• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Instantiate a public key crypto key from an X.509 Certificate
3  *
4  * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #define pr_fmt(fmt) "X.509: "fmt
9 #ifdef __UBOOT__
10 #include <common.h>
11 #include <linux/compat.h>
12 #include <linux/errno.h>
13 #else
14 #include <linux/module.h>
15 #endif
16 #include <linux/kernel.h>
17 #ifndef __UBOOT__
18 #include <linux/slab.h>
19 #include <keys/asymmetric-subtype.h>
20 #include <keys/asymmetric-parser.h>
21 #include <keys/system_keyring.h>
22 #include <crypto/hash.h>
23 #include "asymmetric_keys.h"
24 #endif
25 #include "x509_parser.h"
26 
27 /*
28  * Set up the signature parameters in an X.509 certificate.  This involves
29  * digesting the signed data and extracting the signature.
30  */
x509_get_sig_params(struct x509_certificate * cert)31 int x509_get_sig_params(struct x509_certificate *cert)
32 {
33 	struct public_key_signature *sig = cert->sig;
34 #ifndef __UBOOT__
35 	struct crypto_shash *tfm;
36 	struct shash_desc *desc;
37 	size_t desc_size;
38 #endif
39 	int ret;
40 
41 	pr_devel("==>%s()\n", __func__);
42 
43 	if (!cert->pub->pkey_algo)
44 		cert->unsupported_key = true;
45 
46 	if (!sig->pkey_algo)
47 		cert->unsupported_sig = true;
48 
49 	/* We check the hash if we can - even if we can't then verify it */
50 	if (!sig->hash_algo) {
51 		cert->unsupported_sig = true;
52 		return 0;
53 	}
54 
55 	sig->s = kmemdup(cert->raw_sig, cert->raw_sig_size, GFP_KERNEL);
56 	if (!sig->s)
57 		return -ENOMEM;
58 
59 	sig->s_size = cert->raw_sig_size;
60 
61 #ifdef __UBOOT__
62 	/*
63 	 * Note:
64 	 * This part (filling sig->digest) should be implemented if
65 	 * x509_check_for_self_signed() is enabled x509_cert_parse().
66 	 * Currently, this check won't affect UEFI secure boot.
67 	 */
68 	ret = 0;
69 #else
70 	/* Allocate the hashing algorithm we're going to need and find out how
71 	 * big the hash operational data will be.
72 	 */
73 	tfm = crypto_alloc_shash(sig->hash_algo, 0, 0);
74 	if (IS_ERR(tfm)) {
75 		if (PTR_ERR(tfm) == -ENOENT) {
76 			cert->unsupported_sig = true;
77 			return 0;
78 		}
79 		return PTR_ERR(tfm);
80 	}
81 
82 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
83 	sig->digest_size = crypto_shash_digestsize(tfm);
84 
85 	ret = -ENOMEM;
86 	sig->digest = kmalloc(sig->digest_size, GFP_KERNEL);
87 	if (!sig->digest)
88 		goto error;
89 
90 	desc = kzalloc(desc_size, GFP_KERNEL);
91 	if (!desc)
92 		goto error;
93 
94 	desc->tfm = tfm;
95 
96 	ret = crypto_shash_digest(desc, cert->tbs, cert->tbs_size, sig->digest);
97 	if (ret < 0)
98 		goto error_2;
99 
100 	ret = is_hash_blacklisted(sig->digest, sig->digest_size, "tbs");
101 	if (ret == -EKEYREJECTED) {
102 		pr_err("Cert %*phN is blacklisted\n",
103 		       sig->digest_size, sig->digest);
104 		cert->blacklisted = true;
105 		ret = 0;
106 	}
107 
108 error_2:
109 	kfree(desc);
110 error:
111 	crypto_free_shash(tfm);
112 #endif /* __UBOOT__ */
113 	pr_devel("<==%s() = %d\n", __func__, ret);
114 	return ret;
115 }
116 
117 #ifndef __UBOOT__
118 /*
119  * Check for self-signedness in an X.509 cert and if found, check the signature
120  * immediately if we can.
121  */
x509_check_for_self_signed(struct x509_certificate * cert)122 int x509_check_for_self_signed(struct x509_certificate *cert)
123 {
124 	int ret = 0;
125 
126 	pr_devel("==>%s()\n", __func__);
127 
128 	if (cert->raw_subject_size != cert->raw_issuer_size ||
129 	    memcmp(cert->raw_subject, cert->raw_issuer,
130 		   cert->raw_issuer_size) != 0)
131 		goto not_self_signed;
132 
133 	if (cert->sig->auth_ids[0] || cert->sig->auth_ids[1]) {
134 		/* If the AKID is present it may have one or two parts.  If
135 		 * both are supplied, both must match.
136 		 */
137 		bool a = asymmetric_key_id_same(cert->skid, cert->sig->auth_ids[1]);
138 		bool b = asymmetric_key_id_same(cert->id, cert->sig->auth_ids[0]);
139 
140 		if (!a && !b)
141 			goto not_self_signed;
142 
143 		ret = -EKEYREJECTED;
144 		if (((a && !b) || (b && !a)) &&
145 		    cert->sig->auth_ids[0] && cert->sig->auth_ids[1])
146 			goto out;
147 	}
148 
149 	ret = -EKEYREJECTED;
150 	if (strcmp(cert->pub->pkey_algo, cert->sig->pkey_algo) != 0)
151 		goto out;
152 
153 	ret = public_key_verify_signature(cert->pub, cert->sig);
154 	if (ret < 0) {
155 		if (ret == -ENOPKG) {
156 			cert->unsupported_sig = true;
157 			ret = 0;
158 		}
159 		goto out;
160 	}
161 
162 	pr_devel("Cert Self-signature verified");
163 	cert->self_signed = true;
164 
165 out:
166 	pr_devel("<==%s() = %d\n", __func__, ret);
167 	return ret;
168 
169 not_self_signed:
170 	pr_devel("<==%s() = 0 [not]\n", __func__);
171 	return 0;
172 }
173 
174 /*
175  * Attempt to parse a data blob for a key as an X509 certificate.
176  */
x509_key_preparse(struct key_preparsed_payload * prep)177 static int x509_key_preparse(struct key_preparsed_payload *prep)
178 {
179 	struct asymmetric_key_ids *kids;
180 	struct x509_certificate *cert;
181 	const char *q;
182 	size_t srlen, sulen;
183 	char *desc = NULL, *p;
184 	int ret;
185 
186 	cert = x509_cert_parse(prep->data, prep->datalen);
187 	if (IS_ERR(cert))
188 		return PTR_ERR(cert);
189 
190 	pr_devel("Cert Issuer: %s\n", cert->issuer);
191 	pr_devel("Cert Subject: %s\n", cert->subject);
192 
193 	if (cert->unsupported_key) {
194 		ret = -ENOPKG;
195 		goto error_free_cert;
196 	}
197 
198 	pr_devel("Cert Key Algo: %s\n", cert->pub->pkey_algo);
199 	pr_devel("Cert Valid period: %lld-%lld\n", cert->valid_from, cert->valid_to);
200 
201 	cert->pub->id_type = "X509";
202 
203 	if (cert->unsupported_sig) {
204 		public_key_signature_free(cert->sig);
205 		cert->sig = NULL;
206 	} else {
207 		pr_devel("Cert Signature: %s + %s\n",
208 			 cert->sig->pkey_algo, cert->sig->hash_algo);
209 	}
210 
211 	/* Don't permit addition of blacklisted keys */
212 	ret = -EKEYREJECTED;
213 	if (cert->blacklisted)
214 		goto error_free_cert;
215 
216 	/* Propose a description */
217 	sulen = strlen(cert->subject);
218 	if (cert->raw_skid) {
219 		srlen = cert->raw_skid_size;
220 		q = cert->raw_skid;
221 	} else {
222 		srlen = cert->raw_serial_size;
223 		q = cert->raw_serial;
224 	}
225 
226 	ret = -ENOMEM;
227 	desc = kmalloc(sulen + 2 + srlen * 2 + 1, GFP_KERNEL);
228 	if (!desc)
229 		goto error_free_cert;
230 	p = memcpy(desc, cert->subject, sulen);
231 	p += sulen;
232 	*p++ = ':';
233 	*p++ = ' ';
234 	p = bin2hex(p, q, srlen);
235 	*p = 0;
236 
237 	kids = kmalloc(sizeof(struct asymmetric_key_ids), GFP_KERNEL);
238 	if (!kids)
239 		goto error_free_desc;
240 	kids->id[0] = cert->id;
241 	kids->id[1] = cert->skid;
242 
243 	/* We're pinning the module by being linked against it */
244 	__module_get(public_key_subtype.owner);
245 	prep->payload.data[asym_subtype] = &public_key_subtype;
246 	prep->payload.data[asym_key_ids] = kids;
247 	prep->payload.data[asym_crypto] = cert->pub;
248 	prep->payload.data[asym_auth] = cert->sig;
249 	prep->description = desc;
250 	prep->quotalen = 100;
251 
252 	/* We've finished with the certificate */
253 	cert->pub = NULL;
254 	cert->id = NULL;
255 	cert->skid = NULL;
256 	cert->sig = NULL;
257 	desc = NULL;
258 	ret = 0;
259 
260 error_free_desc:
261 	kfree(desc);
262 error_free_cert:
263 	x509_free_certificate(cert);
264 	return ret;
265 }
266 
267 static struct asymmetric_key_parser x509_key_parser = {
268 	.owner	= THIS_MODULE,
269 	.name	= "x509",
270 	.parse	= x509_key_preparse,
271 };
272 
273 /*
274  * Module stuff
275  */
x509_key_init(void)276 static int __init x509_key_init(void)
277 {
278 	return register_asymmetric_key_parser(&x509_key_parser);
279 }
280 
x509_key_exit(void)281 static void __exit x509_key_exit(void)
282 {
283 	unregister_asymmetric_key_parser(&x509_key_parser);
284 }
285 
286 module_init(x509_key_init);
287 module_exit(x509_key_exit);
288 #endif /* !__UBOOT__ */
289 
290 MODULE_DESCRIPTION("X.509 certificate parser");
291 MODULE_AUTHOR("Red Hat, Inc.");
292 MODULE_LICENSE("GPL");
293