1 /*
2 * Copyright (c) 2022 Huawei Device Co., Ltd.
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License.
14 */
15
16 #include <cstdint>
17 #include <map>
18
19 #include "ecmascript/compiler/assembler/aarch64/assembler_aarch64.h"
20
21 #include "ecmascript/base/bit_helper.h"
22 #include "ecmascript/ecma_macros.h"
23
24 namespace panda::ecmascript::aarch64 {
25 using namespace panda::ecmascript::base;
26 static const uint64_t HWORD_MASK = 0xFFFF;
27
Create(uint64_t imm,int width)28 LogicalImmediate LogicalImmediate::Create(uint64_t imm, int width)
29 {
30 if ((imm == 0ULL) || (imm == ~0ULL) ||
31 ((width != RegXSize) && (((imm >> width) != 0) || (imm == (~0ULL >> (RegXSize - width)))))) {
32 return LogicalImmediate(InvalidLogicalImmediate);
33 }
34
35 // First, determine the element size.
36 unsigned int size = static_cast<uint32_t>(width);
37 do {
38 size /= 2;
39 uint64_t mask = (1ULL << size) - 1;
40
41 if ((imm & mask) != ((imm >> size) & mask)) {
42 size *= 2;
43 break;
44 }
45 } while (size > 2);
46
47 // Second, determine the rotation to make the element be: 0^m 1^n.
48 unsigned int cto = 0;
49 unsigned int i = 0;
50 uint64_t mask = ((uint64_t)-1LL) >> (RegXSize - size);
51 imm &= mask;
52
53 if (IsShiftedMask_64(imm)) {
54 i = CountTrailingZeros64(imm);
55 ASSERT_PRINT(i < RegXSize, "undefined behavior");
56 cto = CountTrailingOnes64(imm >> i);
57 } else {
58 imm |= ~mask;
59 if (!IsShiftedMask_64(~imm)) {
60 return LogicalImmediate(InvalidLogicalImmediate);
61 }
62
63 uint32_t clo = CountLeadingOnes64(imm);
64 i = static_cast<uint32_t>(RegXSize) - clo;
65 cto = clo + CountTrailingOnes64(imm) - (static_cast<uint32_t>(RegXSize) - size);
66 }
67
68 // Encode in Immr the number of RORs it would take to get *from* 0^m 1^n
69 // to our target value, where I is the number of RORs to go the opposite
70 // direction.
71 ASSERT_PRINT(size > i, "i should be smaller than element size");
72 unsigned immr = (size - i) & (size - 1);
73
74 // If size has a 1 in the n'th bit, create a value that has zeroes in
75 // bits [0, n] and ones above that.
76 uint64_t nImms = ~(size - 1) << 1;
77
78 // Or the CTO value into the low bits, which must be below the Nth bit
79 // bit mentioned above.
80 nImms |= (cto - 1);
81
82 // Extract the seventh bit and toggle it to create the N field.
83 // 6 means the topmost bit in nImms
84 unsigned int n = ((nImms >> 6) & 1) ^ 1;
85 return LogicalImmediate((n << BITWISE_OP_N_LOWBITS) | (immr << BITWISE_OP_Immr_LOWBITS) |
86 ((nImms << BITWISE_OP_Imms_LOWBITS) & BITWISE_OP_Imms_MASK));
87 }
88
Ldp(const Register & rt,const Register & rt2,const MemoryOperand & operand)89 void AssemblerAarch64::Ldp(const Register &rt, const Register &rt2, const MemoryOperand &operand)
90 {
91 uint32_t op = 0;
92 if (operand.IsImmediateOffset()) {
93 switch (operand.GetAddrMode()) {
94 case OFFSET:
95 op = LoadStorePairOpCode::LDP_Offset;
96 break;
97 case PREINDEX:
98 op = LoadStorePairOpCode::LDP_Pre;
99 break;
100 case POSTINDEX:
101 op = LoadStorePairOpCode::LDP_Post;
102 break;
103 default:
104 UNREACHABLE();
105 }
106 bool sf = !rt.IsW();
107 uint64_t imm = static_cast<uint64_t>(operand.GetImmediate().Value());
108 if (sf) {
109 imm >>= 3; // 3: 64 RegSise, imm/8 to remove trailing zeros
110 } else {
111 imm >>= 2; // 2: 32 RegSise, imm/4 to remove trailing zeros
112 }
113 uint32_t instructionCode = Sf(sf) | op | LoadAndStorePairImm(imm) | Rt2(rt2.GetId()) |
114 Rn(operand.GetRegBase().GetId()) | Rt(rt.GetId());
115 EmitU32(instructionCode);
116 return;
117 }
118 UNREACHABLE();
119 }
120
Stp(const Register & rt,const Register & rt2,const MemoryOperand & operand)121 void AssemblerAarch64::Stp(const Register &rt, const Register &rt2, const MemoryOperand &operand)
122 {
123 uint32_t op = 0;
124 if (operand.IsImmediateOffset()) {
125 switch (operand.GetAddrMode()) {
126 case OFFSET:
127 op = LoadStorePairOpCode::STP_Offset;
128 break;
129 case PREINDEX:
130 op = LoadStorePairOpCode::STP_Pre;
131 break;
132 case POSTINDEX:
133 op = LoadStorePairOpCode::STP_Post;
134 break;
135 default:
136 UNREACHABLE();
137 }
138 bool sf = !rt.IsW();
139 uint64_t imm = static_cast<uint64_t>(operand.GetImmediate().Value());
140 if (sf) {
141 imm >>= 3; // 3: 64 RegSise, imm/8 to remove trailing zeros
142 } else {
143 imm >>= 2; // 2: 32 RegSise, imm/4 to remove trailing zeros
144 }
145 uint32_t instructionCode = Sf(sf) | op | LoadAndStorePairImm(imm) | Rt2(rt2.GetId()) |
146 Rn(operand.GetRegBase().GetId()) | Rt(rt.GetId());
147 EmitU32(instructionCode);
148 return;
149 }
150 UNREACHABLE();
151 }
152
Ldp(const VectorRegister & vt,const VectorRegister & vt2,const MemoryOperand & operand)153 void AssemblerAarch64::Ldp(const VectorRegister &vt, const VectorRegister &vt2, const MemoryOperand &operand)
154 {
155 uint32_t op = 0;
156 if (operand.IsImmediateOffset()) {
157 switch (operand.GetAddrMode()) {
158 case OFFSET:
159 op = LoadStorePairOpCode::LDP_V_Offset;
160 break;
161 case PREINDEX:
162 op = LoadStorePairOpCode::LDP_V_Pre;
163 break;
164 case POSTINDEX:
165 op = LoadStorePairOpCode::LDP_V_Post;
166 break;
167 default:
168 UNREACHABLE();
169 }
170 uint64_t imm = static_cast<uint64_t>(operand.GetImmediate().Value());
171 switch (vt.GetScale()) {
172 case S:
173 // 2 : 2 means remove trailing zeros
174 imm >>= 2;
175 break;
176 case D:
177 // 3 : 3 means remove trailing zeros
178 imm >>= 3;
179 break;
180 case Q:
181 // 4 : 4 means remove trailing zeros
182 imm >>= 4;
183 break;
184 default:
185 UNREACHABLE();
186 }
187 uint32_t opc = GetOpcFromScale(vt.GetScale(), true);
188 uint32_t instructionCode = opc | op | LoadAndStorePairImm(imm) | Rt2(vt2.GetId()) |
189 Rn(operand.GetRegBase().GetId()) | Rt(vt.GetId());
190 EmitU32(instructionCode);
191 return;
192 }
193 UNREACHABLE();
194 }
195
Stp(const VectorRegister & vt,const VectorRegister & vt2,const MemoryOperand & operand)196 void AssemblerAarch64::Stp(const VectorRegister &vt, const VectorRegister &vt2, const MemoryOperand &operand)
197 {
198 uint32_t op = 0;
199 if (operand.IsImmediateOffset()) {
200 switch (operand.GetAddrMode()) {
201 case OFFSET:
202 op = LoadStorePairOpCode::STP_V_Offset;
203 break;
204 case PREINDEX:
205 op = LoadStorePairOpCode::STP_V_Pre;
206 break;
207 case POSTINDEX:
208 op = LoadStorePairOpCode::STP_V_Post;
209 break;
210 default:
211 UNREACHABLE();
212 }
213 uint64_t imm = static_cast<uint64_t>(operand.GetImmediate().Value());
214 switch (vt.GetScale()) {
215 case S:
216 // 2 : 2 means remove trailing zeros
217 imm >>= 2;
218 break;
219 case D:
220 // 3 : 3 means remove trailing zeros
221 imm >>= 3;
222 break;
223 case Q:
224 // 4 : 4 means remove trailing zeros
225 imm >>= 4;
226 break;
227 default:
228 UNREACHABLE();
229 }
230 uint32_t opc = GetOpcFromScale(vt.GetScale(), true);
231 uint32_t instructionCode = opc | op | LoadAndStorePairImm(imm) | Rt2(vt2.GetId()) |
232 Rn(operand.GetRegBase().GetId()) | Rt(vt.GetId());
233 EmitU32(instructionCode);
234 return;
235 }
236 UNREACHABLE();
237 }
238
GetOpcFromScale(Scale scale,bool ispair)239 uint32_t AssemblerAarch64::GetOpcFromScale(Scale scale, bool ispair)
240 {
241 uint32_t opc = 0;
242 switch (scale) {
243 case Scale::B:
244 case Scale::H:
245 ASSERT(!ispair);
246 opc = 1;
247 break;
248 case Scale::S:
249 opc = ispair ? 0 : 1;
250 break;
251 case Scale::D:
252 opc = 1;
253 break;
254 case Scale::Q:
255 // 3 : means opc bit is 11
256 opc = ispair ? 1 : 3;
257 break;
258 default:
259 UNREACHABLE();
260 }
261
262 return (opc << LDP_STP_Opc_LOWBITS) & LDP_STP_Opc_MASK;
263 }
264
Ldr(const Register & rt,const MemoryOperand & operand,Scale scale)265 void AssemblerAarch64::Ldr(const Register &rt, const MemoryOperand &operand, Scale scale)
266 {
267 bool regX = !rt.IsW();
268 uint32_t op = GetOpcodeOfLdr(operand, scale);
269 if (operand.IsImmediateOffset()) {
270 uint64_t imm = GetImmOfLdr(operand, scale, regX);
271 bool isSigned = operand.GetAddrMode() != AddrMode::OFFSET;
272 // 30: 30bit indicate the size of LDR Reg, and Ldrb and Ldrh do not need it
273 uint32_t instructionCode = ((regX && (scale == Scale::Q)) << 30) | op | LoadAndStoreImm(imm, isSigned)
274 | Rn(operand.GetRegBase().GetId()) | Rt(rt.GetId());
275 EmitU32(instructionCode);
276 } else {
277 ASSERT(operand.GetExtendOption() != Extend::NO_EXTEND);
278 uint32_t shift = GetShiftOfLdr(operand, scale, regX);
279 Register rm = operand.GetRegisterOffset();
280 Register rn = operand.GetRegBase();
281 uint32_t extendField =
282 (operand.GetExtendOption() << LDR_STR_Extend_LOWBITS) & LDR_STR_Extend_MASK;
283 uint32_t shiftField = (shift << LDR_STR_S_LOWBITS) & LDR_STR_S_MASK;
284 // 30: 30bit indicate the size of LDR Reg, and Ldrb and Ldrh do not need it
285 uint32_t instructionCode = ((regX && (scale == Scale::Q)) << 30) | op | Rm(rm.GetId())
286 | extendField | shiftField | Rn(rn.GetId()) | Rt(rt.GetId());
287 EmitU32(instructionCode);
288 }
289 }
290
Ldr(const Register & rt,const MemoryOperand & operand)291 void AssemblerAarch64::Ldr(const Register &rt, const MemoryOperand &operand)
292 {
293 Ldr(rt, operand, Scale::Q);
294 }
295
Ldrh(const Register & rt,const MemoryOperand & operand)296 void AssemblerAarch64::Ldrh(const Register &rt, const MemoryOperand &operand)
297 {
298 ASSERT(rt.IsW());
299 Ldr(rt, operand, Scale::H);
300 }
301
Ldrb(const Register & rt,const MemoryOperand & operand)302 void AssemblerAarch64::Ldrb(const Register &rt, const MemoryOperand &operand)
303 {
304 ASSERT(rt.IsW());
305 Ldr(rt, operand, Scale::B);
306 }
307
Str(const Register & rt,const MemoryOperand & operand)308 void AssemblerAarch64::Str(const Register &rt, const MemoryOperand &operand)
309 {
310 uint32_t op = 0;
311 bool regX = !rt.IsW();
312 bool isSigned = true;
313 uint64_t imm = static_cast<uint64_t>(operand.GetImmediate().Value());
314 if (operand.IsImmediateOffset()) {
315 switch (operand.GetAddrMode()) {
316 case OFFSET:
317 op = LoadStoreOpCode::STR_Offset;
318 if (regX) {
319 imm >>= 3; // 3: 64 RegSise, imm/8 to remove trailing zeros
320 } else {
321 imm >>= 2; // 2: 32 RegSise, imm/4 to remove trailing zeros
322 }
323 isSigned = false;
324 break;
325 case PREINDEX:
326 op = LoadStoreOpCode::STR_Pre;
327 break;
328 case POSTINDEX:
329 op = LoadStoreOpCode::STR_Post;
330 break;
331 default:
332 UNREACHABLE();
333 }
334 // 30: 30bit indicate the size of LDR Reg
335 uint32_t instructionCode = (regX << 30) | op | LoadAndStoreImm(imm, isSigned)
336 | Rn(operand.GetRegBase().GetId()) | Rt(rt.GetId());
337 EmitU32(instructionCode);
338 return;
339 }
340 UNREACHABLE();
341 }
342
Ldur(const Register & rt,const MemoryOperand & operand)343 void AssemblerAarch64::Ldur(const Register &rt, const MemoryOperand &operand)
344 {
345 bool regX = !rt.IsW();
346 uint32_t op = LDUR_Offset;
347 ASSERT(operand.IsImmediateOffset());
348 uint64_t imm = static_cast<uint64_t>(operand.GetImmediate().Value());
349 // 30: 30bit indicate the size of LDUR Reg
350 uint32_t instructionCode = (regX << 30) | op | LoadAndStoreImm(imm, true)
351 | Rn(operand.GetRegBase().GetId()) | Rt(rt.GetId());
352 EmitU32(instructionCode);
353 }
354
Stur(const Register & rt,const MemoryOperand & operand)355 void AssemblerAarch64::Stur(const Register &rt, const MemoryOperand &operand)
356 {
357 bool regX = !rt.IsW();
358 uint32_t op = STUR_Offset;
359 ASSERT(operand.IsImmediateOffset());
360 uint64_t imm = static_cast<uint64_t>(operand.GetImmediate().Value());
361 // 30: 30bit indicate the size of LDUR Reg
362 uint32_t instructionCode = (regX << 30) | op | LoadAndStoreImm(imm, true)
363 | Rn(operand.GetRegBase().GetId()) | Rt(rt.GetId());
364 EmitU32(instructionCode);
365 }
366
Mov(const Register & rd,const Immediate & imm)367 void AssemblerAarch64::Mov(const Register &rd, const Immediate &imm)
368 {
369 ASSERT_PRINT(!rd.IsSp(), "sp can't load immediate, please use add instruction");
370 const unsigned int HWORDSIZE = 16;
371 uint64_t immValue = static_cast<uint64_t>(imm.Value());
372 unsigned int allOneHalfWords = 0;
373 unsigned int allZeroHalfWords = 0;
374 unsigned int regSize = rd.IsW() ? RegWSize : RegXSize;
375 unsigned int halfWords = regSize / HWORDSIZE;
376
377 for (unsigned int shift = 0; shift < regSize; shift += HWORDSIZE) {
378 const unsigned int halfWord = (immValue >> shift) & HWORD_MASK;
379 if (halfWord == HWORD_MASK) {
380 allOneHalfWords++;
381 } else if (halfWord == 0) {
382 allZeroHalfWords++;
383 }
384 }
385 // use movz/movn over ORR.
386 if (((halfWords - allOneHalfWords) <= 1) && ((halfWords - allZeroHalfWords) <= 1)) {
387 EmitMovInstruct(rd, immValue, allOneHalfWords, allZeroHalfWords);
388 return;
389 }
390 // Try a single ORR.
391 uint64_t realImm = immValue << (RegXSize - regSize) >> (RegXSize - regSize);
392 LogicalImmediate orrImm = LogicalImmediate::Create(realImm, regSize);
393 if (orrImm.IsValid()) {
394 Orr(rd, Register(Zero), orrImm);
395 return;
396 }
397 // One to up three instruction sequence.
398 if (allOneHalfWords >= (halfWords - 2) || allZeroHalfWords >= (halfWords - 2)) {
399 EmitMovInstruct(rd, immValue, allOneHalfWords, allZeroHalfWords);
400 return;
401 }
402 ASSERT_PRINT(regSize == RegXSize, "all 32-bit Immediate will be transformed with a MOVZ/MOVK pair");
403
404 for (unsigned int shift = 0; shift < regSize; shift += HWORDSIZE) {
405 uint64_t shiftedMask = (HWORD_MASK << shift);
406 uint64_t zeroChunk = realImm & ~shiftedMask;
407 uint64_t oneChunk = realImm | shiftedMask;
408 uint64_t rotatedImm = (realImm << 32) | (realImm >> 32);
409 uint64_t replicateChunk = zeroChunk | (rotatedImm & shiftedMask);
410 LogicalImmediate zeroImm = LogicalImmediate::Create(zeroChunk, regSize);
411 LogicalImmediate oneImm = LogicalImmediate::Create(oneChunk, regSize);
412 LogicalImmediate replicateImm = LogicalImmediate::Create(replicateChunk, regSize);
413 if (!zeroImm.IsValid() && !oneImm.IsValid() && !replicateImm.IsValid()) {
414 continue;
415 }
416
417 if (zeroImm.IsValid()) {
418 Orr(rd, Register(Zero), zeroImm);
419 } else if (oneImm.IsValid()) {
420 Orr(rd, Register(Zero), oneImm);
421 } else {
422 Orr(rd, Register(Zero), replicateImm);
423 }
424 const uint64_t movkImm = (realImm & shiftedMask) >> shift;
425 Movk(rd, movkImm, shift);
426 return;
427 }
428
429 if (allOneHalfWords || allZeroHalfWords) {
430 EmitMovInstruct(rd, immValue, allOneHalfWords, allZeroHalfWords);
431 return;
432 }
433
434 if (regSize == RegXSize && TryReplicateHWords(rd, realImm)) {
435 return;
436 }
437
438 if (regSize == RegXSize && TrySequenceOfOnes(rd, realImm)) {
439 return;
440 }
441 EmitMovInstruct(rd, immValue, allOneHalfWords, allZeroHalfWords);
442 return;
443 }
444
Mov(const Register & rd,const Register & rm)445 void AssemblerAarch64::Mov(const Register &rd, const Register &rm)
446 {
447 if (rd.IsSp() || rm.IsSp()) {
448 Add(rd, rm, Operand(Immediate(0)));
449 } else {
450 Orr(rd, Register(Zero), Operand(rm));
451 }
452 }
453
454 /// Check whether this chunk matches the pattern '1...0...'. This pattern
455 /// starts a contiguous sequence of ones if we look at the bits from the LSB
456 /// towards the MSB.
IsStartHWord(uint64_t hWord)457 static bool IsStartHWord(uint64_t hWord)
458 {
459 if (hWord == 0 || hWord == std::numeric_limits<uint64_t>::max()) {
460 return false;
461 }
462 return IsMask_64(~hWord);
463 }
464
465 /// Check whether this chunk matches the pattern '0...1...' This pattern
466 /// ends a contiguous sequence of ones if we look at the bits from the LSB
467 /// towards the MSB.
IsEndHWord(uint64_t hWord)468 static bool IsEndHWord(uint64_t hWord)
469 {
470 if (hWord == 0 || hWord == std::numeric_limits<uint64_t>::max()) {
471 return false;
472 }
473 return IsMask_64(hWord);
474 }
475
476 /// Clear or set all bits in the chunk at the given index.
UpdateImm(uint64_t imm,unsigned idx,bool clear)477 static uint64_t UpdateImm(uint64_t imm, unsigned idx, bool clear)
478 {
479 if (clear) {
480 // Clear chunk in the immediate.
481 imm &= ~(HWORD_MASK << idx);
482 } else {
483 // Set all bits in the immediate for the particular chunk.
484 imm |= HWORD_MASK << idx;
485 }
486 return imm;
487 }
488
TrySequenceOfOnes(const Register & rd,uint64_t imm)489 bool AssemblerAarch64::TrySequenceOfOnes(const Register &rd, uint64_t imm)
490 {
491 const int HWORDSIZE = 16;
492 int startIdx = -1;
493 int endIdx = -1;
494 // Try to find the chunks which start/end a contiguous sequence of ones.
495 for (int shift = 0; shift < RegXSize; shift += HWORDSIZE) {
496 int64_t himm = (imm >> shift) & HWORD_MASK;
497 // Sign extend the 16-bit chunk to 64-bit.
498 // 48 : 48 means RegXSize - HWORDSIZE
499 himm = (himm << 48) >> 48;
500
501 if (IsStartHWord(himm)) {
502 startIdx = shift;
503 } else if (IsEndHWord(static_cast<uint64_t>(himm))) {
504 endIdx = shift;
505 }
506 }
507 // Early exit in case we can't find a start/end chunk.
508 if (startIdx == -1 || endIdx == -1) {
509 return false;
510 }
511 // Outside of the contiguous sequence of ones everything needs to be zero.
512 uint64_t outside = 0;
513 // Chunks between the start and end chunk need to have all their bits set.
514 uint64_t inside = HWORD_MASK;
515
516 // If our contiguous sequence of ones wraps around from the MSB into the LSB,
517 // just swap indices and pretend we are materializing a contiguous sequence
518 // of zeros surrounded by a contiguous sequence of ones.
519 if (startIdx > endIdx) {
520 std::swap(startIdx, endIdx);
521 std::swap(outside, inside);
522 }
523
524 uint64_t orrImm = imm;
525 int firstMovkShift = -1;
526 int secondMovkShift = -1;
527 for (int shift = 0; shift < RegXSize; shift += HWORDSIZE) {
528 uint64_t himm = (imm >> shift) & HWORD_MASK;
529 // Check whether we are looking at a chunk which is not part of the
530 // contiguous sequence of ones.
531 if ((shift < startIdx || endIdx < shift) && himm != outside) {
532 orrImm = UpdateImm(orrImm, shift, outside == 0);
533 if (firstMovkShift == -1) {
534 firstMovkShift = shift;
535 } else {
536 secondMovkShift = shift;
537 }
538 } else if (shift > startIdx && shift < endIdx && himm != inside) {
539 orrImm = UpdateImm(orrImm, shift, outside == 0);
540 if (firstMovkShift == -1) {
541 firstMovkShift = shift;
542 } else {
543 secondMovkShift = shift;
544 }
545 }
546 }
547 ASSERT_PRINT(firstMovkShift != -1, "constant materializable with single orr!");
548 Orr(rd, rd, LogicalImmediate::Create(orrImm, RegXSize));
549 Movk(rd, (imm >> firstMovkShift) & HWORD_MASK, firstMovkShift);
550 if (secondMovkShift != -1) {
551 Movk(rd, (imm >> secondMovkShift) & HWORD_MASK, secondMovkShift);
552 }
553 return true;
554 }
555
TryReplicateHWords(const Register & rd,uint64_t imm)556 bool AssemblerAarch64::TryReplicateHWords(const Register &rd, uint64_t imm)
557 {
558 const int HWORDSIZE = 16;
559 std::map<uint64_t, int> repeatMaps;
560 for (int idx = 0; idx < RegXSize; idx += HWORDSIZE) {
561 uint64_t halfWord = (imm >> idx) & HWORD_MASK;
562 if (repeatMaps.find(halfWord) != repeatMaps.end()) {
563 repeatMaps[halfWord] += 1;
564 } else {
565 repeatMaps[halfWord] = 1;
566 }
567 }
568 for (auto iter : repeatMaps) {
569 const uint64_t hImm = iter.first;
570 const int count = iter.second;
571 uint64_t repeatImm = hImm | (hImm << 16) | (hImm << 32) | (hImm << 48);
572 LogicalImmediate orrImm = LogicalImmediate::Create(repeatImm, 64);
573 // if orrImm not valid, repeat count can't be 2 or 3, it can't be simplified with orr.
574 if ((count != 2 && count != 3) || orrImm.IsValid()) {
575 continue;
576 }
577 Orr(rd, rd, orrImm);
578 int shift = 0;
579 uint64_t imm16 = 0;
580 // Find the first chunk not materialized with the ORR instruction.
581 for (; shift < RegXSize; shift += HWORDSIZE) {
582 imm16 = (imm >> shift) & HWORD_MASK;
583 if (imm16 != hImm) {
584 break;
585 }
586 }
587 // Create the first MOVK instruction.
588 Movk(rd, imm16, shift);
589 // 3 : 3 means repeat 3 times, Imm encode has been done.
590 if (count == 3) {
591 return true;
592 }
593 // Find the remaining chunk which needs to be materialized.
594 for (shift += HWORDSIZE; shift < RegXSize; shift += HWORDSIZE) {
595 imm16 = (imm >> shift) & HWORD_MASK;
596 if (imm16 != hImm) {
597 break;
598 }
599 }
600 Movk(rd, imm16, shift);
601 return true;
602 }
603 return false;
604 }
605
EmitMovInstruct(const Register & rd,uint64_t imm,unsigned int allOneHWords,unsigned int allZeroHWords)606 void AssemblerAarch64::EmitMovInstruct(const Register &rd, uint64_t imm,
607 unsigned int allOneHWords, unsigned int allZeroHWords)
608 {
609 bool isNeg = false;
610 if (allOneHWords > allZeroHWords) {
611 isNeg = true;
612 imm = ~imm;
613 }
614 int firstshift = 0; // LSL amount for high bits with MOVZ/MOVN
615 int lastshift = 0; // LSL amount for last MOVK
616 if (imm != 0) {
617 int lz = static_cast<int>(CountLeadingZeros64(imm));
618 int tz = static_cast<int>(CountTrailingZeros64(imm));
619 firstshift = (tz / 16) * 16; // 16 : 16 means the operand of MOVK/N/Z is 16 bits Immediate
620 // 63 : 63 means the topmost bits of RegXSize
621 lastshift = ((63 - lz) / 16) * 16; // 16 : 16 means the operand of MOVK/N/Z is 16 bits Immediate
622 }
623 uint64_t imm16 = (imm >> firstshift) & HWORD_MASK;
624 if (isNeg) {
625 Movn(rd, imm16, firstshift);
626 imm = ~imm;
627 } else {
628 Movz(rd, imm16, firstshift);
629 }
630 if (firstshift == lastshift) {
631 return;
632 }
633 while (firstshift < lastshift) {
634 firstshift += 16; // 16 : 16 means the operand of MOVK is 16 bits Immediate
635 imm16 = (imm >> firstshift) & HWORD_MASK;
636 if (imm16 == (isNeg ? HWORD_MASK : 0)) {
637 // skip movk because initial value is already set correctly.
638 continue;
639 }
640 Movk(rd, imm16, firstshift);
641 }
642 }
643
Movz(const Register & rd,uint64_t imm,int shift)644 void AssemblerAarch64::Movz(const Register &rd, uint64_t imm, int shift)
645 {
646 MovWide(MoveOpCode::MOVZ, rd, imm, shift);
647 }
648
Movk(const Register & rd,uint64_t imm,int shift)649 void AssemblerAarch64::Movk(const Register &rd, uint64_t imm, int shift)
650 {
651 MovWide(MoveOpCode::MOVK, rd, imm, shift);
652 }
653
Movn(const Register & rd,uint64_t imm,int shift)654 void AssemblerAarch64::Movn(const Register &rd, uint64_t imm, int shift)
655 {
656 MovWide(MoveOpCode::MOVN, rd, imm, shift);
657 }
658
MovWide(uint32_t op,const Register & rd,uint64_t imm,int shift)659 void AssemblerAarch64::MovWide(uint32_t op, const Register &rd, uint64_t imm, int shift)
660 {
661 uint32_t imm_field = (imm << MOV_WIDE_Imm16_LOWBITS) & MOV_WIDE_Imm16_MASK;
662 uint32_t hw_field = ((shift / 16) << MOV_WIDE_Hw_LOWBITS) & MOV_WIDE_Hw_MASK;
663 uint32_t code = Sf(!rd.IsW()) | op | imm_field | hw_field | Rd(rd.GetId());
664 EmitU32(code);
665 }
666
667
Orr(const Register & rd,const Register & rn,const LogicalImmediate & imm)668 void AssemblerAarch64::Orr(const Register &rd, const Register &rn, const LogicalImmediate &imm)
669 {
670 BitWiseOpImm(ORR_Imm, rd, rn, imm.Value());
671 }
672
And(const Register & rd,const Register & rn,const LogicalImmediate & imm)673 void AssemblerAarch64::And(const Register &rd, const Register &rn, const LogicalImmediate &imm)
674 {
675 BitWiseOpImm(AND_Imm, rd, rn, imm.Value());
676 }
677
Ands(const Register & rd,const Register & rn,const LogicalImmediate & imm)678 void AssemblerAarch64::Ands(const Register &rd, const Register &rn, const LogicalImmediate &imm)
679 {
680 BitWiseOpImm(ANDS_Imm, rd, rn, imm.Value());
681 }
682
Orr(const Register & rd,const Register & rn,const Operand & operand)683 void AssemblerAarch64::Orr(const Register &rd, const Register &rn, const Operand &operand)
684 {
685 ASSERT(operand.IsShifted());
686 BitWiseOpShift(ORR_Shift, rd, rn, operand);
687 }
688
And(const Register & rd,const Register & rn,const Operand & operand)689 void AssemblerAarch64::And(const Register &rd, const Register &rn, const Operand &operand)
690 {
691 ASSERT(operand.IsShifted());
692 BitWiseOpShift(AND_Shift, rd, rn, operand);
693 }
694
Ands(const Register & rd,const Register & rn,const Operand & operand)695 void AssemblerAarch64::Ands(const Register &rd, const Register &rn, const Operand &operand)
696 {
697 ASSERT(operand.IsShifted());
698 BitWiseOpShift(ANDS_Shift, rd, rn, operand);
699 }
700
BitWiseOpImm(BitwiseOpCode op,const Register & rd,const Register & rn,uint64_t imm)701 void AssemblerAarch64::BitWiseOpImm(BitwiseOpCode op, const Register &rd, const Register &rn, uint64_t imm)
702 {
703 uint32_t code = Sf(!rd.IsW()) | op | imm | Rn(rn.GetId()) | Rd(rd.GetId());
704 EmitU32(code);
705 }
706
BitWiseOpShift(BitwiseOpCode op,const Register & rd,const Register & rn,const Operand & operand)707 void AssemblerAarch64::BitWiseOpShift(BitwiseOpCode op, const Register &rd, const Register &rn, const Operand &operand)
708 {
709 uint32_t shift_field = (operand.GetShiftOption() << BITWISE_OP_Shift_LOWBITS) & BITWISE_OP_Shift_MASK;
710 uint32_t shift_amount = (operand.GetShiftAmount() << BITWISE_OP_ShiftAmount_LOWBITS) & BITWISE_OP_ShiftAmount_MASK;
711 uint32_t code = Sf(!rd.IsW()) | op | shift_field | Rm(operand.Reg().GetId())
712 |shift_amount | Rn(rn.GetId()) | Rd(rd.GetId());
713 EmitU32(code);
714 }
715
Lsl(const Register & rd,const Register & rn,const Register & rm)716 void AssemblerAarch64::Lsl(const Register &rd, const Register &rn, const Register &rm)
717 {
718 uint32_t code = Sf(!rd.IsW()) | LSL_Reg | Rm(rm.GetId()) | Rn(rn.GetId()) | Rd(rd.GetId());
719 EmitU32(code);
720 }
721
Lsr(const Register & rd,const Register & rn,const Register & rm)722 void AssemblerAarch64::Lsr(const Register &rd, const Register &rn, const Register &rm)
723 {
724 uint32_t code = Sf(!rd.IsW()) | LSR_Reg | Rm(rm.GetId()) | Rn(rn.GetId()) | Rd(rd.GetId());
725 EmitU32(code);
726 }
727
Ubfm(const Register & rd,const Register & rn,unsigned immr,unsigned imms)728 void AssemblerAarch64::Ubfm(const Register &rd, const Register &rn, unsigned immr, unsigned imms)
729 {
730 bool sf = !rd.IsW();
731 uint32_t n = (sf << BITWISE_OP_N_LOWBITS) & BITWISE_OP_N_MASK;
732 uint32_t immr_field = (immr << BITWISE_OP_Immr_LOWBITS) & BITWISE_OP_Immr_MASK;
733 uint32_t imms_field = (imms << BITWISE_OP_Imms_LOWBITS) & BITWISE_OP_Imms_MASK;
734 uint32_t code = Sf(sf) | UBFM | n | immr_field | imms_field | Rn(rn.GetId()) | Rd(rd.GetId());
735 EmitU32(code);
736 }
737
Lsr(const Register & rd,const Register & rn,unsigned shift)738 void AssemblerAarch64::Lsr(const Register &rd, const Register &rn, unsigned shift)
739 {
740 unsigned imms = 0;
741 if (rd.IsW()) {
742 // 31 : 31 32-bit variant Applies when sf == 0 && N == 0 && imms == 011111
743 // LSR <Wd>, <Wn>, #<shift> is equivalent to UBFM <Wd>, <Wn>, #<shift>, #31
744 // and is always the preferred disassembly
745 imms = 31;
746 } else {
747 // 63 : 63 64-bit variant Applies when sf == 1 && N == 1 && imms == 111111
748 // LSR <Xd>, <Xn>, #<shift> is equivalent to UBFM <Xd>, <Xn>, #<shift>, #63
749 // and is always the preferred disassembly
750 imms = 63;
751 }
752 Ubfm(rd, rn, shift, imms);
753 }
754
Lsl(const Register & rd,const Register & rn,unsigned shift)755 void AssemblerAarch64::Lsl(const Register &rd, const Register &rn, unsigned shift)
756 {
757 unsigned immr = 0;
758 [[maybe_unused]] unsigned imms = 0;
759 if (rd.IsW()) {
760 // 32 : 32-bit variant Applies when sf == 0 && N == 0 && imms != 011111
761 // LSL <Wd>, <Wn>, #<shift> is equivalent to UBFM <Wd>, <Wn>, #(-<shift> MOD 32), #(31-<shift>)
762 // and is the preferred disassembly when imms + 1 == immr
763 immr = (32 - shift) % 32;
764 imms = (31 - shift);
765 } else {
766 // 64 : 64-bit variant Applies when sf == 1 && N == 1 && imms != 111111
767 // LSL <Xd>, <Xn>, #<shift> is equivalent to UBFM <Xd>, <Xn>, #(-<shift> MOD 64), #(63-<shift>)
768 // and is the preferred disassembly when imms + 1 == imm
769 immr = (64 - shift) % 64;
770 imms = (63 - shift);
771 }
772 Ubfm(rd, rn, immr, 63 - shift);
773 }
774
Add(const Register & rd,const Register & rn,const Operand & operand)775 void AssemblerAarch64::Add(const Register &rd, const Register &rn, const Operand &operand)
776 {
777 if (operand.IsImmediate()) {
778 int64_t imm = static_cast<int64_t>(operand.ImmediateValue());
779 if (imm < 0) {
780 AddSubImm(SUB_Imm, rd, rn, false, -1 * imm);
781 } else {
782 AddSubImm(ADD_Imm, rd, rn, false, imm);
783 }
784 } else {
785 if (operand.IsShifted()) {
786 AddSubReg(ADD_Shift, rd, rn, false, operand);
787 } else {
788 AddSubReg(ADD_Extend, rd, rn, false, operand);
789 }
790 }
791 }
792
Adds(const Register & rd,const Register & rn,const Operand & operand)793 void AssemblerAarch64::Adds(const Register &rd, const Register &rn, const Operand &operand)
794 {
795 if (operand.IsImmediate()) {
796 AddSubImm(ADD_Imm, rd, rn, true, operand.ImmediateValue());
797 } else {
798 if (operand.IsShifted()) {
799 AddSubReg(ADD_Shift, rd, rn, true, operand);
800 } else {
801 AddSubReg(ADD_Extend, rd, rn, true, operand);
802 }
803 }
804 }
805
Sub(const Register & rd,const Register & rn,const Operand & operand)806 void AssemblerAarch64::Sub(const Register &rd, const Register &rn, const Operand &operand)
807 {
808 if (operand.IsImmediate()) {
809 int64_t imm = static_cast<int64_t>(operand.ImmediateValue());
810 if (imm < 0) {
811 AddSubImm(ADD_Imm, rd, rn, false, -1 * imm);
812 } else {
813 AddSubImm(SUB_Imm, rd, rn, false, imm);
814 }
815 } else {
816 if (operand.IsShifted()) {
817 AddSubReg(SUB_Shift, rd, rn, false, operand);
818 } else {
819 AddSubReg(SUB_Extend, rd, rn, false, operand);
820 }
821 }
822 }
823
Subs(const Register & rd,const Register & rn,const Operand & operand)824 void AssemblerAarch64::Subs(const Register &rd, const Register &rn, const Operand &operand)
825 {
826 if (operand.IsImmediate()) {
827 AddSubImm(SUB_Imm, rd, rn, true, operand.ImmediateValue());
828 } else {
829 if (operand.IsShifted()) {
830 AddSubReg(SUB_Shift, rd, rn, true, operand);
831 } else {
832 AddSubReg(SUB_Extend, rd, rn, true, operand);
833 }
834 }
835 }
836
IsAddSubImm(uint64_t imm)837 bool AssemblerAarch64::IsAddSubImm(uint64_t imm)
838 {
839 const uint64_t IMM12_MASK = (1 << ADD_SUB_Imm12_WIDTH) - 1;
840 if (imm <= IMM12_MASK) {
841 return true;
842 }
843
844 if (((imm & IMM12_MASK) == 0) && ((imm & ~IMM12_MASK) <= IMM12_MASK)) {
845 return true;
846 }
847 return false;
848 }
849
AddSubImm(AddSubOpCode op,const Register & rd,const Register & rn,bool setFlags,uint64_t imm)850 void AssemblerAarch64::AddSubImm(AddSubOpCode op, const Register &rd, const Register &rn, bool setFlags, uint64_t imm)
851 {
852 ASSERT(IsAddSubImm(imm));
853 uint32_t shift = 0;
854 const uint64_t IMM12_MASK = (1 << ADD_SUB_Imm12_WIDTH) - 1;
855 uint64_t imm12 = imm & (~IMM12_MASK);
856 if (imm12 != 0) {
857 shift = 1;
858 } else {
859 imm12 = imm;
860 }
861 uint32_t flags_field = ((setFlags ? 1 : 0) << ADD_SUB_S_LOWBITS) & ADD_SUB_S_MASK;
862 uint32_t imm_field = (imm12 << ADD_SUB_Imm12_LOWBITS) & ADD_SUB_Imm12_MASK;
863 uint32_t shift_field = (shift << ADD_SUB_Sh_LOWBITS) & ADD_SUB_Sh_MASK;
864 uint32_t code = Sf(!rd.IsW()) | op | flags_field | shift_field | imm_field | Rd(rd.GetId()) | Rn(rn.GetId());
865 EmitU32(code);
866 }
867
AddSubReg(AddSubOpCode op,const Register & rd,const Register & rn,bool setFlags,const Operand & operand)868 void AssemblerAarch64::AddSubReg(AddSubOpCode op, const Register &rd, const Register &rn,
869 bool setFlags, const Operand &operand)
870 {
871 uint32_t flags_field = ((setFlags ? 1 : 0) << ADD_SUB_S_LOWBITS) & ADD_SUB_S_MASK;
872 uint32_t code = 0;
873 if (operand.IsShifted()) {
874 uint32_t shift_field = ((operand.GetShiftOption()) << ADD_SUB_Shift_LOWBITS) & ADD_SUB_Shift_MASK;
875 uint32_t shift_amount = ((operand.GetShiftAmount()) << ADD_SUB_ShiftAmount_LOWBITS) & ADD_SUB_ShiftAmount_MASK;
876 ASSERT((op == ADD_Shift) | (op == SUB_Shift));
877 code = Sf(!rd.IsW()) | op | flags_field |shift_field | Rm(operand.Reg().GetId())
878 | shift_amount | Rn(rn.GetId()) | Rd(rd.GetId());
879 } else {
880 ASSERT((op == ADD_Extend) | (op == SUB_Extend));
881 uint32_t extend_field =
882 (operand.GetExtendOption() << ADD_SUB_ExtendOption_LOWBITS) & ADD_SUB_ExtendOption_MASK;
883 uint32_t extend_shift = (operand.GetShiftAmount() << ADD_SUB_ExtendShift_LOWBITS) & ADD_SUB_ExtendShift_MASK;
884 code = Sf(!rd.IsW()) | op | flags_field | Rm(operand.Reg().GetId()) | extend_field
885 | extend_shift | Rn(rn.GetId()) | Rd(rd.GetId());
886 }
887 EmitU32(code);
888 }
889
Cmp(const Register & rd,const Operand & operand)890 void AssemblerAarch64::Cmp(const Register &rd, const Operand &operand)
891 {
892 Subs(Register(Zero, rd.GetType()), rd, operand);
893 }
894
CMov(const Register & rd,const Register & rn,const Operand & operand,Condition cond)895 void AssemblerAarch64::CMov(const Register &rd, const Register &rn, const Operand &operand, Condition cond)
896 {
897 ASSERT(!operand.IsImmediate());
898 uint32_t cond_field = (cond << CSEL_Cond_LOWBITS) & CSEL_Cond_MASK;
899 uint32_t code = Sf(!rd.IsW()) | CSEL | Rm(operand.Reg().GetId()) | cond_field | Rn(rn.GetId()) | Rd(rd.GetId());
900 EmitU32(code);
901 }
902
B(Label * label)903 void AssemblerAarch64::B(Label *label)
904 {
905 int32_t offsetImm = LinkAndGetInstOffsetToLabel(label);
906 // 2 : 2 means 4 bytes aligned.
907 offsetImm >>= 2;
908 B(offsetImm);
909 }
910
B(int32_t imm)911 void AssemblerAarch64::B(int32_t imm)
912 {
913 uint32_t code = BranchOpCode::Branch | ((imm << BRANCH_Imm26_LOWBITS) & BRANCH_Imm26_MASK);
914 EmitU32(code);
915 }
916
Br(const Register & rn)917 void AssemblerAarch64::Br(const Register &rn)
918 {
919 uint32_t code = BranchOpCode::BR | Rn(rn.GetId());
920 EmitU32(code);
921 }
922
Bl(Label * label)923 void AssemblerAarch64::Bl(Label *label)
924 {
925 int32_t offsetImm = LinkAndGetInstOffsetToLabel(label);
926 // 2 : 2 means 4 bytes aligned.
927 offsetImm >>= 2;
928 Bl(offsetImm);
929 }
930
Bl(int32_t imm)931 void AssemblerAarch64::Bl(int32_t imm)
932 {
933 uint32_t code = CallOpCode::BL | ((imm << BRANCH_Imm26_LOWBITS) & BRANCH_Imm26_MASK);
934 EmitU32(code);
935 }
936
Blr(const Register & rn)937 void AssemblerAarch64::Blr(const Register &rn)
938 {
939 ASSERT(!rn.IsW());
940 uint32_t code = CallOpCode::BLR | Rn(rn.GetId());
941 EmitU32(code);
942 }
943
B(Condition cond,Label * label)944 void AssemblerAarch64::B(Condition cond, Label *label)
945 {
946 int32_t offsetImm = LinkAndGetInstOffsetToLabel(label);
947 // 2 : 2 means 4 bytes aligned.
948 offsetImm >>= 2;
949 B(cond, offsetImm);
950 }
951
B(Condition cond,int32_t imm)952 void AssemblerAarch64::B(Condition cond, int32_t imm)
953 {
954 uint32_t code = BranchOpCode::BranchCond | BranchImm19(imm) | cond;
955 EmitU32(code);
956 }
957
Cbz(const Register & rt,Label * label)958 void AssemblerAarch64::Cbz(const Register &rt, Label *label)
959 {
960 int32_t offsetImm = LinkAndGetInstOffsetToLabel(label);
961 // 2 : 2 means 4 bytes aligned.
962 offsetImm >>= 2;
963 Cbz(rt, offsetImm);
964 }
965
Cbnz(const Register & rt,Label * label)966 void AssemblerAarch64::Cbnz(const Register &rt, Label *label)
967 {
968 int32_t offsetImm = LinkAndGetInstOffsetToLabel(label);
969 // 2 : 2 means 4 bytes aligned.
970 offsetImm >>= 2;
971 Cbnz(rt, offsetImm);
972 }
973
Cbz(const Register & rt,int32_t imm)974 void AssemblerAarch64::Cbz(const Register &rt, int32_t imm)
975 {
976 uint32_t code = Sf(!rt.IsW()) | BranchOpCode::CBZ | BranchImm19(imm) | rt.GetId();
977 EmitU32(code);
978 }
979
Cbnz(const Register & rt,int32_t imm)980 void AssemblerAarch64::Cbnz(const Register &rt, int32_t imm)
981 {
982 uint32_t code = Sf(!rt.IsW()) | BranchOpCode::CBNZ | BranchImm19(imm) | rt.GetId();
983 EmitU32(code);
984 }
985
Tbz(const Register & rt,int32_t bitPos,Label * label)986 void AssemblerAarch64::Tbz(const Register &rt, int32_t bitPos, Label *label)
987 {
988 int32_t offsetImm = LinkAndGetInstOffsetToLabel(label);
989 // 2 : 2 means 4 bytes aligned.
990 offsetImm >>= 2;
991 Tbz(rt, bitPos, offsetImm);
992 }
993
Tbz(const Register & rt,int32_t bitPos,int32_t imm)994 void AssemblerAarch64::Tbz(const Register &rt, int32_t bitPos, int32_t imm)
995 {
996 uint32_t b5 = (bitPos << (BRANCH_B5_LOWBITS - 5)) & BRANCH_B5_MASK;
997 uint32_t b40 = (bitPos << BRANCH_B40_LOWBITS) & BRANCH_B40_MASK;
998 uint32_t imm14 = (imm << BRANCH_Imm14_LOWBITS) & BRANCH_Imm14_MASK;
999 uint32_t code = b5 | BranchOpCode::TBZ | b40 | imm14 | rt.GetId();
1000 EmitU32(code);
1001 }
1002
Tbnz(const Register & rt,int32_t bitPos,Label * label)1003 void AssemblerAarch64::Tbnz(const Register &rt, int32_t bitPos, Label *label)
1004 {
1005 int32_t offsetImm = LinkAndGetInstOffsetToLabel(label);
1006 // 2 : 2 means 4 bytes aligned.
1007 offsetImm >>= 2;
1008 Tbnz(rt, bitPos, offsetImm);
1009 }
1010
Tbnz(const Register & rt,int32_t bitPos,int32_t imm)1011 void AssemblerAarch64::Tbnz(const Register &rt, int32_t bitPos, int32_t imm)
1012 {
1013 uint32_t b5 = (bitPos << (BRANCH_B5_LOWBITS - 5)) & BRANCH_B5_MASK;
1014 uint32_t b40 = (bitPos << BRANCH_B40_LOWBITS) & BRANCH_B40_MASK;
1015 uint32_t imm14 = (imm <<BRANCH_Imm14_LOWBITS) & BRANCH_Imm14_MASK;
1016 uint32_t code = b5 | BranchOpCode::TBNZ | b40 | imm14 | rt.GetId();
1017 EmitU32(code);
1018 }
1019
Tst(const Register & rn,const LogicalImmediate & imm)1020 void AssemblerAarch64::Tst(const Register &rn, const LogicalImmediate &imm)
1021 {
1022 Ands(Register(Zero, rn.GetType()), rn, imm);
1023 }
1024
LinkAndGetInstOffsetToLabel(Label * label)1025 int32_t AssemblerAarch64::LinkAndGetInstOffsetToLabel(Label *label)
1026 {
1027 int32_t offset = 0;
1028 if (label->IsBound()) {
1029 offset = static_cast<int32_t>(label->GetPos() - GetCurrentPosition());
1030 } else {
1031 if (label->IsLinked()) {
1032 offset = static_cast<int32_t>(label->GetLinkedPos() - GetCurrentPosition());
1033 } else {
1034 offset = 0;
1035 }
1036 label->LinkTo(GetCurrentPosition());
1037 }
1038 return offset;
1039 }
1040
Bind(Label * target)1041 void AssemblerAarch64::Bind(Label *target)
1042 {
1043 size_t pos = GetCurrentPosition();
1044 ASSERT(!target->IsBound());
1045 if (target->IsLinked()) {
1046 uint32_t linkPos = target->GetLinkedPos();
1047 while (linkPos != 0) {
1048 int32_t offset = GetLinkOffsetFromBranchInst(linkPos);
1049 int32_t disp = static_cast<int32_t>(pos - linkPos);
1050 SetRealOffsetToBranchInst(linkPos, disp);
1051 if (offset == 0) {
1052 break;
1053 }
1054 linkPos = linkPos + offset;
1055 }
1056 }
1057 target->BindTo(pos);
1058 }
1059
GetLinkOffsetFromBranchInst(int32_t pos)1060 int32_t AssemblerAarch64::GetLinkOffsetFromBranchInst(int32_t pos)
1061 {
1062 uint32_t branchCode = GetU32(pos);
1063 // 2 : 2 means 4 bytes aligned.
1064 int32_t immOffSet = ImmBranch(branchCode) << 2;
1065 return immOffSet;
1066 }
1067
ImmBranch(uint32_t branchCode)1068 int32_t AssemblerAarch64::ImmBranch(uint32_t branchCode)
1069 {
1070 int32_t immOffset = 0;
1071 if ((branchCode & BranchFMask) == BranchOpCode::Branch) {
1072 immOffset = (branchCode & BRANCH_Imm26_MASK) >> BRANCH_Imm26_LOWBITS;
1073 if (immOffset & (1 << (BRANCH_Imm26_WIDTH - 1))) {
1074 // 31 : 31 means topmost bits of instruction "uint32_t"
1075 immOffset |= ((1 << (31 - BRANCH_Imm26_WIDTH)) - 1) << BRANCH_Imm26_WIDTH;
1076 }
1077 } else if ((branchCode & BranchCondFMask) == BranchOpCode::BranchCond) {
1078 immOffset = (branchCode & BRANCH_Imm19_MASK) >> BRANCH_Imm19_LOWBITS;
1079 if (immOffset & (1 << (BRANCH_Imm19_WIDTH - 1))) {
1080 // 31 : 31 means topmost bits of instruction "uint32_t"
1081 immOffset |= ((1 << (31 - BRANCH_Imm19_WIDTH)) - 1) << BRANCH_Imm19_WIDTH;
1082 }
1083 } else if ((branchCode & BranchCompareFMask) == BranchOpCode::CBZ) {
1084 immOffset = (branchCode & BRANCH_Imm19_MASK) >> BRANCH_Imm19_LOWBITS;
1085 if (immOffset & (1 << (BRANCH_Imm19_WIDTH - 1))) {
1086 // 31 : 31 means topmost bits of instruction "uint32_t"
1087 immOffset |= ((1 << (31 - BRANCH_Imm19_WIDTH)) - 1) << BRANCH_Imm19_WIDTH;
1088 }
1089 } else if ((branchCode & BranchTestFMask) == BranchOpCode::TBZ) {
1090 immOffset = (branchCode & BRANCH_Imm14_MASK) >> BRANCH_Imm14_LOWBITS;
1091 if (immOffset & (1 << (BRANCH_Imm14_WIDTH - 1))) {
1092 // 31 : 31 means topmost bits of instruction "uint32_t"
1093 immOffset |= ((1 << (31 - BRANCH_Imm14_WIDTH)) - 1) << BRANCH_Imm14_WIDTH;
1094 }
1095 } else {
1096 UNREACHABLE();
1097 }
1098 return immOffset;
1099 }
1100
SetRealOffsetToBranchInst(uint32_t linkPos,int32_t disp)1101 void AssemblerAarch64::SetRealOffsetToBranchInst(uint32_t linkPos, int32_t disp)
1102 {
1103 uint32_t branchCode = GetU32(linkPos);
1104 // 2 : 2 means 4 bytes aligned.
1105 uint32_t immOffset = disp >> 2;
1106
1107 if ((branchCode & BranchFMask) == BranchOpCode::Branch) {
1108 branchCode &= ~BRANCH_Imm26_MASK;
1109 branchCode |= (immOffset << BRANCH_Imm26_LOWBITS) & BRANCH_Imm26_MASK;
1110 } else if ((branchCode & BranchCondFMask) == BranchOpCode::BranchCond) {
1111 branchCode &= ~BRANCH_Imm19_MASK;
1112 branchCode |= (immOffset << BRANCH_Imm19_LOWBITS) & BRANCH_Imm19_MASK;
1113 } else if ((branchCode & BranchCompareFMask) == BranchOpCode::CBZ) {
1114 branchCode &= ~BRANCH_Imm19_MASK;
1115 branchCode |= (immOffset << BRANCH_Imm19_LOWBITS) & BRANCH_Imm19_MASK;
1116 } else if ((branchCode & BranchTestFMask) == BranchOpCode::TBZ) {
1117 branchCode &= ~BRANCH_Imm14_MASK;
1118 branchCode |= (immOffset << BRANCH_Imm14_LOWBITS) & BRANCH_Imm14_MASK;
1119 }
1120 PutI32(linkPos, branchCode);
1121 }
1122
Ret()1123 void AssemblerAarch64::Ret()
1124 {
1125 Ret(Register(X30));
1126 }
1127
Ret(const Register & rn)1128 void AssemblerAarch64::Ret(const Register &rn)
1129 {
1130 uint32_t code = RetOpCode::Ret | Rn(rn.GetId());
1131 EmitU32(code);
1132 }
1133
Brk(const Immediate & imm)1134 void AssemblerAarch64::Brk(const Immediate &imm)
1135 {
1136 uint32_t brk_number_field =
1137 (static_cast<uint32_t>(imm.Value()) << BRK_Imm16_LOWBITS) & BRK_Imm16_MASK;
1138 uint32_t code = BRKImm | brk_number_field;
1139 EmitU32(code);
1140 }
1141
GetImmOfLdr(const MemoryOperand & operand,Scale scale,bool isRegX)1142 uint64_t AssemblerAarch64::GetImmOfLdr(const MemoryOperand &operand, Scale scale, bool isRegX)
1143 {
1144 ASSERT(operand.IsImmediateOffset());
1145 uint64_t imm = static_cast<uint64_t>(operand.GetImmediate().Value());
1146 if (operand.GetAddrMode() == OFFSET) {
1147 if (scale == Scale::H) {
1148 imm >>= 1;
1149 } else if (scale == Scale::Q) {
1150 if (isRegX) {
1151 imm >>= 3; // 3: 64 RegSise, imm/8 to remove trailing zeros
1152 } else {
1153 imm >>= 2; // 2: 32 RegSise, imm/4 to remove trailing zeros
1154 }
1155 }
1156 }
1157 return imm;
1158 }
1159
GetOpcodeOfLdr(const MemoryOperand & operand,Scale scale)1160 uint64_t AssemblerAarch64::GetOpcodeOfLdr(const MemoryOperand &operand, Scale scale)
1161 {
1162 uint32_t op = 0;
1163 if (operand.IsImmediateOffset()) {
1164 switch (operand.GetAddrMode()) {
1165 case OFFSET: {
1166 if (scale == Scale::B) {
1167 op = LoadStoreOpCode::LDRB_Offset;
1168 } else if (scale == Scale::H) {
1169 op = LoadStoreOpCode::LDRH_Offset;
1170 } else if (scale == Scale::Q) {
1171 op = LoadStoreOpCode::LDR_Offset;
1172 } else {
1173 UNREACHABLE();
1174 }
1175 break;
1176 }
1177 case PREINDEX: {
1178 if (scale == Scale::B) {
1179 op = LoadStoreOpCode::LDRB_Pre;
1180 } else if (scale == Scale::H) {
1181 op = LoadStoreOpCode::LDRH_Pre;
1182 } else if (scale == Scale::Q) {
1183 op = LoadStoreOpCode::LDR_Pre;
1184 } else {
1185 UNREACHABLE();
1186 }
1187 break;
1188 }
1189 case POSTINDEX: {
1190 if (scale == Scale::B) {
1191 op = LoadStoreOpCode::LDRB_Post;
1192 } else if (scale == Scale::H) {
1193 op = LoadStoreOpCode::LDRH_Post;
1194 } else if (scale == Scale::Q) {
1195 op = LoadStoreOpCode::LDR_Post;
1196 } else {
1197 UNREACHABLE();
1198 }
1199 break;
1200 }
1201 default:
1202 UNREACHABLE();
1203 }
1204 } else {
1205 if (scale == Scale::B) {
1206 op = LoadStoreOpCode::LDRB_Register;
1207 } else if (scale == Scale::H) {
1208 op = LoadStoreOpCode::LDRH_Register;
1209 } else if (scale == Scale::Q) {
1210 op = LoadStoreOpCode::LDR_Register;
1211 } else {
1212 UNREACHABLE();
1213 }
1214 }
1215 return op;
1216 }
1217
GetShiftOfLdr(const MemoryOperand & operand,Scale scale,bool isRegX)1218 uint32_t AssemblerAarch64::GetShiftOfLdr(const MemoryOperand &operand, Scale scale, bool isRegX)
1219 {
1220 uint32_t shift = 0;
1221 if (scale == Scale::B) {
1222 shift = operand.GetShiftOption() != Shift::NO_SHIFT;
1223 } else if (scale == Scale::H) {
1224 shift = operand.GetShiftAmount();
1225 ASSERT(shift == 0 || shift == 1);
1226 shift = (shift == 0) ? 0 : 1;
1227 } else if (scale == Scale::Q) {
1228 shift = operand.GetShiftAmount();
1229 if (isRegX) {
1230 // 3 : 3 means address aligned with 8bytes
1231 ASSERT(shift == 0 || shift == 3);
1232 } else {
1233 // 2 : 2 means address aligned with 4bytes
1234 ASSERT(shift == 0 || shift == 2);
1235 }
1236 shift = (shift == 0) ? 0 : 1;
1237 }
1238 return shift;
1239 }
1240 } // namespace panda::ecmascript::aarch64
1241