1 /* deflate.c -- compress data using the deflation algorithm
2 * Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6 /*
7 * ALGORITHM
8 *
9 * The "deflation" process depends on being able to identify portions
10 * of the input text which are identical to earlier input (within a
11 * sliding window trailing behind the input currently being processed).
12 *
13 * The most straightforward technique turns out to be the fastest for
14 * most input files: try all possible matches and select the longest.
15 * The key feature of this algorithm is that insertions into the string
16 * dictionary are very simple and thus fast, and deletions are avoided
17 * completely. Insertions are performed at each input character, whereas
18 * string matches are performed only when the previous match ends. So it
19 * is preferable to spend more time in matches to allow very fast string
20 * insertions and avoid deletions. The matching algorithm for small
21 * strings is inspired from that of Rabin & Karp. A brute force approach
22 * is used to find longer strings when a small match has been found.
23 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24 * (by Leonid Broukhis).
25 * A previous version of this file used a more sophisticated algorithm
26 * (by Fiala and Greene) which is guaranteed to run in linear amortized
27 * time, but has a larger average cost, uses more memory and is patented.
28 * However the F&G algorithm may be faster for some highly redundant
29 * files if the parameter max_chain_length (described below) is too large.
30 *
31 * ACKNOWLEDGEMENTS
32 *
33 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34 * I found it in 'freeze' written by Leonid Broukhis.
35 * Thanks to many people for bug reports and testing.
36 *
37 * REFERENCES
38 *
39 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40 * Available in http://tools.ietf.org/html/rfc1951
41 *
42 * A description of the Rabin and Karp algorithm is given in the book
43 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44 *
45 * Fiala,E.R., and Greene,D.H.
46 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47 *
48 */
49
50 /* @(#) $Id$ */
51
52 #include "deflate.h"
53
54 const char deflate_copyright[] =
55 " deflate 1.2.11 Copyright 1995-2017 Jean-loup Gailly and Mark Adler ";
56 /*
57 If you use the zlib library in a product, an acknowledgment is welcome
58 in the documentation of your product. If for some reason you cannot
59 include such an acknowledgment, I would appreciate that you keep this
60 copyright string in the executable of your product.
61 */
62
63 /* ===========================================================================
64 * Function prototypes.
65 */
66 typedef enum {
67 need_more, /* block not completed, need more input or more output */
68 block_done, /* block flush performed */
69 finish_started, /* finish started, need only more output at next deflate */
70 finish_done /* finish done, accept no more input or output */
71 } block_state;
72
73 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
74 /* Compression function. Returns the block state after the call. */
75
76 local int deflateStateCheck OF((z_streamp strm));
77 local void slide_hash OF((deflate_state *s));
78 local void fill_window OF((deflate_state *s));
79 local block_state deflate_stored OF((deflate_state *s, int flush));
80 local block_state deflate_fast OF((deflate_state *s, int flush));
81 #ifndef FASTEST
82 local block_state deflate_slow OF((deflate_state *s, int flush));
83 #endif
84 local block_state deflate_rle OF((deflate_state *s, int flush));
85 local block_state deflate_huff OF((deflate_state *s, int flush));
86 local void lm_init OF((deflate_state *s));
87 local void putShortMSB OF((deflate_state *s, uInt b));
88 local void flush_pending OF((z_streamp strm));
89 local unsigned read_buf OF((z_streamp strm, Bytef *buf, unsigned size));
90 #ifdef ASMV
91 # pragma message("Assembler code may have bugs -- use at your own risk")
92 void match_init OF((void)); /* asm code initialization */
93 uInt longest_match OF((deflate_state *s, IPos cur_match));
94 #else
95 local uInt longest_match OF((deflate_state *s, IPos cur_match));
96 #endif
97
98 #ifdef ZLIB_DEBUG
99 local void check_match OF((deflate_state *s, IPos start, IPos match,
100 int length));
101 #endif
102
103 /* ===========================================================================
104 * Local data
105 */
106
107 #define NIL 0
108 /* Tail of hash chains */
109
110 #ifndef TOO_FAR
111 # define TOO_FAR 4096
112 #endif
113 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
114
115 /* Values for max_lazy_match, good_match and max_chain_length, depending on
116 * the desired pack level (0..9). The values given below have been tuned to
117 * exclude worst case performance for pathological files. Better values may be
118 * found for specific files.
119 */
120 typedef struct config_s {
121 ush good_length; /* reduce lazy search above this match length */
122 ush max_lazy; /* do not perform lazy search above this match length */
123 ush nice_length; /* quit search above this match length */
124 ush max_chain;
125 compress_func func;
126 } config;
127
128 #ifdef FASTEST
129 local const config configuration_table[2] = {
130 /* good lazy nice chain */
131 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
132 /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */
133 #else
134 local const config configuration_table[10] = {
135 /* good lazy nice chain */
136 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
137 /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */
138 /* 2 */ {4, 5, 16, 8, deflate_fast},
139 /* 3 */ {4, 6, 32, 32, deflate_fast},
140
141 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
142 /* 5 */ {8, 16, 32, 32, deflate_slow},
143 /* 6 */ {8, 16, 128, 128, deflate_slow},
144 /* 7 */ {8, 32, 128, 256, deflate_slow},
145 /* 8 */ {32, 128, 258, 1024, deflate_slow},
146 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
147 #endif
148
149 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
150 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
151 * meaning.
152 */
153
154 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
155 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
156
157 /* ===========================================================================
158 * Update a hash value with the given input byte
159 * IN assertion: all calls to UPDATE_HASH are made with consecutive input
160 * characters, so that a running hash key can be computed from the previous
161 * key instead of complete recalculation each time.
162 */
163 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
164
165
166 /* ===========================================================================
167 * Insert string str in the dictionary and set match_head to the previous head
168 * of the hash chain (the most recent string with same hash key). Return
169 * the previous length of the hash chain.
170 * If this file is compiled with -DFASTEST, the compression level is forced
171 * to 1, and no hash chains are maintained.
172 * IN assertion: all calls to INSERT_STRING are made with consecutive input
173 * characters and the first MIN_MATCH bytes of str are valid (except for
174 * the last MIN_MATCH-1 bytes of the input file).
175 */
176 #ifdef FASTEST
177 #define INSERT_STRING(s, str, match_head) \
178 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
179 match_head = s->head[s->ins_h], \
180 s->head[s->ins_h] = (Pos)(str))
181 #else
182 #define INSERT_STRING(s, str, match_head) \
183 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
184 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
185 s->head[s->ins_h] = (Pos)(str))
186 #endif
187
188 /* ===========================================================================
189 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
190 * prev[] will be initialized on the fly.
191 */
192 #define CLEAR_HASH(s) \
193 s->head[s->hash_size-1] = NIL; \
194 zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
195
196 /* ===========================================================================
197 * Slide the hash table when sliding the window down (could be avoided with 32
198 * bit values at the expense of memory usage). We slide even when level == 0 to
199 * keep the hash table consistent if we switch back to level > 0 later.
200 */
slide_hash(s)201 local void slide_hash(s)
202 deflate_state *s;
203 {
204 unsigned n, m;
205 Posf *p;
206 uInt wsize = s->w_size;
207
208 n = s->hash_size;
209 p = &s->head[n];
210 do {
211 m = *--p;
212 *p = (Pos)(m >= wsize ? m - wsize : NIL);
213 } while (--n);
214 n = wsize;
215 #ifndef FASTEST
216 p = &s->prev[n];
217 do {
218 m = *--p;
219 *p = (Pos)(m >= wsize ? m - wsize : NIL);
220 /* If n is not on any hash chain, prev[n] is garbage but
221 * its value will never be used.
222 */
223 } while (--n);
224 #endif
225 }
226
227 /* ========================================================================= */
deflateInit_(strm,level,version,stream_size)228 int ZEXPORT deflateInit_(strm, level, version, stream_size)
229 z_streamp strm;
230 int level;
231 const char *version;
232 int stream_size;
233 {
234 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
235 Z_DEFAULT_STRATEGY, version, stream_size);
236 /* To do: ignore strm->next_in if we use it as window */
237 }
238
239 /* ========================================================================= */
deflateInit2_(strm,level,method,windowBits,memLevel,strategy,version,stream_size)240 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
241 version, stream_size)
242 z_streamp strm;
243 int level;
244 int method;
245 int windowBits;
246 int memLevel;
247 int strategy;
248 const char *version;
249 int stream_size;
250 {
251 deflate_state *s;
252 int wrap = 1;
253 static const char my_version[] = ZLIB_VERSION;
254
255 if (version == Z_NULL || version[0] != my_version[0] ||
256 stream_size != sizeof(z_stream)) {
257 return Z_VERSION_ERROR;
258 }
259 if (strm == Z_NULL) return Z_STREAM_ERROR;
260
261 strm->msg = Z_NULL;
262 if (strm->zalloc == (alloc_func)0) {
263 #ifdef Z_SOLO
264 return Z_STREAM_ERROR;
265 #else
266 strm->zalloc = zcalloc;
267 strm->opaque = (voidpf)0;
268 #endif
269 }
270 if (strm->zfree == (free_func)0)
271 #ifdef Z_SOLO
272 return Z_STREAM_ERROR;
273 #else
274 strm->zfree = zcfree;
275 #endif
276
277 #ifdef FASTEST
278 if (level != 0) level = 1;
279 #else
280 if (level == Z_DEFAULT_COMPRESSION) level = 6;
281 #endif
282
283 if (windowBits < 0) { /* suppress zlib wrapper */
284 wrap = 0;
285 windowBits = -windowBits;
286 }
287 #ifdef GZIP
288 else if (windowBits > 15) {
289 wrap = 2; /* write gzip wrapper instead */
290 windowBits -= 16;
291 }
292 #endif
293 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
294 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
295 strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
296 return Z_STREAM_ERROR;
297 }
298 if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */
299 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
300 if (s == Z_NULL) return Z_MEM_ERROR;
301 strm->state = (struct internal_state FAR *)s;
302 s->strm = strm;
303 s->status = INIT_STATE; /* to pass state test in deflateReset() */
304
305 s->wrap = wrap;
306 s->gzhead = Z_NULL;
307 s->w_bits = (uInt)windowBits;
308 s->w_size = 1 << s->w_bits;
309 s->w_mask = s->w_size - 1;
310
311 s->hash_bits = (uInt)memLevel + 7;
312 s->hash_size = 1 << s->hash_bits;
313 s->hash_mask = s->hash_size - 1;
314 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
315
316 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
317 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
318 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
319
320 s->high_water = 0; /* nothing written to s->window yet */
321
322 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
323
324 /* We overlay pending_buf and sym_buf. This works since the average size
325 * for length/distance pairs over any compressed block is assured to be 31
326 * bits or less.
327 *
328 * Analysis: The longest fixed codes are a length code of 8 bits plus 5
329 * extra bits, for lengths 131 to 257. The longest fixed distance codes are
330 * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
331 * possible fixed-codes length/distance pair is then 31 bits total.
332 *
333 * sym_buf starts one-fourth of the way into pending_buf. So there are
334 * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
335 * in sym_buf is three bytes -- two for the distance and one for the
336 * literal/length. As each symbol is consumed, the pointer to the next
337 * sym_buf value to read moves forward three bytes. From that symbol, up to
338 * 31 bits are written to pending_buf. The closest the written pending_buf
339 * bits gets to the next sym_buf symbol to read is just before the last
340 * code is written. At that time, 31*(n-2) bits have been written, just
341 * after 24*(n-2) bits have been consumed from sym_buf. sym_buf starts at
342 * 8*n bits into pending_buf. (Note that the symbol buffer fills when n-1
343 * symbols are written.) The closest the writing gets to what is unread is
344 * then n+14 bits. Here n is lit_bufsize, which is 16384 by default, and
345 * can range from 128 to 32768.
346 *
347 * Therefore, at a minimum, there are 142 bits of space between what is
348 * written and what is read in the overlain buffers, so the symbols cannot
349 * be overwritten by the compressed data. That space is actually 139 bits,
350 * due to the three-bit fixed-code block header.
351 *
352 * That covers the case where either Z_FIXED is specified, forcing fixed
353 * codes, or when the use of fixed codes is chosen, because that choice
354 * results in a smaller compressed block than dynamic codes. That latter
355 * condition then assures that the above analysis also covers all dynamic
356 * blocks. A dynamic-code block will only be chosen to be emitted if it has
357 * fewer bits than a fixed-code block would for the same set of symbols.
358 * Therefore its average symbol length is assured to be less than 31. So
359 * the compressed data for a dynamic block also cannot overwrite the
360 * symbols from which it is being constructed.
361 */
362
363 s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4);
364 s->pending_buf_size = (ulg)s->lit_bufsize * 4;
365
366 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
367 s->pending_buf == Z_NULL) {
368 s->status = FINISH_STATE;
369 strm->msg = ERR_MSG(Z_MEM_ERROR);
370 deflateEnd (strm);
371 return Z_MEM_ERROR;
372 }
373 s->sym_buf = s->pending_buf + s->lit_bufsize;
374 s->sym_end = (s->lit_bufsize - 1) * 3;
375 /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
376 * on 16 bit machines and because stored blocks are restricted to
377 * 64K-1 bytes.
378 */
379
380 s->level = level;
381 s->strategy = strategy;
382 s->method = (Byte)method;
383
384 return deflateReset(strm);
385 }
386
387 /* =========================================================================
388 * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
389 */
deflateStateCheck(strm)390 local int deflateStateCheck (strm)
391 z_streamp strm;
392 {
393 deflate_state *s;
394 if (strm == Z_NULL ||
395 strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
396 return 1;
397 s = strm->state;
398 if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
399 #ifdef GZIP
400 s->status != GZIP_STATE &&
401 #endif
402 s->status != EXTRA_STATE &&
403 s->status != NAME_STATE &&
404 s->status != COMMENT_STATE &&
405 s->status != HCRC_STATE &&
406 s->status != BUSY_STATE &&
407 s->status != FINISH_STATE))
408 return 1;
409 return 0;
410 }
411
412 /* ========================================================================= */
deflateSetDictionary(strm,dictionary,dictLength)413 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
414 z_streamp strm;
415 const Bytef *dictionary;
416 uInt dictLength;
417 {
418 deflate_state *s;
419 uInt str, n;
420 int wrap;
421 unsigned avail;
422 z_const unsigned char *next;
423
424 if (deflateStateCheck(strm) || dictionary == Z_NULL)
425 return Z_STREAM_ERROR;
426 s = strm->state;
427 wrap = s->wrap;
428 if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
429 return Z_STREAM_ERROR;
430
431 /* when using zlib wrappers, compute Adler-32 for provided dictionary */
432 if (wrap == 1)
433 strm->adler = adler32(strm->adler, dictionary, dictLength);
434 s->wrap = 0; /* avoid computing Adler-32 in read_buf */
435
436 /* if dictionary would fill window, just replace the history */
437 if (dictLength >= s->w_size) {
438 if (wrap == 0) { /* already empty otherwise */
439 CLEAR_HASH(s);
440 s->strstart = 0;
441 s->block_start = 0L;
442 s->insert = 0;
443 }
444 dictionary += dictLength - s->w_size; /* use the tail */
445 dictLength = s->w_size;
446 }
447
448 /* insert dictionary into window and hash */
449 avail = strm->avail_in;
450 next = strm->next_in;
451 strm->avail_in = dictLength;
452 strm->next_in = (z_const Bytef *)dictionary;
453 fill_window(s);
454 while (s->lookahead >= MIN_MATCH) {
455 str = s->strstart;
456 n = s->lookahead - (MIN_MATCH-1);
457 do {
458 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
459 #ifndef FASTEST
460 s->prev[str & s->w_mask] = s->head[s->ins_h];
461 #endif
462 s->head[s->ins_h] = (Pos)str;
463 str++;
464 } while (--n);
465 s->strstart = str;
466 s->lookahead = MIN_MATCH-1;
467 fill_window(s);
468 }
469 s->strstart += s->lookahead;
470 s->block_start = (long)s->strstart;
471 s->insert = s->lookahead;
472 s->lookahead = 0;
473 s->match_length = s->prev_length = MIN_MATCH-1;
474 s->match_available = 0;
475 strm->next_in = next;
476 strm->avail_in = avail;
477 s->wrap = wrap;
478 return Z_OK;
479 }
480
481 /* ========================================================================= */
deflateGetDictionary(strm,dictionary,dictLength)482 int ZEXPORT deflateGetDictionary (strm, dictionary, dictLength)
483 z_streamp strm;
484 Bytef *dictionary;
485 uInt *dictLength;
486 {
487 deflate_state *s;
488 uInt len;
489
490 if (deflateStateCheck(strm))
491 return Z_STREAM_ERROR;
492 s = strm->state;
493 len = s->strstart + s->lookahead;
494 if (len > s->w_size)
495 len = s->w_size;
496 if (dictionary != Z_NULL && len)
497 zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
498 if (dictLength != Z_NULL)
499 *dictLength = len;
500 return Z_OK;
501 }
502
503 /* ========================================================================= */
deflateResetKeep(strm)504 int ZEXPORT deflateResetKeep (strm)
505 z_streamp strm;
506 {
507 deflate_state *s;
508
509 if (deflateStateCheck(strm)) {
510 return Z_STREAM_ERROR;
511 }
512
513 strm->total_in = strm->total_out = 0;
514 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
515 strm->data_type = Z_UNKNOWN;
516
517 s = (deflate_state *)strm->state;
518 s->pending = 0;
519 s->pending_out = s->pending_buf;
520
521 if (s->wrap < 0) {
522 s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
523 }
524 s->status =
525 #ifdef GZIP
526 s->wrap == 2 ? GZIP_STATE :
527 #endif
528 s->wrap ? INIT_STATE : BUSY_STATE;
529 strm->adler =
530 #ifdef GZIP
531 s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
532 #endif
533 adler32(0L, Z_NULL, 0);
534 s->last_flush = Z_NO_FLUSH;
535
536 _tr_init(s);
537
538 return Z_OK;
539 }
540
541 /* ========================================================================= */
deflateReset(strm)542 int ZEXPORT deflateReset (strm)
543 z_streamp strm;
544 {
545 int ret;
546
547 ret = deflateResetKeep(strm);
548 if (ret == Z_OK)
549 lm_init(strm->state);
550 return ret;
551 }
552
553 /* ========================================================================= */
deflateSetHeader(strm,head)554 int ZEXPORT deflateSetHeader (strm, head)
555 z_streamp strm;
556 gz_headerp head;
557 {
558 if (deflateStateCheck(strm) || strm->state->wrap != 2)
559 return Z_STREAM_ERROR;
560 strm->state->gzhead = head;
561 return Z_OK;
562 }
563
564 /* ========================================================================= */
deflatePending(strm,pending,bits)565 int ZEXPORT deflatePending (strm, pending, bits)
566 unsigned *pending;
567 int *bits;
568 z_streamp strm;
569 {
570 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
571 if (pending != Z_NULL)
572 *pending = strm->state->pending;
573 if (bits != Z_NULL)
574 *bits = strm->state->bi_valid;
575 return Z_OK;
576 }
577
578 /* ========================================================================= */
deflatePrime(strm,bits,value)579 int ZEXPORT deflatePrime (strm, bits, value)
580 z_streamp strm;
581 int bits;
582 int value;
583 {
584 deflate_state *s;
585 int put;
586
587 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
588 s = strm->state;
589 if (s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
590 return Z_BUF_ERROR;
591 do {
592 put = Buf_size - s->bi_valid;
593 if (put > bits)
594 put = bits;
595 s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
596 s->bi_valid += put;
597 _tr_flush_bits(s);
598 value >>= put;
599 bits -= put;
600 } while (bits);
601 return Z_OK;
602 }
603
604 /* ========================================================================= */
deflateParams(strm,level,strategy)605 int ZEXPORT deflateParams(strm, level, strategy)
606 z_streamp strm;
607 int level;
608 int strategy;
609 {
610 deflate_state *s;
611 compress_func func;
612
613 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
614 s = strm->state;
615
616 #ifdef FASTEST
617 if (level != 0) level = 1;
618 #else
619 if (level == Z_DEFAULT_COMPRESSION) level = 6;
620 #endif
621 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
622 return Z_STREAM_ERROR;
623 }
624 func = configuration_table[s->level].func;
625
626 if ((strategy != s->strategy || func != configuration_table[level].func) &&
627 s->high_water) {
628 /* Flush the last buffer: */
629 int err = deflate(strm, Z_BLOCK);
630 if (err == Z_STREAM_ERROR)
631 return err;
632 if (strm->avail_out == 0)
633 return Z_BUF_ERROR;
634 }
635 if (s->level != level) {
636 if (s->level == 0 && s->matches != 0) {
637 if (s->matches == 1)
638 slide_hash(s);
639 else
640 CLEAR_HASH(s);
641 s->matches = 0;
642 }
643 s->level = level;
644 s->max_lazy_match = configuration_table[level].max_lazy;
645 s->good_match = configuration_table[level].good_length;
646 s->nice_match = configuration_table[level].nice_length;
647 s->max_chain_length = configuration_table[level].max_chain;
648 }
649 s->strategy = strategy;
650 return Z_OK;
651 }
652
653 /* ========================================================================= */
deflateTune(strm,good_length,max_lazy,nice_length,max_chain)654 int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
655 z_streamp strm;
656 int good_length;
657 int max_lazy;
658 int nice_length;
659 int max_chain;
660 {
661 deflate_state *s;
662
663 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
664 s = strm->state;
665 s->good_match = (uInt)good_length;
666 s->max_lazy_match = (uInt)max_lazy;
667 s->nice_match = nice_length;
668 s->max_chain_length = (uInt)max_chain;
669 return Z_OK;
670 }
671
672 /* =========================================================================
673 * For the default windowBits of 15 and memLevel of 8, this function returns
674 * a close to exact, as well as small, upper bound on the compressed size.
675 * They are coded as constants here for a reason--if the #define's are
676 * changed, then this function needs to be changed as well. The return
677 * value for 15 and 8 only works for those exact settings.
678 *
679 * For any setting other than those defaults for windowBits and memLevel,
680 * the value returned is a conservative worst case for the maximum expansion
681 * resulting from using fixed blocks instead of stored blocks, which deflate
682 * can emit on compressed data for some combinations of the parameters.
683 *
684 * This function could be more sophisticated to provide closer upper bounds for
685 * every combination of windowBits and memLevel. But even the conservative
686 * upper bound of about 14% expansion does not seem onerous for output buffer
687 * allocation.
688 */
deflateBound(strm,sourceLen)689 uLong ZEXPORT deflateBound(strm, sourceLen)
690 z_streamp strm;
691 uLong sourceLen;
692 {
693 deflate_state *s;
694 uLong complen, wraplen;
695
696 /* conservative upper bound for compressed data */
697 complen = sourceLen +
698 ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
699
700 /* if can't get parameters, return conservative bound plus zlib wrapper */
701 if (deflateStateCheck(strm))
702 return complen + 6;
703
704 /* compute wrapper length */
705 s = strm->state;
706 switch (s->wrap) {
707 case 0: /* raw deflate */
708 wraplen = 0;
709 break;
710 case 1: /* zlib wrapper */
711 wraplen = 6 + (s->strstart ? 4 : 0);
712 break;
713 #ifdef GZIP
714 case 2: /* gzip wrapper */
715 wraplen = 18;
716 if (s->gzhead != Z_NULL) { /* user-supplied gzip header */
717 Bytef *str;
718 if (s->gzhead->extra != Z_NULL)
719 wraplen += 2 + s->gzhead->extra_len;
720 str = s->gzhead->name;
721 if (str != Z_NULL)
722 do {
723 wraplen++;
724 } while (*str++);
725 str = s->gzhead->comment;
726 if (str != Z_NULL)
727 do {
728 wraplen++;
729 } while (*str++);
730 if (s->gzhead->hcrc)
731 wraplen += 2;
732 }
733 break;
734 #endif
735 default: /* for compiler happiness */
736 wraplen = 6;
737 }
738
739 /* if not default parameters, return conservative bound */
740 if (s->w_bits != 15 || s->hash_bits != 8 + 7)
741 return complen + wraplen;
742
743 /* default settings: return tight bound for that case */
744 return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
745 (sourceLen >> 25) + 13 - 6 + wraplen;
746 }
747
748 /* =========================================================================
749 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
750 * IN assertion: the stream state is correct and there is enough room in
751 * pending_buf.
752 */
putShortMSB(s,b)753 local void putShortMSB (s, b)
754 deflate_state *s;
755 uInt b;
756 {
757 put_byte(s, (Byte)(b >> 8));
758 put_byte(s, (Byte)(b & 0xff));
759 }
760
761 /* =========================================================================
762 * Flush as much pending output as possible. All deflate() output, except for
763 * some deflate_stored() output, goes through this function so some
764 * applications may wish to modify it to avoid allocating a large
765 * strm->next_out buffer and copying into it. (See also read_buf()).
766 */
flush_pending(strm)767 local void flush_pending(strm)
768 z_streamp strm;
769 {
770 unsigned len;
771 deflate_state *s = strm->state;
772
773 _tr_flush_bits(s);
774 len = s->pending;
775 if (len > strm->avail_out) len = strm->avail_out;
776 if (len == 0) return;
777
778 zmemcpy(strm->next_out, s->pending_out, len);
779 strm->next_out += len;
780 s->pending_out += len;
781 strm->total_out += len;
782 strm->avail_out -= len;
783 s->pending -= len;
784 if (s->pending == 0) {
785 s->pending_out = s->pending_buf;
786 }
787 }
788
789 /* ===========================================================================
790 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
791 */
792 #define HCRC_UPDATE(beg) \
793 do { \
794 if (s->gzhead->hcrc && s->pending > (beg)) \
795 strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
796 s->pending - (beg)); \
797 } while (0)
798
799 /* ========================================================================= */
deflate(strm,flush)800 int ZEXPORT deflate (strm, flush)
801 z_streamp strm;
802 int flush;
803 {
804 int old_flush; /* value of flush param for previous deflate call */
805 deflate_state *s;
806
807 if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
808 return Z_STREAM_ERROR;
809 }
810 s = strm->state;
811
812 if (strm->next_out == Z_NULL ||
813 (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
814 (s->status == FINISH_STATE && flush != Z_FINISH)) {
815 ERR_RETURN(strm, Z_STREAM_ERROR);
816 }
817 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
818
819 old_flush = s->last_flush;
820 s->last_flush = flush;
821
822 /* Flush as much pending output as possible */
823 if (s->pending != 0) {
824 flush_pending(strm);
825 if (strm->avail_out == 0) {
826 /* Since avail_out is 0, deflate will be called again with
827 * more output space, but possibly with both pending and
828 * avail_in equal to zero. There won't be anything to do,
829 * but this is not an error situation so make sure we
830 * return OK instead of BUF_ERROR at next call of deflate:
831 */
832 s->last_flush = -1;
833 return Z_OK;
834 }
835
836 /* Make sure there is something to do and avoid duplicate consecutive
837 * flushes. For repeated and useless calls with Z_FINISH, we keep
838 * returning Z_STREAM_END instead of Z_BUF_ERROR.
839 */
840 } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
841 flush != Z_FINISH) {
842 ERR_RETURN(strm, Z_BUF_ERROR);
843 }
844
845 /* User must not provide more input after the first FINISH: */
846 if (s->status == FINISH_STATE && strm->avail_in != 0) {
847 ERR_RETURN(strm, Z_BUF_ERROR);
848 }
849
850 /* Write the header */
851 if (s->status == INIT_STATE) {
852 /* zlib header */
853 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
854 uInt level_flags;
855
856 if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
857 level_flags = 0;
858 else if (s->level < 6)
859 level_flags = 1;
860 else if (s->level == 6)
861 level_flags = 2;
862 else
863 level_flags = 3;
864 header |= (level_flags << 6);
865 if (s->strstart != 0) header |= PRESET_DICT;
866 header += 31 - (header % 31);
867
868 putShortMSB(s, header);
869
870 /* Save the adler32 of the preset dictionary: */
871 if (s->strstart != 0) {
872 putShortMSB(s, (uInt)(strm->adler >> 16));
873 putShortMSB(s, (uInt)(strm->adler & 0xffff));
874 }
875 strm->adler = adler32(0L, Z_NULL, 0);
876 s->status = BUSY_STATE;
877
878 /* Compression must start with an empty pending buffer */
879 flush_pending(strm);
880 if (s->pending != 0) {
881 s->last_flush = -1;
882 return Z_OK;
883 }
884 }
885 #ifdef GZIP
886 if (s->status == GZIP_STATE) {
887 /* gzip header */
888 strm->adler = crc32(0L, Z_NULL, 0);
889 put_byte(s, 31);
890 put_byte(s, 139);
891 put_byte(s, 8);
892 if (s->gzhead == Z_NULL) {
893 put_byte(s, 0);
894 put_byte(s, 0);
895 put_byte(s, 0);
896 put_byte(s, 0);
897 put_byte(s, 0);
898 put_byte(s, s->level == 9 ? 2 :
899 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
900 4 : 0));
901 put_byte(s, OS_CODE);
902 s->status = BUSY_STATE;
903
904 /* Compression must start with an empty pending buffer */
905 flush_pending(strm);
906 if (s->pending != 0) {
907 s->last_flush = -1;
908 return Z_OK;
909 }
910 }
911 else {
912 put_byte(s, (s->gzhead->text ? 1 : 0) +
913 (s->gzhead->hcrc ? 2 : 0) +
914 (s->gzhead->extra == Z_NULL ? 0 : 4) +
915 (s->gzhead->name == Z_NULL ? 0 : 8) +
916 (s->gzhead->comment == Z_NULL ? 0 : 16)
917 );
918 put_byte(s, (Byte)(s->gzhead->time & 0xff));
919 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
920 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
921 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
922 put_byte(s, s->level == 9 ? 2 :
923 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
924 4 : 0));
925 put_byte(s, s->gzhead->os & 0xff);
926 if (s->gzhead->extra != Z_NULL) {
927 put_byte(s, s->gzhead->extra_len & 0xff);
928 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
929 }
930 if (s->gzhead->hcrc)
931 strm->adler = crc32(strm->adler, s->pending_buf,
932 s->pending);
933 s->gzindex = 0;
934 s->status = EXTRA_STATE;
935 }
936 }
937 if (s->status == EXTRA_STATE) {
938 if (s->gzhead->extra != Z_NULL) {
939 ulg beg = s->pending; /* start of bytes to update crc */
940 uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
941 while (s->pending + left > s->pending_buf_size) {
942 uInt copy = s->pending_buf_size - s->pending;
943 zmemcpy(s->pending_buf + s->pending,
944 s->gzhead->extra + s->gzindex, copy);
945 s->pending = s->pending_buf_size;
946 HCRC_UPDATE(beg);
947 s->gzindex += copy;
948 flush_pending(strm);
949 if (s->pending != 0) {
950 s->last_flush = -1;
951 return Z_OK;
952 }
953 beg = 0;
954 left -= copy;
955 }
956 zmemcpy(s->pending_buf + s->pending,
957 s->gzhead->extra + s->gzindex, left);
958 s->pending += left;
959 HCRC_UPDATE(beg);
960 s->gzindex = 0;
961 }
962 s->status = NAME_STATE;
963 }
964 if (s->status == NAME_STATE) {
965 if (s->gzhead->name != Z_NULL) {
966 ulg beg = s->pending; /* start of bytes to update crc */
967 int val;
968 do {
969 if (s->pending == s->pending_buf_size) {
970 HCRC_UPDATE(beg);
971 flush_pending(strm);
972 if (s->pending != 0) {
973 s->last_flush = -1;
974 return Z_OK;
975 }
976 beg = 0;
977 }
978 val = s->gzhead->name[s->gzindex++];
979 put_byte(s, val);
980 } while (val != 0);
981 HCRC_UPDATE(beg);
982 s->gzindex = 0;
983 }
984 s->status = COMMENT_STATE;
985 }
986 if (s->status == COMMENT_STATE) {
987 if (s->gzhead->comment != Z_NULL) {
988 ulg beg = s->pending; /* start of bytes to update crc */
989 int val;
990 do {
991 if (s->pending == s->pending_buf_size) {
992 HCRC_UPDATE(beg);
993 flush_pending(strm);
994 if (s->pending != 0) {
995 s->last_flush = -1;
996 return Z_OK;
997 }
998 beg = 0;
999 }
1000 val = s->gzhead->comment[s->gzindex++];
1001 put_byte(s, val);
1002 } while (val != 0);
1003 HCRC_UPDATE(beg);
1004 }
1005 s->status = HCRC_STATE;
1006 }
1007 if (s->status == HCRC_STATE) {
1008 if (s->gzhead->hcrc) {
1009 if (s->pending + 2 > s->pending_buf_size) {
1010 flush_pending(strm);
1011 if (s->pending != 0) {
1012 s->last_flush = -1;
1013 return Z_OK;
1014 }
1015 }
1016 put_byte(s, (Byte)(strm->adler & 0xff));
1017 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1018 strm->adler = crc32(0L, Z_NULL, 0);
1019 }
1020 s->status = BUSY_STATE;
1021
1022 /* Compression must start with an empty pending buffer */
1023 flush_pending(strm);
1024 if (s->pending != 0) {
1025 s->last_flush = -1;
1026 return Z_OK;
1027 }
1028 }
1029 #endif
1030
1031 /* Start a new block or continue the current one.
1032 */
1033 if (strm->avail_in != 0 || s->lookahead != 0 ||
1034 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1035 block_state bstate;
1036
1037 bstate = s->level == 0 ? deflate_stored(s, flush) :
1038 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1039 s->strategy == Z_RLE ? deflate_rle(s, flush) :
1040 (*(configuration_table[s->level].func))(s, flush);
1041
1042 if (bstate == finish_started || bstate == finish_done) {
1043 s->status = FINISH_STATE;
1044 }
1045 if (bstate == need_more || bstate == finish_started) {
1046 if (strm->avail_out == 0) {
1047 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1048 }
1049 return Z_OK;
1050 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1051 * of deflate should use the same flush parameter to make sure
1052 * that the flush is complete. So we don't have to output an
1053 * empty block here, this will be done at next call. This also
1054 * ensures that for a very small output buffer, we emit at most
1055 * one empty block.
1056 */
1057 }
1058 if (bstate == block_done) {
1059 if (flush == Z_PARTIAL_FLUSH) {
1060 _tr_align(s);
1061 } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1062 _tr_stored_block(s, (char*)0, 0L, 0);
1063 /* For a full flush, this empty block will be recognized
1064 * as a special marker by inflate_sync().
1065 */
1066 if (flush == Z_FULL_FLUSH) {
1067 CLEAR_HASH(s); /* forget history */
1068 if (s->lookahead == 0) {
1069 s->strstart = 0;
1070 s->block_start = 0L;
1071 s->insert = 0;
1072 }
1073 }
1074 }
1075 flush_pending(strm);
1076 if (strm->avail_out == 0) {
1077 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1078 return Z_OK;
1079 }
1080 }
1081 }
1082
1083 if (flush != Z_FINISH) return Z_OK;
1084 if (s->wrap <= 0) return Z_STREAM_END;
1085
1086 /* Write the trailer */
1087 #ifdef GZIP
1088 if (s->wrap == 2) {
1089 put_byte(s, (Byte)(strm->adler & 0xff));
1090 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1091 put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1092 put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1093 put_byte(s, (Byte)(strm->total_in & 0xff));
1094 put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1095 put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1096 put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1097 }
1098 else
1099 #endif
1100 {
1101 putShortMSB(s, (uInt)(strm->adler >> 16));
1102 putShortMSB(s, (uInt)(strm->adler & 0xffff));
1103 }
1104 flush_pending(strm);
1105 /* If avail_out is zero, the application will call deflate again
1106 * to flush the rest.
1107 */
1108 if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1109 return s->pending != 0 ? Z_OK : Z_STREAM_END;
1110 }
1111
1112 /* ========================================================================= */
deflateEnd(strm)1113 int ZEXPORT deflateEnd (strm)
1114 z_streamp strm;
1115 {
1116 int status;
1117
1118 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1119
1120 status = strm->state->status;
1121
1122 /* Deallocate in reverse order of allocations: */
1123 TRY_FREE(strm, strm->state->pending_buf);
1124 TRY_FREE(strm, strm->state->head);
1125 TRY_FREE(strm, strm->state->prev);
1126 TRY_FREE(strm, strm->state->window);
1127
1128 ZFREE(strm, strm->state);
1129 strm->state = Z_NULL;
1130
1131 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1132 }
1133
1134 /* =========================================================================
1135 * Copy the source state to the destination state.
1136 * To simplify the source, this is not supported for 16-bit MSDOS (which
1137 * doesn't have enough memory anyway to duplicate compression states).
1138 */
deflateCopy(dest,source)1139 int ZEXPORT deflateCopy (dest, source)
1140 z_streamp dest;
1141 z_streamp source;
1142 {
1143 #ifdef MAXSEG_64K
1144 return Z_STREAM_ERROR;
1145 #else
1146 deflate_state *ds;
1147 deflate_state *ss;
1148
1149
1150 if (deflateStateCheck(source) || dest == Z_NULL) {
1151 return Z_STREAM_ERROR;
1152 }
1153
1154 ss = source->state;
1155
1156 zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1157
1158 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1159 if (ds == Z_NULL) return Z_MEM_ERROR;
1160 dest->state = (struct internal_state FAR *) ds;
1161 zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1162 ds->strm = dest;
1163
1164 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1165 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
1166 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
1167 ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4);
1168
1169 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1170 ds->pending_buf == Z_NULL) {
1171 deflateEnd (dest);
1172 return Z_MEM_ERROR;
1173 }
1174 /* following zmemcpy do not work for 16-bit MSDOS */
1175 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1176 zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1177 zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1178 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1179
1180 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1181 ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1182
1183 ds->l_desc.dyn_tree = ds->dyn_ltree;
1184 ds->d_desc.dyn_tree = ds->dyn_dtree;
1185 ds->bl_desc.dyn_tree = ds->bl_tree;
1186
1187 return Z_OK;
1188 #endif /* MAXSEG_64K */
1189 }
1190
1191 /* ===========================================================================
1192 * Read a new buffer from the current input stream, update the adler32
1193 * and total number of bytes read. All deflate() input goes through
1194 * this function so some applications may wish to modify it to avoid
1195 * allocating a large strm->next_in buffer and copying from it.
1196 * (See also flush_pending()).
1197 */
read_buf(strm,buf,size)1198 local unsigned read_buf(strm, buf, size)
1199 z_streamp strm;
1200 Bytef *buf;
1201 unsigned size;
1202 {
1203 unsigned len = strm->avail_in;
1204
1205 if (len > size) len = size;
1206 if (len == 0) return 0;
1207
1208 strm->avail_in -= len;
1209
1210 zmemcpy(buf, strm->next_in, len);
1211 if (strm->state->wrap == 1) {
1212 strm->adler = adler32(strm->adler, buf, len);
1213 }
1214 #ifdef GZIP
1215 else if (strm->state->wrap == 2) {
1216 strm->adler = crc32(strm->adler, buf, len);
1217 }
1218 #endif
1219 strm->next_in += len;
1220 strm->total_in += len;
1221
1222 return len;
1223 }
1224
1225 /* ===========================================================================
1226 * Initialize the "longest match" routines for a new zlib stream
1227 */
lm_init(s)1228 local void lm_init (s)
1229 deflate_state *s;
1230 {
1231 s->window_size = (ulg)2L*s->w_size;
1232
1233 CLEAR_HASH(s);
1234
1235 /* Set the default configuration parameters:
1236 */
1237 s->max_lazy_match = configuration_table[s->level].max_lazy;
1238 s->good_match = configuration_table[s->level].good_length;
1239 s->nice_match = configuration_table[s->level].nice_length;
1240 s->max_chain_length = configuration_table[s->level].max_chain;
1241
1242 s->strstart = 0;
1243 s->block_start = 0L;
1244 s->lookahead = 0;
1245 s->insert = 0;
1246 s->match_length = s->prev_length = MIN_MATCH-1;
1247 s->match_available = 0;
1248 s->ins_h = 0;
1249 #ifndef FASTEST
1250 #ifdef ASMV
1251 match_init(); /* initialize the asm code */
1252 #endif
1253 #endif
1254 }
1255
1256 #ifndef FASTEST
1257 /* ===========================================================================
1258 * Set match_start to the longest match starting at the given string and
1259 * return its length. Matches shorter or equal to prev_length are discarded,
1260 * in which case the result is equal to prev_length and match_start is
1261 * garbage.
1262 * IN assertions: cur_match is the head of the hash chain for the current
1263 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1264 * OUT assertion: the match length is not greater than s->lookahead.
1265 */
1266 #ifndef ASMV
1267 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1268 * match.S. The code will be functionally equivalent.
1269 */
longest_match(s,cur_match)1270 local uInt longest_match(s, cur_match)
1271 deflate_state *s;
1272 IPos cur_match; /* current match */
1273 {
1274 unsigned chain_length = s->max_chain_length;/* max hash chain length */
1275 register Bytef *scan = s->window + s->strstart; /* current string */
1276 register Bytef *match; /* matched string */
1277 register int len; /* length of current match */
1278 int best_len = (int)s->prev_length; /* best match length so far */
1279 int nice_match = s->nice_match; /* stop if match long enough */
1280 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1281 s->strstart - (IPos)MAX_DIST(s) : NIL;
1282 /* Stop when cur_match becomes <= limit. To simplify the code,
1283 * we prevent matches with the string of window index 0.
1284 */
1285 Posf *prev = s->prev;
1286 uInt wmask = s->w_mask;
1287
1288 #ifdef UNALIGNED_OK
1289 /* Compare two bytes at a time. Note: this is not always beneficial.
1290 * Try with and without -DUNALIGNED_OK to check.
1291 */
1292 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1293 register ush scan_start = *(ushf*)scan;
1294 register ush scan_end = *(ushf*)(scan+best_len-1);
1295 #else
1296 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1297 register Byte scan_end1 = scan[best_len-1];
1298 register Byte scan_end = scan[best_len];
1299 #endif
1300
1301 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1302 * It is easy to get rid of this optimization if necessary.
1303 */
1304 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1305
1306 /* Do not waste too much time if we already have a good match: */
1307 if (s->prev_length >= s->good_match) {
1308 chain_length >>= 2;
1309 }
1310 /* Do not look for matches beyond the end of the input. This is necessary
1311 * to make deflate deterministic.
1312 */
1313 if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1314
1315 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1316
1317 do {
1318 Assert(cur_match < s->strstart, "no future");
1319 match = s->window + cur_match;
1320
1321 /* Skip to next match if the match length cannot increase
1322 * or if the match length is less than 2. Note that the checks below
1323 * for insufficient lookahead only occur occasionally for performance
1324 * reasons. Therefore uninitialized memory will be accessed, and
1325 * conditional jumps will be made that depend on those values.
1326 * However the length of the match is limited to the lookahead, so
1327 * the output of deflate is not affected by the uninitialized values.
1328 */
1329 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1330 /* This code assumes sizeof(unsigned short) == 2. Do not use
1331 * UNALIGNED_OK if your compiler uses a different size.
1332 */
1333 if (*(ushf*)(match+best_len-1) != scan_end ||
1334 *(ushf*)match != scan_start) continue;
1335
1336 /* It is not necessary to compare scan[2] and match[2] since they are
1337 * always equal when the other bytes match, given that the hash keys
1338 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1339 * strstart+3, +5, ... up to strstart+257. We check for insufficient
1340 * lookahead only every 4th comparison; the 128th check will be made
1341 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1342 * necessary to put more guard bytes at the end of the window, or
1343 * to check more often for insufficient lookahead.
1344 */
1345 Assert(scan[2] == match[2], "scan[2]?");
1346 scan++, match++;
1347 do {
1348 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1349 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1350 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1351 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1352 scan < strend);
1353 /* The funny "do {}" generates better code on most compilers */
1354
1355 /* Here, scan <= window+strstart+257 */
1356 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1357 if (*scan == *match) scan++;
1358
1359 len = (MAX_MATCH - 1) - (int)(strend-scan);
1360 scan = strend - (MAX_MATCH-1);
1361
1362 #else /* UNALIGNED_OK */
1363
1364 if (match[best_len] != scan_end ||
1365 match[best_len-1] != scan_end1 ||
1366 *match != *scan ||
1367 *++match != scan[1]) continue;
1368
1369 /* The check at best_len-1 can be removed because it will be made
1370 * again later. (This heuristic is not always a win.)
1371 * It is not necessary to compare scan[2] and match[2] since they
1372 * are always equal when the other bytes match, given that
1373 * the hash keys are equal and that HASH_BITS >= 8.
1374 */
1375 scan += 2, match++;
1376 Assert(*scan == *match, "match[2]?");
1377
1378 /* We check for insufficient lookahead only every 8th comparison;
1379 * the 256th check will be made at strstart+258.
1380 */
1381 do {
1382 } while (*++scan == *++match && *++scan == *++match &&
1383 *++scan == *++match && *++scan == *++match &&
1384 *++scan == *++match && *++scan == *++match &&
1385 *++scan == *++match && *++scan == *++match &&
1386 scan < strend);
1387
1388 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1389
1390 len = MAX_MATCH - (int)(strend - scan);
1391 scan = strend - MAX_MATCH;
1392
1393 #endif /* UNALIGNED_OK */
1394
1395 if (len > best_len) {
1396 s->match_start = cur_match;
1397 best_len = len;
1398 if (len >= nice_match) break;
1399 #ifdef UNALIGNED_OK
1400 scan_end = *(ushf*)(scan+best_len-1);
1401 #else
1402 scan_end1 = scan[best_len-1];
1403 scan_end = scan[best_len];
1404 #endif
1405 }
1406 } while ((cur_match = prev[cur_match & wmask]) > limit
1407 && --chain_length != 0);
1408
1409 if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1410 return s->lookahead;
1411 }
1412 #endif /* ASMV */
1413
1414 #else /* FASTEST */
1415
1416 /* ---------------------------------------------------------------------------
1417 * Optimized version for FASTEST only
1418 */
longest_match(s,cur_match)1419 local uInt longest_match(s, cur_match)
1420 deflate_state *s;
1421 IPos cur_match; /* current match */
1422 {
1423 register Bytef *scan = s->window + s->strstart; /* current string */
1424 register Bytef *match; /* matched string */
1425 register int len; /* length of current match */
1426 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1427
1428 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1429 * It is easy to get rid of this optimization if necessary.
1430 */
1431 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1432
1433 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1434
1435 Assert(cur_match < s->strstart, "no future");
1436
1437 match = s->window + cur_match;
1438
1439 /* Return failure if the match length is less than 2:
1440 */
1441 if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1442
1443 /* The check at best_len-1 can be removed because it will be made
1444 * again later. (This heuristic is not always a win.)
1445 * It is not necessary to compare scan[2] and match[2] since they
1446 * are always equal when the other bytes match, given that
1447 * the hash keys are equal and that HASH_BITS >= 8.
1448 */
1449 scan += 2, match += 2;
1450 Assert(*scan == *match, "match[2]?");
1451
1452 /* We check for insufficient lookahead only every 8th comparison;
1453 * the 256th check will be made at strstart+258.
1454 */
1455 do {
1456 } while (*++scan == *++match && *++scan == *++match &&
1457 *++scan == *++match && *++scan == *++match &&
1458 *++scan == *++match && *++scan == *++match &&
1459 *++scan == *++match && *++scan == *++match &&
1460 scan < strend);
1461
1462 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1463
1464 len = MAX_MATCH - (int)(strend - scan);
1465
1466 if (len < MIN_MATCH) return MIN_MATCH - 1;
1467
1468 s->match_start = cur_match;
1469 return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1470 }
1471
1472 #endif /* FASTEST */
1473
1474 #ifdef ZLIB_DEBUG
1475
1476 #define EQUAL 0
1477 /* result of memcmp for equal strings */
1478
1479 /* ===========================================================================
1480 * Check that the match at match_start is indeed a match.
1481 */
check_match(s,start,match,length)1482 local void check_match(s, start, match, length)
1483 deflate_state *s;
1484 IPos start, match;
1485 int length;
1486 {
1487 /* check that the match is indeed a match */
1488 if (zmemcmp(s->window + match,
1489 s->window + start, length) != EQUAL) {
1490 fprintf(stderr, " start %u, match %u, length %d\n",
1491 start, match, length);
1492 do {
1493 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1494 } while (--length != 0);
1495 z_error("invalid match");
1496 }
1497 if (z_verbose > 1) {
1498 fprintf(stderr,"\\[%d,%d]", start-match, length);
1499 do { putc(s->window[start++], stderr); } while (--length != 0);
1500 }
1501 }
1502 #else
1503 # define check_match(s, start, match, length)
1504 #endif /* ZLIB_DEBUG */
1505
1506 /* ===========================================================================
1507 * Fill the window when the lookahead becomes insufficient.
1508 * Updates strstart and lookahead.
1509 *
1510 * IN assertion: lookahead < MIN_LOOKAHEAD
1511 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1512 * At least one byte has been read, or avail_in == 0; reads are
1513 * performed for at least two bytes (required for the zip translate_eol
1514 * option -- not supported here).
1515 */
fill_window(s)1516 local void fill_window(s)
1517 deflate_state *s;
1518 {
1519 unsigned n;
1520 unsigned more; /* Amount of free space at the end of the window. */
1521 uInt wsize = s->w_size;
1522
1523 Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1524
1525 do {
1526 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1527
1528 /* Deal with !@#$% 64K limit: */
1529 if (sizeof(int) <= 2) {
1530 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1531 more = wsize;
1532
1533 } else if (more == (unsigned)(-1)) {
1534 /* Very unlikely, but possible on 16 bit machine if
1535 * strstart == 0 && lookahead == 1 (input done a byte at time)
1536 */
1537 more--;
1538 }
1539 }
1540
1541 /* If the window is almost full and there is insufficient lookahead,
1542 * move the upper half to the lower one to make room in the upper half.
1543 */
1544 if (s->strstart >= wsize+MAX_DIST(s)) {
1545
1546 zmemcpy(s->window, s->window+wsize, (unsigned)wsize - more);
1547 s->match_start -= wsize;
1548 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1549 s->block_start -= (long) wsize;
1550 slide_hash(s);
1551 more += wsize;
1552 }
1553 if (s->strm->avail_in == 0) break;
1554
1555 /* If there was no sliding:
1556 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1557 * more == window_size - lookahead - strstart
1558 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1559 * => more >= window_size - 2*WSIZE + 2
1560 * In the BIG_MEM or MMAP case (not yet supported),
1561 * window_size == input_size + MIN_LOOKAHEAD &&
1562 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1563 * Otherwise, window_size == 2*WSIZE so more >= 2.
1564 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1565 */
1566 Assert(more >= 2, "more < 2");
1567
1568 n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1569 s->lookahead += n;
1570
1571 /* Initialize the hash value now that we have some input: */
1572 if (s->lookahead + s->insert >= MIN_MATCH) {
1573 uInt str = s->strstart - s->insert;
1574 s->ins_h = s->window[str];
1575 UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1576 #if MIN_MATCH != 3
1577 Call UPDATE_HASH() MIN_MATCH-3 more times
1578 #endif
1579 while (s->insert) {
1580 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1581 #ifndef FASTEST
1582 s->prev[str & s->w_mask] = s->head[s->ins_h];
1583 #endif
1584 s->head[s->ins_h] = (Pos)str;
1585 str++;
1586 s->insert--;
1587 if (s->lookahead + s->insert < MIN_MATCH)
1588 break;
1589 }
1590 }
1591 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1592 * but this is not important since only literal bytes will be emitted.
1593 */
1594
1595 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1596
1597 /* If the WIN_INIT bytes after the end of the current data have never been
1598 * written, then zero those bytes in order to avoid memory check reports of
1599 * the use of uninitialized (or uninitialised as Julian writes) bytes by
1600 * the longest match routines. Update the high water mark for the next
1601 * time through here. WIN_INIT is set to MAX_MATCH since the longest match
1602 * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1603 */
1604 if (s->high_water < s->window_size) {
1605 ulg curr = s->strstart + (ulg)(s->lookahead);
1606 ulg init;
1607
1608 if (s->high_water < curr) {
1609 /* Previous high water mark below current data -- zero WIN_INIT
1610 * bytes or up to end of window, whichever is less.
1611 */
1612 init = s->window_size - curr;
1613 if (init > WIN_INIT)
1614 init = WIN_INIT;
1615 zmemzero(s->window + curr, (unsigned)init);
1616 s->high_water = curr + init;
1617 }
1618 else if (s->high_water < (ulg)curr + WIN_INIT) {
1619 /* High water mark at or above current data, but below current data
1620 * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1621 * to end of window, whichever is less.
1622 */
1623 init = (ulg)curr + WIN_INIT - s->high_water;
1624 if (init > s->window_size - s->high_water)
1625 init = s->window_size - s->high_water;
1626 zmemzero(s->window + s->high_water, (unsigned)init);
1627 s->high_water += init;
1628 }
1629 }
1630
1631 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1632 "not enough room for search");
1633 }
1634
1635 /* ===========================================================================
1636 * Flush the current block, with given end-of-file flag.
1637 * IN assertion: strstart is set to the end of the current match.
1638 */
1639 #define FLUSH_BLOCK_ONLY(s, last) { \
1640 _tr_flush_block(s, (s->block_start >= 0L ? \
1641 (charf *)&s->window[(unsigned)s->block_start] : \
1642 (charf *)Z_NULL), \
1643 (ulg)((long)s->strstart - s->block_start), \
1644 (last)); \
1645 s->block_start = s->strstart; \
1646 flush_pending(s->strm); \
1647 Tracev((stderr,"[FLUSH]")); \
1648 }
1649
1650 /* Same but force premature exit if necessary. */
1651 #define FLUSH_BLOCK(s, last) { \
1652 FLUSH_BLOCK_ONLY(s, last); \
1653 if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1654 }
1655
1656 /* Maximum stored block length in deflate format (not including header). */
1657 #define MAX_STORED 65535
1658
1659 /* Minimum of a and b. */
1660 #define MIN(a, b) ((a) > (b) ? (b) : (a))
1661
1662 /* ===========================================================================
1663 * Copy without compression as much as possible from the input stream, return
1664 * the current block state.
1665 *
1666 * In case deflateParams() is used to later switch to a non-zero compression
1667 * level, s->matches (otherwise unused when storing) keeps track of the number
1668 * of hash table slides to perform. If s->matches is 1, then one hash table
1669 * slide will be done when switching. If s->matches is 2, the maximum value
1670 * allowed here, then the hash table will be cleared, since two or more slides
1671 * is the same as a clear.
1672 *
1673 * deflate_stored() is written to minimize the number of times an input byte is
1674 * copied. It is most efficient with large input and output buffers, which
1675 * maximizes the opportunites to have a single copy from next_in to next_out.
1676 */
deflate_stored(s,flush)1677 local block_state deflate_stored(s, flush)
1678 deflate_state *s;
1679 int flush;
1680 {
1681 /* Smallest worthy block size when not flushing or finishing. By default
1682 * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1683 * large input and output buffers, the stored block size will be larger.
1684 */
1685 unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1686
1687 /* Copy as many min_block or larger stored blocks directly to next_out as
1688 * possible. If flushing, copy the remaining available input to next_out as
1689 * stored blocks, if there is enough space.
1690 */
1691 unsigned len, left, have, last = 0;
1692 unsigned used = s->strm->avail_in;
1693 do {
1694 /* Set len to the maximum size block that we can copy directly with the
1695 * available input data and output space. Set left to how much of that
1696 * would be copied from what's left in the window.
1697 */
1698 len = MAX_STORED; /* maximum deflate stored block length */
1699 have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1700 if (s->strm->avail_out < have) /* need room for header */
1701 break;
1702 /* maximum stored block length that will fit in avail_out: */
1703 have = s->strm->avail_out - have;
1704 left = s->strstart - s->block_start; /* bytes left in window */
1705 if (len > (ulg)left + s->strm->avail_in)
1706 len = left + s->strm->avail_in; /* limit len to the input */
1707 if (len > have)
1708 len = have; /* limit len to the output */
1709
1710 /* If the stored block would be less than min_block in length, or if
1711 * unable to copy all of the available input when flushing, then try
1712 * copying to the window and the pending buffer instead. Also don't
1713 * write an empty block when flushing -- deflate() does that.
1714 */
1715 if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1716 flush == Z_NO_FLUSH ||
1717 len != left + s->strm->avail_in))
1718 break;
1719
1720 /* Make a dummy stored block in pending to get the header bytes,
1721 * including any pending bits. This also updates the debugging counts.
1722 */
1723 last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1724 _tr_stored_block(s, (char *)0, 0L, last);
1725
1726 /* Replace the lengths in the dummy stored block with len. */
1727 s->pending_buf[s->pending - 4] = len;
1728 s->pending_buf[s->pending - 3] = len >> 8;
1729 s->pending_buf[s->pending - 2] = ~len;
1730 s->pending_buf[s->pending - 1] = ~len >> 8;
1731
1732 /* Write the stored block header bytes. */
1733 flush_pending(s->strm);
1734
1735 #ifdef ZLIB_DEBUG
1736 /* Update debugging counts for the data about to be copied. */
1737 s->compressed_len += len << 3;
1738 s->bits_sent += len << 3;
1739 #endif
1740
1741 /* Copy uncompressed bytes from the window to next_out. */
1742 if (left) {
1743 if (left > len)
1744 left = len;
1745 zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1746 s->strm->next_out += left;
1747 s->strm->avail_out -= left;
1748 s->strm->total_out += left;
1749 s->block_start += left;
1750 len -= left;
1751 }
1752
1753 /* Copy uncompressed bytes directly from next_in to next_out, updating
1754 * the check value.
1755 */
1756 if (len) {
1757 read_buf(s->strm, s->strm->next_out, len);
1758 s->strm->next_out += len;
1759 s->strm->avail_out -= len;
1760 s->strm->total_out += len;
1761 }
1762 } while (last == 0);
1763
1764 /* Update the sliding window with the last s->w_size bytes of the copied
1765 * data, or append all of the copied data to the existing window if less
1766 * than s->w_size bytes were copied. Also update the number of bytes to
1767 * insert in the hash tables, in the event that deflateParams() switches to
1768 * a non-zero compression level.
1769 */
1770 used -= s->strm->avail_in; /* number of input bytes directly copied */
1771 if (used) {
1772 /* If any input was used, then no unused input remains in the window,
1773 * therefore s->block_start == s->strstart.
1774 */
1775 if (used >= s->w_size) { /* supplant the previous history */
1776 s->matches = 2; /* clear hash */
1777 zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1778 s->strstart = s->w_size;
1779 }
1780 else {
1781 if (s->window_size - s->strstart <= used) {
1782 /* Slide the window down. */
1783 s->strstart -= s->w_size;
1784 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1785 if (s->matches < 2)
1786 s->matches++; /* add a pending slide_hash() */
1787 }
1788 zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1789 s->strstart += used;
1790 }
1791 s->block_start = s->strstart;
1792 s->insert += MIN(used, s->w_size - s->insert);
1793 }
1794 if (s->high_water < s->strstart)
1795 s->high_water = s->strstart;
1796
1797 /* If the last block was written to next_out, then done. */
1798 if (last)
1799 return finish_done;
1800
1801 /* If flushing and all input has been consumed, then done. */
1802 if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1803 s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1804 return block_done;
1805
1806 /* Fill the window with any remaining input. */
1807 have = s->window_size - s->strstart - 1;
1808 if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1809 /* Slide the window down. */
1810 s->block_start -= s->w_size;
1811 s->strstart -= s->w_size;
1812 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1813 if (s->matches < 2)
1814 s->matches++; /* add a pending slide_hash() */
1815 have += s->w_size; /* more space now */
1816 }
1817 if (have > s->strm->avail_in)
1818 have = s->strm->avail_in;
1819 if (have) {
1820 read_buf(s->strm, s->window + s->strstart, have);
1821 s->strstart += have;
1822 }
1823 if (s->high_water < s->strstart)
1824 s->high_water = s->strstart;
1825
1826 /* There was not enough avail_out to write a complete worthy or flushed
1827 * stored block to next_out. Write a stored block to pending instead, if we
1828 * have enough input for a worthy block, or if flushing and there is enough
1829 * room for the remaining input as a stored block in the pending buffer.
1830 */
1831 have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1832 /* maximum stored block length that will fit in pending: */
1833 have = MIN(s->pending_buf_size - have, MAX_STORED);
1834 min_block = MIN(have, s->w_size);
1835 left = s->strstart - s->block_start;
1836 if (left >= min_block ||
1837 ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1838 s->strm->avail_in == 0 && left <= have)) {
1839 len = MIN(left, have);
1840 last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1841 len == left ? 1 : 0;
1842 _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1843 s->block_start += len;
1844 flush_pending(s->strm);
1845 }
1846
1847 /* We've done all we can with the available input and output. */
1848 return last ? finish_started : need_more;
1849 }
1850
1851 /* ===========================================================================
1852 * Compress as much as possible from the input stream, return the current
1853 * block state.
1854 * This function does not perform lazy evaluation of matches and inserts
1855 * new strings in the dictionary only for unmatched strings or for short
1856 * matches. It is used only for the fast compression options.
1857 */
deflate_fast(s,flush)1858 local block_state deflate_fast(s, flush)
1859 deflate_state *s;
1860 int flush;
1861 {
1862 IPos hash_head; /* head of the hash chain */
1863 int bflush; /* set if current block must be flushed */
1864
1865 for (;;) {
1866 /* Make sure that we always have enough lookahead, except
1867 * at the end of the input file. We need MAX_MATCH bytes
1868 * for the next match, plus MIN_MATCH bytes to insert the
1869 * string following the next match.
1870 */
1871 if (s->lookahead < MIN_LOOKAHEAD) {
1872 fill_window(s);
1873 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1874 return need_more;
1875 }
1876 if (s->lookahead == 0) break; /* flush the current block */
1877 }
1878
1879 /* Insert the string window[strstart .. strstart+2] in the
1880 * dictionary, and set hash_head to the head of the hash chain:
1881 */
1882 hash_head = NIL;
1883 if (s->lookahead >= MIN_MATCH) {
1884 INSERT_STRING(s, s->strstart, hash_head);
1885 }
1886
1887 /* Find the longest match, discarding those <= prev_length.
1888 * At this point we have always match_length < MIN_MATCH
1889 */
1890 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1891 /* To simplify the code, we prevent matches with the string
1892 * of window index 0 (in particular we have to avoid a match
1893 * of the string with itself at the start of the input file).
1894 */
1895 s->match_length = longest_match (s, hash_head);
1896 /* longest_match() sets match_start */
1897 }
1898 if (s->match_length >= MIN_MATCH) {
1899 check_match(s, s->strstart, s->match_start, s->match_length);
1900
1901 _tr_tally_dist(s, s->strstart - s->match_start,
1902 s->match_length - MIN_MATCH, bflush);
1903
1904 s->lookahead -= s->match_length;
1905
1906 /* Insert new strings in the hash table only if the match length
1907 * is not too large. This saves time but degrades compression.
1908 */
1909 #ifndef FASTEST
1910 if (s->match_length <= s->max_insert_length &&
1911 s->lookahead >= MIN_MATCH) {
1912 s->match_length--; /* string at strstart already in table */
1913 do {
1914 s->strstart++;
1915 INSERT_STRING(s, s->strstart, hash_head);
1916 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1917 * always MIN_MATCH bytes ahead.
1918 */
1919 } while (--s->match_length != 0);
1920 s->strstart++;
1921 } else
1922 #endif
1923 {
1924 s->strstart += s->match_length;
1925 s->match_length = 0;
1926 s->ins_h = s->window[s->strstart];
1927 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1928 #if MIN_MATCH != 3
1929 Call UPDATE_HASH() MIN_MATCH-3 more times
1930 #endif
1931 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1932 * matter since it will be recomputed at next deflate call.
1933 */
1934 }
1935 } else {
1936 /* No match, output a literal byte */
1937 Tracevv((stderr,"%c", s->window[s->strstart]));
1938 _tr_tally_lit (s, s->window[s->strstart], bflush);
1939 s->lookahead--;
1940 s->strstart++;
1941 }
1942 if (bflush) FLUSH_BLOCK(s, 0);
1943 }
1944 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1945 if (flush == Z_FINISH) {
1946 FLUSH_BLOCK(s, 1);
1947 return finish_done;
1948 }
1949 if (s->sym_next)
1950 FLUSH_BLOCK(s, 0);
1951 return block_done;
1952 }
1953
1954 #ifndef FASTEST
1955 /* ===========================================================================
1956 * Same as above, but achieves better compression. We use a lazy
1957 * evaluation for matches: a match is finally adopted only if there is
1958 * no better match at the next window position.
1959 */
deflate_slow(s,flush)1960 local block_state deflate_slow(s, flush)
1961 deflate_state *s;
1962 int flush;
1963 {
1964 IPos hash_head; /* head of hash chain */
1965 int bflush; /* set if current block must be flushed */
1966
1967 /* Process the input block. */
1968 for (;;) {
1969 /* Make sure that we always have enough lookahead, except
1970 * at the end of the input file. We need MAX_MATCH bytes
1971 * for the next match, plus MIN_MATCH bytes to insert the
1972 * string following the next match.
1973 */
1974 if (s->lookahead < MIN_LOOKAHEAD) {
1975 fill_window(s);
1976 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1977 return need_more;
1978 }
1979 if (s->lookahead == 0) break; /* flush the current block */
1980 }
1981
1982 /* Insert the string window[strstart .. strstart+2] in the
1983 * dictionary, and set hash_head to the head of the hash chain:
1984 */
1985 hash_head = NIL;
1986 if (s->lookahead >= MIN_MATCH) {
1987 INSERT_STRING(s, s->strstart, hash_head);
1988 }
1989
1990 /* Find the longest match, discarding those <= prev_length.
1991 */
1992 s->prev_length = s->match_length, s->prev_match = s->match_start;
1993 s->match_length = MIN_MATCH-1;
1994
1995 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1996 s->strstart - hash_head <= MAX_DIST(s)) {
1997 /* To simplify the code, we prevent matches with the string
1998 * of window index 0 (in particular we have to avoid a match
1999 * of the string with itself at the start of the input file).
2000 */
2001 s->match_length = longest_match (s, hash_head);
2002 /* longest_match() sets match_start */
2003
2004 if (s->match_length <= 5 && (s->strategy == Z_FILTERED
2005 #if TOO_FAR <= 32767
2006 || (s->match_length == MIN_MATCH &&
2007 s->strstart - s->match_start > TOO_FAR)
2008 #endif
2009 )) {
2010
2011 /* If prev_match is also MIN_MATCH, match_start is garbage
2012 * but we will ignore the current match anyway.
2013 */
2014 s->match_length = MIN_MATCH-1;
2015 }
2016 }
2017 /* If there was a match at the previous step and the current
2018 * match is not better, output the previous match:
2019 */
2020 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
2021 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
2022 /* Do not insert strings in hash table beyond this. */
2023
2024 check_match(s, s->strstart-1, s->prev_match, s->prev_length);
2025
2026 _tr_tally_dist(s, s->strstart -1 - s->prev_match,
2027 s->prev_length - MIN_MATCH, bflush);
2028
2029 /* Insert in hash table all strings up to the end of the match.
2030 * strstart-1 and strstart are already inserted. If there is not
2031 * enough lookahead, the last two strings are not inserted in
2032 * the hash table.
2033 */
2034 s->lookahead -= s->prev_length-1;
2035 s->prev_length -= 2;
2036 do {
2037 if (++s->strstart <= max_insert) {
2038 INSERT_STRING(s, s->strstart, hash_head);
2039 }
2040 } while (--s->prev_length != 0);
2041 s->match_available = 0;
2042 s->match_length = MIN_MATCH-1;
2043 s->strstart++;
2044
2045 if (bflush) FLUSH_BLOCK(s, 0);
2046
2047 } else if (s->match_available) {
2048 /* If there was no match at the previous position, output a
2049 * single literal. If there was a match but the current match
2050 * is longer, truncate the previous match to a single literal.
2051 */
2052 Tracevv((stderr,"%c", s->window[s->strstart-1]));
2053 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2054 if (bflush) {
2055 FLUSH_BLOCK_ONLY(s, 0);
2056 }
2057 s->strstart++;
2058 s->lookahead--;
2059 if (s->strm->avail_out == 0) return need_more;
2060 } else {
2061 /* There is no previous match to compare with, wait for
2062 * the next step to decide.
2063 */
2064 s->match_available = 1;
2065 s->strstart++;
2066 s->lookahead--;
2067 }
2068 }
2069 Assert (flush != Z_NO_FLUSH, "no flush?");
2070 if (s->match_available) {
2071 Tracevv((stderr,"%c", s->window[s->strstart-1]));
2072 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2073 s->match_available = 0;
2074 }
2075 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2076 if (flush == Z_FINISH) {
2077 FLUSH_BLOCK(s, 1);
2078 return finish_done;
2079 }
2080 if (s->sym_next)
2081 FLUSH_BLOCK(s, 0);
2082 return block_done;
2083 }
2084 #endif /* FASTEST */
2085
2086 /* ===========================================================================
2087 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2088 * one. Do not maintain a hash table. (It will be regenerated if this run of
2089 * deflate switches away from Z_RLE.)
2090 */
deflate_rle(s,flush)2091 local block_state deflate_rle(s, flush)
2092 deflate_state *s;
2093 int flush;
2094 {
2095 int bflush; /* set if current block must be flushed */
2096 uInt prev; /* byte at distance one to match */
2097 Bytef *scan, *strend; /* scan goes up to strend for length of run */
2098
2099 for (;;) {
2100 /* Make sure that we always have enough lookahead, except
2101 * at the end of the input file. We need MAX_MATCH bytes
2102 * for the longest run, plus one for the unrolled loop.
2103 */
2104 if (s->lookahead <= MAX_MATCH) {
2105 fill_window(s);
2106 if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2107 return need_more;
2108 }
2109 if (s->lookahead == 0) break; /* flush the current block */
2110 }
2111
2112 /* See how many times the previous byte repeats */
2113 s->match_length = 0;
2114 if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2115 scan = s->window + s->strstart - 1;
2116 prev = *scan;
2117 if (prev == *++scan && prev == *++scan && prev == *++scan) {
2118 strend = s->window + s->strstart + MAX_MATCH;
2119 do {
2120 } while (prev == *++scan && prev == *++scan &&
2121 prev == *++scan && prev == *++scan &&
2122 prev == *++scan && prev == *++scan &&
2123 prev == *++scan && prev == *++scan &&
2124 scan < strend);
2125 s->match_length = MAX_MATCH - (uInt)(strend - scan);
2126 if (s->match_length > s->lookahead)
2127 s->match_length = s->lookahead;
2128 }
2129 Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
2130 }
2131
2132 /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2133 if (s->match_length >= MIN_MATCH) {
2134 check_match(s, s->strstart, s->strstart - 1, s->match_length);
2135
2136 _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2137
2138 s->lookahead -= s->match_length;
2139 s->strstart += s->match_length;
2140 s->match_length = 0;
2141 } else {
2142 /* No match, output a literal byte */
2143 Tracevv((stderr,"%c", s->window[s->strstart]));
2144 _tr_tally_lit (s, s->window[s->strstart], bflush);
2145 s->lookahead--;
2146 s->strstart++;
2147 }
2148 if (bflush) FLUSH_BLOCK(s, 0);
2149 }
2150 s->insert = 0;
2151 if (flush == Z_FINISH) {
2152 FLUSH_BLOCK(s, 1);
2153 return finish_done;
2154 }
2155 if (s->sym_next)
2156 FLUSH_BLOCK(s, 0);
2157 return block_done;
2158 }
2159
2160 /* ===========================================================================
2161 * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.
2162 * (It will be regenerated if this run of deflate switches away from Huffman.)
2163 */
deflate_huff(s,flush)2164 local block_state deflate_huff(s, flush)
2165 deflate_state *s;
2166 int flush;
2167 {
2168 int bflush; /* set if current block must be flushed */
2169
2170 for (;;) {
2171 /* Make sure that we have a literal to write. */
2172 if (s->lookahead == 0) {
2173 fill_window(s);
2174 if (s->lookahead == 0) {
2175 if (flush == Z_NO_FLUSH)
2176 return need_more;
2177 break; /* flush the current block */
2178 }
2179 }
2180
2181 /* Output a literal byte */
2182 s->match_length = 0;
2183 Tracevv((stderr,"%c", s->window[s->strstart]));
2184 _tr_tally_lit (s, s->window[s->strstart], bflush);
2185 s->lookahead--;
2186 s->strstart++;
2187 if (bflush) FLUSH_BLOCK(s, 0);
2188 }
2189 s->insert = 0;
2190 if (flush == Z_FINISH) {
2191 FLUSH_BLOCK(s, 1);
2192 return finish_done;
2193 }
2194 if (s->sym_next)
2195 FLUSH_BLOCK(s, 0);
2196 return block_done;
2197 }