• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# OpenHarmony IDL Specifications and User Guide
2
3## IDL Overview
4To ensure successful communications between the client and server, interfaces recognized by both parties must be defined. The OpenHarmony Interface Definition Language (IDL) is a tool for defining such interfaces. OpenHarmony IDL decomposes objects to be transferred into primitives that can be understood by the operating system and encapsulates cross-boundary objects based on developers' requirements.
5
6  **Figure 1** IDL interface description
7
8![IDL-interface-description](./figures/IDL-interface-description.png)
9
10**IDL provides the following functions:**
11
12- Declares interfaces provided by system services for external systems, and based on the interface declaration, generates C, C++, JS, or TS code for inter-process communication (IPC) or remote procedure call (RPC) proxies and stubs during compilation.
13
14- Declares interfaces provided by abilities for external systems, and based on the interface declaration, generates C, C++, JS, or TS code for IPC or RPC proxies and stubs during compilation.
15
16**Figure 2** IPC/RPC communication model
17
18![IPC-RPC-communication-model](./figures/IPC-RPC-communication-model.png)
19
20**IDL has the following advantages:**
21
22- Services are defined in the form of interfaces in IDL. Therefore, you do not need to focus on implementation details.
23
24- Interfaces defined by IDL can be used in IPC or RPC scenarios. The information or code generated based on the definitions in IDL simplifies IPC or RPC implementation.
25
26## IDL File Structure
27
28### Data Types
29
30#### Primitive Type
31| IDL Primitive Type| C++ Primitive Type| TS Primitive Type|
32|   --------    |  --------     | --------     |
33|void           | void          | void         |
34|boolean        | bool          | boolean      |
35|byte           | int8_t        | number       |
36|short          | int16_t       | number       |
37|int            | int32_t       | number       |
38|long           | int64_t       | number       |
39|float          | float         | number       |
40|double         | double        | number       |
41|String         | std::string   | string       |
42
43The preceding table lists the primitive types supported by IDL and the mappings to the C++ and TS primitive types.
44
45#### sequenceable Type
46The sequenceable type is declared using the keyword **sequenceable**. This type can be passed during IPC or RPC through **Parcel** objects. The declaration mode of the sequenceable type in C++ is different from that in TS.
47
48In C++, the declaration is placed in the file header in the format of **sequenceable includedir..namespace.typename**.  It can be in any of the following forms:
49
50```cpp
51sequenceable includedir..namespace.typename
52sequenceable includedir...typename
53sequenceable namespace.typename
54```
55
56In the preceding information, **includedir** indicates the directory where the header file of the type is located, and the dot (.) is used as the separator. **namespace** indicates the namespace where the type is located, and the dot (.) is used as the separator. **typename** indicates the data type, which can contain only English characters. **includedir** and **namespace** are separated by two dots (..). If the declaration statement does not contain two dots, all characters except the last typename will be parsed as a namespace. Example:
57
58```cpp
59sequenceable a.b..C.D
60```
61
62The preceding statement is parsed into the following code in the C++ header file:
63
64```cpp
65#include  "a/b/d.h"
66using C::D;
67```
68
69In TS, the declaration is placed in the file header in the format of **sequenceable namespace.typename;**. It can be in the following form:
70
71```ts
72sequenceable idl.MySequenceable
73```
74
75In the preceding information, **namespace** indicates the namespace to which the data type belongs, **typename** indicates the data type name, and **MySequenceable** indicates that data can be passed during IPC using **Parcel** objects. The sequenceable type is not defined in the IDL file, but in the .ts file. Therefore, IDL adds the following statement to the generated .ts file based on the declaration:
76
77```ts
78import MySequenceable from "./my_sequenceable"
79```
80
81Note that IDL does not implement code for this type. It only imports the header file in the specified format or imports the specified module and uses the type. Therefore, you must ensure that the imported directory, namespace, and type are correct.
82
83#### Interface Type
84The interface type refers to interfaces defined in IDL files. The interfaces defined in an IDL file can be directly used as the parameter type or return value type of a method declared in the file. If an IDL file attempts to use interfaces defined in other IDL files, forward declaration must be contained in the header of that IDL file.
85
86The declaration form in C++ is similar to that of the sequenceable type. The declaration form is as follows:
87
88```cpp
89interface includedir..namespace.typename
90```
91
92In TS, the declaration form is as follows:
93
94```ts
95interface namespace.interfacename
96```
97
98In the preceding information, **namespace** indicates the namespace to which the interface belongs, and **interfacename** indicates the name of the interface. For example, **interface OHOS.IIdlTestObserver;** declares the **IIdlTestObserver** interface defined in another IDL file. This interface can be used as the parameter type or return value type of a method in the current file. IDL adds the following statement to the generated .ts file based on the statement:
99
100```ts
101import IIdlTestObserver from "./i_idl_test_observer"
102```
103
104#### Array Type
105The array type is represented by T[], where **T** can be the primitive, sequenceable, interface, or array type. In C++, this type is generated as **std::vector<T>**.
106The table below lists the mappings between the IDL array type and TS and C++ data types.
107
108|IDL Data Type | C++ Data Type          | TS Data Type    |
109|   -------              |  --------            |  --------    |
110|T[]                     | std::vector<T> | T[]          |
111
112#### Container Type
113IDL supports two container types: List and Map. The List container is represented in the format of **List&lt;T&gt;**. The Map container is represented in the format of **Map<KT,VT>**, where **T**, **KT**, and **VT** can be of the primitive, sequenceable, interface, array, or container type.
114
115In C++, the List container type is generated as **std::list**, and the Map container type is generated as **std::map**.
116
117In TS, the List container type is not supported, and the Map container type is generated as **Map**.
118
119The table below lists the mappings between the IDL container type and TS and C++ data types.
120
121|IDL Data Type | C++ Data Type      | TS Data Type    |
122|   --------             |  --------        |  -------     |
123|List&lt;T&gt;           | std::list        | Not supported       |
124|Map<KT,VT>              | std::map         | Map          |
125
126
127### Specifications for Compiling IDL Files
128Only one interface type can be defined in an IDL file, and the interface name must be the same as the file name. The interface definition of the IDL file is described in Backus-Naur form (BNF). The basic definition format is as follows:
129
130```
131[<*interface_attr_declaration*>]interface<*interface_name_with_namespace*>{<*method_declaration*>}
132```
133
134In the preceding information, <*interface_attr_declaration*> declares interface attributes. Currently, only the **oneway** attribute is supported, indicating that all methods in the interface are unidirectional. Such a method returns value without waiting for the execution to complete. This attribute is optional. If this attribute is not set, synchronous call is used. The interface name must contain the complete interface header file directory, namespace, and method declaration. Empty interfaces are not allowed.
135The method declaration format in the interface is as follows:
136
137```
138[<*method_attr_declaration*>]<*result_type*><*method_declaration*>
139```
140
141In the preceding information, <*method_attr_declaration*> describes the interface attributes. Currently, only the **oneway** attribute is supported, indicating that the method is unidirectional. Such a method returns value without waiting for the execution to complete. This attribute is optional. If this attribute is not set, synchronous call is used. <*result_type*> indicates the type of the return value, and <*method_declaration*> indicates the method name and parameter declaration.
142The parameter declaration format is as follows:
143
144```
145[<*formal_param_attr*>]<*type*><*identifier*>
146```
147
148The value of <*formal_param_attr*> can be **in**, **out**, or **inout**, indicating that the parameter is an input parameter, an output parameter, or both an input and an output parameter, respectively. A **oneway** method does not allow **output** or **inout** parameters or return values.
149
150## How to Develop
151
152### Obtaining IDL
153On DevEco Studio, choose **Tools > SDK Manager** to view the local installation path of the OpenHarmony SDK. The following figure uses DevEco Studio 3.0.0.993 as an example.
154![SDKpath](./figures/SDKpath.png)
155![SDKpath](./figures/SDKpath2.png)
156
157Go to the local installation path, choose **toolchains > 3.x.x.x** (the folder named after the version number), and check whether the executable file of IDL exists.
158
159> **NOTE**: Use the SDK of the latest version. The use of an earlier version may cause errors in some statements.
160
161If the executable file does not exist, download the SDK package from the mirror as instructed in the [Release Notes](../../release-notes). The following uses the [3.2 Beta5]((../../release-notes/OpenHarmony-v3.2-beta5.md#acquiring-source-code-from-mirrors) as an example.
162
163For details about how to replace the SDK package, see [Guide to Switching to Full SDK](../quick-start/full-sdk-switch-guide.md).
164
165After obtaining the executable file, perform subsequent development steps based on your scenario.
166
167### Development Using TS
168
169#### Creating an IDL File
170
171You can use TS to create IDL files.
172
173 For example, create a file named **IIdlTestService.idl** with the following content:
174
175```cpp
176  interface OHOS.IIdlTestService {
177      int TestIntTransaction([in] int data);
178      void TestStringTransaction([in] String data);
179  }
180```
181
182Run the **idl -gen-ts -d *dir* -c dir/IIdlTestService.idl** command in the folder where the executable file is located.
183
184-*dir* next to **d** is the target output folder. For example, if the target output folder is **IIdlTestServiceTs**, run the **idl -gen-ts -d IIdlTestServiceTs -c IIdlTestServiceTs/IIdlTestService.idl** command in the folder where the executable file is located. The interface file, stub file, and proxy file are generated in the *dir* directory (**IIdlTestServiceTs** directory in this example) in the execution environment.
185
186> **NOTE**: The generated interface class file name must be the same as that of the .idl file. Otherwise, an error occurs during code generation.
187
188For example, for an .idl file named **IIdlTestService.idl** and target output directory named **IIdlTestServiceTs**, the directory structure is similar to the following:
189
190```
191├── IIdlTestServiceTs  # IDL code output folder
192│   ├── i_idl_test_service.ts  # File generated
193│   ├── idl_test_service_proxy.ts  # File generated
194│   ├── idl_test_service_stub.ts  # File generated
195│   └── IIdlTestService.idl  # Constructed .idl file
196└── idl.exe  # Executable file of IDL
197```
198
199#### Exposing Interfaces on the Server
200
201The stub class generated by IDL is an abstract implementation of the interface class and declares all methods in the IDL file.
202
203```ts
204import {testIntTransactionCallback} from "./i_idl_test_service";
205import {testStringTransactionCallback} from "./i_idl_test_service";
206import IIdlTestService from "./i_idl_test_service";
207import rpc from "@ohos.rpc";
208
209export default class IdlTestServiceStub extends rpc.RemoteObject implements IIdlTestService {
210    constructor(des: string) {
211        super(des);
212    }
213
214    async onRemoteRequestEx(code: number, data, reply, option): Promise<boolean> {
215        console.log("onRemoteRequestEx called, code = " + code);
216        switch(code) {
217            case IdlTestServiceStub.COMMAND_TEST_INT_TRANSACTION: {
218                let _data = data.readInt();
219                this.testIntTransaction(_data, (errCode, returnValue) => {
220                    reply.writeInt(errCode);
221                    if (errCode == 0) {
222                        reply.writeInt(returnValue);
223                    }
224                });
225                return true;
226            }
227            case IdlTestServiceStub.COMMAND_TEST_STRING_TRANSACTION: {
228                let _data = data.readString();
229                this.testStringTransaction(_data, (errCode) => {
230                    reply.writeInt(errCode);
231                });
232                return true;
233            }
234            default: {
235                console.log("invalid request code" + code);
236                break;
237            }
238        }
239        return false;
240    }
241
242    testIntTransaction(data: number, callback: testIntTransactionCallback): void{}
243    testStringTransaction(data: string, callback: testStringTransactionCallback): void{}
244
245    static readonly COMMAND_TEST_INT_TRANSACTION = 1;
246    static readonly COMMAND_TEST_STRING_TRANSACTION = 2;
247}
248```
249
250You need to inherit the interface class defined in the IDL file and implement the methods in the class. The following code snippet shows how to inherit the **IdlTestServiceStub** interface class and implement the **testIntTransaction** and **testStringTransaction** methods.
251
252```ts
253import {testIntTransactionCallback} from "./i_idl_test_service"
254import {testStringTransactionCallback} from "./i_idl_test_service"
255import IdlTestServiceStub from "./idl_test_service_stub"
256
257
258class IdlTestImp extends IdlTestServiceStub {
259
260    testIntTransaction(data: number, callback: testIntTransactionCallback): void
261    {
262        callback(0, data + 1);
263    }
264    testStringTransaction(data: string, callback: testStringTransactionCallback): void
265    {
266        callback(0);
267    }
268}
269```
270
271After the service implements the interface, the interface needs to be exposed to the client for connection. If your service needs to expose this interface, extend **Ability** and implement **onConnect()** to return **IRemoteObject** so that the client can interact with the service process. The following code snippet shows how to expose the **IRemoteAbility** interface to the client:
272
273```ts
274export default {
275    onStart() {
276        console.info('ServiceAbility onStart');
277    },
278    onStop() {
279        console.info('ServiceAbility onStop');
280    },
281    onCommand(want, startId) {
282        console.info('ServiceAbility onCommand');
283    },
284    onConnect(want) {
285        console.info('ServiceAbility onConnect');
286        try {
287            console.log('ServiceAbility want:' + typeof(want));
288            console.log('ServiceAbility want:' + JSON.stringify(want));
289            console.log('ServiceAbility want name:' + want.bundleName)
290        } catch(err) {
291            console.log('ServiceAbility error:' + err)
292        }
293        console.info('ServiceAbility onConnect end');
294        return new IdlTestImp('connect');
295    },
296    onDisconnect(want) {
297        console.info('ServiceAbility onDisconnect');
298        console.info('ServiceAbility want:' + JSON.stringify(want));
299    }
300};
301```
302
303#### Calling Methods from the Client for IPC
304
305When the client calls **connectAbility()** to connect to a Service ability, the **onConnect** callback in **onAbilityConnectDone** of the client receives the **IRemoteObject** instance returned by the **onConnect()** method of the Service ability. The client and Service ability are in different applications. Therefore, the directory of the client application must contain a copy of the .idl file (the SDK automatically generates the proxy class). The **onConnect** callback then uses the **IRemoteObject** instance to create the **testProxy** instance of the **IdlTestServiceProxy** class and calls the related IPC method. The sample code is as follows:
306
307```ts
308import IdlTestServiceProxy from './idl_test_service_proxy'
309import featureAbility from '@ohos.ability.featureAbility';
310
311function callbackTestIntTransaction(result: number, ret: number): void {
312  if (result == 0 && ret == 124) {
313    console.log('case 1 success');
314  }
315}
316
317function callbackTestStringTransaction(result: number): void {
318  if (result == 0) {
319    console.log('case 2 success');
320  }
321}
322
323var onAbilityConnectDone = {
324  onConnect:function (elementName, proxy) {
325    let testProxy = new IdlTestServiceProxy(proxy);
326    testProxy.testIntTransaction(123, callbackTestIntTransaction);
327    testProxy.testStringTransaction('hello', callbackTestStringTransaction);
328  },
329  onDisconnect:function (elementName) {
330    console.log('onDisconnectService onDisconnect');
331  },
332  onFailed:function (code) {
333    console.log('onDisconnectService onFailed');
334  }
335};
336
337function connectAbility: void {
338    let want = {
339        bundleName: 'com.example.myapplicationidl',
340        abilityName: 'com.example.myapplicationidl.ServiceAbility'
341    };
342    let connectionId = -1;
343    connectionId = featureAbility.connectAbility(want, onAbilityConnectDone);
344}
345
346
347```
348
349#### Transferring a sequenceable Object During IPC
350
351You can send a class from one process to another through IPC interfaces. However, you must ensure that the peer can use the code of this class and this class supports the **marshalling** and **unmarshalling** methods. OpenHarmony uses **marshalling** and **unmarshalling** to serialize and deserialize objects into objects that can be identified by each process.
352
353**To create a class that supports the sequenceable type, perform the following operations:**
354
3551. Implement the **marshalling** method, which obtains the current state of the object and serializes the object into a **Parcel** object.
3562. Implement the **unmarshalling** method, which deserializes the object from a **Parcel** object.
357
358The following is an example of the **MySequenceable** class code:
359
360```ts
361import rpc from '@ohos.rpc';
362export default class MySequenceable {
363    constructor(num: number, str: string) {
364        this.num = num;
365        this.str = str;
366    }
367    getNum() : number {
368        return this.num;
369    }
370    getString() : string {
371        return this.str;
372    }
373    marshalling(messageParcel) {
374        messageParcel.writeInt(this.num);
375        messageParcel.writeString(this.str);
376        return true;
377    }
378    unmarshalling(messageParcel) {
379        this.num = messageParcel.readInt();
380        this.str = messageParcel.readString();
381        return true;
382    }
383    private num;
384    private str;
385}
386```
387