = nand_write_data_op(chip, buf, eccsize, false);
2834 if (ret)
2835 return ret;
2836
2837 buf += eccsize;
2838
2839 if (chip->ecc.prepad) {
2840 ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
2841 false);
2842 if (ret)
2843 return ret;
2844
2845 oob += chip->ecc.prepad;
2846 }
2847
2848 ret = nand_write_data_op(chip, oob, eccbytes, false);
2849 if (ret)
2850 return ret;
2851
2852 oob += eccbytes;
2853
2854 if (chip->ecc.postpad) {
2855 ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
2856 false);
2857 if (ret)
2858 return ret;
2859
2860 oob += chip->ecc.postpad;
2861 }
2862 }
2863
2864 size = mtd->oobsize - (oob - chip->oob_poi);
2865 if (size) {
2866 ret = nand_write_data_op(chip, oob, size, false);
2867 if (ret)
2868 return ret;
2869 }
2870
2871 return 0;
2872 }
2873 /**
2874 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2875 * @mtd: mtd info structure
2876 * @chip: nand chip info structure
2877 * @buf: data buffer
2878 * @oob_required: must write chip->oob_poi to OOB
2879 * @page: page number to write
2880 */
nand_write_page_swecc(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2881 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2882 const uint8_t *buf, int oob_required,
2883 int page)
2884 {
2885 int i, eccsize = chip->ecc.size;
2886 int eccbytes = chip->ecc.bytes;
2887 int eccsteps = chip->ecc.steps;
2888 uint8_t *ecc_calc = chip->buffers->ecccalc;
2889 const uint8_t *p = buf;
2890 uint32_t *eccpos = chip->ecc.layout->eccpos;
2891
2892 /* Software ECC calculation */
2893 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2894 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2895
2896 for (i = 0; i < chip->ecc.total; i++)
2897 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2898
2899 return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
2900 }
2901
2902 /**
2903 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2904 * @mtd: mtd info structure
2905 * @chip: nand chip info structure
2906 * @buf: data buffer
2907 * @oob_required: must write chip->oob_poi to OOB
2908 * @page: page number to write
2909 */
nand_write_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2910 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2911 const uint8_t *buf, int oob_required,
2912 int page)
2913 {
2914 int i, eccsize = chip->ecc.size;
2915 int eccbytes = chip->ecc.bytes;
2916 int eccsteps = chip->ecc.steps;
2917 uint8_t *ecc_calc = chip->buffers->ecccalc;
2918 const uint8_t *p = buf;
2919 uint32_t *eccpos = chip->ecc.layout->eccpos;
2920 int ret;
2921
2922 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2923 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2924
2925 ret = nand_write_data_op(chip, p, eccsize, false);
2926 if (ret)
2927 return ret;
2928
2929 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2930 }
2931
2932 for (i = 0; i < chip->ecc.total; i++)
2933 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2934
2935 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
2936 if (ret)
2937 return ret;
2938
2939 return 0;
2940 }
2941
2942
2943 /**
2944 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
2945 * @mtd: mtd info structure
2946 * @chip: nand chip info structure
2947 * @offset: column address of subpage within the page
2948 * @data_len: data length
2949 * @buf: data buffer
2950 * @oob_required: must write chip->oob_poi to OOB
2951 * @page: page number to write
2952 */
nand_write_subpage_hwecc(struct mtd_info * mtd,struct nand_chip * chip,uint32_t offset,uint32_t data_len,const uint8_t * buf,int oob_required,int page)2953 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2954 struct nand_chip *chip, uint32_t offset,
2955 uint32_t data_len, const uint8_t *buf,
2956 int oob_required, int page)
2957 {
2958 uint8_t *oob_buf = chip->oob_poi;
2959 uint8_t *ecc_calc = chip->buffers->ecccalc;
2960 int ecc_size = chip->ecc.size;
2961 int ecc_bytes = chip->ecc.bytes;
2962 int ecc_steps = chip->ecc.steps;
2963 uint32_t *eccpos = chip->ecc.layout->eccpos;
2964 uint32_t start_step = offset / ecc_size;
2965 uint32_t end_step = (offset + data_len - 1) / ecc_size;
2966 int oob_bytes = mtd->oobsize / ecc_steps;
2967 int step, i;
2968 int ret;
2969
2970 for (step = 0; step < ecc_steps; step++) {
2971 /* configure controller for WRITE access */
2972 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2973
2974 /* write data (untouched subpages already masked by 0xFF) */
2975 ret = nand_write_data_op(chip, buf, ecc_size, false);
2976 if (ret)
2977 return ret;
2978
2979 /* mask ECC of un-touched subpages by padding 0xFF */
2980 if ((step < start_step) || (step > end_step))
2981 memset(ecc_calc, 0xff, ecc_bytes);
2982 else
2983 chip->ecc.calculate(mtd, buf, ecc_calc);
2984
2985 /* mask OOB of un-touched subpages by padding 0xFF */
2986 /* if oob_required, preserve OOB metadata of written subpage */
2987 if (!oob_required || (step < start_step) || (step > end_step))
2988 memset(oob_buf, 0xff, oob_bytes);
2989
2990 buf += ecc_size;
2991 ecc_calc += ecc_bytes;
2992 oob_buf += oob_bytes;
2993 }
2994
2995 /* copy calculated ECC for whole page to chip->buffer->oob */
2996 /* this include masked-value(0xFF) for unwritten subpages */
2997 ecc_calc = chip->buffers->ecccalc;
2998 for (i = 0; i < chip->ecc.total; i++)
2999 chip->oob_poi[eccpos[i]] = ecc_calc[i];
3000
3001 /* write OOB buffer to NAND device */
3002 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3003 if (ret)
3004 return ret;
3005
3006 return 0;
3007 }
3008
3009
3010 /**
3011 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
3012 * @mtd: mtd info structure
3013 * @chip: nand chip info structure
3014 * @buf: data buffer
3015 * @oob_required: must write chip->oob_poi to OOB
3016 * @page: page number to write
3017 *
3018 * The hw generator calculates the error syndrome automatically. Therefore we
3019 * need a special oob layout and handling.
3020 */
nand_write_page_syndrome(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)3021 static int nand_write_page_syndrome(struct mtd_info *mtd,
3022 struct nand_chip *chip,
3023 const uint8_t *buf, int oob_required,
3024 int page)
3025 {
3026 int i, eccsize = chip->ecc.size;
3027 int eccbytes = chip->ecc.bytes;
3028 int eccsteps = chip->ecc.steps;
3029 const uint8_t *p = buf;
3030 uint8_t *oob = chip->oob_poi;
3031 int ret;
3032
3033 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3034 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
3035
3036 ret = nand_write_data_op(chip, p, eccsize, false);
3037 if (ret)
3038 return ret;
3039
3040 if (chip->ecc.prepad) {
3041 ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
3042 false);
3043 if (ret)
3044 return ret;
3045
3046 oob += chip->ecc.prepad;
3047 }
3048
3049 chip->ecc.calculate(mtd, p, oob);
3050
3051 ret = nand_write_data_op(chip, oob, eccbytes, false);
3052 if (ret)
3053 return ret;
3054
3055 oob += eccbytes;
3056
3057 if (chip->ecc.postpad) {
3058 ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
3059 false);
3060 if (ret)
3061 return ret;
3062
3063 oob += chip->ecc.postpad;
3064 }
3065 }
3066
3067 /* Calculate remaining oob bytes */
3068 i = mtd->oobsize - (oob - chip->oob_poi);
3069 if (i) {
3070 ret = nand_write_data_op(chip, oob, i, false);
3071 if (ret)
3072 return ret;
3073 }
3074
3075 return 0;
3076 }
3077
3078 /**
3079 * nand_write_page - [REPLACEABLE] write one page
3080 * @mtd: MTD device structure
3081 * @chip: NAND chip descriptor
3082 * @offset: address offset within the page
3083 * @data_len: length of actual data to be written
3084 * @buf: the data to write
3085 * @oob_required: must write chip->oob_poi to OOB
3086 * @page: page number to write
3087 * @raw: use _raw version of write_page
3088 */
nand_write_page(struct mtd_info * mtd,struct nand_chip * chip,uint32_t offset,int data_len,const uint8_t * buf,int oob_required,int page,int raw)3089 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
3090 uint32_t offset, int data_len, const uint8_t *buf,
3091 int oob_required, int page, int raw)
3092 {
3093 int status, subpage;
3094
3095 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3096 chip->ecc.write_subpage)
3097 subpage = offset || (data_len < mtd->writesize);
3098 else
3099 subpage = 0;
3100
3101 if (nand_standard_page_accessors(&chip->ecc)) {
3102 status = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3103 if (status)
3104 return status;
3105 }
3106
3107 if (unlikely(raw))
3108 status = chip->ecc.write_page_raw(mtd, chip, buf,
3109 oob_required, page);
3110 else if (subpage)
3111 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
3112 buf, oob_required, page);
3113 else
3114 status = chip->ecc.write_page(mtd, chip, buf, oob_required,
3115 page);
3116
3117 if (status < 0)
3118 return status;
3119
3120 if (nand_standard_page_accessors(&chip->ecc))
3121 return nand_prog_page_end_op(chip);
3122
3123 return 0;
3124 }
3125
3126 /**
3127 * nand_fill_oob - [INTERN] Transfer client buffer to oob
3128 * @mtd: MTD device structure
3129 * @oob: oob data buffer
3130 * @len: oob data write length
3131 * @ops: oob ops structure
3132 */
nand_fill_oob(struct mtd_info * mtd,uint8_t * oob,size_t len,struct mtd_oob_ops * ops)3133 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
3134 struct mtd_oob_ops *ops)
3135 {
3136 struct nand_chip *chip = mtd_to_nand(mtd);
3137
3138 /*
3139 * Initialise to all 0xFF, to avoid the possibility of left over OOB
3140 * data from a previous OOB read.
3141 */
3142 memset(chip->oob_poi, 0xff, mtd->oobsize);
3143
3144 switch (ops->mode) {
3145
3146 case MTD_OPS_PLACE_OOB:
3147 case MTD_OPS_RAW:
3148 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
3149 return oob + len;
3150
3151 case MTD_OPS_AUTO_OOB: {
3152 struct nand_oobfree *free = chip->ecc.layout->oobfree;
3153 uint32_t boffs = 0, woffs = ops->ooboffs;
3154 size_t bytes = 0;
3155
3156 for (; free->length && len; free++, len -= bytes) {
3157 /* Write request not from offset 0? */
3158 if (unlikely(woffs)) {
3159 if (woffs >= free->length) {
3160 woffs -= free->length;
3161 continue;
3162 }
3163 boffs = free->offset + woffs;
3164 bytes = min_t(size_t, len,
3165 (free->length - woffs));
3166 woffs = 0;
3167 } else {
3168 bytes = min_t(size_t, len, free->length);
3169 boffs = free->offset;
3170 }
3171 memcpy(chip->oob_poi + boffs, oob, bytes);
3172 oob += bytes;
3173 }
3174 return oob;
3175 }
3176 default:
3177 BUG();
3178 }
3179 return NULL;
3180 }
3181
3182 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
3183
3184 /**
3185 * nand_do_write_ops - [INTERN] NAND write with ECC
3186 * @mtd: MTD device structure
3187 * @to: offset to write to
3188 * @ops: oob operations description structure
3189 *
3190 * NAND write with ECC.
3191 */
nand_do_write_ops(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)3192 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
3193 struct mtd_oob_ops *ops)
3194 {
3195 int chipnr, realpage, page, column;
3196 struct nand_chip *chip = mtd_to_nand(mtd);
3197 uint32_t writelen = ops->len;
3198
3199 uint32_t oobwritelen = ops->ooblen;
3200 uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
3201
3202 uint8_t *oob = ops->oobbuf;
3203 uint8_t *buf = ops->datbuf;
3204 int ret;
3205 int oob_required = oob ? 1 : 0;
3206
3207 #if defined(CONFIG_HIFMC_SPI_NAND)|| defined(CONFIG_HIFMC_NAND)
3208 oob_required = 1;
3209 #endif
3210
3211 ops->retlen = 0;
3212 if (!writelen)
3213 return 0;
3214
3215 /* Reject writes, which are not page aligned */
3216 if (NOTALIGNED(to)) {
3217 pr_notice("%s: attempt to write non page aligned data\n",
3218 __func__);
3219 return -EINVAL;
3220 }
3221
3222 column = to & (mtd->writesize - 1);
3223
3224 chipnr = (int)(to >> chip->chip_shift);
3225 chip->select_chip(mtd, chipnr);
3226
3227 /* Check, if it is write protected */
3228 if (nand_check_wp(mtd)) {
3229 ret = -EIO;
3230 goto err_out;
3231 }
3232
3233 realpage = (int)(to >> chip->page_shift);
3234 page = realpage & chip->pagemask;
3235
3236 /* Invalidate the page cache, when we write to the cached page */
3237 if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
3238 ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
3239 chip->pagebuf = -1;
3240
3241 /* Don't allow multipage oob writes with offset */
3242 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
3243 ret = -EINVAL;
3244 goto err_out;
3245 }
3246
3247 while (1) {
3248 int bytes = mtd->writesize;
3249 uint8_t *wbuf = buf;
3250 int use_bufpoi;
3251 int part_pagewr = (column || writelen < mtd->writesize);
3252
3253 if (part_pagewr)
3254 use_bufpoi = 1;
3255 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
3256 use_bufpoi = !IS_ALIGNED((unsigned long)buf,
3257 chip->buf_align);
3258 else
3259 use_bufpoi = 0;
3260
3261 WATCHDOG_RESET();
3262 /* Partial page write?, or need to use bounce buffer */
3263 if (use_bufpoi) {
3264 pr_debug("%s: using write bounce buffer for buf@%p\n",
3265 __func__, buf);
3266 if (part_pagewr)
3267 bytes = min_t(int, bytes - column, writelen);
3268 chip->pagebuf = -1;
3269 memset(chip->buffers->databuf, 0xff, mtd->writesize);
3270 memcpy(&chip->buffers->databuf[column], buf, bytes);
3271 wbuf = chip->buffers->databuf;
3272 }
3273
3274 if (unlikely(oob)) {
3275 size_t len = min(oobwritelen, oobmaxlen);
3276 oob = nand_fill_oob(mtd, oob, len, ops);
3277 oobwritelen -= len;
3278 } else {
3279 /* We still need to erase leftover OOB data */
3280 memset(chip->oob_poi, 0xff, mtd->oobsize);
3281 }
3282 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
3283 oob_required, page,
3284 (ops->mode == MTD_OPS_RAW));
3285 if (ret)
3286 break;
3287
3288 writelen -= bytes;
3289 if (!writelen)
3290 break;
3291
3292 column = 0;
3293 buf += bytes;
3294 realpage++;
3295
3296 page = realpage & chip->pagemask;
3297 /* Check, if we cross a chip boundary */
3298 if (!page) {
3299 chipnr++;
3300 chip->select_chip(mtd, -1);
3301 chip->select_chip(mtd, chipnr);
3302 }
3303 }
3304
3305 ops->retlen = ops->len - writelen;
3306 if (unlikely(oob))
3307 ops->oobretlen = ops->ooblen;
3308
3309 err_out:
3310 chip->select_chip(mtd, -1);
3311 return ret;
3312 }
3313
3314 /**
3315 * panic_nand_write - [MTD Interface] NAND write with ECC
3316 * @mtd: MTD device structure
3317 * @to: offset to write to
3318 * @len: number of bytes to write
3319 * @retlen: pointer to variable to store the number of written bytes
3320 * @buf: the data to write
3321 *
3322 * NAND write with ECC. Used when performing writes in interrupt context, this
3323 * may for example be called by mtdoops when writing an oops while in panic.
3324 */
panic_nand_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const uint8_t * buf)3325 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
3326 size_t *retlen, const uint8_t *buf)
3327 {
3328 struct nand_chip *chip = mtd_to_nand(mtd);
3329 struct mtd_oob_ops ops;
3330 int ret;
3331
3332 /* Wait for the device to get ready */
3333 panic_nand_wait(mtd, chip, 400);
3334
3335 /* Grab the device */
3336 panic_nand_get_device(chip, mtd, FL_WRITING);
3337
3338 memset(&ops, 0, sizeof(ops));
3339 ops.len = len;
3340 ops.datbuf = (uint8_t *)buf;
3341 ops.mode = MTD_OPS_PLACE_OOB;
3342
3343 ret = nand_do_write_ops(mtd, to, &ops);
3344
3345 *retlen = ops.retlen;
3346 return ret;
3347 }
3348
3349 /**
3350 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
3351 * @mtd: MTD device structure
3352 * @to: offset to write to
3353 * @ops: oob operation description structure
3354 *
3355 * NAND write out-of-band.
3356 */
nand_do_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)3357 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
3358 struct mtd_oob_ops *ops)
3359 {
3360 int chipnr, page, status, len;
3361 struct nand_chip *chip = mtd_to_nand(mtd);
3362
3363 pr_debug("%s: to = 0x%08x, len = %i\n",
3364 __func__, (unsigned int)to, (int)ops->ooblen);
3365
3366 len = mtd_oobavail(mtd, ops);
3367
3368 /* Do not allow write past end of page */
3369 if ((ops->ooboffs + ops->ooblen) > len) {
3370 pr_debug("%s: attempt to write past end of page\n",
3371 __func__);
3372 return -EINVAL;
3373 }
3374
3375 if (unlikely(ops->ooboffs >= len)) {
3376 pr_debug("%s: attempt to start write outside oob\n",
3377 __func__);
3378 return -EINVAL;
3379 }
3380
3381 /* Do not allow write past end of device */
3382 if (unlikely(to >= mtd->size ||
3383 ops->ooboffs + ops->ooblen >
3384 ((mtd->size >> chip->page_shift) -
3385 (to >> chip->page_shift)) * len)) {
3386 pr_debug("%s: attempt to write beyond end of device\n",
3387 __func__);
3388 return -EINVAL;
3389 }
3390
3391 chipnr = (int)(to >> chip->chip_shift);
3392
3393 /*
3394 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
3395 * of my DiskOnChip 2000 test units) will clear the whole data page too
3396 * if we don't do this. I have no clue why, but I seem to have 'fixed'
3397 * it in the doc2000 driver in August 1999. dwmw2.
3398 */
3399 nand_reset(chip, chipnr);
3400
3401 chip->select_chip(mtd, chipnr);
3402
3403 /* Shift to get page */
3404 page = (int)(to >> chip->page_shift);
3405
3406 /* Check, if it is write protected */
3407 if (nand_check_wp(mtd)) {
3408 chip->select_chip(mtd, -1);
3409 return -EROFS;
3410 }
3411
3412 /* Invalidate the page cache, if we write to the cached page */
3413 if (page == chip->pagebuf)
3414 chip->pagebuf = -1;
3415
3416 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
3417
3418 if (ops->mode == MTD_OPS_RAW)
3419 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
3420 else
3421 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
3422
3423 chip->select_chip(mtd, -1);
3424
3425 if (status)
3426 return status;
3427
3428 ops->oobretlen = ops->ooblen;
3429
3430 return 0;
3431 }
3432
3433 /**
3434 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
3435 * @mtd: MTD device structure
3436 * @to: offset to write to
3437 * @ops: oob operation description structure
3438 */
nand_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)3439 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
3440 struct mtd_oob_ops *ops)
3441 {
3442 int ret = -ENOTSUPP;
3443
3444 ops->retlen = 0;
3445
3446 /* Do not allow writes past end of device */
3447 if (ops->datbuf && (to + ops->len) > mtd->size) {
3448 pr_debug("%s: attempt to write beyond end of device\n",
3449 __func__);
3450 return -EINVAL;
3451 }
3452
3453 nand_get_device(mtd, FL_WRITING);
3454
3455 switch (ops->mode) {
3456 case MTD_OPS_PLACE_OOB:
3457 case MTD_OPS_AUTO_OOB:
3458 case MTD_OPS_RAW:
3459 break;
3460
3461 default:
3462 goto out;
3463 }
3464
3465 if (!ops->datbuf)
3466 ret = nand_do_write_oob(mtd, to, ops);
3467 else
3468 ret = nand_do_write_ops(mtd, to, ops);
3469
3470 out:
3471 nand_release_device(mtd);
3472 return ret;
3473 }
3474
3475 /**
3476 * single_erase - [GENERIC] NAND standard block erase command function
3477 * @mtd: MTD device structure
3478 * @page: the page address of the block which will be erased
3479 *
3480 * Standard erase command for NAND chips. Returns NAND status.
3481 */
single_erase(struct mtd_info * mtd,int page)3482 static int single_erase(struct mtd_info *mtd, int page)
3483 {
3484 struct nand_chip *chip = mtd_to_nand(mtd);
3485 unsigned int eraseblock;
3486
3487 /* Send commands to erase a block */
3488 eraseblock = page >> (chip->phys_erase_shift - chip->page_shift);
3489
3490 return nand_erase_op(chip, eraseblock);
3491 }
3492
3493 /**
3494 * nand_erase - [MTD Interface] erase block(s)
3495 * @mtd: MTD device structure
3496 * @instr: erase instruction
3497 *
3498 * Erase one ore more blocks.
3499 */
nand_erase(struct mtd_info * mtd,struct erase_info * instr)3500 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
3501 {
3502 return nand_erase_nand(mtd, instr, 0);
3503 }
3504
3505 /**
3506 * nand_erase_nand - [INTERN] erase block(s)
3507 * @mtd: MTD device structure
3508 * @instr: erase instruction
3509 * @allowbbt: allow erasing the bbt area
3510 *
3511 * Erase one ore more blocks.
3512 */
nand_erase_nand(struct mtd_info * mtd,struct erase_info * instr,int allowbbt)3513 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
3514 int allowbbt)
3515 {
3516 int page, status, pages_per_block, ret, chipnr;
3517 struct nand_chip *chip = mtd_to_nand(mtd);
3518 loff_t len;
3519
3520 pr_debug("%s: start = 0x%012llx, len = %llu\n",
3521 __func__, (unsigned long long)instr->addr,
3522 (unsigned long long)instr->len);
3523
3524 if (check_offs_len(mtd, instr->addr, instr->len))
3525 return -EINVAL;
3526
3527 /* Grab the lock and see if the device is available */
3528 nand_get_device(mtd, FL_ERASING);
3529
3530 /* Shift to get first page */
3531 page = (int)(instr->addr >> chip->page_shift);
3532 chipnr = (int)(instr->addr >> chip->chip_shift);
3533
3534 /* Calculate pages in each block */
3535 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
3536
3537 /* Select the NAND device */
3538 chip->select_chip(mtd, chipnr);
3539
3540 /* Check, if it is write protected */
3541 if (nand_check_wp(mtd)) {
3542 pr_debug("%s: device is write protected!\n",
3543 __func__);
3544 instr->state = MTD_ERASE_FAILED;
3545 goto erase_exit;
3546 }
3547
3548 /* Loop through the pages */
3549 len = instr->len;
3550
3551 instr->state = MTD_ERASING;
3552
3553 while (len) {
3554 WATCHDOG_RESET();
3555
3556 /* Check if we have a bad block, we do not erase bad blocks! */
3557 if (!instr->scrub && nand_block_checkbad(mtd, ((loff_t) page) <<
3558 chip->page_shift, allowbbt)) {
3559 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
3560 __func__, page);
3561 instr->state = MTD_ERASE_FAILED;
3562 goto erase_exit;
3563 }
3564
3565 /*
3566 * Invalidate the page cache, if we erase the block which
3567 * contains the current cached page.
3568 */
3569 if (page <= chip->pagebuf && chip->pagebuf <
3570 (page + pages_per_block))
3571 chip->pagebuf = -1;
3572
3573 status = chip->erase(mtd, page & chip->pagemask);
3574
3575 /* See if block erase succeeded */
3576 if (status & NAND_STATUS_FAIL) {
3577 pr_debug("%s: failed erase, page 0x%08x\n",
3578 __func__, page);
3579 instr->state = MTD_ERASE_FAILED;
3580 instr->fail_addr =
3581 ((loff_t)page << chip->page_shift);
3582 goto erase_exit;
3583 }
3584
3585 /* Increment page address and decrement length */
3586 len -= (1ULL << chip->phys_erase_shift);
3587 page += pages_per_block;
3588
3589 /* Check, if we cross a chip boundary */
3590 if (len && !(page & chip->pagemask)) {
3591 chipnr++;
3592 chip->select_chip(mtd, -1);
3593 chip->select_chip(mtd, chipnr);
3594 }
3595 }
3596 instr->state = MTD_ERASE_DONE;
3597
3598 erase_exit:
3599
3600 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
3601
3602 /* Deselect and wake up anyone waiting on the device */
3603 chip->select_chip(mtd, -1);
3604 nand_release_device(mtd);
3605
3606 /* Do call back function */
3607 if (!ret)
3608 mtd_erase_callback(instr);
3609
3610 /* Return more or less happy */
3611 return ret;
3612 }
3613
3614 /**
3615 * nand_sync - [MTD Interface] sync
3616 * @mtd: MTD device structure
3617 *
3618 * Sync is actually a wait for chip ready function.
3619 */
nand_sync(struct mtd_info * mtd)3620 static void nand_sync(struct mtd_info *mtd)
3621 {
3622 pr_debug("%s: called\n", __func__);
3623
3624 /* Grab the lock and see if the device is available */
3625 nand_get_device(mtd, FL_SYNCING);
3626 /* Release it and go back */
3627 nand_release_device(mtd);
3628 }
3629
3630 /**
3631 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
3632 * @mtd: MTD device structure
3633 * @offs: offset relative to mtd start
3634 */
nand_block_isbad(struct mtd_info * mtd,loff_t offs)3635 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
3636 {
3637 struct nand_chip *chip = mtd_to_nand(mtd);
3638 int chipnr = (int)(offs >> chip->chip_shift);
3639 int ret;
3640
3641 /* Select the NAND device */
3642 nand_get_device(mtd, FL_READING);
3643 chip->select_chip(mtd, chipnr);
3644
3645 ret = nand_block_checkbad(mtd, offs, 0);
3646
3647 chip->select_chip(mtd, -1);
3648 nand_release_device(mtd);
3649
3650 return ret;
3651 }
3652
3653 /**
3654 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
3655 * @mtd: MTD device structure
3656 * @ofs: offset relative to mtd start
3657 */
nand_block_markbad(struct mtd_info * mtd,loff_t ofs)3658 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
3659 {
3660 int ret;
3661
3662 ret = nand_block_isbad(mtd, ofs);
3663 if (ret) {
3664 /* If it was bad already, return success and do nothing */
3665 if (ret > 0)
3666 return 0;
3667 return ret;
3668 }
3669
3670 return nand_block_markbad_lowlevel(mtd, ofs);
3671 }
3672
3673 /**
3674 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
3675 * @mtd: MTD device structure
3676 * @chip: nand chip info structure
3677 * @addr: feature address.
3678 * @subfeature_param: the subfeature parameters, a four bytes array.
3679 */
nand_onfi_set_features(struct mtd_info * mtd,struct nand_chip * chip,int addr,uint8_t * subfeature_param)3680 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
3681 int addr, uint8_t *subfeature_param)
3682 {
3683 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
3684 if (!chip->onfi_version ||
3685 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3686 & ONFI_OPT_CMD_SET_GET_FEATURES))
3687 return -ENOTSUPP;
3688 #endif
3689
3690 return nand_set_features_op(chip, addr, subfeature_param);
3691 }
3692
3693 /**
3694 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
3695 * @mtd: MTD device structure
3696 * @chip: nand chip info structure
3697 * @addr: feature address.
3698 * @subfeature_param: the subfeature parameters, a four bytes array.
3699 */
nand_onfi_get_features(struct mtd_info * mtd,struct nand_chip * chip,int addr,uint8_t * subfeature_param)3700 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
3701 int addr, uint8_t *subfeature_param)
3702 {
3703 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
3704 if (!chip->onfi_version ||
3705 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3706 & ONFI_OPT_CMD_SET_GET_FEATURES))
3707 return -ENOTSUPP;
3708 #endif
3709
3710 return nand_get_features_op(chip, addr, subfeature_param);
3711 }
3712
3713 /* Set default functions */
nand_set_defaults(struct nand_chip * chip,int busw)3714 static void nand_set_defaults(struct nand_chip *chip, int busw)
3715 {
3716 /* check for proper chip_delay setup, set 20us if not */
3717 if (!chip->chip_delay)
3718 chip->chip_delay = 20;
3719
3720 /* check, if a user supplied command function given */
3721 if (chip->cmdfunc == NULL)
3722 chip->cmdfunc = nand_command;
3723
3724 /* check, if a user supplied wait function given */
3725 if (chip->waitfunc == NULL)
3726 chip->waitfunc = nand_wait;
3727
3728 if (!chip->select_chip)
3729 chip->select_chip = nand_select_chip;
3730
3731 /* set for ONFI nand */
3732 if (!chip->onfi_set_features)
3733 chip->onfi_set_features = nand_onfi_set_features;
3734 if (!chip->onfi_get_features)
3735 chip->onfi_get_features = nand_onfi_get_features;
3736
3737 /* If called twice, pointers that depend on busw may need to be reset */
3738 if (!chip->read_byte || chip->read_byte == nand_read_byte)
3739 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
3740 if (!chip->read_word)
3741 chip->read_word = nand_read_word;
3742 if (!chip->block_bad)
3743 chip->block_bad = nand_block_bad;
3744 if (!chip->block_markbad)
3745 chip->block_markbad = nand_default_block_markbad;
3746 if (!chip->write_buf || chip->write_buf == nand_write_buf)
3747 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
3748 if (!chip->write_byte || chip->write_byte == nand_write_byte)
3749 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
3750 if (!chip->read_buf || chip->read_buf == nand_read_buf)
3751 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
3752 if (!chip->scan_bbt)
3753 chip->scan_bbt = nand_default_bbt;
3754
3755 if (!chip->controller) {
3756 chip->controller = &chip->hwcontrol;
3757 spin_lock_init(&chip->controller->lock);
3758 init_waitqueue_head(&chip->controller->wq);
3759 }
3760
3761 if (!chip->buf_align)
3762 chip->buf_align = 1;
3763 }
3764
3765 /* Sanitize ONFI strings so we can safely print them */
sanitize_string(char * s,size_t len)3766 static void sanitize_string(char *s, size_t len)
3767 {
3768 ssize_t i;
3769
3770 /* Null terminate */
3771 s[len - 1] = 0;
3772
3773 /* Remove non printable chars */
3774 for (i = 0; i < len - 1; i++) {
3775 if (s[i] < ' ' || s[i] > 127)
3776 s[i] = '?';
3777 }
3778
3779 /* Remove trailing spaces */
3780 strim(s);
3781 }
3782
onfi_crc16(u16 crc,u8 const * p,size_t len)3783 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3784 {
3785 int i;
3786 while (len--) {
3787 crc ^= *p++ << 8;
3788 for (i = 0; i < 8; i++)
3789 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3790 }
3791
3792 return crc;
3793 }
3794
3795 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
3796 /* Parse the Extended Parameter Page. */
nand_flash_detect_ext_param_page(struct mtd_info * mtd,struct nand_chip * chip,struct nand_onfi_params * p)3797 static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3798 struct nand_chip *chip, struct nand_onfi_params *p)
3799 {
3800 struct onfi_ext_param_page *ep;
3801 struct onfi_ext_section *s;
3802 struct onfi_ext_ecc_info *ecc;
3803 uint8_t *cursor;
3804 int ret;
3805 int len;
3806 int i;
3807
3808 len = le16_to_cpu(p->ext_param_page_length) * 16;
3809 ep = kmalloc(len, GFP_KERNEL);
3810 if (!ep)
3811 return -ENOMEM;
3812
3813 /* Send our own NAND_CMD_PARAM. */
3814 ret = nand_read_param_page_op(chip, 0, NULL, 0);
3815 if (ret)
3816 goto ext_out;
3817
3818 /* Use the Change Read Column command to skip the ONFI param pages. */
3819 ret = nand_change_read_column_op(chip,
3820 sizeof(*p) * p->num_of_param_pages,
3821 ep, len, true);
3822 if (ret)
3823 goto ext_out;
3824
3825 ret = -EINVAL;
3826 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3827 != le16_to_cpu(ep->crc))) {
3828 pr_debug("fail in the CRC.\n");
3829 goto ext_out;
3830 }
3831
3832 /*
3833 * Check the signature.
3834 * Do not strictly follow the ONFI spec, maybe changed in future.
3835 */
3836 if (strncmp((char *)ep->sig, "EPPS", 4)) {
3837 pr_debug("The signature is invalid.\n");
3838 goto ext_out;
3839 }
3840
3841 /* find the ECC section. */
3842 cursor = (uint8_t *)(ep + 1);
3843 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3844 s = ep->sections + i;
3845 if (s->type == ONFI_SECTION_TYPE_2)
3846 break;
3847 cursor += s->length * 16;
3848 }
3849 if (i == ONFI_EXT_SECTION_MAX) {
3850 pr_debug("We can not find the ECC section.\n");
3851 goto ext_out;
3852 }
3853
3854 /* get the info we want. */
3855 ecc = (struct onfi_ext_ecc_info *)cursor;
3856
3857 if (!ecc->codeword_size) {
3858 pr_debug("Invalid codeword size\n");
3859 goto ext_out;
3860 }
3861
3862 chip->ecc_strength_ds = ecc->ecc_bits;
3863 chip->ecc_step_ds = 1 << ecc->codeword_size;
3864 ret = 0;
3865
3866 ext_out:
3867 kfree(ep);
3868 return ret;
3869 }
3870
nand_setup_read_retry_micron(struct mtd_info * mtd,int retry_mode)3871 static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3872 {
3873 struct nand_chip *chip = mtd_to_nand(mtd);
3874 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3875
3876 return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3877 feature);
3878 }
3879
3880 /*
3881 * Configure chip properties from Micron vendor-specific ONFI table
3882 */
nand_onfi_detect_micron(struct nand_chip * chip,struct nand_onfi_params * p)3883 static void nand_onfi_detect_micron(struct nand_chip *chip,
3884 struct nand_onfi_params *p)
3885 {
3886 struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3887
3888 if (le16_to_cpu(p->vendor_revision) < 1)
3889 return;
3890
3891 chip->read_retries = micron->read_retry_options;
3892 chip->setup_read_retry = nand_setup_read_retry_micron;
3893 }
3894
3895 /*
3896 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3897 */
nand_flash_detect_onfi(struct mtd_info * mtd,struct nand_chip * chip,int * busw)3898 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3899 int *busw)
3900 {
3901 struct nand_onfi_params *p = &chip->onfi_params;
3902 char id[4];
3903 int i, ret, val;
3904
3905 /* Try ONFI for unknown chip or LP */
3906 ret = nand_readid_op(chip, 0x20, id, sizeof(id));
3907 if (ret || strncmp(id, "ONFI", 4))
3908 return 0;
3909
3910 ret = nand_read_param_page_op(chip, 0, NULL, 0);
3911 if (ret)
3912 return 0;
3913
3914 for (i = 0; i < 3; i++) {
3915 ret = nand_read_data_op(chip, p, sizeof(*p), true);
3916 if (ret)
3917 return 0;
3918
3919 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3920 le16_to_cpu(p->crc)) {
3921 break;
3922 }
3923 }
3924
3925 if (i == 3) {
3926 pr_err("Could not find valid ONFI parameter page; aborting\n");
3927 return 0;
3928 }
3929
3930 /* Check version */
3931 val = le16_to_cpu(p->revision);
3932 if (val & (1 << 5))
3933 chip->onfi_version = 23;
3934 else if (val & (1 << 4))
3935 chip->onfi_version = 22;
3936 else if (val & (1 << 3))
3937 chip->onfi_version = 21;
3938 else if (val & (1 << 2))
3939 chip->onfi_version = 20;
3940 else if (val & (1 << 1))
3941 chip->onfi_version = 10;
3942
3943 if (!chip->onfi_version) {
3944 pr_info("unsupported ONFI version: %d\n", val);
3945 return 0;
3946 }
3947
3948 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3949 sanitize_string(p->model, sizeof(p->model));
3950 if (!mtd->name)
3951 mtd->name = p->model;
3952
3953 mtd->writesize = le32_to_cpu(p->byte_per_page);
3954
3955 /*
3956 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3957 * (don't ask me who thought of this...). MTD assumes that these
3958 * dimensions will be power-of-2, so just truncate the remaining area.
3959 */
3960 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3961 mtd->erasesize *= mtd->writesize;
3962
3963 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3964
3965 /* See erasesize comment */
3966 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3967 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3968 chip->bits_per_cell = p->bits_per_cell;
3969
3970 if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3971 *busw = NAND_BUSWIDTH_16;
3972 else
3973 *busw = 0;
3974
3975 if (p->ecc_bits != 0xff) {
3976 chip->ecc_strength_ds = p->ecc_bits;
3977 chip->ecc_step_ds = 512;
3978 } else if (chip->onfi_version >= 21 &&
3979 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3980
3981 /*
3982 * The nand_flash_detect_ext_param_page() uses the
3983 * Change Read Column command which maybe not supported
3984 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3985 * now. We do not replace user supplied command function.
3986 */
3987 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3988 chip->cmdfunc = nand_command_lp;
3989
3990 /* The Extended Parameter Page is supported since ONFI 2.1. */
3991 if (nand_flash_detect_ext_param_page(mtd, chip, p))
3992 pr_warn("Failed to detect ONFI extended param page\n");
3993 } else {
3994 pr_warn("Could not retrieve ONFI ECC requirements\n");
3995 }
3996
3997 if (p->jedec_id == NAND_MFR_MICRON)
3998 nand_onfi_detect_micron(chip, p);
3999
4000 return 1;
4001 }
4002 #else
nand_flash_detect_onfi(struct mtd_info * mtd,struct nand_chip * chip,int * busw)4003 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
4004 int *busw)
4005 {
4006 return 0;
4007 }
4008 #endif
4009
4010 /*
4011 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
4012 */
nand_flash_detect_jedec(struct mtd_info * mtd,struct nand_chip * chip,int * busw)4013 static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
4014 int *busw)
4015 {
4016 struct nand_jedec_params *p = &chip->jedec_params;
4017 struct jedec_ecc_info *ecc;
4018 char id[5];
4019 int i, val, ret;
4020
4021 /* Try JEDEC for unknown chip or LP */
4022 ret = nand_readid_op(chip, 0x40, id, sizeof(id));
4023 if (ret || strncmp(id, "JEDEC", sizeof(id)))
4024 return 0;
4025
4026 ret = nand_read_param_page_op(chip, 0x40, NULL, 0);
4027 if (ret)
4028 return 0;
4029
4030 for (i = 0; i < 3; i++) {
4031 ret = nand_read_data_op(chip, p, sizeof(*p), true);
4032 if (ret)
4033 return 0;
4034
4035 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
4036 le16_to_cpu(p->crc))
4037 break;
4038 }
4039
4040 if (i == 3) {
4041 pr_err("Could not find valid JEDEC parameter page; aborting\n");
4042 return 0;
4043 }
4044
4045 /* Check version */
4046 val = le16_to_cpu(p->revision);
4047 if (val & (1 << 2))
4048 chip->jedec_version = 10;
4049 else if (val & (1 << 1))
4050 chip->jedec_version = 1; /* vendor specific version */
4051
4052 if (!chip->jedec_version) {
4053 pr_info("unsupported JEDEC version: %d\n", val);
4054 return 0;
4055 }
4056
4057 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
4058 sanitize_string(p->model, sizeof(p->model));
4059 if (!mtd->name)
4060 mtd->name = p->model;
4061
4062 mtd->writesize = le32_to_cpu(p->byte_per_page);
4063
4064 /* Please reference to the comment for nand_flash_detect_onfi. */
4065 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
4066 mtd->erasesize *= mtd->writesize;
4067
4068 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
4069
4070 /* Please reference to the comment for nand_flash_detect_onfi. */
4071 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
4072 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
4073 chip->bits_per_cell = p->bits_per_cell;
4074
4075 if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
4076 *busw = NAND_BUSWIDTH_16;
4077 else
4078 *busw = 0;
4079
4080 /* ECC info */
4081 ecc = &p->ecc_info[0];
4082
4083 if (ecc->codeword_size >= 9) {
4084 chip->ecc_strength_ds = ecc->ecc_bits;
4085 chip->ecc_step_ds = 1 << ecc->codeword_size;
4086 } else {
4087 pr_warn("Invalid codeword size\n");
4088 }
4089
4090 return 1;
4091 }
4092
4093 /*
4094 * nand_id_has_period - Check if an ID string has a given wraparound period
4095 * @id_data: the ID string
4096 * @arrlen: the length of the @id_data array
4097 * @period: the period of repitition
4098 *
4099 * Check if an ID string is repeated within a given sequence of bytes at
4100 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4101 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4102 * if the repetition has a period of @period; otherwise, returns zero.
4103 */
nand_id_has_period(u8 * id_data,int arrlen,int period)4104 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4105 {
4106 int i, j;
4107 for (i = 0; i < period; i++)
4108 for (j = i + period; j < arrlen; j += period)
4109 if (id_data[i] != id_data[j])
4110 return 0;
4111 return 1;
4112 }
4113
4114 /*
4115 * nand_id_len - Get the length of an ID string returned by CMD_READID
4116 * @id_data: the ID string
4117 * @arrlen: the length of the @id_data array
4118
4119 * Returns the length of the ID string, according to known wraparound/trailing
4120 * zero patterns. If no pattern exists, returns the length of the array.
4121 */
nand_id_len(u8 * id_data,int arrlen)4122 static int nand_id_len(u8 *id_data, int arrlen)
4123 {
4124 int last_nonzero, period;
4125
4126 /* Find last non-zero byte */
4127 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4128 if (id_data[last_nonzero])
4129 break;
4130
4131 /* All zeros */
4132 if (last_nonzero < 0)
4133 return 0;
4134
4135 /* Calculate wraparound period */
4136 for (period = 1; period < arrlen; period++)
4137 if (nand_id_has_period(id_data, arrlen, period))
4138 break;
4139
4140 /* There's a repeated pattern */
4141 if (period < arrlen)
4142 return period;
4143
4144 /* There are trailing zeros */
4145 if (last_nonzero < arrlen - 1)
4146 return last_nonzero + 1;
4147
4148 /* No pattern detected */
4149 return arrlen;
4150 }
4151
4152 /* Extract the bits of per cell from the 3rd byte of the extended ID */
nand_get_bits_per_cell(u8 cellinfo)4153 static int nand_get_bits_per_cell(u8 cellinfo)
4154 {
4155 int bits;
4156
4157 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4158 bits >>= NAND_CI_CELLTYPE_SHIFT;
4159 return bits + 1;
4160 }
4161
4162 /*
4163 * Many new NAND share similar device ID codes, which represent the size of the
4164 * chip. The rest of the parameters must be decoded according to generic or
4165 * manufacturer-specific "extended ID" decoding patterns.
4166 */
nand_decode_ext_id(struct mtd_info * mtd,struct nand_chip * chip,u8 id_data[8],int * busw)4167 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
4168 u8 id_data[8], int *busw)
4169 {
4170 int extid, id_len;
4171 /* The 3rd id byte holds MLC / multichip data */
4172 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4173 /* The 4th id byte is the important one */
4174 extid = id_data[3];
4175
4176 id_len = nand_id_len(id_data, 8);
4177
4178 /*
4179 * Field definitions are in the following datasheets:
4180 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
4181 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
4182 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
4183 *
4184 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
4185 * ID to decide what to do.
4186 */
4187 if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
4188 !nand_is_slc(chip) && id_data[5] != 0x00) {
4189 /* Calc pagesize */
4190 mtd->writesize = 2048 << (extid & 0x03);
4191 extid >>= 2;
4192 /* Calc oobsize */
4193 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
4194 case 1:
4195 mtd->oobsize = 128;
4196 break;
4197 case 2:
4198 mtd->oobsize = 218;
4199 break;
4200 case 3:
4201 mtd->oobsize = 400;
4202 break;
4203 case 4:
4204 mtd->oobsize = 436;
4205 break;
4206 case 5:
4207 mtd->oobsize = 512;
4208 break;
4209 case 6:
4210 mtd->oobsize = 640;
4211 break;
4212 case 7:
4213 default: /* Other cases are "reserved" (unknown) */
4214 mtd->oobsize = 1024;
4215 break;
4216 }
4217 extid >>= 2;
4218 /* Calc blocksize */
4219 mtd->erasesize = (128 * 1024) <<
4220 (((extid >> 1) & 0x04) | (extid & 0x03));
4221 *busw = 0;
4222 } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
4223 !nand_is_slc(chip)) {
4224 unsigned int tmp;
4225
4226 /* Calc pagesize */
4227 mtd->writesize = 2048 << (extid & 0x03);
4228 extid >>= 2;
4229 /* Calc oobsize */
4230 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
4231 case 0:
4232 mtd->oobsize = 128;
4233 break;
4234 case 1:
4235 mtd->oobsize = 224;
4236 break;
4237 case 2:
4238 mtd->oobsize = 448;
4239 break;
4240 case 3:
4241 mtd->oobsize = 64;
4242 break;
4243 case 4:
4244 mtd->oobsize = 32;
4245 break;
4246 case 5:
4247 mtd->oobsize = 16;
4248 break;
4249 default:
4250 mtd->oobsize = 640;
4251 break;
4252 }
4253 extid >>= 2;
4254 /* Calc blocksize */
4255 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
4256 if (tmp < 0x03)
4257 mtd->erasesize = (128 * 1024) << tmp;
4258 else if (tmp == 0x03)
4259 mtd->erasesize = 768 * 1024;
4260 else
4261 mtd->erasesize = (64 * 1024) << tmp;
4262 *busw = 0;
4263 } else {
4264 /* Calc pagesize */
4265 mtd->writesize = 1024 << (extid & 0x03);
4266 extid >>= 2;
4267 /* Calc oobsize */
4268 mtd->oobsize = (8 << (extid & 0x01)) *
4269 (mtd->writesize >> 9);
4270 extid >>= 2;
4271 /* Calc blocksize. Blocksize is multiples of 64KiB */
4272 mtd->erasesize = (64 * 1024) << (extid & 0x03);
4273 extid >>= 2;
4274 /* Get buswidth information */
4275 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
4276
4277 /*
4278 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
4279 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
4280 * follows:
4281 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
4282 * 110b -> 24nm
4283 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
4284 */
4285 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
4286 nand_is_slc(chip) &&
4287 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
4288 !(id_data[4] & 0x80) /* !BENAND */) {
4289 mtd->oobsize = 32 * mtd->writesize >> 9;
4290 }
4291
4292 }
4293 }
4294
4295 /*
4296 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
4297 * decodes a matching ID table entry and assigns the MTD size parameters for
4298 * the chip.
4299 */
nand_decode_id(struct mtd_info * mtd,struct nand_chip * chip,struct nand_flash_dev * type,u8 id_data[8],int * busw)4300 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
4301 struct nand_flash_dev *type, u8 id_data[8],
4302 int *busw)
4303 {
4304 int maf_id = id_data[0];
4305
4306 mtd->erasesize = type->erasesize;
4307 mtd->writesize = type->pagesize;
4308 mtd->oobsize = mtd->writesize / 32;
4309 *busw = type->options & NAND_BUSWIDTH_16;
4310
4311 /* All legacy ID NAND are small-page, SLC */
4312 chip->bits_per_cell = 1;
4313
4314 /*
4315 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
4316 * some Spansion chips have erasesize that conflicts with size
4317 * listed in nand_ids table.
4318 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
4319 */
4320 if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
4321 && id_data[6] == 0x00 && id_data[7] == 0x00
4322 && mtd->writesize == 512) {
4323 mtd->erasesize = 128 * 1024;
4324 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
4325 }
4326 }
4327
4328 /*
4329 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
4330 * heuristic patterns using various detected parameters (e.g., manufacturer,
4331 * page size, cell-type information).
4332 */
nand_decode_bbm_options(struct mtd_info * mtd,struct nand_chip * chip,u8 id_data[8])4333 static void nand_decode_bbm_options(struct mtd_info *mtd,
4334 struct nand_chip *chip, u8 id_data[8])
4335 {
4336 int maf_id = id_data[0];
4337
4338 /* Set the bad block position */
4339 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
4340 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
4341 else
4342 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
4343
4344 /*
4345 * Bad block marker is stored in the last page of each block on Samsung
4346 * and Hynix MLC devices; stored in first two pages of each block on
4347 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
4348 * AMD/Spansion, and Macronix. All others scan only the first page.
4349 */
4350 if (!nand_is_slc(chip) &&
4351 (maf_id == NAND_MFR_SAMSUNG ||
4352 maf_id == NAND_MFR_HYNIX))
4353 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
4354 else if ((nand_is_slc(chip) &&
4355 (maf_id == NAND_MFR_SAMSUNG ||
4356 maf_id == NAND_MFR_HYNIX ||
4357 maf_id == NAND_MFR_TOSHIBA ||
4358 maf_id == NAND_MFR_AMD ||
4359 maf_id == NAND_MFR_MACRONIX)) ||
4360 (mtd->writesize == 2048 &&
4361 maf_id == NAND_MFR_MICRON))
4362 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
4363 }
4364
is_full_id_nand(struct nand_flash_dev * type)4365 static inline bool is_full_id_nand(struct nand_flash_dev *type)
4366 {
4367 return type->id_len;
4368 }
4369
find_full_id_nand(struct mtd_info * mtd,struct nand_chip * chip,struct nand_flash_dev * type,u8 * id_data,int * busw)4370 static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
4371 struct nand_flash_dev *type, u8 *id_data, int *busw)
4372 {
4373 if (!strncmp((char *)type->id, (char *)id_data, type->id_len)) {
4374 mtd->writesize = type->pagesize;
4375 mtd->erasesize = type->erasesize;
4376 mtd->oobsize = type->oobsize;
4377
4378 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4379 chip->chipsize = (uint64_t)type->chipsize << 20;
4380 chip->options |= type->options;
4381 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
4382 chip->ecc_step_ds = NAND_ECC_STEP(type);
4383 chip->onfi_timing_mode_default =
4384 type->onfi_timing_mode_default;
4385
4386 *busw = type->options & NAND_BUSWIDTH_16;
4387
4388 if (!mtd->name)
4389 mtd->name = type->name;
4390
4391 return true;
4392 }
4393 return false;
4394 }
4395
4396 /* The info for hiburn */
4397 static struct mtd_info_ex nand_info_ex = {.type = 0, };
4398
get_nand_info(void)4399 struct mtd_info_ex *get_nand_info(void)
4400 {
4401 return &nand_info_ex;
4402 }
4403 /*
4404 * Get the flash and manufacturer id and lookup if the type is supported.
4405 */
nand_get_flash_type(struct mtd_info * mtd,struct nand_chip * chip,int * maf_id,int * dev_id,struct nand_flash_dev * type)4406 struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
4407 struct nand_chip *chip,
4408 int *maf_id, int *dev_id,
4409 struct nand_flash_dev *type)
4410 {
4411 int busw, ret;
4412 int maf_idx;
4413 u8 id_data[8];
4414
4415 /*
4416 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
4417 * after power-up.
4418 */
4419 ret = nand_reset(chip, 0);
4420 if (ret)
4421 return ERR_PTR(ret);
4422
4423 /* Select the device */
4424 chip->select_chip(mtd, 0);
4425
4426 /* Send the command for reading device ID */
4427 ret = nand_readid_op(chip, 0, id_data, 2);
4428 if (ret)
4429 return ERR_PTR(ret);
4430
4431 /* Read manufacturer and device IDs */
4432 *maf_id = id_data[0];
4433 *dev_id = id_data[1];
4434
4435 /*
4436 * Try again to make sure, as some systems the bus-hold or other
4437 * interface concerns can cause random data which looks like a
4438 * possibly credible NAND flash to appear. If the two results do
4439 * not match, ignore the device completely.
4440 */
4441
4442 /* Read entire ID string */
4443 ret = nand_readid_op(chip, 0, id_data, 8);
4444 if (ret)
4445 return ERR_PTR(ret);
4446
4447 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
4448 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
4449 *maf_id, *dev_id, id_data[0], id_data[1]);
4450 return ERR_PTR(-ENODEV);
4451 }
4452
4453 #ifdef CONFIG_HIFMC
4454 if (get_flash_type)
4455 type = get_flash_type(mtd, chip, id_data);
4456 #endif
4457 if (!type)
4458 type = nand_flash_ids;
4459
4460 for (; type->name != NULL; type++) {
4461 if (is_full_id_nand(type)) {
4462 if (find_full_id_nand(mtd, chip, type, id_data, &busw))
4463 goto ident_done;
4464 } else if (*dev_id == type->dev_id) {
4465 break;
4466 }
4467 }
4468
4469 chip->onfi_version = 0;
4470 if (!type->name || !type->pagesize) {
4471 /* Check if the chip is ONFI compliant */
4472 if (nand_flash_detect_onfi(mtd, chip, &busw))
4473 goto ident_done;
4474
4475 /* Check if the chip is JEDEC compliant */
4476 if (nand_flash_detect_jedec(mtd, chip, &busw))
4477 goto ident_done;
4478 }
4479
4480 if (!type->name)
4481 return ERR_PTR(-ENODEV);
4482
4483 if (!mtd->name)
4484 mtd->name = type->name;
4485
4486 chip->chipsize = (uint64_t)type->chipsize << 20;
4487
4488 if (!type->pagesize) {
4489 /* Decode parameters from extended ID */
4490 nand_decode_ext_id(mtd, chip, id_data, &busw);
4491 } else {
4492 nand_decode_id(mtd, chip, type, id_data, &busw);
4493 }
4494 /* Get chip options */
4495 chip->options |= type->options;
4496
4497 /*
4498 * Check if chip is not a Samsung device. Do not clear the
4499 * options for chips which do not have an extended id.
4500 */
4501 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
4502 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
4503 ident_done:
4504 #ifdef CONFIG_HIFMC
4505 if (nand_oob_resize
4506 && nand_oob_resize(mtd))
4507 return ERR_PTR(-ENODEV);
4508 #endif
4509
4510 /* Try to identify manufacturer */
4511 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
4512 if (nand_manuf_ids[maf_idx].id == *maf_id)
4513 break;
4514 }
4515
4516 if (chip->options & NAND_BUSWIDTH_AUTO) {
4517 WARN_ON(chip->options & NAND_BUSWIDTH_16);
4518 chip->options |= busw;
4519 nand_set_defaults(chip, busw);
4520 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
4521 /*
4522 * Check, if buswidth is correct. Hardware drivers should set
4523 * chip correct!
4524 */
4525 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4526 *maf_id, *dev_id);
4527 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
4528 pr_warn("bus width %d instead %d bit\n",
4529 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
4530 busw ? 16 : 8);
4531 return ERR_PTR(-EINVAL);
4532 }
4533
4534 if (nand_info_ex.type == 0) {
4535 memset(&nand_info_ex, 0, sizeof(struct mtd_info_ex));
4536
4537 nand_info_ex.type = MTD_NANDFLASH;
4538 nand_info_ex.chipsize = chip->chipsize;
4539 nand_info_ex.erasesize = mtd->erasesize;
4540 nand_info_ex.pagesize = mtd->writesize;
4541 /* smaller than nand chip space area */
4542 nand_info_ex.oobsize = mtd->oobsize;
4543
4544 nand_info_ex.ecctype = mtd->ecc_strength;
4545
4546 nand_info_ex.id_length = type->id_len;
4547 nand_info_ex.numchips = 1;
4548
4549 memcpy(nand_info_ex.ids, id_data,
4550 nand_info_ex.id_length);
4551
4552 strncpy(nand_info_ex.name, mtd->name,
4553 sizeof(nand_info_ex.name));
4554
4555 nand_info_ex.name[sizeof(nand_info_ex.name)-1] = '\0';
4556 }
4557
4558 nand_decode_bbm_options(mtd, chip, id_data);
4559
4560 /* Calculate the address shift from the page size */
4561 chip->page_shift = ffs(mtd->writesize) - 1;
4562 /* Convert chipsize to number of pages per chip -1 */
4563 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
4564
4565 chip->bbt_erase_shift = chip->phys_erase_shift =
4566 ffs(mtd->erasesize) - 1;
4567 if (chip->chipsize & 0xffffffff)
4568 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
4569 else {
4570 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
4571 chip->chip_shift += 32 - 1;
4572 }
4573
4574 if (chip->chip_shift - chip->page_shift > 16)
4575 chip->options |= NAND_ROW_ADDR_3;
4576
4577 chip->badblockbits = 8;
4578 chip->erase = single_erase;
4579
4580 /* Do not replace user supplied command function! */
4581 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
4582 chip->cmdfunc = nand_command_lp;
4583
4584 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4585 *maf_id, *dev_id);
4586
4587 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
4588 if (chip->onfi_version)
4589 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
4590 chip->onfi_params.model);
4591 else if (chip->jedec_version)
4592 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
4593 chip->jedec_params.model);
4594 else
4595 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
4596 type->name);
4597 #else
4598 if (chip->jedec_version)
4599 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
4600 chip->jedec_params.model);
4601 else
4602 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
4603 type->name);
4604
4605 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
4606 type->name);
4607 #endif
4608
4609 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
4610 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
4611 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
4612 return type;
4613 }
4614 EXPORT_SYMBOL(nand_get_flash_type);
4615
4616 #if CONFIG_IS_ENABLED(OF_CONTROL)
4617 DECLARE_GLOBAL_DATA_PTR;
4618
nand_dt_init(struct mtd_info * mtd,struct nand_chip * chip,int node)4619 static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip, int node)
4620 {
4621 int ret, ecc_mode = -1, ecc_strength, ecc_step;
4622 const void *blob = gd->fdt_blob;
4623 const char *str;
4624
4625 ret = fdtdec_get_int(blob, node, "nand-bus-width", -1);
4626 if (ret == 16)
4627 chip->options |= NAND_BUSWIDTH_16;
4628
4629 if (fdtdec_get_bool(blob, node, "nand-on-flash-bbt"))
4630 chip->bbt_options |= NAND_BBT_USE_FLASH;
4631
4632 str = fdt_getprop(blob, node, "nand-ecc-mode", NULL);
4633 if (str) {
4634 if (!strcmp(str, "none"))
4635 ecc_mode = NAND_ECC_NONE;
4636 else if (!strcmp(str, "soft"))
4637 ecc_mode = NAND_ECC_SOFT;
4638 else if (!strcmp(str, "hw"))
4639 ecc_mode = NAND_ECC_HW;
4640 else if (!strcmp(str, "hw_syndrome"))
4641 ecc_mode = NAND_ECC_HW_SYNDROME;
4642 else if (!strcmp(str, "hw_oob_first"))
4643 ecc_mode = NAND_ECC_HW_OOB_FIRST;
4644 else if (!strcmp(str, "soft_bch"))
4645 ecc_mode = NAND_ECC_SOFT_BCH;
4646 }
4647
4648
4649 ecc_strength = fdtdec_get_int(blob, node, "nand-ecc-strength", -1);
4650 ecc_step = fdtdec_get_int(blob, node, "nand-ecc-step-size", -1);
4651
4652 if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
4653 (!(ecc_step >= 0) && ecc_strength >= 0)) {
4654 pr_err("must set both strength and step size in DT\n");
4655 return -EINVAL;
4656 }
4657
4658 if (ecc_mode >= 0)
4659 chip->ecc.mode = ecc_mode;
4660
4661 if (ecc_strength >= 0)
4662 chip->ecc.strength = ecc_strength;
4663
4664 if (ecc_step > 0)
4665 chip->ecc.size = ecc_step;
4666
4667 if (fdt_getprop(blob, node, "nand-ecc-maximize", NULL))
4668 chip->ecc.options |= NAND_ECC_MAXIMIZE;
4669
4670 return 0;
4671 }
4672 #else
nand_dt_init(struct mtd_info * mtd,struct nand_chip * chip,int node)4673 static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip, int node)
4674 {
4675 return 0;
4676 }
4677 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
4678
4679 /**
4680 * nand_scan_ident - [NAND Interface] Scan for the NAND device
4681 * @mtd: MTD device structure
4682 * @maxchips: number of chips to scan for
4683 * @table: alternative NAND ID table
4684 *
4685 * This is the first phase of the normal nand_scan() function. It reads the
4686 * flash ID and sets up MTD fields accordingly.
4687 *
4688 */
nand_scan_ident(struct mtd_info * mtd,int maxchips,struct nand_flash_dev * table)4689 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
4690 struct nand_flash_dev *table)
4691 {
4692 int i, nand_maf_id, nand_dev_id;
4693 struct nand_chip *chip = mtd_to_nand(mtd);
4694 struct nand_flash_dev *type;
4695 int ret;
4696
4697 if (chip->flash_node) {
4698 ret = nand_dt_init(mtd, chip, chip->flash_node);
4699 if (ret)
4700 return ret;
4701 }
4702
4703 /* Set the default functions */
4704 nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
4705
4706 /* Read the flash type */
4707 type = nand_get_flash_type(mtd, chip, &nand_maf_id,
4708 &nand_dev_id, table);
4709
4710 if (IS_ERR(type)) {
4711 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
4712 pr_warn("No NAND device found\n");
4713 chip->select_chip(mtd, -1);
4714 return PTR_ERR(type);
4715 }
4716
4717 /* Initialize the ->data_interface field. */
4718 ret = nand_init_data_interface(chip);
4719 if (ret)
4720 return ret;
4721
4722 /*
4723 * Setup the data interface correctly on the chip and controller side.
4724 * This explicit call to nand_setup_data_interface() is only required
4725 * for the first die, because nand_reset() has been called before
4726 * ->data_interface and ->default_onfi_timing_mode were set.
4727 * For the other dies, nand_reset() will automatically switch to the
4728 * best mode for us.
4729 */
4730 ret = nand_setup_data_interface(chip, 0);
4731 if (ret)
4732 return ret;
4733
4734 chip->select_chip(mtd, -1);
4735
4736 /* Check for a chip array */
4737 for (i = 1; i < maxchips; i++) {
4738 u8 id[2];
4739
4740 /* See comment in nand_get_flash_type for reset */
4741 nand_reset(chip, i);
4742
4743 chip->select_chip(mtd, i);
4744 /* Send the command for reading device ID */
4745 nand_readid_op(chip, 0, id, sizeof(id));
4746
4747 /* Read manufacturer and device IDs */
4748 if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
4749 chip->select_chip(mtd, -1);
4750 break;
4751 }
4752 chip->select_chip(mtd, -1);
4753 }
4754
4755 #ifdef DEBUG
4756 if (i > 1)
4757 pr_info("%d chips detected\n", i);
4758 #endif
4759
4760 /* Store the number of chips and calc total size for mtd */
4761 chip->numchips = i;
4762 mtd->size = i * chip->chipsize;
4763
4764 if (nand_info_ex.type != MTD_NANDFLASH)
4765 BUG();
4766
4767 nand_info_ex.numchips = chip->numchips;
4768
4769 printf("Block:%sB ", ultohstr(mtd->erasesize));
4770 printf("Page:%sB ", ultohstr(mtd->writesize));
4771 printf("OOB:%sB ", ultohstr(mtd->oobsize));
4772 printf("ECC:%s ", nand_ecc_name(nand_info_ex.ecctype));
4773 printf("\n");
4774 printf("Chipsize:");
4775
4776 return 0;
4777 }
4778 EXPORT_SYMBOL(nand_scan_ident);
4779
4780 /**
4781 * nand_check_ecc_caps - check the sanity of preset ECC settings
4782 * @chip: nand chip info structure
4783 * @caps: ECC caps info structure
4784 * @oobavail: OOB size that the ECC engine can use
4785 *
4786 * When ECC step size and strength are already set, check if they are supported
4787 * by the controller and the calculated ECC bytes fit within the chip's OOB.
4788 * On success, the calculated ECC bytes is set.
4789 */
nand_check_ecc_caps(struct nand_chip * chip,const struct nand_ecc_caps * caps,int oobavail)4790 int nand_check_ecc_caps(struct nand_chip *chip,
4791 const struct nand_ecc_caps *caps, int oobavail)
4792 {
4793 struct mtd_info *mtd = nand_to_mtd(chip);
4794 const struct nand_ecc_step_info *stepinfo;
4795 int preset_step = chip->ecc.size;
4796 int preset_strength = chip->ecc.strength;
4797 int nsteps, ecc_bytes;
4798 int i, j;
4799
4800 if (WARN_ON(oobavail < 0))
4801 return -EINVAL;
4802
4803 if (!preset_step || !preset_strength)
4804 return -ENODATA;
4805
4806 nsteps = mtd->writesize / preset_step;
4807
4808 for (i = 0; i < caps->nstepinfos; i++) {
4809 stepinfo = &caps->stepinfos[i];
4810
4811 if (stepinfo->stepsize != preset_step)
4812 continue;
4813
4814 for (j = 0; j < stepinfo->nstrengths; j++) {
4815 if (stepinfo->strengths[j] != preset_strength)
4816 continue;
4817
4818 ecc_bytes = caps->calc_ecc_bytes(preset_step,
4819 preset_strength);
4820 if (WARN_ON_ONCE(ecc_bytes < 0))
4821 return ecc_bytes;
4822
4823 if (ecc_bytes * nsteps > oobavail) {
4824 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
4825 preset_step, preset_strength);
4826 return -ENOSPC;
4827 }
4828
4829 chip->ecc.bytes = ecc_bytes;
4830
4831 return 0;
4832 }
4833 }
4834
4835 pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
4836 preset_step, preset_strength);
4837
4838 return -ENOTSUPP;
4839 }
4840 EXPORT_SYMBOL_GPL(nand_check_ecc_caps);
4841
4842 /**
4843 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
4844 * @chip: nand chip info structure
4845 * @caps: ECC engine caps info structure
4846 * @oobavail: OOB size that the ECC engine can use
4847 *
4848 * If a chip's ECC requirement is provided, try to meet it with the least
4849 * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
4850 * On success, the chosen ECC settings are set.
4851 */
nand_match_ecc_req(struct nand_chip * chip,const struct nand_ecc_caps * caps,int oobavail)4852 int nand_match_ecc_req(struct nand_chip *chip,
4853 const struct nand_ecc_caps *caps, int oobavail)
4854 {
4855 struct mtd_info *mtd = nand_to_mtd(chip);
4856 const struct nand_ecc_step_info *stepinfo;
4857 int req_step = chip->ecc_step_ds;
4858 int req_strength = chip->ecc_strength_ds;
4859 int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
4860 int best_step, best_strength, best_ecc_bytes;
4861 int best_ecc_bytes_total = INT_MAX;
4862 int i, j;
4863
4864 if (WARN_ON(oobavail < 0))
4865 return -EINVAL;
4866
4867 /* No information provided by the NAND chip */
4868 if (!req_step || !req_strength)
4869 return -ENOTSUPP;
4870
4871 /* number of correctable bits the chip requires in a page */
4872 req_corr = mtd->writesize / req_step * req_strength;
4873
4874 for (i = 0; i < caps->nstepinfos; i++) {
4875 stepinfo = &caps->stepinfos[i];
4876 step_size = stepinfo->stepsize;
4877
4878 for (j = 0; j < stepinfo->nstrengths; j++) {
4879 strength = stepinfo->strengths[j];
4880
4881 /*
4882 * If both step size and strength are smaller than the
4883 * chip's requirement, it is not easy to compare the
4884 * resulted reliability.
4885 */
4886 if (step_size < req_step && strength < req_strength)
4887 continue;
4888
4889 if (mtd->writesize % step_size)
4890 continue;
4891
4892 nsteps = mtd->writesize / step_size;
4893
4894 ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
4895 if (WARN_ON_ONCE(ecc_bytes < 0))
4896 continue;
4897 ecc_bytes_total = ecc_bytes * nsteps;
4898
4899 if (ecc_bytes_total > oobavail ||
4900 strength * nsteps < req_corr)
4901 continue;
4902
4903 /*
4904 * We assume the best is to meet the chip's requrement
4905 * with the least number of ECC bytes.
4906 */
4907 if (ecc_bytes_total < best_ecc_bytes_total) {
4908 best_ecc_bytes_total = ecc_bytes_total;
4909 best_step = step_size;
4910 best_strength = strength;
4911 best_ecc_bytes = ecc_bytes;
4912 }
4913 }
4914 }
4915
4916 if (best_ecc_bytes_total == INT_MAX)
4917 return -ENOTSUPP;
4918
4919 chip->ecc.size = best_step;
4920 chip->ecc.strength = best_strength;
4921 chip->ecc.bytes = best_ecc_bytes;
4922
4923 return 0;
4924 }
4925 EXPORT_SYMBOL_GPL(nand_match_ecc_req);
4926
4927 /**
4928 * nand_maximize_ecc - choose the max ECC strength available
4929 * @chip: nand chip info structure
4930 * @caps: ECC engine caps info structure
4931 * @oobavail: OOB size that the ECC engine can use
4932 *
4933 * Choose the max ECC strength that is supported on the controller, and can fit
4934 * within the chip's OOB. On success, the chosen ECC settings are set.
4935 */
nand_maximize_ecc(struct nand_chip * chip,const struct nand_ecc_caps * caps,int oobavail)4936 int nand_maximize_ecc(struct nand_chip *chip,
4937 const struct nand_ecc_caps *caps, int oobavail)
4938 {
4939 struct mtd_info *mtd = nand_to_mtd(chip);
4940 const struct nand_ecc_step_info *stepinfo;
4941 int step_size, strength, nsteps, ecc_bytes, corr;
4942 int best_corr = 0;
4943 int best_step = 0;
4944 int best_strength, best_ecc_bytes;
4945 int i, j;
4946
4947 if (WARN_ON(oobavail < 0))
4948 return -EINVAL;
4949
4950 for (i = 0; i < caps->nstepinfos; i++) {
4951 stepinfo = &caps->stepinfos[i];
4952 step_size = stepinfo->stepsize;
4953
4954 /* If chip->ecc.size is already set, respect it */
4955 if (chip->ecc.size && step_size != chip->ecc.size)
4956 continue;
4957
4958 for (j = 0; j < stepinfo->nstrengths; j++) {
4959 strength = stepinfo->strengths[j];
4960
4961 if (mtd->writesize % step_size)
4962 continue;
4963
4964 nsteps = mtd->writesize / step_size;
4965
4966 ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
4967 if (WARN_ON_ONCE(ecc_bytes < 0))
4968 continue;
4969
4970 if (ecc_bytes * nsteps > oobavail)
4971 continue;
4972
4973 corr = strength * nsteps;
4974
4975 /*
4976 * If the number of correctable bits is the same,
4977 * bigger step_size has more reliability.
4978 */
4979 if (corr > best_corr ||
4980 (corr == best_corr && step_size > best_step)) {
4981 best_corr = corr;
4982 best_step = step_size;
4983 best_strength = strength;
4984 best_ecc_bytes = ecc_bytes;
4985 }
4986 }
4987 }
4988
4989 if (!best_corr)
4990 return -ENOTSUPP;
4991
4992 chip->ecc.size = best_step;
4993 chip->ecc.strength = best_strength;
4994 chip->ecc.bytes = best_ecc_bytes;
4995
4996 return 0;
4997 }
4998 EXPORT_SYMBOL_GPL(nand_maximize_ecc);
4999
5000 /*
5001 * Check if the chip configuration meet the datasheet requirements.
5002
5003 * If our configuration corrects A bits per B bytes and the minimum
5004 * required correction level is X bits per Y bytes, then we must ensure
5005 * both of the following are true:
5006 *
5007 * (1) A / B >= X / Y
5008 * (2) A >= X
5009 *
5010 * Requirement (1) ensures we can correct for the required bitflip density.
5011 * Requirement (2) ensures we can correct even when all bitflips are clumped
5012 * in the same sector.
5013 */
nand_ecc_strength_good(struct mtd_info * mtd)5014 static bool nand_ecc_strength_good(struct mtd_info *mtd)
5015 {
5016 struct nand_chip *chip = mtd_to_nand(mtd);
5017 struct nand_ecc_ctrl *ecc = &chip->ecc;
5018 int corr, ds_corr;
5019
5020 if (ecc->size == 0 || chip->ecc_step_ds == 0)
5021 /* Not enough information */
5022 return true;
5023
5024 /*
5025 * We get the number of corrected bits per page to compare
5026 * the correction density.
5027 */
5028 corr = (mtd->writesize * ecc->strength) / ecc->size;
5029 ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
5030
5031 return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
5032 }
5033
invalid_ecc_page_accessors(struct nand_chip * chip)5034 static bool invalid_ecc_page_accessors(struct nand_chip *chip)
5035 {
5036 struct nand_ecc_ctrl *ecc = &chip->ecc;
5037
5038 if (nand_standard_page_accessors(ecc))
5039 return false;
5040
5041 /*
5042 * NAND_ECC_CUSTOM_PAGE_ACCESS flag is set, make sure the NAND
5043 * controller driver implements all the page accessors because
5044 * default helpers are not suitable when the core does not
5045 * send the READ0/PAGEPROG commands.
5046 */
5047 return (!ecc->read_page || !ecc->write_page ||
5048 !ecc->read_page_raw || !ecc->write_page_raw ||
5049 (NAND_HAS_SUBPAGE_READ(chip) && !ecc->read_subpage) ||
5050 (NAND_HAS_SUBPAGE_WRITE(chip) && !ecc->write_subpage &&
5051 ecc->hwctl && ecc->calculate));
5052 }
5053
5054 /**
5055 * nand_scan_tail - [NAND Interface] Scan for the NAND device
5056 * @mtd: MTD device structure
5057 *
5058 * This is the second phase of the normal nand_scan() function. It fills out
5059 * all the uninitialized function pointers with the defaults and scans for a
5060 * bad block table if appropriate.
5061 */
nand_scan_tail(struct mtd_info * mtd)5062 int nand_scan_tail(struct mtd_info *mtd)
5063 {
5064 int i;
5065 struct nand_chip *chip = mtd_to_nand(mtd);
5066 struct nand_ecc_ctrl *ecc = &chip->ecc;
5067 struct nand_buffers *nbuf;
5068
5069 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
5070 BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
5071 !(chip->bbt_options & NAND_BBT_USE_FLASH));
5072
5073 if (invalid_ecc_page_accessors(chip)) {
5074 pr_err("Invalid ECC page accessors setup\n");
5075 return -EINVAL;
5076 }
5077
5078 if (!(chip->options & NAND_OWN_BUFFERS)) {
5079 nbuf = kzalloc(sizeof(struct nand_buffers), GFP_KERNEL);
5080 chip->buffers = nbuf;
5081 } else {
5082 if (!chip->buffers)
5083 return -ENOMEM;
5084 }
5085
5086 /* Set the internal oob buffer location, just after the page data */
5087 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
5088
5089 /*
5090 * If no default placement scheme is given, select an appropriate one.
5091 */
5092 if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
5093 switch (mtd->oobsize) {
5094 #ifndef CONFIG_SYS_NAND_DRIVER_ECC_LAYOUT
5095 case 8:
5096 ecc->layout = &nand_oob_8;
5097 break;
5098 case 16:
5099 ecc->layout = &nand_oob_16;
5100 break;
5101 case 64:
5102 ecc->layout = &nand_oob_64;
5103 break;
5104 case 128:
5105 ecc->layout = &nand_oob_128;
5106 break;
5107 #endif
5108 default:
5109 pr_warn("No oob scheme defined for oobsize %d\n",
5110 mtd->oobsize);
5111 BUG();
5112 }
5113 }
5114
5115 if (!chip->write_page)
5116 chip->write_page = nand_write_page;
5117
5118 /*
5119 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
5120 * selected and we have 256 byte pagesize fallback to software ECC
5121 */
5122
5123 switch (ecc->mode) {
5124 case NAND_ECC_HW_OOB_FIRST:
5125 /* Similar to NAND_ECC_HW, but a separate read_page handle */
5126 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
5127 pr_warn("No ECC functions supplied; hardware ECC not possible\n");
5128 BUG();
5129 }
5130 if (!ecc->read_page)
5131 ecc->read_page = nand_read_page_hwecc_oob_first;
5132
5133 case NAND_ECC_HW:
5134 /* Use standard hwecc read page function? */
5135 if (!ecc->read_page)
5136 ecc->read_page = nand_read_page_hwecc;
5137 if (!ecc->write_page)
5138 ecc->write_page = nand_write_page_hwecc;
5139 if (!ecc->read_page_raw)
5140 ecc->read_page_raw = nand_read_page_raw;
5141 if (!ecc->write_page_raw)
5142 ecc->write_page_raw = nand_write_page_raw;
5143 if (!ecc->read_oob)
5144 ecc->read_oob = nand_read_oob_std;
5145 if (!ecc->write_oob)
5146 ecc->write_oob = nand_write_oob_std;
5147 if (!ecc->read_subpage)
5148 ecc->read_subpage = nand_read_subpage;
5149 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5150 ecc->write_subpage = nand_write_subpage_hwecc;
5151
5152 case NAND_ECC_HW_SYNDROME:
5153 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5154 (!ecc->read_page ||
5155 ecc->read_page == nand_read_page_hwecc ||
5156 !ecc->write_page ||
5157 ecc->write_page == nand_write_page_hwecc)) {
5158 pr_warn("No ECC functions supplied; hardware ECC not possible\n");
5159 BUG();
5160 }
5161 /* Use standard syndrome read/write page function? */
5162 if (!ecc->read_page)
5163 ecc->read_page = nand_read_page_syndrome;
5164 if (!ecc->write_page)
5165 ecc->write_page = nand_write_page_syndrome;
5166 if (!ecc->read_page_raw)
5167 ecc->read_page_raw = nand_read_page_raw_syndrome;
5168 if (!ecc->write_page_raw)
5169 ecc->write_page_raw = nand_write_page_raw_syndrome;
5170 if (!ecc->read_oob)
5171 ecc->read_oob = nand_read_oob_syndrome;
5172 if (!ecc->write_oob)
5173 ecc->write_oob = nand_write_oob_syndrome;
5174
5175 if (mtd->writesize >= ecc->size) {
5176 if (!ecc->strength) {
5177 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
5178 BUG();
5179 }
5180 break;
5181 }
5182 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
5183 ecc->size, mtd->writesize);
5184 ecc->mode = NAND_ECC_SOFT;
5185
5186 case NAND_ECC_SOFT:
5187 ecc->calculate = nand_calculate_ecc;
5188 ecc->correct = nand_correct_data;
5189 ecc->read_page = nand_read_page_swecc;
5190 ecc->read_subpage = nand_read_subpage;
5191 ecc->write_page = nand_write_page_swecc;
5192 ecc->read_page_raw = nand_read_page_raw;
5193 ecc->write_page_raw = nand_write_page_raw;
5194 ecc->read_oob = nand_read_oob_std;
5195 ecc->write_oob = nand_write_oob_std;
5196 if (!ecc->size)
5197 ecc->size = 256;
5198 ecc->bytes = 3;
5199 ecc->strength = 1;
5200 break;
5201
5202 case NAND_ECC_SOFT_BCH:
5203 if (!mtd_nand_has_bch()) {
5204 pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
5205 BUG();
5206 }
5207 ecc->calculate = nand_bch_calculate_ecc;
5208 ecc->correct = nand_bch_correct_data;
5209 ecc->read_page = nand_read_page_swecc;
5210 ecc->read_subpage = nand_read_subpage;
5211 ecc->write_page = nand_write_page_swecc;
5212 ecc->read_page_raw = nand_read_page_raw;
5213 ecc->write_page_raw = nand_write_page_raw;
5214 ecc->read_oob = nand_read_oob_std;
5215 ecc->write_oob = nand_write_oob_std;
5216 /*
5217 * Board driver should supply ecc.size and ecc.strength values
5218 * to select how many bits are correctable. Otherwise, default
5219 * to 4 bits for large page devices.
5220 */
5221 if (!ecc->size && (mtd->oobsize >= 64)) {
5222 ecc->size = 512;
5223 ecc->strength = 4;
5224 }
5225
5226 /* See nand_bch_init() for details. */
5227 ecc->bytes = 0;
5228 ecc->priv = nand_bch_init(mtd);
5229 if (!ecc->priv) {
5230 pr_warn("BCH ECC initialization failed!\n");
5231 BUG();
5232 }
5233 break;
5234
5235 case NAND_ECC_NONE:
5236 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
5237 ecc->read_page = nand_read_page_raw;
5238 ecc->write_page = nand_write_page_raw;
5239 ecc->read_oob = nand_read_oob_std;
5240 ecc->read_page_raw = nand_read_page_raw;
5241 ecc->write_page_raw = nand_write_page_raw;
5242 ecc->write_oob = nand_write_oob_std;
5243 ecc->size = mtd->writesize;
5244 ecc->bytes = 0;
5245 ecc->strength = 0;
5246 break;
5247
5248 default:
5249 pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
5250 BUG();
5251 }
5252
5253 /* For many systems, the standard OOB write also works for raw */
5254 if (!ecc->read_oob_raw)
5255 ecc->read_oob_raw = ecc->read_oob;
5256 if (!ecc->write_oob_raw)
5257 ecc->write_oob_raw = ecc->write_oob;
5258
5259 /*
5260 * The number of bytes available for a client to place data into
5261 * the out of band area.
5262 */
5263 mtd->oobavail = 0;
5264 if (ecc->layout) {
5265 for (i = 0; ecc->layout->oobfree[i].length; i++)
5266 mtd->oobavail += ecc->layout->oobfree[i].length;
5267 }
5268
5269 /* ECC sanity check: warn if it's too weak */
5270 if (!nand_ecc_strength_good(mtd))
5271 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
5272 mtd->name);
5273
5274 /*
5275 * Set the number of read / write steps for one page depending on ECC
5276 * mode.
5277 */
5278 ecc->steps = mtd->writesize / ecc->size;
5279 if (ecc->steps * ecc->size != mtd->writesize) {
5280 pr_warn("Invalid ECC parameters\n");
5281 BUG();
5282 }
5283 ecc->total = ecc->steps * ecc->bytes;
5284
5285 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
5286 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
5287 switch (ecc->steps) {
5288 case 2:
5289 mtd->subpage_sft = 1;
5290 break;
5291 case 4:
5292 case 8:
5293 case 16:
5294 mtd->subpage_sft = 2;
5295 break;
5296 }
5297 }
5298 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
5299
5300 /* Initialize state */
5301 chip->state = FL_READY;
5302
5303 /* Invalidate the pagebuffer reference */
5304 chip->pagebuf = -1;
5305
5306 /* Large page NAND with SOFT_ECC should support subpage reads */
5307 switch (ecc->mode) {
5308 case NAND_ECC_SOFT:
5309 case NAND_ECC_SOFT_BCH:
5310 if (chip->page_shift > 9)
5311 chip->options |= NAND_SUBPAGE_READ;
5312 break;
5313
5314 default:
5315 break;
5316 }
5317
5318 /* Fill in remaining MTD driver data */
5319 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
5320 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
5321 MTD_CAP_NANDFLASH;
5322 mtd->_erase = nand_erase;
5323 mtd->_panic_write = panic_nand_write;
5324 mtd->_read_oob = nand_read_oob;
5325 mtd->_write_oob = nand_write_oob;
5326 mtd->_sync = nand_sync;
5327 mtd->_lock = NULL;
5328 mtd->_unlock = NULL;
5329 mtd->_block_isreserved = nand_block_isreserved;
5330 mtd->_block_isbad = nand_block_isbad;
5331 mtd->_block_markbad = nand_block_markbad;
5332 mtd->writebufsize = mtd->writesize;
5333
5334 /* propagate ecc info to mtd_info */
5335 mtd->ecclayout = ecc->layout;
5336 mtd->ecc_strength = ecc->strength;
5337 mtd->ecc_step_size = ecc->size;
5338 /*
5339 * Initialize bitflip_threshold to its default prior scan_bbt() call.
5340 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
5341 * properly set.
5342 */
5343 if (!mtd->bitflip_threshold)
5344 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
5345
5346 return 0;
5347 }
5348 EXPORT_SYMBOL(nand_scan_tail);
5349
5350 /**
5351 * nand_scan - [NAND Interface] Scan for the NAND device
5352 * @mtd: MTD device structure
5353 * @maxchips: number of chips to scan for
5354 *
5355 * This fills out all the uninitialized function pointers with the defaults.
5356 * The flash ID is read and the mtd/chip structures are filled with the
5357 * appropriate values.
5358 */
nand_scan(struct mtd_info * mtd,int maxchips)5359 int nand_scan(struct mtd_info *mtd, int maxchips)
5360 {
5361 int ret;
5362
5363 ret = nand_scan_ident(mtd, maxchips, NULL);
5364 if (!ret)
5365 ret = nand_scan_tail(mtd);
5366 return ret;
5367 }
5368 EXPORT_SYMBOL(nand_scan);
5369
5370 MODULE_LICENSE("GPL");
5371 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
5372 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
5373 MODULE_DESCRIPTION("Generic NAND flash driver code");
5374