• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* deflate.c -- compress data using the deflation algorithm
2  * Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 /*
7  *  ALGORITHM
8  *
9  *      The "deflation" process depends on being able to identify portions
10  *      of the input text which are identical to earlier input (within a
11  *      sliding window trailing behind the input currently being processed).
12  *
13  *      The most straightforward technique turns out to be the fastest for
14  *      most input files: try all possible matches and select the longest.
15  *      The key feature of this algorithm is that insertions into the string
16  *      dictionary are very simple and thus fast, and deletions are avoided
17  *      completely. Insertions are performed at each input character, whereas
18  *      string matches are performed only when the previous match ends. So it
19  *      is preferable to spend more time in matches to allow very fast string
20  *      insertions and avoid deletions. The matching algorithm for small
21  *      strings is inspired from that of Rabin & Karp. A brute force approach
22  *      is used to find longer strings when a small match has been found.
23  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24  *      (by Leonid Broukhis).
25  *         A previous version of this file used a more sophisticated algorithm
26  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27  *      time, but has a larger average cost, uses more memory and is patented.
28  *      However the F&G algorithm may be faster for some highly redundant
29  *      files if the parameter max_chain_length (described below) is too large.
30  *
31  *  ACKNOWLEDGEMENTS
32  *
33  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34  *      I found it in 'freeze' written by Leonid Broukhis.
35  *      Thanks to many people for bug reports and testing.
36  *
37  *  REFERENCES
38  *
39  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40  *      Available in http://tools.ietf.org/html/rfc1951
41  *
42  *      A description of the Rabin and Karp algorithm is given in the book
43  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44  *
45  *      Fiala,E.R., and Greene,D.H.
46  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47  *
48  */
49 
50 /* @(#) $Id$ */
51 
52 #include "deflate.h"
53 
54 const char deflate_copyright[] =
55    " deflate 1.2.11 Copyright 1995-2017 Jean-loup Gailly and Mark Adler ";
56 /*
57   If you use the zlib library in a product, an acknowledgment is welcome
58   in the documentation of your product. If for some reason you cannot
59   include such an acknowledgment, I would appreciate that you keep this
60   copyright string in the executable of your product.
61  */
62 
63 /* ===========================================================================
64  *  Function prototypes.
65  */
66 typedef enum {
67     need_more,      /* block not completed, need more input or more output */
68     block_done,     /* block flush performed */
69     finish_started, /* finish started, need only more output at next deflate */
70     finish_done     /* finish done, accept no more input or output */
71 } block_state;
72 
73 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
74 /* Compression function. Returns the block state after the call. */
75 
76 local int deflateStateCheck      OF((z_streamp strm));
77 local void slide_hash     OF((deflate_state *s));
78 local void fill_window    OF((deflate_state *s));
79 local block_state deflate_stored OF((deflate_state *s, int flush));
80 local block_state deflate_fast   OF((deflate_state *s, int flush));
81 #ifndef FASTEST
82 local block_state deflate_slow   OF((deflate_state *s, int flush));
83 #endif
84 local block_state deflate_rle    OF((deflate_state *s, int flush));
85 local block_state deflate_huff   OF((deflate_state *s, int flush));
86 local void lm_init        OF((deflate_state *s));
87 local void putShortMSB    OF((deflate_state *s, uInt b));
88 local void flush_pending  OF((z_streamp strm));
89 local unsigned read_buf   OF((z_streamp strm, Bytef *buf, unsigned size));
90 #ifdef ASMV
91 #  pragma message("Assembler code may have bugs -- use at your own risk")
92       void match_init OF((void)); /* asm code initialization */
93       uInt longest_match  OF((deflate_state *s, IPos cur_match));
94 #else
95 local uInt longest_match  OF((deflate_state *s, IPos cur_match));
96 #endif
97 
98 #ifdef ZLIB_DEBUG
99 local  void check_match OF((deflate_state *s, IPos start, IPos match,
100                             int length));
101 #endif
102 
103 /* ===========================================================================
104  * Local data
105  */
106 
107 #define NIL 0
108 /* Tail of hash chains */
109 
110 #ifndef TOO_FAR
111 #  define TOO_FAR 4096
112 #endif
113 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
114 
115 /* Values for max_lazy_match, good_match and max_chain_length, depending on
116  * the desired pack level (0..9). The values given below have been tuned to
117  * exclude worst case performance for pathological files. Better values may be
118  * found for specific files.
119  */
120 typedef struct config_s {
121    ush good_length; /* reduce lazy search above this match length */
122    ush max_lazy;    /* do not perform lazy search above this match length */
123    ush nice_length; /* quit search above this match length */
124    ush max_chain;
125    compress_func func;
126 } config;
127 
128 #ifdef FASTEST
129 local const config configuration_table[2] = {
130 /*      good lazy nice chain */
131 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
132 /* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
133 #else
134 local const config configuration_table[10] = {
135 /*      good lazy nice chain */
136 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
137 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
138 /* 2 */ {4,    5, 16,    8, deflate_fast},
139 /* 3 */ {4,    6, 32,   32, deflate_fast},
140 
141 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
142 /* 5 */ {8,   16, 32,   32, deflate_slow},
143 /* 6 */ {8,   16, 128, 128, deflate_slow},
144 /* 7 */ {8,   32, 128, 256, deflate_slow},
145 /* 8 */ {32, 128, 258, 1024, deflate_slow},
146 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
147 #endif
148 
149 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
150  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
151  * meaning.
152  */
153 
154 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
155 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
156 
157 /* ===========================================================================
158  * Update a hash value with the given input byte
159  * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
160  *    characters, so that a running hash key can be computed from the previous
161  *    key instead of complete recalculation each time.
162  */
163 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
164 
165 
166 /* ===========================================================================
167  * Insert string str in the dictionary and set match_head to the previous head
168  * of the hash chain (the most recent string with same hash key). Return
169  * the previous length of the hash chain.
170  * If this file is compiled with -DFASTEST, the compression level is forced
171  * to 1, and no hash chains are maintained.
172  * IN  assertion: all calls to INSERT_STRING are made with consecutive input
173  *    characters and the first MIN_MATCH bytes of str are valid (except for
174  *    the last MIN_MATCH-1 bytes of the input file).
175  */
176 #ifdef FASTEST
177 #define INSERT_STRING(s, str, match_head) \
178    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
179     match_head = s->head[s->ins_h], \
180     s->head[s->ins_h] = (Pos)(str))
181 #else
182 #define INSERT_STRING(s, str, match_head) \
183    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
184     match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
185     s->head[s->ins_h] = (Pos)(str))
186 #endif
187 
188 /* ===========================================================================
189  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
190  * prev[] will be initialized on the fly.
191  */
192 #define CLEAR_HASH(s) \
193     s->head[s->hash_size-1] = NIL; \
194     zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
195 
196 /* ===========================================================================
197  * Slide the hash table when sliding the window down (could be avoided with 32
198  * bit values at the expense of memory usage). We slide even when level == 0 to
199  * keep the hash table consistent if we switch back to level > 0 later.
200  */
slide_hash(s)201 local void slide_hash(s)
202     deflate_state *s;
203 {
204     unsigned n, m;
205     Posf *p;
206     uInt wsize = s->w_size;
207 
208     n = s->hash_size;
209     p = &s->head[n];
210     do {
211         m = *--p;
212         *p = (Pos)(m >= wsize ? m - wsize : NIL);
213     } while (--n);
214     n = wsize;
215 #ifndef FASTEST
216     p = &s->prev[n];
217     do {
218         m = *--p;
219         *p = (Pos)(m >= wsize ? m - wsize : NIL);
220         /* If n is not on any hash chain, prev[n] is garbage but
221          * its value will never be used.
222          */
223     } while (--n);
224 #endif
225 }
226 
227 /* ========================================================================= */
deflateInit_(strm,level,version,stream_size)228 int ZEXPORT deflateInit_(strm, level, version, stream_size)
229     z_streamp strm;
230     int level;
231     const char *version;
232     int stream_size;
233 {
234     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
235                          Z_DEFAULT_STRATEGY, version, stream_size);
236     /* To do: ignore strm->next_in if we use it as window */
237 }
238 
239 /* ========================================================================= */
deflateInit2_(strm,level,method,windowBits,memLevel,strategy,version,stream_size)240 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
241                   version, stream_size)
242     z_streamp strm;
243     int  level;
244     int  method;
245     int  windowBits;
246     int  memLevel;
247     int  strategy;
248     const char *version;
249     int stream_size;
250 {
251     deflate_state *s;
252     int wrap = 1;
253     static const char my_version[] = ZLIB_VERSION;
254 
255     if (version == Z_NULL || version[0] != my_version[0] ||
256         stream_size != sizeof(z_stream)) {
257         return Z_VERSION_ERROR;
258     }
259     if (strm == Z_NULL) return Z_STREAM_ERROR;
260 
261     strm->msg = Z_NULL;
262     if (strm->zalloc == (alloc_func)0) {
263 #ifdef Z_SOLO
264         return Z_STREAM_ERROR;
265 #else
266         strm->zalloc = zcalloc;
267         strm->opaque = (voidpf)0;
268 #endif
269     }
270     if (strm->zfree == (free_func)0)
271 #ifdef Z_SOLO
272         return Z_STREAM_ERROR;
273 #else
274         strm->zfree = zcfree;
275 #endif
276 
277 #ifdef FASTEST
278     if (level != 0) level = 1;
279 #else
280     if (level == Z_DEFAULT_COMPRESSION) level = 6;
281 #endif
282 
283     if (windowBits < 0) { /* suppress zlib wrapper */
284         wrap = 0;
285         windowBits = -windowBits;
286     }
287 #ifdef GZIP
288     else if (windowBits > 15) {
289         wrap = 2;       /* write gzip wrapper instead */
290         windowBits -= 16;
291     }
292 #endif
293     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
294         windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
295         strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
296         return Z_STREAM_ERROR;
297     }
298     if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
299     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
300     if (s == Z_NULL) return Z_MEM_ERROR;
301     strm->state = (struct internal_state FAR *)s;
302     s->strm = strm;
303     s->status = INIT_STATE;     /* to pass state test in deflateReset() */
304 
305     s->wrap = wrap;
306     s->gzhead = Z_NULL;
307     s->w_bits = (uInt)windowBits;
308     s->w_size = 1 << s->w_bits;
309     s->w_mask = s->w_size - 1;
310 
311     s->hash_bits = (uInt)memLevel + 7;
312     s->hash_size = 1 << s->hash_bits;
313     s->hash_mask = s->hash_size - 1;
314     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
315 
316     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
317     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
318     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
319 
320     s->high_water = 0;      /* nothing written to s->window yet */
321 
322     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
323 
324     /* We overlay pending_buf and sym_buf. This works since the average size
325      * for length/distance pairs over any compressed block is assured to be 31
326      * bits or less.
327      *
328      * Analysis: The longest fixed codes are a length code of 8 bits plus 5
329      * extra bits, for lengths 131 to 257. The longest fixed distance codes are
330      * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
331      * possible fixed-codes length/distance pair is then 31 bits total.
332      *
333      * sym_buf starts one-fourth of the way into pending_buf. So there are
334      * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
335      * in sym_buf is three bytes -- two for the distance and one for the
336      * literal/length. As each symbol is consumed, the pointer to the next
337      * sym_buf value to read moves forward three bytes. From that symbol, up to
338      * 31 bits are written to pending_buf. The closest the written pending_buf
339      * bits gets to the next sym_buf symbol to read is just before the last
340      * code is written. At that time, 31*(n-2) bits have been written, just
341      * after 24*(n-2) bits have been consumed from sym_buf. sym_buf starts at
342      * 8*n bits into pending_buf. (Note that the symbol buffer fills when n-1
343      * symbols are written.) The closest the writing gets to what is unread is
344      * then n+14 bits. Here n is lit_bufsize, which is 16384 by default, and
345      * can range from 128 to 32768.
346      *
347      * Therefore, at a minimum, there are 142 bits of space between what is
348      * written and what is read in the overlain buffers, so the symbols cannot
349      * be overwritten by the compressed data. That space is actually 139 bits,
350      * due to the three-bit fixed-code block header.
351      *
352      * That covers the case where either Z_FIXED is specified, forcing fixed
353      * codes, or when the use of fixed codes is chosen, because that choice
354      * results in a smaller compressed block than dynamic codes. That latter
355      * condition then assures that the above analysis also covers all dynamic
356      * blocks. A dynamic-code block will only be chosen to be emitted if it has
357      * fewer bits than a fixed-code block would for the same set of symbols.
358      * Therefore its average symbol length is assured to be less than 31. So
359      * the compressed data for a dynamic block also cannot overwrite the
360      * symbols from which it is being constructed.
361      */
362 
363     s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4);
364     s->pending_buf_size = (ulg)s->lit_bufsize * 4;
365 
366     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
367         s->pending_buf == Z_NULL) {
368         s->status = FINISH_STATE;
369         strm->msg = ERR_MSG(Z_MEM_ERROR);
370         deflateEnd (strm);
371         return Z_MEM_ERROR;
372     }
373     s->sym_buf = s->pending_buf + s->lit_bufsize;
374     s->sym_end = (s->lit_bufsize - 1) * 3;
375     /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
376      * on 16 bit machines and because stored blocks are restricted to
377      * 64K-1 bytes.
378      */
379 
380     s->level = level;
381     s->strategy = strategy;
382     s->method = (Byte)method;
383 
384     return deflateReset(strm);
385 }
386 
387 /* =========================================================================
388  * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
389  */
deflateStateCheck(strm)390 local int deflateStateCheck (strm)
391     z_streamp strm;
392 {
393     deflate_state *s;
394     if (strm == Z_NULL ||
395         strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
396         return 1;
397     s = strm->state;
398     if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
399 #ifdef GZIP
400                                            s->status != GZIP_STATE &&
401 #endif
402                                            s->status != EXTRA_STATE &&
403                                            s->status != NAME_STATE &&
404                                            s->status != COMMENT_STATE &&
405                                            s->status != HCRC_STATE &&
406                                            s->status != BUSY_STATE &&
407                                            s->status != FINISH_STATE))
408         return 1;
409     return 0;
410 }
411 
412 /* ========================================================================= */
deflateSetDictionary(strm,dictionary,dictLength)413 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
414     z_streamp strm;
415     const Bytef *dictionary;
416     uInt  dictLength;
417 {
418     deflate_state *s;
419     uInt str, n;
420     int wrap;
421     unsigned avail;
422     z_const unsigned char *next;
423 
424     if (deflateStateCheck(strm) || dictionary == Z_NULL)
425         return Z_STREAM_ERROR;
426     s = strm->state;
427     wrap = s->wrap;
428     if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
429         return Z_STREAM_ERROR;
430 
431     /* when using zlib wrappers, compute Adler-32 for provided dictionary */
432     if (wrap == 1)
433         strm->adler = adler32(strm->adler, dictionary, dictLength);
434     s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
435 
436     /* if dictionary would fill window, just replace the history */
437     if (dictLength >= s->w_size) {
438         if (wrap == 0) {            /* already empty otherwise */
439             CLEAR_HASH(s);
440             s->strstart = 0;
441             s->block_start = 0L;
442             s->insert = 0;
443         }
444         dictionary += dictLength - s->w_size;  /* use the tail */
445         dictLength = s->w_size;
446     }
447 
448     /* insert dictionary into window and hash */
449     avail = strm->avail_in;
450     next = strm->next_in;
451     strm->avail_in = dictLength;
452     strm->next_in = (z_const Bytef *)dictionary;
453     fill_window(s);
454     while (s->lookahead >= MIN_MATCH) {
455         str = s->strstart;
456         n = s->lookahead - (MIN_MATCH-1);
457         do {
458             UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
459 #ifndef FASTEST
460             s->prev[str & s->w_mask] = s->head[s->ins_h];
461 #endif
462             s->head[s->ins_h] = (Pos)str;
463             str++;
464         } while (--n);
465         s->strstart = str;
466         s->lookahead = MIN_MATCH-1;
467         fill_window(s);
468     }
469     s->strstart += s->lookahead;
470     s->block_start = (long)s->strstart;
471     s->insert = s->lookahead;
472     s->lookahead = 0;
473     s->match_length = s->prev_length = MIN_MATCH-1;
474     s->match_available = 0;
475     strm->next_in = next;
476     strm->avail_in = avail;
477     s->wrap = wrap;
478     return Z_OK;
479 }
480 
481 /* ========================================================================= */
deflateGetDictionary(strm,dictionary,dictLength)482 int ZEXPORT deflateGetDictionary (strm, dictionary, dictLength)
483     z_streamp strm;
484     Bytef *dictionary;
485     uInt  *dictLength;
486 {
487     deflate_state *s;
488     uInt len;
489 
490     if (deflateStateCheck(strm))
491         return Z_STREAM_ERROR;
492     s = strm->state;
493     len = s->strstart + s->lookahead;
494     if (len > s->w_size)
495         len = s->w_size;
496     if (dictionary != Z_NULL && len)
497         zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
498     if (dictLength != Z_NULL)
499         *dictLength = len;
500     return Z_OK;
501 }
502 
503 /* ========================================================================= */
deflateResetKeep(strm)504 int ZEXPORT deflateResetKeep (strm)
505     z_streamp strm;
506 {
507     deflate_state *s;
508 
509     if (deflateStateCheck(strm)) {
510         return Z_STREAM_ERROR;
511     }
512 
513     strm->total_in = strm->total_out = 0;
514     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
515     strm->data_type = Z_UNKNOWN;
516 
517     s = (deflate_state *)strm->state;
518     s->pending = 0;
519     s->pending_out = s->pending_buf;
520 
521     if (s->wrap < 0) {
522         s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
523     }
524     s->status =
525 #ifdef GZIP
526         s->wrap == 2 ? GZIP_STATE :
527 #endif
528         s->wrap ? INIT_STATE : BUSY_STATE;
529     strm->adler =
530 #ifdef GZIP
531         s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
532 #endif
533         adler32(0L, Z_NULL, 0);
534     s->last_flush = Z_NO_FLUSH;
535 
536     _tr_init(s);
537 
538     return Z_OK;
539 }
540 
541 /* ========================================================================= */
deflateReset(strm)542 int ZEXPORT deflateReset (strm)
543     z_streamp strm;
544 {
545     int ret;
546 
547     ret = deflateResetKeep(strm);
548     if (ret == Z_OK)
549         lm_init(strm->state);
550     return ret;
551 }
552 
553 /* ========================================================================= */
deflateSetHeader(strm,head)554 int ZEXPORT deflateSetHeader (strm, head)
555     z_streamp strm;
556     gz_headerp head;
557 {
558     if (deflateStateCheck(strm) || strm->state->wrap != 2)
559         return Z_STREAM_ERROR;
560     strm->state->gzhead = head;
561     return Z_OK;
562 }
563 
564 /* ========================================================================= */
deflatePending(strm,pending,bits)565 int ZEXPORT deflatePending (strm, pending, bits)
566     unsigned *pending;
567     int *bits;
568     z_streamp strm;
569 {
570     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
571     if (pending != Z_NULL)
572         *pending = strm->state->pending;
573     if (bits != Z_NULL)
574         *bits = strm->state->bi_valid;
575     return Z_OK;
576 }
577 
578 /* ========================================================================= */
deflatePrime(strm,bits,value)579 int ZEXPORT deflatePrime (strm, bits, value)
580     z_streamp strm;
581     int bits;
582     int value;
583 {
584     deflate_state *s;
585     int put;
586 
587     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
588     s = strm->state;
589     if (s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
590         return Z_BUF_ERROR;
591     do {
592         put = Buf_size - s->bi_valid;
593         if (put > bits)
594             put = bits;
595         s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
596         s->bi_valid += put;
597         _tr_flush_bits(s);
598         value >>= put;
599         bits -= put;
600     } while (bits);
601     return Z_OK;
602 }
603 
604 /* ========================================================================= */
deflateParams(strm,level,strategy)605 int ZEXPORT deflateParams(strm, level, strategy)
606     z_streamp strm;
607     int level;
608     int strategy;
609 {
610     deflate_state *s;
611     compress_func func;
612 
613     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
614     s = strm->state;
615 
616 #ifdef FASTEST
617     if (level != 0) level = 1;
618 #else
619     if (level == Z_DEFAULT_COMPRESSION) level = 6;
620 #endif
621     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
622         return Z_STREAM_ERROR;
623     }
624     func = configuration_table[s->level].func;
625 
626     if ((strategy != s->strategy || func != configuration_table[level].func) &&
627         s->high_water) {
628         /* Flush the last buffer: */
629         int err = deflate(strm, Z_BLOCK);
630         if (err == Z_STREAM_ERROR)
631             return err;
632         if (strm->avail_out == 0)
633             return Z_BUF_ERROR;
634     }
635     if (s->level != level) {
636         if (s->level == 0 && s->matches != 0) {
637             if (s->matches == 1)
638                 slide_hash(s);
639             else
640                 CLEAR_HASH(s);
641             s->matches = 0;
642         }
643         s->level = level;
644         s->max_lazy_match   = configuration_table[level].max_lazy;
645         s->good_match       = configuration_table[level].good_length;
646         s->nice_match       = configuration_table[level].nice_length;
647         s->max_chain_length = configuration_table[level].max_chain;
648     }
649     s->strategy = strategy;
650     return Z_OK;
651 }
652 
653 /* ========================================================================= */
deflateTune(strm,good_length,max_lazy,nice_length,max_chain)654 int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
655     z_streamp strm;
656     int good_length;
657     int max_lazy;
658     int nice_length;
659     int max_chain;
660 {
661     deflate_state *s;
662 
663     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
664     s = strm->state;
665     s->good_match = (uInt)good_length;
666     s->max_lazy_match = (uInt)max_lazy;
667     s->nice_match = nice_length;
668     s->max_chain_length = (uInt)max_chain;
669     return Z_OK;
670 }
671 
672 /* =========================================================================
673  * For the default windowBits of 15 and memLevel of 8, this function returns
674  * a close to exact, as well as small, upper bound on the compressed size.
675  * They are coded as constants here for a reason--if the #define's are
676  * changed, then this function needs to be changed as well.  The return
677  * value for 15 and 8 only works for those exact settings.
678  *
679  * For any setting other than those defaults for windowBits and memLevel,
680  * the value returned is a conservative worst case for the maximum expansion
681  * resulting from using fixed blocks instead of stored blocks, which deflate
682  * can emit on compressed data for some combinations of the parameters.
683  *
684  * This function could be more sophisticated to provide closer upper bounds for
685  * every combination of windowBits and memLevel.  But even the conservative
686  * upper bound of about 14% expansion does not seem onerous for output buffer
687  * allocation.
688  */
deflateBound(strm,sourceLen)689 uLong ZEXPORT deflateBound(strm, sourceLen)
690     z_streamp strm;
691     uLong sourceLen;
692 {
693     deflate_state *s;
694     uLong complen, wraplen;
695 
696     /* conservative upper bound for compressed data */
697     complen = sourceLen +
698               ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
699 
700     /* if can't get parameters, return conservative bound plus zlib wrapper */
701     if (deflateStateCheck(strm))
702         return complen + 6;
703 
704     /* compute wrapper length */
705     s = strm->state;
706     switch (s->wrap) {
707     case 0:                                 /* raw deflate */
708         wraplen = 0;
709         break;
710     case 1:                                 /* zlib wrapper */
711         wraplen = 6 + (s->strstart ? 4 : 0);
712         break;
713 #ifdef GZIP
714     case 2:                                 /* gzip wrapper */
715         wraplen = 18;
716         if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
717             Bytef *str;
718             if (s->gzhead->extra != Z_NULL)
719                 wraplen += 2 + s->gzhead->extra_len;
720             str = s->gzhead->name;
721             if (str != Z_NULL)
722                 do {
723                     wraplen++;
724                 } while (*str++);
725             str = s->gzhead->comment;
726             if (str != Z_NULL)
727                 do {
728                     wraplen++;
729                 } while (*str++);
730             if (s->gzhead->hcrc)
731                 wraplen += 2;
732         }
733         break;
734 #endif
735     default:                                /* for compiler happiness */
736         wraplen = 6;
737     }
738 
739     /* if not default parameters, return conservative bound */
740     if (s->w_bits != 15 || s->hash_bits != 8 + 7)
741         return complen + wraplen;
742 
743     /* default settings: return tight bound for that case */
744     return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
745            (sourceLen >> 25) + 13 - 6 + wraplen;
746 }
747 
748 /* =========================================================================
749  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
750  * IN assertion: the stream state is correct and there is enough room in
751  * pending_buf.
752  */
putShortMSB(s,b)753 local void putShortMSB (s, b)
754     deflate_state *s;
755     uInt b;
756 {
757     put_byte(s, (Byte)(b >> 8));
758     put_byte(s, (Byte)(b & 0xff));
759 }
760 
761 /* =========================================================================
762  * Flush as much pending output as possible. All deflate() output, except for
763  * some deflate_stored() output, goes through this function so some
764  * applications may wish to modify it to avoid allocating a large
765  * strm->next_out buffer and copying into it. (See also read_buf()).
766  */
flush_pending(strm)767 local void flush_pending(strm)
768     z_streamp strm;
769 {
770     unsigned len;
771     deflate_state *s = strm->state;
772 
773     _tr_flush_bits(s);
774     len = s->pending;
775     if (len > strm->avail_out) len = strm->avail_out;
776     if (len == 0) return;
777 
778     zmemcpy(strm->next_out, s->pending_out, len);
779     strm->next_out  += len;
780     s->pending_out  += len;
781     strm->total_out += len;
782     strm->avail_out -= len;
783     s->pending      -= len;
784     if (s->pending == 0) {
785         s->pending_out = s->pending_buf;
786     }
787 }
788 
789 /* ===========================================================================
790  * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
791  */
792 #define HCRC_UPDATE(beg) \
793     do { \
794         if (s->gzhead->hcrc && s->pending > (beg)) \
795             strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
796                                 s->pending - (beg)); \
797     } while (0)
798 
799 /* ========================================================================= */
deflate(strm,flush)800 int ZEXPORT deflate (strm, flush)
801     z_streamp strm;
802     int flush;
803 {
804     int old_flush; /* value of flush param for previous deflate call */
805     deflate_state *s;
806 
807     if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
808         return Z_STREAM_ERROR;
809     }
810     s = strm->state;
811 
812     if (strm->next_out == Z_NULL ||
813         (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
814         (s->status == FINISH_STATE && flush != Z_FINISH)) {
815         ERR_RETURN(strm, Z_STREAM_ERROR);
816     }
817     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
818 
819     old_flush = s->last_flush;
820     s->last_flush = flush;
821 
822     /* Flush as much pending output as possible */
823     if (s->pending != 0) {
824         flush_pending(strm);
825         if (strm->avail_out == 0) {
826             /* Since avail_out is 0, deflate will be called again with
827              * more output space, but possibly with both pending and
828              * avail_in equal to zero. There won't be anything to do,
829              * but this is not an error situation so make sure we
830              * return OK instead of BUF_ERROR at next call of deflate:
831              */
832             s->last_flush = -1;
833             return Z_OK;
834         }
835 
836     /* Make sure there is something to do and avoid duplicate consecutive
837      * flushes. For repeated and useless calls with Z_FINISH, we keep
838      * returning Z_STREAM_END instead of Z_BUF_ERROR.
839      */
840     } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
841                flush != Z_FINISH) {
842         ERR_RETURN(strm, Z_BUF_ERROR);
843     }
844 
845     /* User must not provide more input after the first FINISH: */
846     if (s->status == FINISH_STATE && strm->avail_in != 0) {
847         ERR_RETURN(strm, Z_BUF_ERROR);
848     }
849 
850     /* Write the header */
851     if (s->status == INIT_STATE) {
852         /* zlib header */
853         uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
854         uInt level_flags;
855 
856         if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
857             level_flags = 0;
858         else if (s->level < 6)
859             level_flags = 1;
860         else if (s->level == 6)
861             level_flags = 2;
862         else
863             level_flags = 3;
864         header |= (level_flags << 6);
865         if (s->strstart != 0) header |= PRESET_DICT;
866         header += 31 - (header % 31);
867 
868         putShortMSB(s, header);
869 
870         /* Save the adler32 of the preset dictionary: */
871         if (s->strstart != 0) {
872             putShortMSB(s, (uInt)(strm->adler >> 16));
873             putShortMSB(s, (uInt)(strm->adler & 0xffff));
874         }
875         strm->adler = adler32(0L, Z_NULL, 0);
876         s->status = BUSY_STATE;
877 
878         /* Compression must start with an empty pending buffer */
879         flush_pending(strm);
880         if (s->pending != 0) {
881             s->last_flush = -1;
882             return Z_OK;
883         }
884     }
885 #ifdef GZIP
886     if (s->status == GZIP_STATE) {
887         /* gzip header */
888         strm->adler = crc32(0L, Z_NULL, 0);
889         put_byte(s, 31);
890         put_byte(s, 139);
891         put_byte(s, 8);
892         if (s->gzhead == Z_NULL) {
893             put_byte(s, 0);
894             put_byte(s, 0);
895             put_byte(s, 0);
896             put_byte(s, 0);
897             put_byte(s, 0);
898             put_byte(s, s->level == 9 ? 2 :
899                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
900                       4 : 0));
901             put_byte(s, OS_CODE);
902             s->status = BUSY_STATE;
903 
904             /* Compression must start with an empty pending buffer */
905             flush_pending(strm);
906             if (s->pending != 0) {
907                 s->last_flush = -1;
908                 return Z_OK;
909             }
910         }
911         else {
912             put_byte(s, (s->gzhead->text ? 1 : 0) +
913                      (s->gzhead->hcrc ? 2 : 0) +
914                      (s->gzhead->extra == Z_NULL ? 0 : 4) +
915                      (s->gzhead->name == Z_NULL ? 0 : 8) +
916                      (s->gzhead->comment == Z_NULL ? 0 : 16)
917                      );
918             put_byte(s, (Byte)(s->gzhead->time & 0xff));
919             put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
920             put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
921             put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
922             put_byte(s, s->level == 9 ? 2 :
923                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
924                       4 : 0));
925             put_byte(s, s->gzhead->os & 0xff);
926             if (s->gzhead->extra != Z_NULL) {
927                 put_byte(s, s->gzhead->extra_len & 0xff);
928                 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
929             }
930             if (s->gzhead->hcrc)
931                 strm->adler = crc32(strm->adler, s->pending_buf,
932                                     s->pending);
933             s->gzindex = 0;
934             s->status = EXTRA_STATE;
935         }
936     }
937     if (s->status == EXTRA_STATE) {
938         if (s->gzhead->extra != Z_NULL) {
939             ulg beg = s->pending;   /* start of bytes to update crc */
940             uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
941             while (s->pending + left > s->pending_buf_size) {
942                 uInt copy = s->pending_buf_size - s->pending;
943                 zmemcpy(s->pending_buf + s->pending,
944                         s->gzhead->extra + s->gzindex, copy);
945                 s->pending = s->pending_buf_size;
946                 HCRC_UPDATE(beg);
947                 s->gzindex += copy;
948                 flush_pending(strm);
949                 if (s->pending != 0) {
950                     s->last_flush = -1;
951                     return Z_OK;
952                 }
953                 beg = 0;
954                 left -= copy;
955             }
956             zmemcpy(s->pending_buf + s->pending,
957                     s->gzhead->extra + s->gzindex, left);
958             s->pending += left;
959             HCRC_UPDATE(beg);
960             s->gzindex = 0;
961         }
962         s->status = NAME_STATE;
963     }
964     if (s->status == NAME_STATE) {
965         if (s->gzhead->name != Z_NULL) {
966             ulg beg = s->pending;   /* start of bytes to update crc */
967             int val;
968             do {
969                 if (s->pending == s->pending_buf_size) {
970                     HCRC_UPDATE(beg);
971                     flush_pending(strm);
972                     if (s->pending != 0) {
973                         s->last_flush = -1;
974                         return Z_OK;
975                     }
976                     beg = 0;
977                 }
978                 val = s->gzhead->name[s->gzindex++];
979                 put_byte(s, val);
980             } while (val != 0);
981             HCRC_UPDATE(beg);
982             s->gzindex = 0;
983         }
984         s->status = COMMENT_STATE;
985     }
986     if (s->status == COMMENT_STATE) {
987         if (s->gzhead->comment != Z_NULL) {
988             ulg beg = s->pending;   /* start of bytes to update crc */
989             int val;
990             do {
991                 if (s->pending == s->pending_buf_size) {
992                     HCRC_UPDATE(beg);
993                     flush_pending(strm);
994                     if (s->pending != 0) {
995                         s->last_flush = -1;
996                         return Z_OK;
997                     }
998                     beg = 0;
999                 }
1000                 val = s->gzhead->comment[s->gzindex++];
1001                 put_byte(s, val);
1002             } while (val != 0);
1003             HCRC_UPDATE(beg);
1004         }
1005         s->status = HCRC_STATE;
1006     }
1007     if (s->status == HCRC_STATE) {
1008         if (s->gzhead->hcrc) {
1009             if (s->pending + 2 > s->pending_buf_size) {
1010                 flush_pending(strm);
1011                 if (s->pending != 0) {
1012                     s->last_flush = -1;
1013                     return Z_OK;
1014                 }
1015             }
1016             put_byte(s, (Byte)(strm->adler & 0xff));
1017             put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1018             strm->adler = crc32(0L, Z_NULL, 0);
1019         }
1020         s->status = BUSY_STATE;
1021 
1022         /* Compression must start with an empty pending buffer */
1023         flush_pending(strm);
1024         if (s->pending != 0) {
1025             s->last_flush = -1;
1026             return Z_OK;
1027         }
1028     }
1029 #endif
1030 
1031     /* Start a new block or continue the current one.
1032      */
1033     if (strm->avail_in != 0 || s->lookahead != 0 ||
1034         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1035         block_state bstate;
1036 
1037         bstate = s->level == 0 ? deflate_stored(s, flush) :
1038                  s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1039                  s->strategy == Z_RLE ? deflate_rle(s, flush) :
1040                  (*(configuration_table[s->level].func))(s, flush);
1041 
1042         if (bstate == finish_started || bstate == finish_done) {
1043             s->status = FINISH_STATE;
1044         }
1045         if (bstate == need_more || bstate == finish_started) {
1046             if (strm->avail_out == 0) {
1047                 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1048             }
1049             return Z_OK;
1050             /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1051              * of deflate should use the same flush parameter to make sure
1052              * that the flush is complete. So we don't have to output an
1053              * empty block here, this will be done at next call. This also
1054              * ensures that for a very small output buffer, we emit at most
1055              * one empty block.
1056              */
1057         }
1058         if (bstate == block_done) {
1059             if (flush == Z_PARTIAL_FLUSH) {
1060                 _tr_align(s);
1061             } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1062                 _tr_stored_block(s, (char*)0, 0L, 0);
1063                 /* For a full flush, this empty block will be recognized
1064                  * as a special marker by inflate_sync().
1065                  */
1066                 if (flush == Z_FULL_FLUSH) {
1067                     CLEAR_HASH(s);             /* forget history */
1068                     if (s->lookahead == 0) {
1069                         s->strstart = 0;
1070                         s->block_start = 0L;
1071                         s->insert = 0;
1072                     }
1073                 }
1074             }
1075             flush_pending(strm);
1076             if (strm->avail_out == 0) {
1077               s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1078               return Z_OK;
1079             }
1080         }
1081     }
1082 
1083     if (flush != Z_FINISH) return Z_OK;
1084     if (s->wrap <= 0) return Z_STREAM_END;
1085 
1086     /* Write the trailer */
1087 #ifdef GZIP
1088     if (s->wrap == 2) {
1089         put_byte(s, (Byte)(strm->adler & 0xff));
1090         put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1091         put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1092         put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1093         put_byte(s, (Byte)(strm->total_in & 0xff));
1094         put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1095         put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1096         put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1097     }
1098     else
1099 #endif
1100     {
1101         putShortMSB(s, (uInt)(strm->adler >> 16));
1102         putShortMSB(s, (uInt)(strm->adler & 0xffff));
1103     }
1104     flush_pending(strm);
1105     /* If avail_out is zero, the application will call deflate again
1106      * to flush the rest.
1107      */
1108     if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1109     return s->pending != 0 ? Z_OK : Z_STREAM_END;
1110 }
1111 
1112 /* ========================================================================= */
deflateEnd(strm)1113 int ZEXPORT deflateEnd (strm)
1114     z_streamp strm;
1115 {
1116     int status;
1117 
1118     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1119 
1120     status = strm->state->status;
1121 
1122     /* Deallocate in reverse order of allocations: */
1123     TRY_FREE(strm, strm->state->pending_buf);
1124     TRY_FREE(strm, strm->state->head);
1125     TRY_FREE(strm, strm->state->prev);
1126     TRY_FREE(strm, strm->state->window);
1127 
1128     ZFREE(strm, strm->state);
1129     strm->state = Z_NULL;
1130 
1131     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1132 }
1133 
1134 /* =========================================================================
1135  * Copy the source state to the destination state.
1136  * To simplify the source, this is not supported for 16-bit MSDOS (which
1137  * doesn't have enough memory anyway to duplicate compression states).
1138  */
deflateCopy(dest,source)1139 int ZEXPORT deflateCopy (dest, source)
1140     z_streamp dest;
1141     z_streamp source;
1142 {
1143 #ifdef MAXSEG_64K
1144     return Z_STREAM_ERROR;
1145 #else
1146     deflate_state *ds;
1147     deflate_state *ss;
1148 
1149 
1150     if (deflateStateCheck(source) || dest == Z_NULL) {
1151         return Z_STREAM_ERROR;
1152     }
1153 
1154     ss = source->state;
1155 
1156     zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1157 
1158     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1159     if (ds == Z_NULL) return Z_MEM_ERROR;
1160     dest->state = (struct internal_state FAR *) ds;
1161     zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1162     ds->strm = dest;
1163 
1164     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1165     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1166     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1167     ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4);
1168 
1169     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1170         ds->pending_buf == Z_NULL) {
1171         deflateEnd (dest);
1172         return Z_MEM_ERROR;
1173     }
1174     /* following zmemcpy do not work for 16-bit MSDOS */
1175     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1176     zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1177     zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1178     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1179 
1180     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1181     ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1182 
1183     ds->l_desc.dyn_tree = ds->dyn_ltree;
1184     ds->d_desc.dyn_tree = ds->dyn_dtree;
1185     ds->bl_desc.dyn_tree = ds->bl_tree;
1186 
1187     return Z_OK;
1188 #endif /* MAXSEG_64K */
1189 }
1190 
1191 /* ===========================================================================
1192  * Read a new buffer from the current input stream, update the adler32
1193  * and total number of bytes read.  All deflate() input goes through
1194  * this function so some applications may wish to modify it to avoid
1195  * allocating a large strm->next_in buffer and copying from it.
1196  * (See also flush_pending()).
1197  */
read_buf(strm,buf,size)1198 local unsigned read_buf(strm, buf, size)
1199     z_streamp strm;
1200     Bytef *buf;
1201     unsigned size;
1202 {
1203     unsigned len = strm->avail_in;
1204 
1205     if (len > size) len = size;
1206     if (len == 0) return 0;
1207 
1208     strm->avail_in  -= len;
1209 
1210     zmemcpy(buf, strm->next_in, len);
1211     if (strm->state->wrap == 1) {
1212         strm->adler = adler32(strm->adler, buf, len);
1213     }
1214 #ifdef GZIP
1215     else if (strm->state->wrap == 2) {
1216         strm->adler = crc32(strm->adler, buf, len);
1217     }
1218 #endif
1219     strm->next_in  += len;
1220     strm->total_in += len;
1221 
1222     return len;
1223 }
1224 
1225 /* ===========================================================================
1226  * Initialize the "longest match" routines for a new zlib stream
1227  */
lm_init(s)1228 local void lm_init (s)
1229     deflate_state *s;
1230 {
1231     s->window_size = (ulg)2L*s->w_size;
1232 
1233     CLEAR_HASH(s);
1234 
1235     /* Set the default configuration parameters:
1236      */
1237     s->max_lazy_match   = configuration_table[s->level].max_lazy;
1238     s->good_match       = configuration_table[s->level].good_length;
1239     s->nice_match       = configuration_table[s->level].nice_length;
1240     s->max_chain_length = configuration_table[s->level].max_chain;
1241 
1242     s->strstart = 0;
1243     s->block_start = 0L;
1244     s->lookahead = 0;
1245     s->insert = 0;
1246     s->match_length = s->prev_length = MIN_MATCH-1;
1247     s->match_available = 0;
1248     s->ins_h = 0;
1249 #ifndef FASTEST
1250 #ifdef ASMV
1251     match_init(); /* initialize the asm code */
1252 #endif
1253 #endif
1254 }
1255 
1256 #ifndef FASTEST
1257 /* ===========================================================================
1258  * Set match_start to the longest match starting at the given string and
1259  * return its length. Matches shorter or equal to prev_length are discarded,
1260  * in which case the result is equal to prev_length and match_start is
1261  * garbage.
1262  * IN assertions: cur_match is the head of the hash chain for the current
1263  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1264  * OUT assertion: the match length is not greater than s->lookahead.
1265  */
1266 #ifndef ASMV
1267 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1268  * match.S. The code will be functionally equivalent.
1269  */
longest_match(s,cur_match)1270 local uInt longest_match(s, cur_match)
1271     deflate_state *s;
1272     IPos cur_match;                             /* current match */
1273 {
1274     unsigned chain_length = s->max_chain_length;/* max hash chain length */
1275     register Bytef *scan = s->window + s->strstart; /* current string */
1276     register Bytef *match;                      /* matched string */
1277     register int len;                           /* length of current match */
1278     int best_len = (int)s->prev_length;         /* best match length so far */
1279     int nice_match = s->nice_match;             /* stop if match long enough */
1280     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1281         s->strstart - (IPos)MAX_DIST(s) : NIL;
1282     /* Stop when cur_match becomes <= limit. To simplify the code,
1283      * we prevent matches with the string of window index 0.
1284      */
1285     Posf *prev = s->prev;
1286     uInt wmask = s->w_mask;
1287 
1288 #ifdef UNALIGNED_OK
1289     /* Compare two bytes at a time. Note: this is not always beneficial.
1290      * Try with and without -DUNALIGNED_OK to check.
1291      */
1292     register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1293     register ush scan_start = *(ushf*)scan;
1294     register ush scan_end   = *(ushf*)(scan+best_len-1);
1295 #else
1296     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1297     register Byte scan_end1  = scan[best_len-1];
1298     register Byte scan_end   = scan[best_len];
1299 #endif
1300 
1301     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1302      * It is easy to get rid of this optimization if necessary.
1303      */
1304     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1305 
1306     /* Do not waste too much time if we already have a good match: */
1307     if (s->prev_length >= s->good_match) {
1308         chain_length >>= 2;
1309     }
1310     /* Do not look for matches beyond the end of the input. This is necessary
1311      * to make deflate deterministic.
1312      */
1313     if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1314 
1315     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1316 
1317     do {
1318         Assert(cur_match < s->strstart, "no future");
1319         match = s->window + cur_match;
1320 
1321         /* Skip to next match if the match length cannot increase
1322          * or if the match length is less than 2.  Note that the checks below
1323          * for insufficient lookahead only occur occasionally for performance
1324          * reasons.  Therefore uninitialized memory will be accessed, and
1325          * conditional jumps will be made that depend on those values.
1326          * However the length of the match is limited to the lookahead, so
1327          * the output of deflate is not affected by the uninitialized values.
1328          */
1329 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1330         /* This code assumes sizeof(unsigned short) == 2. Do not use
1331          * UNALIGNED_OK if your compiler uses a different size.
1332          */
1333         if (*(ushf*)(match+best_len-1) != scan_end ||
1334             *(ushf*)match != scan_start) continue;
1335 
1336         /* It is not necessary to compare scan[2] and match[2] since they are
1337          * always equal when the other bytes match, given that the hash keys
1338          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1339          * strstart+3, +5, ... up to strstart+257. We check for insufficient
1340          * lookahead only every 4th comparison; the 128th check will be made
1341          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1342          * necessary to put more guard bytes at the end of the window, or
1343          * to check more often for insufficient lookahead.
1344          */
1345         Assert(scan[2] == match[2], "scan[2]?");
1346         scan++, match++;
1347         do {
1348         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1349                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1350                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1351                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1352                  scan < strend);
1353         /* The funny "do {}" generates better code on most compilers */
1354 
1355         /* Here, scan <= window+strstart+257 */
1356         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1357         if (*scan == *match) scan++;
1358 
1359         len = (MAX_MATCH - 1) - (int)(strend-scan);
1360         scan = strend - (MAX_MATCH-1);
1361 
1362 #else /* UNALIGNED_OK */
1363 
1364         if (match[best_len]   != scan_end  ||
1365             match[best_len-1] != scan_end1 ||
1366             *match            != *scan     ||
1367             *++match          != scan[1])      continue;
1368 
1369         /* The check at best_len-1 can be removed because it will be made
1370          * again later. (This heuristic is not always a win.)
1371          * It is not necessary to compare scan[2] and match[2] since they
1372          * are always equal when the other bytes match, given that
1373          * the hash keys are equal and that HASH_BITS >= 8.
1374          */
1375         scan += 2, match++;
1376         Assert(*scan == *match, "match[2]?");
1377 
1378         /* We check for insufficient lookahead only every 8th comparison;
1379          * the 256th check will be made at strstart+258.
1380          */
1381         do {
1382         } while (*++scan == *++match && *++scan == *++match &&
1383                  *++scan == *++match && *++scan == *++match &&
1384                  *++scan == *++match && *++scan == *++match &&
1385                  *++scan == *++match && *++scan == *++match &&
1386                  scan < strend);
1387 
1388         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1389 
1390         len = MAX_MATCH - (int)(strend - scan);
1391         scan = strend - MAX_MATCH;
1392 
1393 #endif /* UNALIGNED_OK */
1394 
1395         if (len > best_len) {
1396             s->match_start = cur_match;
1397             best_len = len;
1398             if (len >= nice_match) break;
1399 #ifdef UNALIGNED_OK
1400             scan_end = *(ushf*)(scan+best_len-1);
1401 #else
1402             scan_end1  = scan[best_len-1];
1403             scan_end   = scan[best_len];
1404 #endif
1405         }
1406     } while ((cur_match = prev[cur_match & wmask]) > limit
1407              && --chain_length != 0);
1408 
1409     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1410     return s->lookahead;
1411 }
1412 #endif /* ASMV */
1413 
1414 #else /* FASTEST */
1415 
1416 /* ---------------------------------------------------------------------------
1417  * Optimized version for FASTEST only
1418  */
longest_match(s,cur_match)1419 local uInt longest_match(s, cur_match)
1420     deflate_state *s;
1421     IPos cur_match;                             /* current match */
1422 {
1423     register Bytef *scan = s->window + s->strstart; /* current string */
1424     register Bytef *match;                       /* matched string */
1425     register int len;                           /* length of current match */
1426     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1427 
1428     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1429      * It is easy to get rid of this optimization if necessary.
1430      */
1431     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1432 
1433     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1434 
1435     Assert(cur_match < s->strstart, "no future");
1436 
1437     match = s->window + cur_match;
1438 
1439     /* Return failure if the match length is less than 2:
1440      */
1441     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1442 
1443     /* The check at best_len-1 can be removed because it will be made
1444      * again later. (This heuristic is not always a win.)
1445      * It is not necessary to compare scan[2] and match[2] since they
1446      * are always equal when the other bytes match, given that
1447      * the hash keys are equal and that HASH_BITS >= 8.
1448      */
1449     scan += 2, match += 2;
1450     Assert(*scan == *match, "match[2]?");
1451 
1452     /* We check for insufficient lookahead only every 8th comparison;
1453      * the 256th check will be made at strstart+258.
1454      */
1455     do {
1456     } while (*++scan == *++match && *++scan == *++match &&
1457              *++scan == *++match && *++scan == *++match &&
1458              *++scan == *++match && *++scan == *++match &&
1459              *++scan == *++match && *++scan == *++match &&
1460              scan < strend);
1461 
1462     Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1463 
1464     len = MAX_MATCH - (int)(strend - scan);
1465 
1466     if (len < MIN_MATCH) return MIN_MATCH - 1;
1467 
1468     s->match_start = cur_match;
1469     return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1470 }
1471 
1472 #endif /* FASTEST */
1473 
1474 #ifdef ZLIB_DEBUG
1475 
1476 #define EQUAL 0
1477 /* result of memcmp for equal strings */
1478 
1479 /* ===========================================================================
1480  * Check that the match at match_start is indeed a match.
1481  */
check_match(s,start,match,length)1482 local void check_match(s, start, match, length)
1483     deflate_state *s;
1484     IPos start, match;
1485     int length;
1486 {
1487     /* check that the match is indeed a match */
1488     if (zmemcmp(s->window + match,
1489                 s->window + start, length) != EQUAL) {
1490         fprintf(stderr, " start %u, match %u, length %d\n",
1491                 start, match, length);
1492         do {
1493             fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1494         } while (--length != 0);
1495         z_error("invalid match");
1496     }
1497     if (z_verbose > 1) {
1498         fprintf(stderr,"\\[%d,%d]", start-match, length);
1499         do { putc(s->window[start++], stderr); } while (--length != 0);
1500     }
1501 }
1502 #else
1503 #  define check_match(s, start, match, length)
1504 #endif /* ZLIB_DEBUG */
1505 
1506 /* ===========================================================================
1507  * Fill the window when the lookahead becomes insufficient.
1508  * Updates strstart and lookahead.
1509  *
1510  * IN assertion: lookahead < MIN_LOOKAHEAD
1511  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1512  *    At least one byte has been read, or avail_in == 0; reads are
1513  *    performed for at least two bytes (required for the zip translate_eol
1514  *    option -- not supported here).
1515  */
fill_window(s)1516 local void fill_window(s)
1517     deflate_state *s;
1518 {
1519     unsigned n;
1520     unsigned more;    /* Amount of free space at the end of the window. */
1521     uInt wsize = s->w_size;
1522 
1523     Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1524 
1525     do {
1526         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1527 
1528         /* Deal with !@#$% 64K limit: */
1529         if (sizeof(int) <= 2) {
1530             if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1531                 more = wsize;
1532 
1533             } else if (more == (unsigned)(-1)) {
1534                 /* Very unlikely, but possible on 16 bit machine if
1535                  * strstart == 0 && lookahead == 1 (input done a byte at time)
1536                  */
1537                 more--;
1538             }
1539         }
1540 
1541         /* If the window is almost full and there is insufficient lookahead,
1542          * move the upper half to the lower one to make room in the upper half.
1543          */
1544         if (s->strstart >= wsize+MAX_DIST(s)) {
1545 
1546             zmemcpy(s->window, s->window+wsize, (unsigned)wsize - more);
1547             s->match_start -= wsize;
1548             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1549             s->block_start -= (long) wsize;
1550             slide_hash(s);
1551             more += wsize;
1552         }
1553         if (s->strm->avail_in == 0) break;
1554 
1555         /* If there was no sliding:
1556          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1557          *    more == window_size - lookahead - strstart
1558          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1559          * => more >= window_size - 2*WSIZE + 2
1560          * In the BIG_MEM or MMAP case (not yet supported),
1561          *   window_size == input_size + MIN_LOOKAHEAD  &&
1562          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1563          * Otherwise, window_size == 2*WSIZE so more >= 2.
1564          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1565          */
1566         Assert(more >= 2, "more < 2");
1567 
1568         n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1569         s->lookahead += n;
1570 
1571         /* Initialize the hash value now that we have some input: */
1572         if (s->lookahead + s->insert >= MIN_MATCH) {
1573             uInt str = s->strstart - s->insert;
1574             s->ins_h = s->window[str];
1575             UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1576 #if MIN_MATCH != 3
1577             Call UPDATE_HASH() MIN_MATCH-3 more times
1578 #endif
1579             while (s->insert) {
1580                 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1581 #ifndef FASTEST
1582                 s->prev[str & s->w_mask] = s->head[s->ins_h];
1583 #endif
1584                 s->head[s->ins_h] = (Pos)str;
1585                 str++;
1586                 s->insert--;
1587                 if (s->lookahead + s->insert < MIN_MATCH)
1588                     break;
1589             }
1590         }
1591         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1592          * but this is not important since only literal bytes will be emitted.
1593          */
1594 
1595     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1596 
1597     /* If the WIN_INIT bytes after the end of the current data have never been
1598      * written, then zero those bytes in order to avoid memory check reports of
1599      * the use of uninitialized (or uninitialised as Julian writes) bytes by
1600      * the longest match routines.  Update the high water mark for the next
1601      * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
1602      * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1603      */
1604     if (s->high_water < s->window_size) {
1605         ulg curr = s->strstart + (ulg)(s->lookahead);
1606         ulg init;
1607 
1608         if (s->high_water < curr) {
1609             /* Previous high water mark below current data -- zero WIN_INIT
1610              * bytes or up to end of window, whichever is less.
1611              */
1612             init = s->window_size - curr;
1613             if (init > WIN_INIT)
1614                 init = WIN_INIT;
1615             zmemzero(s->window + curr, (unsigned)init);
1616             s->high_water = curr + init;
1617         }
1618         else if (s->high_water < (ulg)curr + WIN_INIT) {
1619             /* High water mark at or above current data, but below current data
1620              * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1621              * to end of window, whichever is less.
1622              */
1623             init = (ulg)curr + WIN_INIT - s->high_water;
1624             if (init > s->window_size - s->high_water)
1625                 init = s->window_size - s->high_water;
1626             zmemzero(s->window + s->high_water, (unsigned)init);
1627             s->high_water += init;
1628         }
1629     }
1630 
1631     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1632            "not enough room for search");
1633 }
1634 
1635 /* ===========================================================================
1636  * Flush the current block, with given end-of-file flag.
1637  * IN assertion: strstart is set to the end of the current match.
1638  */
1639 #define FLUSH_BLOCK_ONLY(s, last) { \
1640    _tr_flush_block(s, (s->block_start >= 0L ? \
1641                    (charf *)&s->window[(unsigned)s->block_start] : \
1642                    (charf *)Z_NULL), \
1643                 (ulg)((long)s->strstart - s->block_start), \
1644                 (last)); \
1645    s->block_start = s->strstart; \
1646    flush_pending(s->strm); \
1647    Tracev((stderr,"[FLUSH]")); \
1648 }
1649 
1650 /* Same but force premature exit if necessary. */
1651 #define FLUSH_BLOCK(s, last) { \
1652    FLUSH_BLOCK_ONLY(s, last); \
1653    if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1654 }
1655 
1656 /* Maximum stored block length in deflate format (not including header). */
1657 #define MAX_STORED 65535
1658 
1659 /* Minimum of a and b. */
1660 #define MIN(a, b) ((a) > (b) ? (b) : (a))
1661 
1662 /* ===========================================================================
1663  * Copy without compression as much as possible from the input stream, return
1664  * the current block state.
1665  *
1666  * In case deflateParams() is used to later switch to a non-zero compression
1667  * level, s->matches (otherwise unused when storing) keeps track of the number
1668  * of hash table slides to perform. If s->matches is 1, then one hash table
1669  * slide will be done when switching. If s->matches is 2, the maximum value
1670  * allowed here, then the hash table will be cleared, since two or more slides
1671  * is the same as a clear.
1672  *
1673  * deflate_stored() is written to minimize the number of times an input byte is
1674  * copied. It is most efficient with large input and output buffers, which
1675  * maximizes the opportunites to have a single copy from next_in to next_out.
1676  */
deflate_stored(s,flush)1677 local block_state deflate_stored(s, flush)
1678     deflate_state *s;
1679     int flush;
1680 {
1681     /* Smallest worthy block size when not flushing or finishing. By default
1682      * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1683      * large input and output buffers, the stored block size will be larger.
1684      */
1685     unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1686 
1687     /* Copy as many min_block or larger stored blocks directly to next_out as
1688      * possible. If flushing, copy the remaining available input to next_out as
1689      * stored blocks, if there is enough space.
1690      */
1691     unsigned len, left, have, last = 0;
1692     unsigned used = s->strm->avail_in;
1693     do {
1694         /* Set len to the maximum size block that we can copy directly with the
1695          * available input data and output space. Set left to how much of that
1696          * would be copied from what's left in the window.
1697          */
1698         len = MAX_STORED;       /* maximum deflate stored block length */
1699         have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1700         if (s->strm->avail_out < have)          /* need room for header */
1701             break;
1702             /* maximum stored block length that will fit in avail_out: */
1703         have = s->strm->avail_out - have;
1704         left = s->strstart - s->block_start;    /* bytes left in window */
1705         if (len > (ulg)left + s->strm->avail_in)
1706             len = left + s->strm->avail_in;     /* limit len to the input */
1707         if (len > have)
1708             len = have;                         /* limit len to the output */
1709 
1710         /* If the stored block would be less than min_block in length, or if
1711          * unable to copy all of the available input when flushing, then try
1712          * copying to the window and the pending buffer instead. Also don't
1713          * write an empty block when flushing -- deflate() does that.
1714          */
1715         if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1716                                 flush == Z_NO_FLUSH ||
1717                                 len != left + s->strm->avail_in))
1718             break;
1719 
1720         /* Make a dummy stored block in pending to get the header bytes,
1721          * including any pending bits. This also updates the debugging counts.
1722          */
1723         last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1724         _tr_stored_block(s, (char *)0, 0L, last);
1725 
1726         /* Replace the lengths in the dummy stored block with len. */
1727         s->pending_buf[s->pending - 4] = len;
1728         s->pending_buf[s->pending - 3] = len >> 8;
1729         s->pending_buf[s->pending - 2] = ~len;
1730         s->pending_buf[s->pending - 1] = ~len >> 8;
1731 
1732         /* Write the stored block header bytes. */
1733         flush_pending(s->strm);
1734 
1735 #ifdef ZLIB_DEBUG
1736         /* Update debugging counts for the data about to be copied. */
1737         s->compressed_len += len << 3;
1738         s->bits_sent += len << 3;
1739 #endif
1740 
1741         /* Copy uncompressed bytes from the window to next_out. */
1742         if (left) {
1743             if (left > len)
1744                 left = len;
1745             zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1746             s->strm->next_out += left;
1747             s->strm->avail_out -= left;
1748             s->strm->total_out += left;
1749             s->block_start += left;
1750             len -= left;
1751         }
1752 
1753         /* Copy uncompressed bytes directly from next_in to next_out, updating
1754          * the check value.
1755          */
1756         if (len) {
1757             read_buf(s->strm, s->strm->next_out, len);
1758             s->strm->next_out += len;
1759             s->strm->avail_out -= len;
1760             s->strm->total_out += len;
1761         }
1762     } while (last == 0);
1763 
1764     /* Update the sliding window with the last s->w_size bytes of the copied
1765      * data, or append all of the copied data to the existing window if less
1766      * than s->w_size bytes were copied. Also update the number of bytes to
1767      * insert in the hash tables, in the event that deflateParams() switches to
1768      * a non-zero compression level.
1769      */
1770     used -= s->strm->avail_in;      /* number of input bytes directly copied */
1771     if (used) {
1772         /* If any input was used, then no unused input remains in the window,
1773          * therefore s->block_start == s->strstart.
1774          */
1775         if (used >= s->w_size) {    /* supplant the previous history */
1776             s->matches = 2;         /* clear hash */
1777             zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1778             s->strstart = s->w_size;
1779         }
1780         else {
1781             if (s->window_size - s->strstart <= used) {
1782                 /* Slide the window down. */
1783                 s->strstart -= s->w_size;
1784                 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1785                 if (s->matches < 2)
1786                     s->matches++;   /* add a pending slide_hash() */
1787             }
1788             zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1789             s->strstart += used;
1790         }
1791         s->block_start = s->strstart;
1792         s->insert += MIN(used, s->w_size - s->insert);
1793     }
1794     if (s->high_water < s->strstart)
1795         s->high_water = s->strstart;
1796 
1797     /* If the last block was written to next_out, then done. */
1798     if (last)
1799         return finish_done;
1800 
1801     /* If flushing and all input has been consumed, then done. */
1802     if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1803         s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1804         return block_done;
1805 
1806     /* Fill the window with any remaining input. */
1807     have = s->window_size - s->strstart - 1;
1808     if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1809         /* Slide the window down. */
1810         s->block_start -= s->w_size;
1811         s->strstart -= s->w_size;
1812         zmemcpy(s->window, s->window + s->w_size, s->strstart);
1813         if (s->matches < 2)
1814             s->matches++;           /* add a pending slide_hash() */
1815         have += s->w_size;          /* more space now */
1816     }
1817     if (have > s->strm->avail_in)
1818         have = s->strm->avail_in;
1819     if (have) {
1820         read_buf(s->strm, s->window + s->strstart, have);
1821         s->strstart += have;
1822     }
1823     if (s->high_water < s->strstart)
1824         s->high_water = s->strstart;
1825 
1826     /* There was not enough avail_out to write a complete worthy or flushed
1827      * stored block to next_out. Write a stored block to pending instead, if we
1828      * have enough input for a worthy block, or if flushing and there is enough
1829      * room for the remaining input as a stored block in the pending buffer.
1830      */
1831     have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1832         /* maximum stored block length that will fit in pending: */
1833     have = MIN(s->pending_buf_size - have, MAX_STORED);
1834     min_block = MIN(have, s->w_size);
1835     left = s->strstart - s->block_start;
1836     if (left >= min_block ||
1837         ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1838          s->strm->avail_in == 0 && left <= have)) {
1839         len = MIN(left, have);
1840         last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1841                len == left ? 1 : 0;
1842         _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1843         s->block_start += len;
1844         flush_pending(s->strm);
1845     }
1846 
1847     /* We've done all we can with the available input and output. */
1848     return last ? finish_started : need_more;
1849 }
1850 
1851 /* ===========================================================================
1852  * Compress as much as possible from the input stream, return the current
1853  * block state.
1854  * This function does not perform lazy evaluation of matches and inserts
1855  * new strings in the dictionary only for unmatched strings or for short
1856  * matches. It is used only for the fast compression options.
1857  */
deflate_fast(s,flush)1858 local block_state deflate_fast(s, flush)
1859     deflate_state *s;
1860     int flush;
1861 {
1862     IPos hash_head;       /* head of the hash chain */
1863     int bflush;           /* set if current block must be flushed */
1864 
1865     for (;;) {
1866         /* Make sure that we always have enough lookahead, except
1867          * at the end of the input file. We need MAX_MATCH bytes
1868          * for the next match, plus MIN_MATCH bytes to insert the
1869          * string following the next match.
1870          */
1871         if (s->lookahead < MIN_LOOKAHEAD) {
1872             fill_window(s);
1873             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1874                 return need_more;
1875             }
1876             if (s->lookahead == 0) break; /* flush the current block */
1877         }
1878 
1879         /* Insert the string window[strstart .. strstart+2] in the
1880          * dictionary, and set hash_head to the head of the hash chain:
1881          */
1882         hash_head = NIL;
1883         if (s->lookahead >= MIN_MATCH) {
1884             INSERT_STRING(s, s->strstart, hash_head);
1885         }
1886 
1887         /* Find the longest match, discarding those <= prev_length.
1888          * At this point we have always match_length < MIN_MATCH
1889          */
1890         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1891             /* To simplify the code, we prevent matches with the string
1892              * of window index 0 (in particular we have to avoid a match
1893              * of the string with itself at the start of the input file).
1894              */
1895             s->match_length = longest_match (s, hash_head);
1896             /* longest_match() sets match_start */
1897         }
1898         if (s->match_length >= MIN_MATCH) {
1899             check_match(s, s->strstart, s->match_start, s->match_length);
1900 
1901             _tr_tally_dist(s, s->strstart - s->match_start,
1902                            s->match_length - MIN_MATCH, bflush);
1903 
1904             s->lookahead -= s->match_length;
1905 
1906             /* Insert new strings in the hash table only if the match length
1907              * is not too large. This saves time but degrades compression.
1908              */
1909 #ifndef FASTEST
1910             if (s->match_length <= s->max_insert_length &&
1911                 s->lookahead >= MIN_MATCH) {
1912                 s->match_length--; /* string at strstart already in table */
1913                 do {
1914                     s->strstart++;
1915                     INSERT_STRING(s, s->strstart, hash_head);
1916                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1917                      * always MIN_MATCH bytes ahead.
1918                      */
1919                 } while (--s->match_length != 0);
1920                 s->strstart++;
1921             } else
1922 #endif
1923             {
1924                 s->strstart += s->match_length;
1925                 s->match_length = 0;
1926                 s->ins_h = s->window[s->strstart];
1927                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1928 #if MIN_MATCH != 3
1929                 Call UPDATE_HASH() MIN_MATCH-3 more times
1930 #endif
1931                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1932                  * matter since it will be recomputed at next deflate call.
1933                  */
1934             }
1935         } else {
1936             /* No match, output a literal byte */
1937             Tracevv((stderr,"%c", s->window[s->strstart]));
1938             _tr_tally_lit (s, s->window[s->strstart], bflush);
1939             s->lookahead--;
1940             s->strstart++;
1941         }
1942         if (bflush) FLUSH_BLOCK(s, 0);
1943     }
1944     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1945     if (flush == Z_FINISH) {
1946         FLUSH_BLOCK(s, 1);
1947         return finish_done;
1948     }
1949     if (s->sym_next)
1950         FLUSH_BLOCK(s, 0);
1951     return block_done;
1952 }
1953 
1954 #ifndef FASTEST
1955 /* ===========================================================================
1956  * Same as above, but achieves better compression. We use a lazy
1957  * evaluation for matches: a match is finally adopted only if there is
1958  * no better match at the next window position.
1959  */
deflate_slow(s,flush)1960 local block_state deflate_slow(s, flush)
1961     deflate_state *s;
1962     int flush;
1963 {
1964     IPos hash_head;          /* head of hash chain */
1965     int bflush;              /* set if current block must be flushed */
1966 
1967     /* Process the input block. */
1968     for (;;) {
1969         /* Make sure that we always have enough lookahead, except
1970          * at the end of the input file. We need MAX_MATCH bytes
1971          * for the next match, plus MIN_MATCH bytes to insert the
1972          * string following the next match.
1973          */
1974         if (s->lookahead < MIN_LOOKAHEAD) {
1975             fill_window(s);
1976             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1977                 return need_more;
1978             }
1979             if (s->lookahead == 0) break; /* flush the current block */
1980         }
1981 
1982         /* Insert the string window[strstart .. strstart+2] in the
1983          * dictionary, and set hash_head to the head of the hash chain:
1984          */
1985         hash_head = NIL;
1986         if (s->lookahead >= MIN_MATCH) {
1987             INSERT_STRING(s, s->strstart, hash_head);
1988         }
1989 
1990         /* Find the longest match, discarding those <= prev_length.
1991          */
1992         s->prev_length = s->match_length, s->prev_match = s->match_start;
1993         s->match_length = MIN_MATCH-1;
1994 
1995         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1996             s->strstart - hash_head <= MAX_DIST(s)) {
1997             /* To simplify the code, we prevent matches with the string
1998              * of window index 0 (in particular we have to avoid a match
1999              * of the string with itself at the start of the input file).
2000              */
2001             s->match_length = longest_match (s, hash_head);
2002             /* longest_match() sets match_start */
2003 
2004             if (s->match_length <= 5 && (s->strategy == Z_FILTERED
2005 #if TOO_FAR <= 32767
2006                 || (s->match_length == MIN_MATCH &&
2007                     s->strstart - s->match_start > TOO_FAR)
2008 #endif
2009                 )) {
2010 
2011                 /* If prev_match is also MIN_MATCH, match_start is garbage
2012                  * but we will ignore the current match anyway.
2013                  */
2014                 s->match_length = MIN_MATCH-1;
2015             }
2016         }
2017         /* If there was a match at the previous step and the current
2018          * match is not better, output the previous match:
2019          */
2020         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
2021             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
2022             /* Do not insert strings in hash table beyond this. */
2023 
2024             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
2025 
2026             _tr_tally_dist(s, s->strstart -1 - s->prev_match,
2027                            s->prev_length - MIN_MATCH, bflush);
2028 
2029             /* Insert in hash table all strings up to the end of the match.
2030              * strstart-1 and strstart are already inserted. If there is not
2031              * enough lookahead, the last two strings are not inserted in
2032              * the hash table.
2033              */
2034             s->lookahead -= s->prev_length-1;
2035             s->prev_length -= 2;
2036             do {
2037                 if (++s->strstart <= max_insert) {
2038                     INSERT_STRING(s, s->strstart, hash_head);
2039                 }
2040             } while (--s->prev_length != 0);
2041             s->match_available = 0;
2042             s->match_length = MIN_MATCH-1;
2043             s->strstart++;
2044 
2045             if (bflush) FLUSH_BLOCK(s, 0);
2046 
2047         } else if (s->match_available) {
2048             /* If there was no match at the previous position, output a
2049              * single literal. If there was a match but the current match
2050              * is longer, truncate the previous match to a single literal.
2051              */
2052             Tracevv((stderr,"%c", s->window[s->strstart-1]));
2053             _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2054             if (bflush) {
2055                 FLUSH_BLOCK_ONLY(s, 0);
2056             }
2057             s->strstart++;
2058             s->lookahead--;
2059             if (s->strm->avail_out == 0) return need_more;
2060         } else {
2061             /* There is no previous match to compare with, wait for
2062              * the next step to decide.
2063              */
2064             s->match_available = 1;
2065             s->strstart++;
2066             s->lookahead--;
2067         }
2068     }
2069     Assert (flush != Z_NO_FLUSH, "no flush?");
2070     if (s->match_available) {
2071         Tracevv((stderr,"%c", s->window[s->strstart-1]));
2072         _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2073         s->match_available = 0;
2074     }
2075     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2076     if (flush == Z_FINISH) {
2077         FLUSH_BLOCK(s, 1);
2078         return finish_done;
2079     }
2080     if (s->sym_next)
2081         FLUSH_BLOCK(s, 0);
2082     return block_done;
2083 }
2084 #endif /* FASTEST */
2085 
2086 /* ===========================================================================
2087  * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2088  * one.  Do not maintain a hash table.  (It will be regenerated if this run of
2089  * deflate switches away from Z_RLE.)
2090  */
deflate_rle(s,flush)2091 local block_state deflate_rle(s, flush)
2092     deflate_state *s;
2093     int flush;
2094 {
2095     int bflush;             /* set if current block must be flushed */
2096     uInt prev;              /* byte at distance one to match */
2097     Bytef *scan, *strend;   /* scan goes up to strend for length of run */
2098 
2099     for (;;) {
2100         /* Make sure that we always have enough lookahead, except
2101          * at the end of the input file. We need MAX_MATCH bytes
2102          * for the longest run, plus one for the unrolled loop.
2103          */
2104         if (s->lookahead <= MAX_MATCH) {
2105             fill_window(s);
2106             if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2107                 return need_more;
2108             }
2109             if (s->lookahead == 0) break; /* flush the current block */
2110         }
2111 
2112         /* See how many times the previous byte repeats */
2113         s->match_length = 0;
2114         if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2115             scan = s->window + s->strstart - 1;
2116             prev = *scan;
2117             if (prev == *++scan && prev == *++scan && prev == *++scan) {
2118                 strend = s->window + s->strstart + MAX_MATCH;
2119                 do {
2120                 } while (prev == *++scan && prev == *++scan &&
2121                          prev == *++scan && prev == *++scan &&
2122                          prev == *++scan && prev == *++scan &&
2123                          prev == *++scan && prev == *++scan &&
2124                          scan < strend);
2125                 s->match_length = MAX_MATCH - (uInt)(strend - scan);
2126                 if (s->match_length > s->lookahead)
2127                     s->match_length = s->lookahead;
2128             }
2129             Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
2130         }
2131 
2132         /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2133         if (s->match_length >= MIN_MATCH) {
2134             check_match(s, s->strstart, s->strstart - 1, s->match_length);
2135 
2136             _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2137 
2138             s->lookahead -= s->match_length;
2139             s->strstart += s->match_length;
2140             s->match_length = 0;
2141         } else {
2142             /* No match, output a literal byte */
2143             Tracevv((stderr,"%c", s->window[s->strstart]));
2144             _tr_tally_lit (s, s->window[s->strstart], bflush);
2145             s->lookahead--;
2146             s->strstart++;
2147         }
2148         if (bflush) FLUSH_BLOCK(s, 0);
2149     }
2150     s->insert = 0;
2151     if (flush == Z_FINISH) {
2152         FLUSH_BLOCK(s, 1);
2153         return finish_done;
2154     }
2155     if (s->sym_next)
2156         FLUSH_BLOCK(s, 0);
2157     return block_done;
2158 }
2159 
2160 /* ===========================================================================
2161  * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
2162  * (It will be regenerated if this run of deflate switches away from Huffman.)
2163  */
deflate_huff(s,flush)2164 local block_state deflate_huff(s, flush)
2165     deflate_state *s;
2166     int flush;
2167 {
2168     int bflush;             /* set if current block must be flushed */
2169 
2170     for (;;) {
2171         /* Make sure that we have a literal to write. */
2172         if (s->lookahead == 0) {
2173             fill_window(s);
2174             if (s->lookahead == 0) {
2175                 if (flush == Z_NO_FLUSH)
2176                     return need_more;
2177                 break;      /* flush the current block */
2178             }
2179         }
2180 
2181         /* Output a literal byte */
2182         s->match_length = 0;
2183         Tracevv((stderr,"%c", s->window[s->strstart]));
2184         _tr_tally_lit (s, s->window[s->strstart], bflush);
2185         s->lookahead--;
2186         s->strstart++;
2187         if (bflush) FLUSH_BLOCK(s, 0);
2188     }
2189     s->insert = 0;
2190     if (flush == Z_FINISH) {
2191         FLUSH_BLOCK(s, 1);
2192         return finish_done;
2193     }
2194     if (s->sym_next)
2195         FLUSH_BLOCK(s, 0);
2196     return block_done;
2197 }