1 /*
2 * Wrapper functions for OpenSSL libcrypto
3 * Copyright (c) 2004-2017, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 */
8
9 #include "includes.h"
10 #include <openssl/opensslv.h>
11 #include <openssl/err.h>
12 #include <openssl/des.h>
13 #include <openssl/aes.h>
14 #include <openssl/bn.h>
15 #include <openssl/evp.h>
16 #include <openssl/dh.h>
17 #include <openssl/hmac.h>
18 #include <openssl/rand.h>
19 #ifdef CONFIG_OPENSSL_CMAC
20 #include <openssl/cmac.h>
21 #endif /* CONFIG_OPENSSL_CMAC */
22 #ifdef CONFIG_ECC
23 #include <openssl/ec.h>
24 #endif /* CONFIG_ECC */
25
26 #include "common.h"
27 #include "utils/const_time.h"
28 #include "wpabuf.h"
29 #include "dh_group5.h"
30 #include "sha1.h"
31 #include "sha256.h"
32 #include "sha384.h"
33 #include "sha512.h"
34 #include "md5.h"
35 #include "aes_wrap.h"
36 #include "crypto.h"
37
38 #if OPENSSL_VERSION_NUMBER < 0x10100000L || \
39 (defined(LIBRESSL_VERSION_NUMBER) && \
40 LIBRESSL_VERSION_NUMBER < 0x20700000L)
41 /* Compatibility wrappers for older versions. */
42
HMAC_CTX_new(void)43 static HMAC_CTX * HMAC_CTX_new(void)
44 {
45 HMAC_CTX *ctx;
46
47 ctx = os_zalloc(sizeof(*ctx));
48 if (ctx)
49 HMAC_CTX_init(ctx);
50 return ctx;
51 }
52
53
HMAC_CTX_free(HMAC_CTX * ctx)54 static void HMAC_CTX_free(HMAC_CTX *ctx)
55 {
56 if (!ctx)
57 return;
58 HMAC_CTX_cleanup(ctx);
59 bin_clear_free(ctx, sizeof(*ctx));
60 }
61
62
EVP_MD_CTX_new(void)63 static EVP_MD_CTX * EVP_MD_CTX_new(void)
64 {
65 EVP_MD_CTX *ctx;
66
67 ctx = os_zalloc(sizeof(*ctx));
68 if (ctx)
69 EVP_MD_CTX_init(ctx);
70 return ctx;
71 }
72
73
EVP_MD_CTX_free(EVP_MD_CTX * ctx)74 static void EVP_MD_CTX_free(EVP_MD_CTX *ctx)
75 {
76 if (!ctx)
77 return;
78 EVP_MD_CTX_cleanup(ctx);
79 bin_clear_free(ctx, sizeof(*ctx));
80 }
81
82 #endif /* OpenSSL version < 1.1.0 */
83
get_group5_prime(void)84 static BIGNUM * get_group5_prime(void)
85 {
86 #if OPENSSL_VERSION_NUMBER >= 0x10100000L && \
87 !(defined(LIBRESSL_VERSION_NUMBER) && \
88 LIBRESSL_VERSION_NUMBER < 0x20700000L)
89 return BN_get_rfc3526_prime_1536(NULL);
90 #elif !defined(OPENSSL_IS_BORINGSSL)
91 return get_rfc3526_prime_1536(NULL);
92 #else
93 static const unsigned char RFC3526_PRIME_1536[] = {
94 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
95 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
96 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
97 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
98 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
99 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
100 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
101 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
102 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
103 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
104 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
105 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
106 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
107 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
108 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
109 0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
110 };
111 return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL);
112 #endif
113 }
114
115
get_group5_order(void)116 static BIGNUM * get_group5_order(void)
117 {
118 static const unsigned char RFC3526_ORDER_1536[] = {
119 0x7F,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xE4,0x87,0xED,0x51,
120 0x10,0xB4,0x61,0x1A,0x62,0x63,0x31,0x45,0xC0,0x6E,0x0E,0x68,
121 0x94,0x81,0x27,0x04,0x45,0x33,0xE6,0x3A,0x01,0x05,0xDF,0x53,
122 0x1D,0x89,0xCD,0x91,0x28,0xA5,0x04,0x3C,0xC7,0x1A,0x02,0x6E,
123 0xF7,0xCA,0x8C,0xD9,0xE6,0x9D,0x21,0x8D,0x98,0x15,0x85,0x36,
124 0xF9,0x2F,0x8A,0x1B,0xA7,0xF0,0x9A,0xB6,0xB6,0xA8,0xE1,0x22,
125 0xF2,0x42,0xDA,0xBB,0x31,0x2F,0x3F,0x63,0x7A,0x26,0x21,0x74,
126 0xD3,0x1B,0xF6,0xB5,0x85,0xFF,0xAE,0x5B,0x7A,0x03,0x5B,0xF6,
127 0xF7,0x1C,0x35,0xFD,0xAD,0x44,0xCF,0xD2,0xD7,0x4F,0x92,0x08,
128 0xBE,0x25,0x8F,0xF3,0x24,0x94,0x33,0x28,0xF6,0x72,0x2D,0x9E,
129 0xE1,0x00,0x3E,0x5C,0x50,0xB1,0xDF,0x82,0xCC,0x6D,0x24,0x1B,
130 0x0E,0x2A,0xE9,0xCD,0x34,0x8B,0x1F,0xD4,0x7E,0x92,0x67,0xAF,
131 0xC1,0xB2,0xAE,0x91,0xEE,0x51,0xD6,0xCB,0x0E,0x31,0x79,0xAB,
132 0x10,0x42,0xA9,0x5D,0xCF,0x6A,0x94,0x83,0xB8,0x4B,0x4B,0x36,
133 0xB3,0x86,0x1A,0xA7,0x25,0x5E,0x4C,0x02,0x78,0xBA,0x36,0x04,
134 0x65,0x11,0xB9,0x93,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF
135 };
136 return BN_bin2bn(RFC3526_ORDER_1536, sizeof(RFC3526_ORDER_1536), NULL);
137 }
138
139
140 #ifdef OPENSSL_NO_SHA256
141 #define NO_SHA256_WRAPPER
142 #endif
143 #ifdef OPENSSL_NO_SHA512
144 #define NO_SHA384_WRAPPER
145 #endif
146
openssl_digest_vector(const EVP_MD * type,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)147 static int openssl_digest_vector(const EVP_MD *type, size_t num_elem,
148 const u8 *addr[], const size_t *len, u8 *mac)
149 {
150 EVP_MD_CTX *ctx;
151 size_t i;
152 unsigned int mac_len;
153
154 if (TEST_FAIL())
155 return -1;
156
157 ctx = EVP_MD_CTX_new();
158 if (!ctx)
159 return -1;
160 if (!EVP_DigestInit_ex(ctx, type, NULL)) {
161 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s",
162 ERR_error_string(ERR_get_error(), NULL));
163 EVP_MD_CTX_free(ctx);
164 return -1;
165 }
166 for (i = 0; i < num_elem; i++) {
167 if (!EVP_DigestUpdate(ctx, addr[i], len[i])) {
168 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate "
169 "failed: %s",
170 ERR_error_string(ERR_get_error(), NULL));
171 EVP_MD_CTX_free(ctx);
172 return -1;
173 }
174 }
175 if (!EVP_DigestFinal(ctx, mac, &mac_len)) {
176 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s",
177 ERR_error_string(ERR_get_error(), NULL));
178 EVP_MD_CTX_free(ctx);
179 return -1;
180 }
181 EVP_MD_CTX_free(ctx);
182
183 return 0;
184 }
185
186
187 #ifndef CONFIG_FIPS
md4_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)188 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
189 {
190 return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac);
191 }
192 #endif /* CONFIG_FIPS */
193
194
des_encrypt(const u8 * clear,const u8 * key,u8 * cypher)195 int des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
196 {
197 u8 pkey[8], next, tmp;
198 int i;
199 DES_key_schedule ks;
200
201 /* Add parity bits to the key */
202 next = 0;
203 for (i = 0; i < 7; i++) {
204 tmp = key[i];
205 pkey[i] = (tmp >> i) | next | 1;
206 next = tmp << (7 - i);
207 }
208 pkey[i] = next | 1;
209
210 DES_set_key((DES_cblock *) &pkey, &ks);
211 DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks,
212 DES_ENCRYPT);
213 return 0;
214 }
215
216
217 #ifndef CONFIG_NO_RC4
rc4_skip(const u8 * key,size_t keylen,size_t skip,u8 * data,size_t data_len)218 int rc4_skip(const u8 *key, size_t keylen, size_t skip,
219 u8 *data, size_t data_len)
220 {
221 #ifdef OPENSSL_NO_RC4
222 return -1;
223 #else /* OPENSSL_NO_RC4 */
224 EVP_CIPHER_CTX *ctx;
225 int outl;
226 int res = -1;
227 unsigned char skip_buf[16];
228
229 ctx = EVP_CIPHER_CTX_new();
230 if (!ctx ||
231 !EVP_CIPHER_CTX_set_padding(ctx, 0) ||
232 !EVP_CipherInit_ex(ctx, EVP_rc4(), NULL, NULL, NULL, 1) ||
233 !EVP_CIPHER_CTX_set_key_length(ctx, keylen) ||
234 !EVP_CipherInit_ex(ctx, NULL, NULL, key, NULL, 1))
235 goto out;
236
237 while (skip >= sizeof(skip_buf)) {
238 size_t len = skip;
239 if (len > sizeof(skip_buf))
240 len = sizeof(skip_buf);
241 if (!EVP_CipherUpdate(ctx, skip_buf, &outl, skip_buf, len))
242 goto out;
243 skip -= len;
244 }
245
246 if (EVP_CipherUpdate(ctx, data, &outl, data, data_len))
247 res = 0;
248
249 out:
250 if (ctx)
251 EVP_CIPHER_CTX_free(ctx);
252 return res;
253 #endif /* OPENSSL_NO_RC4 */
254 }
255 #endif /* CONFIG_NO_RC4 */
256
257
258 #ifndef CONFIG_FIPS
md5_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)259 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
260 {
261 return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac);
262 }
263 #endif /* CONFIG_FIPS */
264
265
sha1_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)266 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
267 {
268 return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac);
269 }
270
271
272 #ifndef NO_SHA256_WRAPPER
sha256_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)273 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
274 u8 *mac)
275 {
276 return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac);
277 }
278 #endif /* NO_SHA256_WRAPPER */
279
280
281 #ifndef NO_SHA384_WRAPPER
sha384_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)282 int sha384_vector(size_t num_elem, const u8 *addr[], const size_t *len,
283 u8 *mac)
284 {
285 return openssl_digest_vector(EVP_sha384(), num_elem, addr, len, mac);
286 }
287 #endif /* NO_SHA384_WRAPPER */
288
289
290 #ifndef NO_SHA512_WRAPPER
sha512_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)291 int sha512_vector(size_t num_elem, const u8 *addr[], const size_t *len,
292 u8 *mac)
293 {
294 return openssl_digest_vector(EVP_sha512(), num_elem, addr, len, mac);
295 }
296 #endif /* NO_SHA512_WRAPPER */
297
298
aes_get_evp_cipher(size_t keylen)299 static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen)
300 {
301 switch (keylen) {
302 case 16:
303 return EVP_aes_128_ecb();
304 case 24:
305 return EVP_aes_192_ecb();
306 case 32:
307 return EVP_aes_256_ecb();
308 }
309
310 return NULL;
311 }
312
313
aes_encrypt_init(const u8 * key,size_t len)314 void * aes_encrypt_init(const u8 *key, size_t len)
315 {
316 EVP_CIPHER_CTX *ctx;
317 const EVP_CIPHER *type;
318
319 if (TEST_FAIL())
320 return NULL;
321
322 type = aes_get_evp_cipher(len);
323 if (!type) {
324 wpa_printf(MSG_INFO, "%s: Unsupported len=%u",
325 __func__, (unsigned int) len);
326 return NULL;
327 }
328
329 ctx = EVP_CIPHER_CTX_new();
330 if (ctx == NULL)
331 return NULL;
332 if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
333 os_free(ctx);
334 return NULL;
335 }
336 EVP_CIPHER_CTX_set_padding(ctx, 0);
337 return ctx;
338 }
339
340
aes_encrypt(void * ctx,const u8 * plain,u8 * crypt)341 int aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
342 {
343 EVP_CIPHER_CTX *c = ctx;
344 int clen = 16;
345 if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) {
346 wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s",
347 ERR_error_string(ERR_get_error(), NULL));
348 return -1;
349 }
350 return 0;
351 }
352
353
aes_encrypt_deinit(void * ctx)354 void aes_encrypt_deinit(void *ctx)
355 {
356 EVP_CIPHER_CTX *c = ctx;
357 u8 buf[16];
358 int len = sizeof(buf);
359 if (EVP_EncryptFinal_ex(c, buf, &len) != 1) {
360 wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: "
361 "%s", ERR_error_string(ERR_get_error(), NULL));
362 }
363 if (len != 0) {
364 wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
365 "in AES encrypt", len);
366 }
367 EVP_CIPHER_CTX_free(c);
368 }
369
370
aes_decrypt_init(const u8 * key,size_t len)371 void * aes_decrypt_init(const u8 *key, size_t len)
372 {
373 EVP_CIPHER_CTX *ctx;
374 const EVP_CIPHER *type;
375
376 if (TEST_FAIL())
377 return NULL;
378
379 type = aes_get_evp_cipher(len);
380 if (!type) {
381 wpa_printf(MSG_INFO, "%s: Unsupported len=%u",
382 __func__, (unsigned int) len);
383 return NULL;
384 }
385
386 ctx = EVP_CIPHER_CTX_new();
387 if (ctx == NULL)
388 return NULL;
389 if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
390 EVP_CIPHER_CTX_free(ctx);
391 return NULL;
392 }
393 EVP_CIPHER_CTX_set_padding(ctx, 0);
394 return ctx;
395 }
396
397
aes_decrypt(void * ctx,const u8 * crypt,u8 * plain)398 int aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
399 {
400 EVP_CIPHER_CTX *c = ctx;
401 int plen = 16;
402 if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) {
403 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s",
404 ERR_error_string(ERR_get_error(), NULL));
405 return -1;
406 }
407 return 0;
408 }
409
410
aes_decrypt_deinit(void * ctx)411 void aes_decrypt_deinit(void *ctx)
412 {
413 EVP_CIPHER_CTX *c = ctx;
414 u8 buf[16];
415 int len = sizeof(buf);
416 if (EVP_DecryptFinal_ex(c, buf, &len) != 1) {
417 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: "
418 "%s", ERR_error_string(ERR_get_error(), NULL));
419 }
420 if (len != 0) {
421 wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
422 "in AES decrypt", len);
423 }
424 EVP_CIPHER_CTX_free(c);
425 }
426
427
428 #ifndef CONFIG_FIPS
429 #ifndef CONFIG_OPENSSL_INTERNAL_AES_WRAP
430
aes_wrap(const u8 * kek,size_t kek_len,int n,const u8 * plain,u8 * cipher)431 int aes_wrap(const u8 *kek, size_t kek_len, int n, const u8 *plain, u8 *cipher)
432 {
433 AES_KEY actx;
434 int res;
435
436 if (TEST_FAIL())
437 return -1;
438 if (AES_set_encrypt_key(kek, kek_len << 3, &actx))
439 return -1;
440 res = AES_wrap_key(&actx, NULL, cipher, plain, n * 8);
441 OPENSSL_cleanse(&actx, sizeof(actx));
442 return res <= 0 ? -1 : 0;
443 }
444
445
aes_unwrap(const u8 * kek,size_t kek_len,int n,const u8 * cipher,u8 * plain)446 int aes_unwrap(const u8 *kek, size_t kek_len, int n, const u8 *cipher,
447 u8 *plain)
448 {
449 AES_KEY actx;
450 int res;
451
452 if (TEST_FAIL())
453 return -1;
454 if (AES_set_decrypt_key(kek, kek_len << 3, &actx))
455 return -1;
456 res = AES_unwrap_key(&actx, NULL, plain, cipher, (n + 1) * 8);
457 OPENSSL_cleanse(&actx, sizeof(actx));
458 return res <= 0 ? -1 : 0;
459 }
460
461 #endif /* CONFIG_OPENSSL_INTERNAL_AES_WRAP */
462 #endif /* CONFIG_FIPS */
463
464
aes_128_cbc_encrypt(const u8 * key,const u8 * iv,u8 * data,size_t data_len)465 int aes_128_cbc_encrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
466 {
467 EVP_CIPHER_CTX *ctx;
468 int clen, len;
469 u8 buf[16];
470 int res = -1;
471
472 if (TEST_FAIL())
473 return -1;
474
475 ctx = EVP_CIPHER_CTX_new();
476 if (!ctx)
477 return -1;
478 clen = data_len;
479 len = sizeof(buf);
480 if (EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv) == 1 &&
481 EVP_CIPHER_CTX_set_padding(ctx, 0) == 1 &&
482 EVP_EncryptUpdate(ctx, data, &clen, data, data_len) == 1 &&
483 clen == (int) data_len &&
484 EVP_EncryptFinal_ex(ctx, buf, &len) == 1 && len == 0)
485 res = 0;
486 EVP_CIPHER_CTX_free(ctx);
487
488 return res;
489 }
490
491
aes_128_cbc_decrypt(const u8 * key,const u8 * iv,u8 * data,size_t data_len)492 int aes_128_cbc_decrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
493 {
494 EVP_CIPHER_CTX *ctx;
495 int plen, len;
496 u8 buf[16];
497 int res = -1;
498
499 if (TEST_FAIL())
500 return -1;
501
502 ctx = EVP_CIPHER_CTX_new();
503 if (!ctx)
504 return -1;
505 plen = data_len;
506 len = sizeof(buf);
507 if (EVP_DecryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv) == 1 &&
508 EVP_CIPHER_CTX_set_padding(ctx, 0) == 1 &&
509 EVP_DecryptUpdate(ctx, data, &plen, data, data_len) == 1 &&
510 plen == (int) data_len &&
511 EVP_DecryptFinal_ex(ctx, buf, &len) == 1 && len == 0)
512 res = 0;
513 EVP_CIPHER_CTX_free(ctx);
514
515 return res;
516
517 }
518
519
crypto_dh_init(u8 generator,const u8 * prime,size_t prime_len,u8 * privkey,u8 * pubkey)520 int crypto_dh_init(u8 generator, const u8 *prime, size_t prime_len, u8 *privkey,
521 u8 *pubkey)
522 {
523 size_t pubkey_len, pad;
524
525 if (os_get_random(privkey, prime_len) < 0)
526 return -1;
527 if (os_memcmp(privkey, prime, prime_len) > 0) {
528 /* Make sure private value is smaller than prime */
529 privkey[0] = 0;
530 }
531
532 pubkey_len = prime_len;
533 if (crypto_mod_exp(&generator, 1, privkey, prime_len, prime, prime_len,
534 pubkey, &pubkey_len) < 0)
535 return -1;
536 if (pubkey_len < prime_len) {
537 pad = prime_len - pubkey_len;
538 os_memmove(pubkey + pad, pubkey, pubkey_len);
539 os_memset(pubkey, 0, pad);
540 }
541
542 return 0;
543 }
544
545
crypto_dh_derive_secret(u8 generator,const u8 * prime,size_t prime_len,const u8 * order,size_t order_len,const u8 * privkey,size_t privkey_len,const u8 * pubkey,size_t pubkey_len,u8 * secret,size_t * len)546 int crypto_dh_derive_secret(u8 generator, const u8 *prime, size_t prime_len,
547 const u8 *order, size_t order_len,
548 const u8 *privkey, size_t privkey_len,
549 const u8 *pubkey, size_t pubkey_len,
550 u8 *secret, size_t *len)
551 {
552 BIGNUM *pub, *p;
553 int res = -1;
554
555 pub = BN_bin2bn(pubkey, pubkey_len, NULL);
556 p = BN_bin2bn(prime, prime_len, NULL);
557 if (!pub || !p || BN_is_zero(pub) || BN_is_one(pub) ||
558 BN_cmp(pub, p) >= 0)
559 goto fail;
560
561 if (order) {
562 BN_CTX *ctx;
563 BIGNUM *q, *tmp;
564 int failed;
565
566 /* verify: pubkey^q == 1 mod p */
567 q = BN_bin2bn(order, order_len, NULL);
568 ctx = BN_CTX_new();
569 tmp = BN_new();
570 failed = !q || !ctx || !tmp ||
571 !BN_mod_exp(tmp, pub, q, p, ctx) ||
572 !BN_is_one(tmp);
573 BN_clear_free(q);
574 BN_clear_free(tmp);
575 BN_CTX_free(ctx);
576 if (failed)
577 goto fail;
578 }
579
580 res = crypto_mod_exp(pubkey, pubkey_len, privkey, privkey_len,
581 prime, prime_len, secret, len);
582 fail:
583 BN_clear_free(pub);
584 BN_clear_free(p);
585 return res;
586 }
587
588
crypto_mod_exp(const u8 * base,size_t base_len,const u8 * power,size_t power_len,const u8 * modulus,size_t modulus_len,u8 * result,size_t * result_len)589 int crypto_mod_exp(const u8 *base, size_t base_len,
590 const u8 *power, size_t power_len,
591 const u8 *modulus, size_t modulus_len,
592 u8 *result, size_t *result_len)
593 {
594 BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result;
595 int ret = -1;
596 BN_CTX *ctx;
597
598 ctx = BN_CTX_new();
599 if (ctx == NULL)
600 return -1;
601
602 bn_base = BN_bin2bn(base, base_len, NULL);
603 bn_exp = BN_bin2bn(power, power_len, NULL);
604 bn_modulus = BN_bin2bn(modulus, modulus_len, NULL);
605 bn_result = BN_new();
606
607 if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL ||
608 bn_result == NULL)
609 goto error;
610
611 if (BN_mod_exp_mont_consttime(bn_result, bn_base, bn_exp, bn_modulus,
612 ctx, NULL) != 1)
613 goto error;
614
615 *result_len = BN_bn2bin(bn_result, result);
616 ret = 0;
617
618 error:
619 BN_clear_free(bn_base);
620 BN_clear_free(bn_exp);
621 BN_clear_free(bn_modulus);
622 BN_clear_free(bn_result);
623 BN_CTX_free(ctx);
624 return ret;
625 }
626
627
628 struct crypto_cipher {
629 EVP_CIPHER_CTX *enc;
630 EVP_CIPHER_CTX *dec;
631 };
632
633
crypto_cipher_init(enum crypto_cipher_alg alg,const u8 * iv,const u8 * key,size_t key_len)634 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
635 const u8 *iv, const u8 *key,
636 size_t key_len)
637 {
638 struct crypto_cipher *ctx;
639 const EVP_CIPHER *cipher;
640
641 ctx = os_zalloc(sizeof(*ctx));
642 if (ctx == NULL)
643 return NULL;
644
645 switch (alg) {
646 #ifndef CONFIG_NO_RC4
647 #ifndef OPENSSL_NO_RC4
648 case CRYPTO_CIPHER_ALG_RC4:
649 cipher = EVP_rc4();
650 break;
651 #endif /* OPENSSL_NO_RC4 */
652 #endif /* CONFIG_NO_RC4 */
653 #ifndef OPENSSL_NO_AES
654 case CRYPTO_CIPHER_ALG_AES:
655 switch (key_len) {
656 case 16:
657 cipher = EVP_aes_128_cbc();
658 break;
659 #ifndef OPENSSL_IS_BORINGSSL
660 case 24:
661 cipher = EVP_aes_192_cbc();
662 break;
663 #endif /* OPENSSL_IS_BORINGSSL */
664 case 32:
665 cipher = EVP_aes_256_cbc();
666 break;
667 default:
668 os_free(ctx);
669 return NULL;
670 }
671 break;
672 #endif /* OPENSSL_NO_AES */
673 #ifndef OPENSSL_NO_DES
674 case CRYPTO_CIPHER_ALG_3DES:
675 cipher = EVP_des_ede3_cbc();
676 break;
677 case CRYPTO_CIPHER_ALG_DES:
678 cipher = EVP_des_cbc();
679 break;
680 #endif /* OPENSSL_NO_DES */
681 #ifndef OPENSSL_NO_RC2
682 case CRYPTO_CIPHER_ALG_RC2:
683 cipher = EVP_rc2_ecb();
684 break;
685 #endif /* OPENSSL_NO_RC2 */
686 default:
687 os_free(ctx);
688 return NULL;
689 }
690
691 if (!(ctx->enc = EVP_CIPHER_CTX_new()) ||
692 !EVP_CIPHER_CTX_set_padding(ctx->enc, 0) ||
693 !EVP_EncryptInit_ex(ctx->enc, cipher, NULL, NULL, NULL) ||
694 !EVP_CIPHER_CTX_set_key_length(ctx->enc, key_len) ||
695 !EVP_EncryptInit_ex(ctx->enc, NULL, NULL, key, iv)) {
696 if (ctx->enc)
697 EVP_CIPHER_CTX_free(ctx->enc);
698 os_free(ctx);
699 return NULL;
700 }
701
702 if (!(ctx->dec = EVP_CIPHER_CTX_new()) ||
703 !EVP_CIPHER_CTX_set_padding(ctx->dec, 0) ||
704 !EVP_DecryptInit_ex(ctx->dec, cipher, NULL, NULL, NULL) ||
705 !EVP_CIPHER_CTX_set_key_length(ctx->dec, key_len) ||
706 !EVP_DecryptInit_ex(ctx->dec, NULL, NULL, key, iv)) {
707 EVP_CIPHER_CTX_free(ctx->enc);
708 if (ctx->dec)
709 EVP_CIPHER_CTX_free(ctx->dec);
710 os_free(ctx);
711 return NULL;
712 }
713
714 return ctx;
715 }
716
717
crypto_cipher_encrypt(struct crypto_cipher * ctx,const u8 * plain,u8 * crypt,size_t len)718 int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
719 u8 *crypt, size_t len)
720 {
721 int outl;
722 if (!EVP_EncryptUpdate(ctx->enc, crypt, &outl, plain, len))
723 return -1;
724 return 0;
725 }
726
727
crypto_cipher_decrypt(struct crypto_cipher * ctx,const u8 * crypt,u8 * plain,size_t len)728 int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
729 u8 *plain, size_t len)
730 {
731 int outl;
732 outl = len;
733 if (!EVP_DecryptUpdate(ctx->dec, plain, &outl, crypt, len))
734 return -1;
735 return 0;
736 }
737
738
crypto_cipher_deinit(struct crypto_cipher * ctx)739 void crypto_cipher_deinit(struct crypto_cipher *ctx)
740 {
741 EVP_CIPHER_CTX_free(ctx->enc);
742 EVP_CIPHER_CTX_free(ctx->dec);
743 os_free(ctx);
744 }
745
746
dh5_init(struct wpabuf ** priv,struct wpabuf ** publ)747 void * dh5_init(struct wpabuf **priv, struct wpabuf **publ)
748 {
749 #if OPENSSL_VERSION_NUMBER < 0x10100000L || \
750 (defined(LIBRESSL_VERSION_NUMBER) && \
751 LIBRESSL_VERSION_NUMBER < 0x20700000L)
752 DH *dh;
753 struct wpabuf *pubkey = NULL, *privkey = NULL;
754 size_t publen, privlen;
755
756 *priv = NULL;
757 wpabuf_free(*publ);
758 *publ = NULL;
759
760 dh = DH_new();
761 if (dh == NULL)
762 return NULL;
763
764 dh->g = BN_new();
765 if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
766 goto err;
767
768 dh->p = get_group5_prime();
769 if (dh->p == NULL)
770 goto err;
771
772 dh->q = get_group5_order();
773 if (!dh->q)
774 goto err;
775
776 if (DH_generate_key(dh) != 1)
777 goto err;
778
779 publen = BN_num_bytes(dh->pub_key);
780 pubkey = wpabuf_alloc(publen);
781 if (pubkey == NULL)
782 goto err;
783 privlen = BN_num_bytes(dh->priv_key);
784 privkey = wpabuf_alloc(privlen);
785 if (privkey == NULL)
786 goto err;
787
788 BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen));
789 BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen));
790
791 *priv = privkey;
792 *publ = pubkey;
793 return dh;
794
795 err:
796 wpabuf_clear_free(pubkey);
797 wpabuf_clear_free(privkey);
798 DH_free(dh);
799 return NULL;
800 #else
801 DH *dh;
802 struct wpabuf *pubkey = NULL, *privkey = NULL;
803 size_t publen, privlen;
804 BIGNUM *p, *g, *q;
805 const BIGNUM *priv_key = NULL, *pub_key = NULL;
806
807 *priv = NULL;
808 wpabuf_free(*publ);
809 *publ = NULL;
810
811 dh = DH_new();
812 if (dh == NULL)
813 return NULL;
814
815 g = BN_new();
816 p = get_group5_prime();
817 q = get_group5_order();
818 if (!g || BN_set_word(g, 2) != 1 || !p || !q ||
819 DH_set0_pqg(dh, p, q, g) != 1)
820 goto err;
821 p = NULL;
822 q = NULL;
823 g = NULL;
824
825 if (DH_generate_key(dh) != 1)
826 goto err;
827
828 DH_get0_key(dh, &pub_key, &priv_key);
829 publen = BN_num_bytes(pub_key);
830 pubkey = wpabuf_alloc(publen);
831 if (!pubkey)
832 goto err;
833 privlen = BN_num_bytes(priv_key);
834 privkey = wpabuf_alloc(privlen);
835 if (!privkey)
836 goto err;
837
838 BN_bn2bin(pub_key, wpabuf_put(pubkey, publen));
839 BN_bn2bin(priv_key, wpabuf_put(privkey, privlen));
840
841 *priv = privkey;
842 *publ = pubkey;
843 return dh;
844
845 err:
846 BN_free(p);
847 BN_free(q);
848 BN_free(g);
849 wpabuf_clear_free(pubkey);
850 wpabuf_clear_free(privkey);
851 DH_free(dh);
852 return NULL;
853 #endif
854 }
855
856
dh5_init_fixed(const struct wpabuf * priv,const struct wpabuf * publ)857 void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ)
858 {
859 #if OPENSSL_VERSION_NUMBER < 0x10100000L || \
860 (defined(LIBRESSL_VERSION_NUMBER) && \
861 LIBRESSL_VERSION_NUMBER < 0x20700000L)
862 DH *dh;
863
864 dh = DH_new();
865 if (dh == NULL)
866 return NULL;
867
868 dh->g = BN_new();
869 if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
870 goto err;
871
872 dh->p = get_group5_prime();
873 if (dh->p == NULL)
874 goto err;
875
876 dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
877 if (dh->priv_key == NULL)
878 goto err;
879
880 dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
881 if (dh->pub_key == NULL)
882 goto err;
883
884 if (DH_generate_key(dh) != 1)
885 goto err;
886
887 return dh;
888
889 err:
890 DH_free(dh);
891 return NULL;
892 #else
893 DH *dh;
894 BIGNUM *p = NULL, *g, *priv_key = NULL, *pub_key = NULL;
895
896 dh = DH_new();
897 if (dh == NULL)
898 return NULL;
899
900 g = BN_new();
901 p = get_group5_prime();
902 if (!g || BN_set_word(g, 2) != 1 || !p ||
903 DH_set0_pqg(dh, p, NULL, g) != 1)
904 goto err;
905 p = NULL;
906 g = NULL;
907
908 priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
909 pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
910 if (!priv_key || !pub_key || DH_set0_key(dh, pub_key, priv_key) != 1)
911 goto err;
912 pub_key = NULL;
913 priv_key = NULL;
914
915 if (DH_generate_key(dh) != 1)
916 goto err;
917
918 return dh;
919
920 err:
921 BN_free(p);
922 BN_free(g);
923 BN_free(pub_key);
924 BN_clear_free(priv_key);
925 DH_free(dh);
926 return NULL;
927 #endif
928 }
929
930
dh5_derive_shared(void * ctx,const struct wpabuf * peer_public,const struct wpabuf * own_private)931 struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public,
932 const struct wpabuf *own_private)
933 {
934 BIGNUM *pub_key;
935 struct wpabuf *res = NULL;
936 size_t rlen;
937 DH *dh = ctx;
938 int keylen;
939
940 if (ctx == NULL)
941 return NULL;
942
943 pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public),
944 NULL);
945 if (pub_key == NULL)
946 return NULL;
947
948 rlen = DH_size(dh);
949 res = wpabuf_alloc(rlen);
950 if (res == NULL)
951 goto err;
952
953 keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh);
954 if (keylen < 0)
955 goto err;
956 wpabuf_put(res, keylen);
957 BN_clear_free(pub_key);
958
959 return res;
960
961 err:
962 BN_clear_free(pub_key);
963 wpabuf_clear_free(res);
964 return NULL;
965 }
966
967
dh5_free(void * ctx)968 void dh5_free(void *ctx)
969 {
970 DH *dh;
971 if (ctx == NULL)
972 return;
973 dh = ctx;
974 DH_free(dh);
975 }
976
977
978 struct crypto_hash {
979 HMAC_CTX *ctx;
980 };
981
982
crypto_hash_init(enum crypto_hash_alg alg,const u8 * key,size_t key_len)983 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
984 size_t key_len)
985 {
986 struct crypto_hash *ctx;
987 const EVP_MD *md;
988
989 switch (alg) {
990 #ifndef OPENSSL_NO_MD5
991 case CRYPTO_HASH_ALG_HMAC_MD5:
992 md = EVP_md5();
993 break;
994 #endif /* OPENSSL_NO_MD5 */
995 #ifndef OPENSSL_NO_SHA
996 case CRYPTO_HASH_ALG_HMAC_SHA1:
997 md = EVP_sha1();
998 break;
999 #endif /* OPENSSL_NO_SHA */
1000 #ifndef OPENSSL_NO_SHA256
1001 #ifdef CONFIG_SHA256
1002 case CRYPTO_HASH_ALG_HMAC_SHA256:
1003 md = EVP_sha256();
1004 break;
1005 #endif /* CONFIG_SHA256 */
1006 #endif /* OPENSSL_NO_SHA256 */
1007 default:
1008 return NULL;
1009 }
1010
1011 ctx = os_zalloc(sizeof(*ctx));
1012 if (ctx == NULL)
1013 return NULL;
1014 ctx->ctx = HMAC_CTX_new();
1015 if (!ctx->ctx) {
1016 os_free(ctx);
1017 return NULL;
1018 }
1019
1020 if (HMAC_Init_ex(ctx->ctx, key, key_len, md, NULL) != 1) {
1021 HMAC_CTX_free(ctx->ctx);
1022 bin_clear_free(ctx, sizeof(*ctx));
1023 return NULL;
1024 }
1025
1026 return ctx;
1027 }
1028
1029
crypto_hash_update(struct crypto_hash * ctx,const u8 * data,size_t len)1030 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
1031 {
1032 if (ctx == NULL)
1033 return;
1034 HMAC_Update(ctx->ctx, data, len);
1035 }
1036
1037
crypto_hash_finish(struct crypto_hash * ctx,u8 * mac,size_t * len)1038 int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
1039 {
1040 unsigned int mdlen;
1041 int res;
1042
1043 if (ctx == NULL)
1044 return -2;
1045
1046 if (mac == NULL || len == NULL) {
1047 HMAC_CTX_free(ctx->ctx);
1048 bin_clear_free(ctx, sizeof(*ctx));
1049 return 0;
1050 }
1051
1052 mdlen = *len;
1053 res = HMAC_Final(ctx->ctx, mac, &mdlen);
1054 HMAC_CTX_free(ctx->ctx);
1055 bin_clear_free(ctx, sizeof(*ctx));
1056
1057 if (TEST_FAIL())
1058 return -1;
1059
1060 if (res == 1) {
1061 *len = mdlen;
1062 return 0;
1063 }
1064
1065 return -1;
1066 }
1067
1068
openssl_hmac_vector(const EVP_MD * type,const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac,unsigned int mdlen)1069 static int openssl_hmac_vector(const EVP_MD *type, const u8 *key,
1070 size_t key_len, size_t num_elem,
1071 const u8 *addr[], const size_t *len, u8 *mac,
1072 unsigned int mdlen)
1073 {
1074 HMAC_CTX *ctx;
1075 size_t i;
1076 int res;
1077
1078 if (TEST_FAIL())
1079 return -1;
1080
1081 ctx = HMAC_CTX_new();
1082 if (!ctx)
1083 return -1;
1084 res = HMAC_Init_ex(ctx, key, key_len, type, NULL);
1085 if (res != 1)
1086 goto done;
1087
1088 for (i = 0; i < num_elem; i++)
1089 HMAC_Update(ctx, addr[i], len[i]);
1090
1091 res = HMAC_Final(ctx, mac, &mdlen);
1092 done:
1093 HMAC_CTX_free(ctx);
1094
1095 return res == 1 ? 0 : -1;
1096 }
1097
1098
1099 #ifndef CONFIG_FIPS
1100
hmac_md5_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)1101 int hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem,
1102 const u8 *addr[], const size_t *len, u8 *mac)
1103 {
1104 return openssl_hmac_vector(EVP_md5(), key ,key_len, num_elem, addr, len,
1105 mac, 16);
1106 }
1107
1108
hmac_md5(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)1109 int hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
1110 u8 *mac)
1111 {
1112 return hmac_md5_vector(key, key_len, 1, &data, &data_len, mac);
1113 }
1114
1115 #endif /* CONFIG_FIPS */
1116
1117
pbkdf2_sha1(const char * passphrase,const u8 * ssid,size_t ssid_len,int iterations,u8 * buf,size_t buflen)1118 int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len,
1119 int iterations, u8 *buf, size_t buflen)
1120 {
1121 if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid,
1122 ssid_len, iterations, buflen, buf) != 1)
1123 return -1;
1124 return 0;
1125 }
1126
1127
hmac_sha1_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)1128 int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
1129 const u8 *addr[], const size_t *len, u8 *mac)
1130 {
1131 return openssl_hmac_vector(EVP_sha1(), key, key_len, num_elem, addr,
1132 len, mac, 20);
1133 }
1134
1135
hmac_sha1(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)1136 int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
1137 u8 *mac)
1138 {
1139 return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
1140 }
1141
1142
1143 #ifdef CONFIG_SHA256
1144
hmac_sha256_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)1145 int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
1146 const u8 *addr[], const size_t *len, u8 *mac)
1147 {
1148 return openssl_hmac_vector(EVP_sha256(), key, key_len, num_elem, addr,
1149 len, mac, 32);
1150 }
1151
1152
hmac_sha256(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)1153 int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
1154 size_t data_len, u8 *mac)
1155 {
1156 return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
1157 }
1158
1159 #endif /* CONFIG_SHA256 */
1160
1161
1162 #ifdef CONFIG_SHA384
1163
hmac_sha384_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)1164 int hmac_sha384_vector(const u8 *key, size_t key_len, size_t num_elem,
1165 const u8 *addr[], const size_t *len, u8 *mac)
1166 {
1167 return openssl_hmac_vector(EVP_sha384(), key, key_len, num_elem, addr,
1168 len, mac, 48);
1169 }
1170
1171
hmac_sha384(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)1172 int hmac_sha384(const u8 *key, size_t key_len, const u8 *data,
1173 size_t data_len, u8 *mac)
1174 {
1175 return hmac_sha384_vector(key, key_len, 1, &data, &data_len, mac);
1176 }
1177
1178 #endif /* CONFIG_SHA384 */
1179
1180
1181 #ifdef CONFIG_SHA512
1182
hmac_sha512_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)1183 int hmac_sha512_vector(const u8 *key, size_t key_len, size_t num_elem,
1184 const u8 *addr[], const size_t *len, u8 *mac)
1185 {
1186 return openssl_hmac_vector(EVP_sha512(), key, key_len, num_elem, addr,
1187 len, mac, 64);
1188 }
1189
1190
hmac_sha512(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)1191 int hmac_sha512(const u8 *key, size_t key_len, const u8 *data,
1192 size_t data_len, u8 *mac)
1193 {
1194 return hmac_sha512_vector(key, key_len, 1, &data, &data_len, mac);
1195 }
1196
1197 #endif /* CONFIG_SHA512 */
1198
1199
crypto_get_random(void * buf,size_t len)1200 int crypto_get_random(void *buf, size_t len)
1201 {
1202 if (RAND_bytes(buf, len) != 1)
1203 return -1;
1204 return 0;
1205 }
1206
1207
1208 #ifdef CONFIG_OPENSSL_CMAC
omac1_aes_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)1209 int omac1_aes_vector(const u8 *key, size_t key_len, size_t num_elem,
1210 const u8 *addr[], const size_t *len, u8 *mac)
1211 {
1212 CMAC_CTX *ctx;
1213 int ret = -1;
1214 size_t outlen, i;
1215
1216 if (TEST_FAIL())
1217 return -1;
1218
1219 ctx = CMAC_CTX_new();
1220 if (ctx == NULL)
1221 return -1;
1222
1223 if (key_len == 32) {
1224 if (!CMAC_Init(ctx, key, 32, EVP_aes_256_cbc(), NULL))
1225 goto fail;
1226 } else if (key_len == 16) {
1227 if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL))
1228 goto fail;
1229 } else {
1230 goto fail;
1231 }
1232 for (i = 0; i < num_elem; i++) {
1233 if (!CMAC_Update(ctx, addr[i], len[i]))
1234 goto fail;
1235 }
1236 if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16)
1237 goto fail;
1238
1239 ret = 0;
1240 fail:
1241 CMAC_CTX_free(ctx);
1242 return ret;
1243 }
1244
1245
omac1_aes_128_vector(const u8 * key,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)1246 int omac1_aes_128_vector(const u8 *key, size_t num_elem,
1247 const u8 *addr[], const size_t *len, u8 *mac)
1248 {
1249 return omac1_aes_vector(key, 16, num_elem, addr, len, mac);
1250 }
1251
1252
omac1_aes_128(const u8 * key,const u8 * data,size_t data_len,u8 * mac)1253 int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
1254 {
1255 return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
1256 }
1257
1258
omac1_aes_256(const u8 * key,const u8 * data,size_t data_len,u8 * mac)1259 int omac1_aes_256(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
1260 {
1261 return omac1_aes_vector(key, 32, 1, &data, &data_len, mac);
1262 }
1263 #endif /* CONFIG_OPENSSL_CMAC */
1264
1265
crypto_bignum_init(void)1266 struct crypto_bignum * crypto_bignum_init(void)
1267 {
1268 if (TEST_FAIL())
1269 return NULL;
1270 return (struct crypto_bignum *) BN_new();
1271 }
1272
1273
crypto_bignum_init_set(const u8 * buf,size_t len)1274 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len)
1275 {
1276 BIGNUM *bn;
1277
1278 if (TEST_FAIL())
1279 return NULL;
1280
1281 bn = BN_bin2bn(buf, len, NULL);
1282 return (struct crypto_bignum *) bn;
1283 }
1284
1285
crypto_bignum_deinit(struct crypto_bignum * n,int clear)1286 void crypto_bignum_deinit(struct crypto_bignum *n, int clear)
1287 {
1288 if (clear)
1289 BN_clear_free((BIGNUM *) n);
1290 else
1291 BN_free((BIGNUM *) n);
1292 }
1293
1294
crypto_bignum_to_bin(const struct crypto_bignum * a,u8 * buf,size_t buflen,size_t padlen)1295 int crypto_bignum_to_bin(const struct crypto_bignum *a,
1296 u8 *buf, size_t buflen, size_t padlen)
1297 {
1298 int num_bytes, offset;
1299
1300 if (TEST_FAIL())
1301 return -1;
1302
1303 if (padlen > buflen)
1304 return -1;
1305
1306 if (padlen) {
1307 #ifdef OPENSSL_IS_BORINGSSL
1308 if (BN_bn2bin_padded(buf, padlen, (const BIGNUM *) a) == 0)
1309 return -1;
1310 return padlen;
1311 #else /* OPENSSL_IS_BORINGSSL */
1312 #if OPENSSL_VERSION_NUMBER >= 0x10100000L && !defined(LIBRESSL_VERSION_NUMBER)
1313 return BN_bn2binpad((const BIGNUM *) a, buf, padlen);
1314 #endif
1315 #endif
1316 }
1317
1318 num_bytes = BN_num_bytes((const BIGNUM *) a);
1319 if ((size_t) num_bytes > buflen)
1320 return -1;
1321 if (padlen > (size_t) num_bytes)
1322 offset = padlen - num_bytes;
1323 else
1324 offset = 0;
1325
1326 os_memset(buf, 0, offset);
1327 BN_bn2bin((const BIGNUM *) a, buf + offset);
1328
1329 return num_bytes + offset;
1330 }
1331
1332
crypto_bignum_rand(struct crypto_bignum * r,const struct crypto_bignum * m)1333 int crypto_bignum_rand(struct crypto_bignum *r, const struct crypto_bignum *m)
1334 {
1335 if (TEST_FAIL())
1336 return -1;
1337 return BN_rand_range((BIGNUM *) r, (const BIGNUM *) m) == 1 ? 0 : -1;
1338 }
1339
1340
crypto_bignum_add(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1341 int crypto_bignum_add(const struct crypto_bignum *a,
1342 const struct crypto_bignum *b,
1343 struct crypto_bignum *c)
1344 {
1345 return BN_add((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
1346 0 : -1;
1347 }
1348
1349
crypto_bignum_mod(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1350 int crypto_bignum_mod(const struct crypto_bignum *a,
1351 const struct crypto_bignum *b,
1352 struct crypto_bignum *c)
1353 {
1354 int res;
1355 BN_CTX *bnctx;
1356
1357 bnctx = BN_CTX_new();
1358 if (bnctx == NULL)
1359 return -1;
1360 res = BN_mod((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b,
1361 bnctx);
1362 BN_CTX_free(bnctx);
1363
1364 return res ? 0 : -1;
1365 }
1366
1367
crypto_bignum_exptmod(const struct crypto_bignum * a,const struct crypto_bignum * b,const struct crypto_bignum * c,struct crypto_bignum * d)1368 int crypto_bignum_exptmod(const struct crypto_bignum *a,
1369 const struct crypto_bignum *b,
1370 const struct crypto_bignum *c,
1371 struct crypto_bignum *d)
1372 {
1373 int res;
1374 BN_CTX *bnctx;
1375
1376 if (TEST_FAIL())
1377 return -1;
1378
1379 bnctx = BN_CTX_new();
1380 if (bnctx == NULL)
1381 return -1;
1382 res = BN_mod_exp_mont_consttime((BIGNUM *) d, (const BIGNUM *) a,
1383 (const BIGNUM *) b, (const BIGNUM *) c,
1384 bnctx, NULL);
1385 BN_CTX_free(bnctx);
1386
1387 return res ? 0 : -1;
1388 }
1389
1390
crypto_bignum_inverse(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1391 int crypto_bignum_inverse(const struct crypto_bignum *a,
1392 const struct crypto_bignum *b,
1393 struct crypto_bignum *c)
1394 {
1395 BIGNUM *res;
1396 BN_CTX *bnctx;
1397
1398 if (TEST_FAIL())
1399 return -1;
1400 bnctx = BN_CTX_new();
1401 if (bnctx == NULL)
1402 return -1;
1403 #ifdef OPENSSL_IS_BORINGSSL
1404 /* TODO: use BN_mod_inverse_blinded() ? */
1405 #else /* OPENSSL_IS_BORINGSSL */
1406 BN_set_flags((BIGNUM *) a, BN_FLG_CONSTTIME);
1407 #endif /* OPENSSL_IS_BORINGSSL */
1408 res = BN_mod_inverse((BIGNUM *) c, (const BIGNUM *) a,
1409 (const BIGNUM *) b, bnctx);
1410 BN_CTX_free(bnctx);
1411
1412 return res ? 0 : -1;
1413 }
1414
1415
crypto_bignum_sub(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1416 int crypto_bignum_sub(const struct crypto_bignum *a,
1417 const struct crypto_bignum *b,
1418 struct crypto_bignum *c)
1419 {
1420 if (TEST_FAIL())
1421 return -1;
1422 return BN_sub((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
1423 0 : -1;
1424 }
1425
1426
crypto_bignum_div(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1427 int crypto_bignum_div(const struct crypto_bignum *a,
1428 const struct crypto_bignum *b,
1429 struct crypto_bignum *c)
1430 {
1431 int res;
1432
1433 BN_CTX *bnctx;
1434
1435 if (TEST_FAIL())
1436 return -1;
1437
1438 bnctx = BN_CTX_new();
1439 if (bnctx == NULL)
1440 return -1;
1441 #ifndef OPENSSL_IS_BORINGSSL
1442 BN_set_flags((BIGNUM *) a, BN_FLG_CONSTTIME);
1443 #endif /* OPENSSL_IS_BORINGSSL */
1444 res = BN_div((BIGNUM *) c, NULL, (const BIGNUM *) a,
1445 (const BIGNUM *) b, bnctx);
1446 BN_CTX_free(bnctx);
1447
1448 return res ? 0 : -1;
1449 }
1450
1451
crypto_bignum_mulmod(const struct crypto_bignum * a,const struct crypto_bignum * b,const struct crypto_bignum * c,struct crypto_bignum * d)1452 int crypto_bignum_mulmod(const struct crypto_bignum *a,
1453 const struct crypto_bignum *b,
1454 const struct crypto_bignum *c,
1455 struct crypto_bignum *d)
1456 {
1457 int res;
1458
1459 BN_CTX *bnctx;
1460
1461 if (TEST_FAIL())
1462 return -1;
1463
1464 bnctx = BN_CTX_new();
1465 if (bnctx == NULL)
1466 return -1;
1467 res = BN_mod_mul((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
1468 (const BIGNUM *) c, bnctx);
1469 BN_CTX_free(bnctx);
1470
1471 return res ? 0 : -1;
1472 }
1473
1474
crypto_bignum_rshift(const struct crypto_bignum * a,int n,struct crypto_bignum * r)1475 int crypto_bignum_rshift(const struct crypto_bignum *a, int n,
1476 struct crypto_bignum *r)
1477 {
1478 /* Note: BN_rshift() does not modify the first argument even though it
1479 * has not been marked const. */
1480 return BN_rshift((BIGNUM *) a, (BIGNUM *) r, n) == 1 ? 0 : -1;
1481 }
1482
1483
crypto_bignum_cmp(const struct crypto_bignum * a,const struct crypto_bignum * b)1484 int crypto_bignum_cmp(const struct crypto_bignum *a,
1485 const struct crypto_bignum *b)
1486 {
1487 return BN_cmp((const BIGNUM *) a, (const BIGNUM *) b);
1488 }
1489
1490
crypto_bignum_is_zero(const struct crypto_bignum * a)1491 int crypto_bignum_is_zero(const struct crypto_bignum *a)
1492 {
1493 return BN_is_zero((const BIGNUM *) a);
1494 }
1495
1496
crypto_bignum_is_one(const struct crypto_bignum * a)1497 int crypto_bignum_is_one(const struct crypto_bignum *a)
1498 {
1499 return BN_is_one((const BIGNUM *) a);
1500 }
1501
1502
crypto_bignum_is_odd(const struct crypto_bignum * a)1503 int crypto_bignum_is_odd(const struct crypto_bignum *a)
1504 {
1505 return BN_is_odd((const BIGNUM *) a);
1506 }
1507
1508
crypto_bignum_legendre(const struct crypto_bignum * a,const struct crypto_bignum * p)1509 int crypto_bignum_legendre(const struct crypto_bignum *a,
1510 const struct crypto_bignum *p)
1511 {
1512 BN_CTX *bnctx;
1513 BIGNUM *exp = NULL, *tmp = NULL;
1514 int res = -2;
1515 unsigned int mask;
1516
1517 if (TEST_FAIL())
1518 return -2;
1519
1520 bnctx = BN_CTX_new();
1521 if (bnctx == NULL)
1522 return -2;
1523
1524 exp = BN_new();
1525 tmp = BN_new();
1526 if (!exp || !tmp ||
1527 /* exp = (p-1) / 2 */
1528 !BN_sub(exp, (const BIGNUM *) p, BN_value_one()) ||
1529 !BN_rshift1(exp, exp) ||
1530 !BN_mod_exp_mont_consttime(tmp, (const BIGNUM *) a, exp,
1531 (const BIGNUM *) p, bnctx, NULL))
1532 goto fail;
1533
1534 /* Return 1 if tmp == 1, 0 if tmp == 0, or -1 otherwise. Need to use
1535 * constant time selection to avoid branches here. */
1536 res = -1;
1537 mask = const_time_eq(BN_is_word(tmp, 1), 1);
1538 res = const_time_select_int(mask, 1, res);
1539 mask = const_time_eq(BN_is_zero(tmp), 1);
1540 res = const_time_select_int(mask, 0, res);
1541
1542 fail:
1543 BN_clear_free(tmp);
1544 BN_clear_free(exp);
1545 BN_CTX_free(bnctx);
1546 return res;
1547 }
1548
1549
1550 #ifdef CONFIG_ECC
1551
1552 struct crypto_ec {
1553 EC_GROUP *group;
1554 int nid;
1555 BN_CTX *bnctx;
1556 BIGNUM *prime;
1557 BIGNUM *order;
1558 BIGNUM *a;
1559 BIGNUM *b;
1560 };
1561
crypto_ec_init(int group)1562 struct crypto_ec * crypto_ec_init(int group)
1563 {
1564 struct crypto_ec *e;
1565 int nid;
1566
1567 /* Map from IANA registry for IKE D-H groups to OpenSSL NID */
1568 switch (group) {
1569 case 19:
1570 nid = NID_X9_62_prime256v1;
1571 break;
1572 case 20:
1573 nid = NID_secp384r1;
1574 break;
1575 case 21:
1576 nid = NID_secp521r1;
1577 break;
1578 case 25:
1579 nid = NID_X9_62_prime192v1;
1580 break;
1581 case 26:
1582 nid = NID_secp224r1;
1583 break;
1584 #ifdef NID_brainpoolP224r1
1585 case 27:
1586 nid = NID_brainpoolP224r1;
1587 break;
1588 #endif /* NID_brainpoolP224r1 */
1589 #ifdef NID_brainpoolP256r1
1590 case 28:
1591 nid = NID_brainpoolP256r1;
1592 break;
1593 #endif /* NID_brainpoolP256r1 */
1594 #ifdef NID_brainpoolP384r1
1595 case 29:
1596 nid = NID_brainpoolP384r1;
1597 break;
1598 #endif /* NID_brainpoolP384r1 */
1599 #ifdef NID_brainpoolP512r1
1600 case 30:
1601 nid = NID_brainpoolP512r1;
1602 break;
1603 #endif /* NID_brainpoolP512r1 */
1604 default:
1605 return NULL;
1606 }
1607
1608 e = os_zalloc(sizeof(*e));
1609 if (e == NULL)
1610 return NULL;
1611
1612 e->nid = nid;
1613 e->bnctx = BN_CTX_new();
1614 e->group = EC_GROUP_new_by_curve_name(nid);
1615 e->prime = BN_new();
1616 e->order = BN_new();
1617 e->a = BN_new();
1618 e->b = BN_new();
1619 if (e->group == NULL || e->bnctx == NULL || e->prime == NULL ||
1620 e->order == NULL || e->a == NULL || e->b == NULL ||
1621 !EC_GROUP_get_curve_GFp(e->group, e->prime, e->a, e->b, e->bnctx) ||
1622 !EC_GROUP_get_order(e->group, e->order, e->bnctx)) {
1623 crypto_ec_deinit(e);
1624 e = NULL;
1625 }
1626
1627 return e;
1628 }
1629
1630
crypto_ec_deinit(struct crypto_ec * e)1631 void crypto_ec_deinit(struct crypto_ec *e)
1632 {
1633 if (e == NULL)
1634 return;
1635 BN_clear_free(e->b);
1636 BN_clear_free(e->a);
1637 BN_clear_free(e->order);
1638 BN_clear_free(e->prime);
1639 EC_GROUP_free(e->group);
1640 BN_CTX_free(e->bnctx);
1641 os_free(e);
1642 }
1643
1644
crypto_ec_point_init(struct crypto_ec * e)1645 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e)
1646 {
1647 if (TEST_FAIL())
1648 return NULL;
1649 if (e == NULL)
1650 return NULL;
1651 return (struct crypto_ec_point *) EC_POINT_new(e->group);
1652 }
1653
1654
crypto_ec_prime_len(struct crypto_ec * e)1655 size_t crypto_ec_prime_len(struct crypto_ec *e)
1656 {
1657 return BN_num_bytes(e->prime);
1658 }
1659
1660
crypto_ec_prime_len_bits(struct crypto_ec * e)1661 size_t crypto_ec_prime_len_bits(struct crypto_ec *e)
1662 {
1663 return BN_num_bits(e->prime);
1664 }
1665
1666
crypto_ec_order_len(struct crypto_ec * e)1667 size_t crypto_ec_order_len(struct crypto_ec *e)
1668 {
1669 return BN_num_bytes(e->order);
1670 }
1671
1672
crypto_ec_get_prime(struct crypto_ec * e)1673 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e)
1674 {
1675 return (const struct crypto_bignum *) e->prime;
1676 }
1677
1678
crypto_ec_get_order(struct crypto_ec * e)1679 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e)
1680 {
1681 return (const struct crypto_bignum *) e->order;
1682 }
1683
1684
crypto_ec_point_deinit(struct crypto_ec_point * p,int clear)1685 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear)
1686 {
1687 if (clear)
1688 EC_POINT_clear_free((EC_POINT *) p);
1689 else
1690 EC_POINT_free((EC_POINT *) p);
1691 }
1692
1693
crypto_ec_point_x(struct crypto_ec * e,const struct crypto_ec_point * p,struct crypto_bignum * x)1694 int crypto_ec_point_x(struct crypto_ec *e, const struct crypto_ec_point *p,
1695 struct crypto_bignum *x)
1696 {
1697 return EC_POINT_get_affine_coordinates_GFp(e->group,
1698 (const EC_POINT *) p,
1699 (BIGNUM *) x, NULL,
1700 e->bnctx) == 1 ? 0 : -1;
1701 }
1702
1703
crypto_ec_point_to_bin(struct crypto_ec * e,const struct crypto_ec_point * point,u8 * x,u8 * y)1704 int crypto_ec_point_to_bin(struct crypto_ec *e,
1705 const struct crypto_ec_point *point, u8 *x, u8 *y)
1706 {
1707 BIGNUM *x_bn, *y_bn;
1708 int ret = -1;
1709 int len = BN_num_bytes(e->prime);
1710
1711 if (TEST_FAIL())
1712 return -1;
1713
1714 x_bn = BN_new();
1715 y_bn = BN_new();
1716
1717 if (x_bn && y_bn &&
1718 EC_POINT_get_affine_coordinates_GFp(e->group, (EC_POINT *) point,
1719 x_bn, y_bn, e->bnctx)) {
1720 if (x) {
1721 crypto_bignum_to_bin((struct crypto_bignum *) x_bn,
1722 x, len, len);
1723 }
1724 if (y) {
1725 crypto_bignum_to_bin((struct crypto_bignum *) y_bn,
1726 y, len, len);
1727 }
1728 ret = 0;
1729 }
1730
1731 BN_clear_free(x_bn);
1732 BN_clear_free(y_bn);
1733 return ret;
1734 }
1735
1736
crypto_ec_point_from_bin(struct crypto_ec * e,const u8 * val)1737 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
1738 const u8 *val)
1739 {
1740 BIGNUM *x, *y;
1741 EC_POINT *elem;
1742 int len = BN_num_bytes(e->prime);
1743
1744 if (TEST_FAIL())
1745 return NULL;
1746
1747 x = BN_bin2bn(val, len, NULL);
1748 y = BN_bin2bn(val + len, len, NULL);
1749 elem = EC_POINT_new(e->group);
1750 if (x == NULL || y == NULL || elem == NULL) {
1751 BN_clear_free(x);
1752 BN_clear_free(y);
1753 EC_POINT_clear_free(elem);
1754 return NULL;
1755 }
1756
1757 if (!EC_POINT_set_affine_coordinates_GFp(e->group, elem, x, y,
1758 e->bnctx)) {
1759 EC_POINT_clear_free(elem);
1760 elem = NULL;
1761 }
1762
1763 BN_clear_free(x);
1764 BN_clear_free(y);
1765
1766 return (struct crypto_ec_point *) elem;
1767 }
1768
1769
crypto_ec_point_add(struct crypto_ec * e,const struct crypto_ec_point * a,const struct crypto_ec_point * b,struct crypto_ec_point * c)1770 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
1771 const struct crypto_ec_point *b,
1772 struct crypto_ec_point *c)
1773 {
1774 if (TEST_FAIL())
1775 return -1;
1776 return EC_POINT_add(e->group, (EC_POINT *) c, (const EC_POINT *) a,
1777 (const EC_POINT *) b, e->bnctx) ? 0 : -1;
1778 }
1779
1780
crypto_ec_point_mul(struct crypto_ec * e,const struct crypto_ec_point * p,const struct crypto_bignum * b,struct crypto_ec_point * res)1781 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
1782 const struct crypto_bignum *b,
1783 struct crypto_ec_point *res)
1784 {
1785 if (TEST_FAIL())
1786 return -1;
1787 return EC_POINT_mul(e->group, (EC_POINT *) res, NULL,
1788 (const EC_POINT *) p, (const BIGNUM *) b, e->bnctx)
1789 ? 0 : -1;
1790 }
1791
1792
crypto_ec_point_invert(struct crypto_ec * e,struct crypto_ec_point * p)1793 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p)
1794 {
1795 if (TEST_FAIL())
1796 return -1;
1797 return EC_POINT_invert(e->group, (EC_POINT *) p, e->bnctx) ? 0 : -1;
1798 }
1799
1800
crypto_ec_point_solve_y_coord(struct crypto_ec * e,struct crypto_ec_point * p,const struct crypto_bignum * x,int y_bit)1801 int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
1802 struct crypto_ec_point *p,
1803 const struct crypto_bignum *x, int y_bit)
1804 {
1805 if (TEST_FAIL())
1806 return -1;
1807 if (!EC_POINT_set_compressed_coordinates_GFp(e->group, (EC_POINT *) p,
1808 (const BIGNUM *) x, y_bit,
1809 e->bnctx) ||
1810 !EC_POINT_is_on_curve(e->group, (EC_POINT *) p, e->bnctx))
1811 return -1;
1812 return 0;
1813 }
1814
1815
1816 struct crypto_bignum *
crypto_ec_point_compute_y_sqr(struct crypto_ec * e,const struct crypto_bignum * x)1817 crypto_ec_point_compute_y_sqr(struct crypto_ec *e,
1818 const struct crypto_bignum *x)
1819 {
1820 BIGNUM *tmp, *tmp2, *y_sqr = NULL;
1821
1822 if (TEST_FAIL())
1823 return NULL;
1824
1825 tmp = BN_new();
1826 tmp2 = BN_new();
1827
1828 /* y^2 = x^3 + ax + b */
1829 if (tmp && tmp2 &&
1830 BN_mod_sqr(tmp, (const BIGNUM *) x, e->prime, e->bnctx) &&
1831 BN_mod_mul(tmp, tmp, (const BIGNUM *) x, e->prime, e->bnctx) &&
1832 BN_mod_mul(tmp2, e->a, (const BIGNUM *) x, e->prime, e->bnctx) &&
1833 BN_mod_add_quick(tmp2, tmp2, tmp, e->prime) &&
1834 BN_mod_add_quick(tmp2, tmp2, e->b, e->prime)) {
1835 y_sqr = tmp2;
1836 tmp2 = NULL;
1837 }
1838
1839 BN_clear_free(tmp);
1840 BN_clear_free(tmp2);
1841
1842 return (struct crypto_bignum *) y_sqr;
1843 }
1844
1845
crypto_ec_point_is_at_infinity(struct crypto_ec * e,const struct crypto_ec_point * p)1846 int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
1847 const struct crypto_ec_point *p)
1848 {
1849 return EC_POINT_is_at_infinity(e->group, (const EC_POINT *) p);
1850 }
1851
1852
crypto_ec_point_is_on_curve(struct crypto_ec * e,const struct crypto_ec_point * p)1853 int crypto_ec_point_is_on_curve(struct crypto_ec *e,
1854 const struct crypto_ec_point *p)
1855 {
1856 return EC_POINT_is_on_curve(e->group, (const EC_POINT *) p,
1857 e->bnctx) == 1;
1858 }
1859
1860
crypto_ec_point_cmp(const struct crypto_ec * e,const struct crypto_ec_point * a,const struct crypto_ec_point * b)1861 int crypto_ec_point_cmp(const struct crypto_ec *e,
1862 const struct crypto_ec_point *a,
1863 const struct crypto_ec_point *b)
1864 {
1865 return EC_POINT_cmp(e->group, (const EC_POINT *) a,
1866 (const EC_POINT *) b, e->bnctx);
1867 }
1868
1869
1870 struct crypto_ecdh {
1871 struct crypto_ec *ec;
1872 EVP_PKEY *pkey;
1873 };
1874
crypto_ecdh_init(int group)1875 struct crypto_ecdh * crypto_ecdh_init(int group)
1876 {
1877 struct crypto_ecdh *ecdh;
1878 EVP_PKEY *params = NULL;
1879 EC_KEY *ec_params = NULL;
1880 EVP_PKEY_CTX *kctx = NULL;
1881
1882 ecdh = os_zalloc(sizeof(*ecdh));
1883 if (!ecdh)
1884 goto fail;
1885
1886 ecdh->ec = crypto_ec_init(group);
1887 if (!ecdh->ec)
1888 goto fail;
1889
1890 ec_params = EC_KEY_new_by_curve_name(ecdh->ec->nid);
1891 if (!ec_params) {
1892 wpa_printf(MSG_ERROR,
1893 "OpenSSL: Failed to generate EC_KEY parameters");
1894 goto fail;
1895 }
1896 EC_KEY_set_asn1_flag(ec_params, OPENSSL_EC_NAMED_CURVE);
1897 params = EVP_PKEY_new();
1898 if (!params || EVP_PKEY_set1_EC_KEY(params, ec_params) != 1) {
1899 wpa_printf(MSG_ERROR,
1900 "OpenSSL: Failed to generate EVP_PKEY parameters");
1901 goto fail;
1902 }
1903
1904 kctx = EVP_PKEY_CTX_new(params, NULL);
1905 if (!kctx)
1906 goto fail;
1907
1908 if (EVP_PKEY_keygen_init(kctx) != 1) {
1909 wpa_printf(MSG_ERROR,
1910 "OpenSSL: EVP_PKEY_keygen_init failed: %s",
1911 ERR_error_string(ERR_get_error(), NULL));
1912 goto fail;
1913 }
1914
1915 if (EVP_PKEY_keygen(kctx, &ecdh->pkey) != 1) {
1916 wpa_printf(MSG_ERROR, "OpenSSL: EVP_PKEY_keygen failed: %s",
1917 ERR_error_string(ERR_get_error(), NULL));
1918 goto fail;
1919 }
1920
1921 done:
1922 EC_KEY_free(ec_params);
1923 EVP_PKEY_free(params);
1924 EVP_PKEY_CTX_free(kctx);
1925
1926 return ecdh;
1927 fail:
1928 crypto_ecdh_deinit(ecdh);
1929 ecdh = NULL;
1930 goto done;
1931 }
1932
1933
crypto_ecdh_get_pubkey(struct crypto_ecdh * ecdh,int inc_y)1934 struct wpabuf * crypto_ecdh_get_pubkey(struct crypto_ecdh *ecdh, int inc_y)
1935 {
1936 struct wpabuf *buf = NULL;
1937 EC_KEY *eckey;
1938 const EC_POINT *pubkey;
1939 BIGNUM *x, *y = NULL;
1940 int len = BN_num_bytes(ecdh->ec->prime);
1941 int res;
1942
1943 eckey = EVP_PKEY_get1_EC_KEY(ecdh->pkey);
1944 if (!eckey)
1945 return NULL;
1946
1947 pubkey = EC_KEY_get0_public_key(eckey);
1948 if (!pubkey)
1949 return NULL;
1950
1951 x = BN_new();
1952 if (inc_y) {
1953 y = BN_new();
1954 if (!y)
1955 goto fail;
1956 }
1957 buf = wpabuf_alloc(inc_y ? 2 * len : len);
1958 if (!x || !buf)
1959 goto fail;
1960
1961 if (EC_POINT_get_affine_coordinates_GFp(ecdh->ec->group, pubkey,
1962 x, y, ecdh->ec->bnctx) != 1) {
1963 wpa_printf(MSG_ERROR,
1964 "OpenSSL: EC_POINT_get_affine_coordinates_GFp failed: %s",
1965 ERR_error_string(ERR_get_error(), NULL));
1966 goto fail;
1967 }
1968
1969 res = crypto_bignum_to_bin((struct crypto_bignum *) x,
1970 wpabuf_put(buf, len), len, len);
1971 if (res < 0)
1972 goto fail;
1973
1974 if (inc_y) {
1975 res = crypto_bignum_to_bin((struct crypto_bignum *) y,
1976 wpabuf_put(buf, len), len, len);
1977 if (res < 0)
1978 goto fail;
1979 }
1980
1981 done:
1982 BN_clear_free(x);
1983 BN_clear_free(y);
1984 EC_KEY_free(eckey);
1985
1986 return buf;
1987 fail:
1988 wpabuf_free(buf);
1989 buf = NULL;
1990 goto done;
1991 }
1992
1993
crypto_ecdh_set_peerkey(struct crypto_ecdh * ecdh,int inc_y,const u8 * key,size_t len)1994 struct wpabuf * crypto_ecdh_set_peerkey(struct crypto_ecdh *ecdh, int inc_y,
1995 const u8 *key, size_t len)
1996 {
1997 BIGNUM *x, *y = NULL;
1998 EVP_PKEY_CTX *ctx = NULL;
1999 EVP_PKEY *peerkey = NULL;
2000 struct wpabuf *secret = NULL;
2001 size_t secret_len;
2002 EC_POINT *pub;
2003 EC_KEY *eckey = NULL;
2004
2005 x = BN_bin2bn(key, inc_y ? len / 2 : len, NULL);
2006 pub = EC_POINT_new(ecdh->ec->group);
2007 if (!x || !pub)
2008 goto fail;
2009
2010 if (inc_y) {
2011 y = BN_bin2bn(key + len / 2, len / 2, NULL);
2012 if (!y)
2013 goto fail;
2014 if (!EC_POINT_set_affine_coordinates_GFp(ecdh->ec->group, pub,
2015 x, y,
2016 ecdh->ec->bnctx)) {
2017 wpa_printf(MSG_ERROR,
2018 "OpenSSL: EC_POINT_set_affine_coordinates_GFp failed: %s",
2019 ERR_error_string(ERR_get_error(), NULL));
2020 goto fail;
2021 }
2022 } else if (!EC_POINT_set_compressed_coordinates_GFp(ecdh->ec->group,
2023 pub, x, 0,
2024 ecdh->ec->bnctx)) {
2025 wpa_printf(MSG_ERROR,
2026 "OpenSSL: EC_POINT_set_compressed_coordinates_GFp failed: %s",
2027 ERR_error_string(ERR_get_error(), NULL));
2028 goto fail;
2029 }
2030
2031 if (!EC_POINT_is_on_curve(ecdh->ec->group, pub, ecdh->ec->bnctx)) {
2032 wpa_printf(MSG_ERROR,
2033 "OpenSSL: ECDH peer public key is not on curve");
2034 goto fail;
2035 }
2036
2037 eckey = EC_KEY_new_by_curve_name(ecdh->ec->nid);
2038 if (!eckey || EC_KEY_set_public_key(eckey, pub) != 1) {
2039 wpa_printf(MSG_ERROR,
2040 "OpenSSL: EC_KEY_set_public_key failed: %s",
2041 ERR_error_string(ERR_get_error(), NULL));
2042 goto fail;
2043 }
2044
2045 peerkey = EVP_PKEY_new();
2046 if (!peerkey || EVP_PKEY_set1_EC_KEY(peerkey, eckey) != 1)
2047 goto fail;
2048
2049 ctx = EVP_PKEY_CTX_new(ecdh->pkey, NULL);
2050 if (!ctx || EVP_PKEY_derive_init(ctx) != 1 ||
2051 EVP_PKEY_derive_set_peer(ctx, peerkey) != 1 ||
2052 EVP_PKEY_derive(ctx, NULL, &secret_len) != 1) {
2053 wpa_printf(MSG_ERROR,
2054 "OpenSSL: EVP_PKEY_derive(1) failed: %s",
2055 ERR_error_string(ERR_get_error(), NULL));
2056 goto fail;
2057 }
2058
2059 secret = wpabuf_alloc(secret_len);
2060 if (!secret)
2061 goto fail;
2062 if (EVP_PKEY_derive(ctx, wpabuf_put(secret, 0), &secret_len) != 1) {
2063 wpa_printf(MSG_ERROR,
2064 "OpenSSL: EVP_PKEY_derive(2) failed: %s",
2065 ERR_error_string(ERR_get_error(), NULL));
2066 goto fail;
2067 }
2068 if (secret->size != secret_len)
2069 wpa_printf(MSG_DEBUG,
2070 "OpenSSL: EVP_PKEY_derive(2) changed secret_len %d -> %d",
2071 (int) secret->size, (int) secret_len);
2072 wpabuf_put(secret, secret_len);
2073
2074 done:
2075 BN_free(x);
2076 BN_free(y);
2077 EC_KEY_free(eckey);
2078 EC_POINT_free(pub);
2079 EVP_PKEY_CTX_free(ctx);
2080 EVP_PKEY_free(peerkey);
2081 return secret;
2082 fail:
2083 wpabuf_free(secret);
2084 secret = NULL;
2085 goto done;
2086 }
2087
2088
crypto_ecdh_deinit(struct crypto_ecdh * ecdh)2089 void crypto_ecdh_deinit(struct crypto_ecdh *ecdh)
2090 {
2091 if (ecdh) {
2092 crypto_ec_deinit(ecdh->ec);
2093 EVP_PKEY_free(ecdh->pkey);
2094 os_free(ecdh);
2095 }
2096 }
2097
2098 #endif /* CONFIG_ECC */
2099