1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm/mm/mmu.c
4 *
5 * Copyright (C) 1995-2005 Russell King
6 */
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/init.h>
11 #include <linux/mman.h>
12 #include <linux/nodemask.h>
13 #include <linux/memblock.h>
14 #include <linux/fs.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sizes.h>
17
18 #include <asm/cp15.h>
19 #include <asm/cputype.h>
20 #include <asm/cachetype.h>
21 #include <asm/fixmap.h>
22 #include <asm/sections.h>
23 #include <asm/setup.h>
24 #include <asm/smp_plat.h>
25 #include <asm/tlb.h>
26 #include <asm/highmem.h>
27 #include <asm/system_info.h>
28 #include <asm/traps.h>
29 #include <asm/procinfo.h>
30 #include <asm/memory.h>
31 #include <asm/pgalloc.h>
32 #include <asm/kasan_def.h>
33
34 #include <asm/mach/arch.h>
35 #include <asm/mach/map.h>
36 #include <asm/mach/pci.h>
37 #include <asm/fixmap.h>
38
39 #include "fault.h"
40 #include "mm.h"
41 #include "tcm.h"
42
43 extern unsigned long __atags_pointer;
44
45 /*
46 * empty_zero_page is a special page that is used for
47 * zero-initialized data and COW.
48 */
49 struct page *empty_zero_page;
50 EXPORT_SYMBOL(empty_zero_page);
51
52 /*
53 * The pmd table for the upper-most set of pages.
54 */
55 pmd_t *top_pmd;
56
57 pmdval_t user_pmd_table = _PAGE_USER_TABLE;
58
59 #define CPOLICY_UNCACHED 0
60 #define CPOLICY_BUFFERED 1
61 #define CPOLICY_WRITETHROUGH 2
62 #define CPOLICY_WRITEBACK 3
63 #define CPOLICY_WRITEALLOC 4
64
65 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
66 static unsigned int ecc_mask __initdata = 0;
67 pgprot_t pgprot_user;
68 pgprot_t pgprot_kernel;
69
70 EXPORT_SYMBOL(pgprot_user);
71 EXPORT_SYMBOL(pgprot_kernel);
72
73 struct cachepolicy {
74 const char policy[16];
75 unsigned int cr_mask;
76 pmdval_t pmd;
77 pteval_t pte;
78 };
79
80 static struct cachepolicy cache_policies[] __initdata = {
81 {
82 .policy = "uncached",
83 .cr_mask = CR_W|CR_C,
84 .pmd = PMD_SECT_UNCACHED,
85 .pte = L_PTE_MT_UNCACHED,
86 }, {
87 .policy = "buffered",
88 .cr_mask = CR_C,
89 .pmd = PMD_SECT_BUFFERED,
90 .pte = L_PTE_MT_BUFFERABLE,
91 }, {
92 .policy = "writethrough",
93 .cr_mask = 0,
94 .pmd = PMD_SECT_WT,
95 .pte = L_PTE_MT_WRITETHROUGH,
96 }, {
97 .policy = "writeback",
98 .cr_mask = 0,
99 .pmd = PMD_SECT_WB,
100 .pte = L_PTE_MT_WRITEBACK,
101 }, {
102 .policy = "writealloc",
103 .cr_mask = 0,
104 .pmd = PMD_SECT_WBWA,
105 .pte = L_PTE_MT_WRITEALLOC,
106 }
107 };
108
109 #ifdef CONFIG_CPU_CP15
110 static unsigned long initial_pmd_value __initdata = 0;
111
112 /*
113 * Initialise the cache_policy variable with the initial state specified
114 * via the "pmd" value. This is used to ensure that on ARMv6 and later,
115 * the C code sets the page tables up with the same policy as the head
116 * assembly code, which avoids an illegal state where the TLBs can get
117 * confused. See comments in early_cachepolicy() for more information.
118 */
init_default_cache_policy(unsigned long pmd)119 void __init init_default_cache_policy(unsigned long pmd)
120 {
121 int i;
122
123 initial_pmd_value = pmd;
124
125 pmd &= PMD_SECT_CACHE_MASK;
126
127 for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
128 if (cache_policies[i].pmd == pmd) {
129 cachepolicy = i;
130 break;
131 }
132
133 if (i == ARRAY_SIZE(cache_policies))
134 pr_err("ERROR: could not find cache policy\n");
135 }
136
137 /*
138 * These are useful for identifying cache coherency problems by allowing
139 * the cache or the cache and writebuffer to be turned off. (Note: the
140 * write buffer should not be on and the cache off).
141 */
early_cachepolicy(char * p)142 static int __init early_cachepolicy(char *p)
143 {
144 int i, selected = -1;
145
146 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
147 int len = strlen(cache_policies[i].policy);
148
149 if (memcmp(p, cache_policies[i].policy, len) == 0) {
150 selected = i;
151 break;
152 }
153 }
154
155 if (selected == -1)
156 pr_err("ERROR: unknown or unsupported cache policy\n");
157
158 /*
159 * This restriction is partly to do with the way we boot; it is
160 * unpredictable to have memory mapped using two different sets of
161 * memory attributes (shared, type, and cache attribs). We can not
162 * change these attributes once the initial assembly has setup the
163 * page tables.
164 */
165 if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
166 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
167 cache_policies[cachepolicy].policy);
168 return 0;
169 }
170
171 if (selected != cachepolicy) {
172 unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
173 cachepolicy = selected;
174 flush_cache_all();
175 set_cr(cr);
176 }
177 return 0;
178 }
179 early_param("cachepolicy", early_cachepolicy);
180
early_nocache(char * __unused)181 static int __init early_nocache(char *__unused)
182 {
183 char *p = "buffered";
184 pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
185 early_cachepolicy(p);
186 return 0;
187 }
188 early_param("nocache", early_nocache);
189
early_nowrite(char * __unused)190 static int __init early_nowrite(char *__unused)
191 {
192 char *p = "uncached";
193 pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
194 early_cachepolicy(p);
195 return 0;
196 }
197 early_param("nowb", early_nowrite);
198
199 #ifndef CONFIG_ARM_LPAE
early_ecc(char * p)200 static int __init early_ecc(char *p)
201 {
202 if (memcmp(p, "on", 2) == 0)
203 ecc_mask = PMD_PROTECTION;
204 else if (memcmp(p, "off", 3) == 0)
205 ecc_mask = 0;
206 return 0;
207 }
208 early_param("ecc", early_ecc);
209 #endif
210
211 #else /* ifdef CONFIG_CPU_CP15 */
212
early_cachepolicy(char * p)213 static int __init early_cachepolicy(char *p)
214 {
215 pr_warn("cachepolicy kernel parameter not supported without cp15\n");
216 }
217 early_param("cachepolicy", early_cachepolicy);
218
noalign_setup(char * __unused)219 static int __init noalign_setup(char *__unused)
220 {
221 pr_warn("noalign kernel parameter not supported without cp15\n");
222 }
223 __setup("noalign", noalign_setup);
224
225 #endif /* ifdef CONFIG_CPU_CP15 / else */
226
227 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
228 #define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE
229 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
230
231 static struct mem_type mem_types[] __ro_after_init = {
232 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
233 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
234 L_PTE_SHARED,
235 .prot_l1 = PMD_TYPE_TABLE,
236 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
237 .domain = DOMAIN_IO,
238 },
239 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
240 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
241 .prot_l1 = PMD_TYPE_TABLE,
242 .prot_sect = PROT_SECT_DEVICE,
243 .domain = DOMAIN_IO,
244 },
245 [MT_DEVICE_CACHED] = { /* ioremap_cache */
246 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
247 .prot_l1 = PMD_TYPE_TABLE,
248 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
249 .domain = DOMAIN_IO,
250 },
251 [MT_DEVICE_WC] = { /* ioremap_wc */
252 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
253 .prot_l1 = PMD_TYPE_TABLE,
254 .prot_sect = PROT_SECT_DEVICE,
255 .domain = DOMAIN_IO,
256 },
257 [MT_UNCACHED] = {
258 .prot_pte = PROT_PTE_DEVICE,
259 .prot_l1 = PMD_TYPE_TABLE,
260 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
261 .domain = DOMAIN_IO,
262 },
263 [MT_CACHECLEAN] = {
264 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
265 .domain = DOMAIN_KERNEL,
266 },
267 #ifndef CONFIG_ARM_LPAE
268 [MT_MINICLEAN] = {
269 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
270 .domain = DOMAIN_KERNEL,
271 },
272 #endif
273 [MT_LOW_VECTORS] = {
274 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
275 L_PTE_RDONLY,
276 .prot_l1 = PMD_TYPE_TABLE,
277 .domain = DOMAIN_VECTORS,
278 },
279 [MT_HIGH_VECTORS] = {
280 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
281 L_PTE_USER | L_PTE_RDONLY,
282 .prot_l1 = PMD_TYPE_TABLE,
283 .domain = DOMAIN_VECTORS,
284 },
285 [MT_MEMORY_RWX] = {
286 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
287 .prot_l1 = PMD_TYPE_TABLE,
288 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
289 .domain = DOMAIN_KERNEL,
290 },
291 [MT_MEMORY_RW] = {
292 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
293 L_PTE_XN,
294 .prot_l1 = PMD_TYPE_TABLE,
295 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
296 .domain = DOMAIN_KERNEL,
297 },
298 [MT_ROM] = {
299 .prot_sect = PMD_TYPE_SECT,
300 .domain = DOMAIN_KERNEL,
301 },
302 [MT_MEMORY_RWX_NONCACHED] = {
303 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
304 L_PTE_MT_BUFFERABLE,
305 .prot_l1 = PMD_TYPE_TABLE,
306 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
307 .domain = DOMAIN_KERNEL,
308 },
309 [MT_MEMORY_RW_DTCM] = {
310 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
311 L_PTE_XN,
312 .prot_l1 = PMD_TYPE_TABLE,
313 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
314 .domain = DOMAIN_KERNEL,
315 },
316 [MT_MEMORY_RWX_ITCM] = {
317 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
318 .prot_l1 = PMD_TYPE_TABLE,
319 .domain = DOMAIN_KERNEL,
320 },
321 [MT_MEMORY_RW_SO] = {
322 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
323 L_PTE_MT_UNCACHED | L_PTE_XN,
324 .prot_l1 = PMD_TYPE_TABLE,
325 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
326 PMD_SECT_UNCACHED | PMD_SECT_XN,
327 .domain = DOMAIN_KERNEL,
328 },
329 [MT_MEMORY_DMA_READY] = {
330 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
331 L_PTE_XN,
332 .prot_l1 = PMD_TYPE_TABLE,
333 .domain = DOMAIN_KERNEL,
334 },
335 };
336
get_mem_type(unsigned int type)337 const struct mem_type *get_mem_type(unsigned int type)
338 {
339 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
340 }
341 EXPORT_SYMBOL(get_mem_type);
342
343 static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
344
345 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
346 __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
347
pte_offset_early_fixmap(pmd_t * dir,unsigned long addr)348 static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
349 {
350 return &bm_pte[pte_index(addr)];
351 }
352
pte_offset_late_fixmap(pmd_t * dir,unsigned long addr)353 static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
354 {
355 return pte_offset_kernel(dir, addr);
356 }
357
fixmap_pmd(unsigned long addr)358 static inline pmd_t * __init fixmap_pmd(unsigned long addr)
359 {
360 return pmd_off_k(addr);
361 }
362
early_fixmap_init(void)363 void __init early_fixmap_init(void)
364 {
365 pmd_t *pmd;
366
367 /*
368 * The early fixmap range spans multiple pmds, for which
369 * we are not prepared:
370 */
371 BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
372 != FIXADDR_TOP >> PMD_SHIFT);
373
374 pmd = fixmap_pmd(FIXADDR_TOP);
375 pmd_populate_kernel(&init_mm, pmd, bm_pte);
376
377 pte_offset_fixmap = pte_offset_early_fixmap;
378 }
379
380 /*
381 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
382 * As a result, this can only be called with preemption disabled, as under
383 * stop_machine().
384 */
__set_fixmap(enum fixed_addresses idx,phys_addr_t phys,pgprot_t prot)385 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
386 {
387 unsigned long vaddr = __fix_to_virt(idx);
388 pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
389
390 /* Make sure fixmap region does not exceed available allocation. */
391 BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
392 FIXADDR_END);
393 BUG_ON(idx >= __end_of_fixed_addresses);
394
395 /* We support only device mappings before pgprot_kernel is set. */
396 if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
397 pgprot_val(prot) && pgprot_val(pgprot_kernel) == 0))
398 return;
399
400 if (pgprot_val(prot))
401 set_pte_at(NULL, vaddr, pte,
402 pfn_pte(phys >> PAGE_SHIFT, prot));
403 else
404 pte_clear(NULL, vaddr, pte);
405 local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
406 }
407
408 /*
409 * Adjust the PMD section entries according to the CPU in use.
410 */
build_mem_type_table(void)411 static void __init build_mem_type_table(void)
412 {
413 struct cachepolicy *cp;
414 unsigned int cr = get_cr();
415 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
416 int cpu_arch = cpu_architecture();
417 int i;
418
419 if (cpu_arch < CPU_ARCH_ARMv6) {
420 #if defined(CONFIG_CPU_DCACHE_DISABLE)
421 if (cachepolicy > CPOLICY_BUFFERED)
422 cachepolicy = CPOLICY_BUFFERED;
423 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
424 if (cachepolicy > CPOLICY_WRITETHROUGH)
425 cachepolicy = CPOLICY_WRITETHROUGH;
426 #endif
427 }
428 if (cpu_arch < CPU_ARCH_ARMv5) {
429 if (cachepolicy >= CPOLICY_WRITEALLOC)
430 cachepolicy = CPOLICY_WRITEBACK;
431 ecc_mask = 0;
432 }
433
434 if (is_smp()) {
435 if (cachepolicy != CPOLICY_WRITEALLOC) {
436 pr_warn("Forcing write-allocate cache policy for SMP\n");
437 cachepolicy = CPOLICY_WRITEALLOC;
438 }
439 if (!(initial_pmd_value & PMD_SECT_S)) {
440 pr_warn("Forcing shared mappings for SMP\n");
441 initial_pmd_value |= PMD_SECT_S;
442 }
443 }
444
445 /*
446 * Strip out features not present on earlier architectures.
447 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
448 * without extended page tables don't have the 'Shared' bit.
449 */
450 if (cpu_arch < CPU_ARCH_ARMv5)
451 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
452 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
453 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
454 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
455 mem_types[i].prot_sect &= ~PMD_SECT_S;
456
457 /*
458 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
459 * "update-able on write" bit on ARM610). However, Xscale and
460 * Xscale3 require this bit to be cleared.
461 */
462 if (cpu_is_xscale_family()) {
463 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
464 mem_types[i].prot_sect &= ~PMD_BIT4;
465 mem_types[i].prot_l1 &= ~PMD_BIT4;
466 }
467 } else if (cpu_arch < CPU_ARCH_ARMv6) {
468 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
469 if (mem_types[i].prot_l1)
470 mem_types[i].prot_l1 |= PMD_BIT4;
471 if (mem_types[i].prot_sect)
472 mem_types[i].prot_sect |= PMD_BIT4;
473 }
474 }
475
476 /*
477 * Mark the device areas according to the CPU/architecture.
478 */
479 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
480 if (!cpu_is_xsc3()) {
481 /*
482 * Mark device regions on ARMv6+ as execute-never
483 * to prevent speculative instruction fetches.
484 */
485 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
486 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
487 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
488 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
489
490 /* Also setup NX memory mapping */
491 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
492 }
493 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
494 /*
495 * For ARMv7 with TEX remapping,
496 * - shared device is SXCB=1100
497 * - nonshared device is SXCB=0100
498 * - write combine device mem is SXCB=0001
499 * (Uncached Normal memory)
500 */
501 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
502 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
503 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
504 } else if (cpu_is_xsc3()) {
505 /*
506 * For Xscale3,
507 * - shared device is TEXCB=00101
508 * - nonshared device is TEXCB=01000
509 * - write combine device mem is TEXCB=00100
510 * (Inner/Outer Uncacheable in xsc3 parlance)
511 */
512 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
513 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
514 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
515 } else {
516 /*
517 * For ARMv6 and ARMv7 without TEX remapping,
518 * - shared device is TEXCB=00001
519 * - nonshared device is TEXCB=01000
520 * - write combine device mem is TEXCB=00100
521 * (Uncached Normal in ARMv6 parlance).
522 */
523 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
524 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
525 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
526 }
527 } else {
528 /*
529 * On others, write combining is "Uncached/Buffered"
530 */
531 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
532 }
533
534 /*
535 * Now deal with the memory-type mappings
536 */
537 cp = &cache_policies[cachepolicy];
538 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
539
540 #ifndef CONFIG_ARM_LPAE
541 /*
542 * We don't use domains on ARMv6 (since this causes problems with
543 * v6/v7 kernels), so we must use a separate memory type for user
544 * r/o, kernel r/w to map the vectors page.
545 */
546 if (cpu_arch == CPU_ARCH_ARMv6)
547 vecs_pgprot |= L_PTE_MT_VECTORS;
548
549 /*
550 * Check is it with support for the PXN bit
551 * in the Short-descriptor translation table format descriptors.
552 */
553 if (cpu_arch == CPU_ARCH_ARMv7 &&
554 (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
555 user_pmd_table |= PMD_PXNTABLE;
556 }
557 #endif
558
559 /*
560 * ARMv6 and above have extended page tables.
561 */
562 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
563 #ifndef CONFIG_ARM_LPAE
564 /*
565 * Mark cache clean areas and XIP ROM read only
566 * from SVC mode and no access from userspace.
567 */
568 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
569 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
570 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
571 #endif
572
573 /*
574 * If the initial page tables were created with the S bit
575 * set, then we need to do the same here for the same
576 * reasons given in early_cachepolicy().
577 */
578 if (initial_pmd_value & PMD_SECT_S) {
579 user_pgprot |= L_PTE_SHARED;
580 kern_pgprot |= L_PTE_SHARED;
581 vecs_pgprot |= L_PTE_SHARED;
582 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
583 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
584 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
585 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
586 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
587 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
588 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
589 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
590 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
591 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
592 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
593 }
594 }
595
596 /*
597 * Non-cacheable Normal - intended for memory areas that must
598 * not cause dirty cache line writebacks when used
599 */
600 if (cpu_arch >= CPU_ARCH_ARMv6) {
601 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
602 /* Non-cacheable Normal is XCB = 001 */
603 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
604 PMD_SECT_BUFFERED;
605 } else {
606 /* For both ARMv6 and non-TEX-remapping ARMv7 */
607 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
608 PMD_SECT_TEX(1);
609 }
610 } else {
611 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
612 }
613
614 #ifdef CONFIG_ARM_LPAE
615 /*
616 * Do not generate access flag faults for the kernel mappings.
617 */
618 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
619 mem_types[i].prot_pte |= PTE_EXT_AF;
620 if (mem_types[i].prot_sect)
621 mem_types[i].prot_sect |= PMD_SECT_AF;
622 }
623 kern_pgprot |= PTE_EXT_AF;
624 vecs_pgprot |= PTE_EXT_AF;
625
626 /*
627 * Set PXN for user mappings
628 */
629 user_pgprot |= PTE_EXT_PXN;
630 #endif
631
632 for (i = 0; i < 16; i++) {
633 pteval_t v = pgprot_val(protection_map[i]);
634 protection_map[i] = __pgprot(v | user_pgprot);
635 }
636
637 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
638 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
639
640 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
641 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
642 L_PTE_DIRTY | kern_pgprot);
643
644 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
645 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
646 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
647 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
648 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
649 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
650 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
651 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
652 mem_types[MT_ROM].prot_sect |= cp->pmd;
653
654 switch (cp->pmd) {
655 case PMD_SECT_WT:
656 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
657 break;
658 case PMD_SECT_WB:
659 case PMD_SECT_WBWA:
660 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
661 break;
662 }
663 pr_info("Memory policy: %sData cache %s\n",
664 ecc_mask ? "ECC enabled, " : "", cp->policy);
665
666 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
667 struct mem_type *t = &mem_types[i];
668 if (t->prot_l1)
669 t->prot_l1 |= PMD_DOMAIN(t->domain);
670 if (t->prot_sect)
671 t->prot_sect |= PMD_DOMAIN(t->domain);
672 }
673 }
674
675 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)676 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
677 unsigned long size, pgprot_t vma_prot)
678 {
679 if (!pfn_valid(pfn))
680 return pgprot_noncached(vma_prot);
681 else if (file->f_flags & O_SYNC)
682 return pgprot_writecombine(vma_prot);
683 return vma_prot;
684 }
685 EXPORT_SYMBOL(phys_mem_access_prot);
686 #endif
687
688 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
689
early_alloc(unsigned long sz)690 static void __init *early_alloc(unsigned long sz)
691 {
692 void *ptr = memblock_alloc(sz, sz);
693
694 if (!ptr)
695 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
696 __func__, sz, sz);
697
698 return ptr;
699 }
700
late_alloc(unsigned long sz)701 static void *__init late_alloc(unsigned long sz)
702 {
703 void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz));
704
705 if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr)))
706 BUG();
707 return ptr;
708 }
709
arm_pte_alloc(pmd_t * pmd,unsigned long addr,unsigned long prot,void * (* alloc)(unsigned long sz))710 static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
711 unsigned long prot,
712 void *(*alloc)(unsigned long sz))
713 {
714 if (pmd_none(*pmd)) {
715 pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
716 __pmd_populate(pmd, __pa(pte), prot);
717 }
718 BUG_ON(pmd_bad(*pmd));
719 return pte_offset_kernel(pmd, addr);
720 }
721
early_pte_alloc(pmd_t * pmd,unsigned long addr,unsigned long prot)722 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
723 unsigned long prot)
724 {
725 return arm_pte_alloc(pmd, addr, prot, early_alloc);
726 }
727
alloc_init_pte(pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,const struct mem_type * type,void * (* alloc)(unsigned long sz),bool ng)728 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
729 unsigned long end, unsigned long pfn,
730 const struct mem_type *type,
731 void *(*alloc)(unsigned long sz),
732 bool ng)
733 {
734 pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
735 do {
736 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
737 ng ? PTE_EXT_NG : 0);
738 pfn++;
739 } while (pte++, addr += PAGE_SIZE, addr != end);
740 }
741
__map_init_section(pmd_t * pmd,unsigned long addr,unsigned long end,phys_addr_t phys,const struct mem_type * type,bool ng)742 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
743 unsigned long end, phys_addr_t phys,
744 const struct mem_type *type, bool ng)
745 {
746 pmd_t *p = pmd;
747
748 #ifndef CONFIG_ARM_LPAE
749 /*
750 * In classic MMU format, puds and pmds are folded in to
751 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
752 * group of L1 entries making up one logical pointer to
753 * an L2 table (2MB), where as PMDs refer to the individual
754 * L1 entries (1MB). Hence increment to get the correct
755 * offset for odd 1MB sections.
756 * (See arch/arm/include/asm/pgtable-2level.h)
757 */
758 if (addr & SECTION_SIZE)
759 pmd++;
760 #endif
761 do {
762 *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
763 phys += SECTION_SIZE;
764 } while (pmd++, addr += SECTION_SIZE, addr != end);
765
766 flush_pmd_entry(p);
767 }
768
alloc_init_pmd(pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys,const struct mem_type * type,void * (* alloc)(unsigned long sz),bool ng)769 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
770 unsigned long end, phys_addr_t phys,
771 const struct mem_type *type,
772 void *(*alloc)(unsigned long sz), bool ng)
773 {
774 pmd_t *pmd = pmd_offset(pud, addr);
775 unsigned long next;
776
777 do {
778 /*
779 * With LPAE, we must loop over to map
780 * all the pmds for the given range.
781 */
782 next = pmd_addr_end(addr, end);
783
784 /*
785 * Try a section mapping - addr, next and phys must all be
786 * aligned to a section boundary.
787 */
788 if (type->prot_sect &&
789 ((addr | next | phys) & ~SECTION_MASK) == 0) {
790 __map_init_section(pmd, addr, next, phys, type, ng);
791 } else {
792 alloc_init_pte(pmd, addr, next,
793 __phys_to_pfn(phys), type, alloc, ng);
794 }
795
796 phys += next - addr;
797
798 } while (pmd++, addr = next, addr != end);
799 }
800
alloc_init_pud(p4d_t * p4d,unsigned long addr,unsigned long end,phys_addr_t phys,const struct mem_type * type,void * (* alloc)(unsigned long sz),bool ng)801 static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr,
802 unsigned long end, phys_addr_t phys,
803 const struct mem_type *type,
804 void *(*alloc)(unsigned long sz), bool ng)
805 {
806 pud_t *pud = pud_offset(p4d, addr);
807 unsigned long next;
808
809 do {
810 next = pud_addr_end(addr, end);
811 alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
812 phys += next - addr;
813 } while (pud++, addr = next, addr != end);
814 }
815
alloc_init_p4d(pgd_t * pgd,unsigned long addr,unsigned long end,phys_addr_t phys,const struct mem_type * type,void * (* alloc)(unsigned long sz),bool ng)816 static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr,
817 unsigned long end, phys_addr_t phys,
818 const struct mem_type *type,
819 void *(*alloc)(unsigned long sz), bool ng)
820 {
821 p4d_t *p4d = p4d_offset(pgd, addr);
822 unsigned long next;
823
824 do {
825 next = p4d_addr_end(addr, end);
826 alloc_init_pud(p4d, addr, next, phys, type, alloc, ng);
827 phys += next - addr;
828 } while (p4d++, addr = next, addr != end);
829 }
830
831 #ifndef CONFIG_ARM_LPAE
create_36bit_mapping(struct mm_struct * mm,struct map_desc * md,const struct mem_type * type,bool ng)832 static void __init create_36bit_mapping(struct mm_struct *mm,
833 struct map_desc *md,
834 const struct mem_type *type,
835 bool ng)
836 {
837 unsigned long addr, length, end;
838 phys_addr_t phys;
839 pgd_t *pgd;
840
841 addr = md->virtual;
842 phys = __pfn_to_phys(md->pfn);
843 length = PAGE_ALIGN(md->length);
844
845 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
846 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
847 (long long)__pfn_to_phys((u64)md->pfn), addr);
848 return;
849 }
850
851 /* N.B. ARMv6 supersections are only defined to work with domain 0.
852 * Since domain assignments can in fact be arbitrary, the
853 * 'domain == 0' check below is required to insure that ARMv6
854 * supersections are only allocated for domain 0 regardless
855 * of the actual domain assignments in use.
856 */
857 if (type->domain) {
858 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
859 (long long)__pfn_to_phys((u64)md->pfn), addr);
860 return;
861 }
862
863 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
864 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
865 (long long)__pfn_to_phys((u64)md->pfn), addr);
866 return;
867 }
868
869 /*
870 * Shift bits [35:32] of address into bits [23:20] of PMD
871 * (See ARMv6 spec).
872 */
873 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
874
875 pgd = pgd_offset(mm, addr);
876 end = addr + length;
877 do {
878 p4d_t *p4d = p4d_offset(pgd, addr);
879 pud_t *pud = pud_offset(p4d, addr);
880 pmd_t *pmd = pmd_offset(pud, addr);
881 int i;
882
883 for (i = 0; i < 16; i++)
884 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
885 (ng ? PMD_SECT_nG : 0));
886
887 addr += SUPERSECTION_SIZE;
888 phys += SUPERSECTION_SIZE;
889 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
890 } while (addr != end);
891 }
892 #endif /* !CONFIG_ARM_LPAE */
893
__create_mapping(struct mm_struct * mm,struct map_desc * md,void * (* alloc)(unsigned long sz),bool ng)894 static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
895 void *(*alloc)(unsigned long sz),
896 bool ng)
897 {
898 unsigned long addr, length, end;
899 phys_addr_t phys;
900 const struct mem_type *type;
901 pgd_t *pgd;
902
903 type = &mem_types[md->type];
904
905 #ifndef CONFIG_ARM_LPAE
906 /*
907 * Catch 36-bit addresses
908 */
909 if (md->pfn >= 0x100000) {
910 create_36bit_mapping(mm, md, type, ng);
911 return;
912 }
913 #endif
914
915 addr = md->virtual & PAGE_MASK;
916 phys = __pfn_to_phys(md->pfn);
917 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
918
919 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
920 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
921 (long long)__pfn_to_phys(md->pfn), addr);
922 return;
923 }
924
925 pgd = pgd_offset(mm, addr);
926 end = addr + length;
927 do {
928 unsigned long next = pgd_addr_end(addr, end);
929
930 alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng);
931
932 phys += next - addr;
933 addr = next;
934 } while (pgd++, addr != end);
935 }
936
937 /*
938 * Create the page directory entries and any necessary
939 * page tables for the mapping specified by `md'. We
940 * are able to cope here with varying sizes and address
941 * offsets, and we take full advantage of sections and
942 * supersections.
943 */
create_mapping(struct map_desc * md)944 static void __init create_mapping(struct map_desc *md)
945 {
946 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
947 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
948 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
949 return;
950 }
951
952 if (md->type == MT_DEVICE &&
953 md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
954 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
955 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
956 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
957 }
958
959 __create_mapping(&init_mm, md, early_alloc, false);
960 }
961
create_mapping_late(struct mm_struct * mm,struct map_desc * md,bool ng)962 void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
963 bool ng)
964 {
965 #ifdef CONFIG_ARM_LPAE
966 p4d_t *p4d;
967 pud_t *pud;
968
969 p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
970 if (WARN_ON(!p4d))
971 return;
972 pud = pud_alloc(mm, p4d, md->virtual);
973 if (WARN_ON(!pud))
974 return;
975 pmd_alloc(mm, pud, 0);
976 #endif
977 __create_mapping(mm, md, late_alloc, ng);
978 }
979
980 /*
981 * Create the architecture specific mappings
982 */
iotable_init(struct map_desc * io_desc,int nr)983 void __init iotable_init(struct map_desc *io_desc, int nr)
984 {
985 struct map_desc *md;
986 struct vm_struct *vm;
987 struct static_vm *svm;
988
989 if (!nr)
990 return;
991
992 svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
993 if (!svm)
994 panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
995 __func__, sizeof(*svm) * nr, __alignof__(*svm));
996
997 for (md = io_desc; nr; md++, nr--) {
998 create_mapping(md);
999
1000 vm = &svm->vm;
1001 vm->addr = (void *)(md->virtual & PAGE_MASK);
1002 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1003 vm->phys_addr = __pfn_to_phys(md->pfn);
1004 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1005 vm->flags |= VM_ARM_MTYPE(md->type);
1006 vm->caller = iotable_init;
1007 add_static_vm_early(svm++);
1008 }
1009 }
1010
vm_reserve_area_early(unsigned long addr,unsigned long size,void * caller)1011 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1012 void *caller)
1013 {
1014 struct vm_struct *vm;
1015 struct static_vm *svm;
1016
1017 svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
1018 if (!svm)
1019 panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1020 __func__, sizeof(*svm), __alignof__(*svm));
1021
1022 vm = &svm->vm;
1023 vm->addr = (void *)addr;
1024 vm->size = size;
1025 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1026 vm->caller = caller;
1027 add_static_vm_early(svm);
1028 }
1029
1030 #ifndef CONFIG_ARM_LPAE
1031
1032 /*
1033 * The Linux PMD is made of two consecutive section entries covering 2MB
1034 * (see definition in include/asm/pgtable-2level.h). However a call to
1035 * create_mapping() may optimize static mappings by using individual
1036 * 1MB section mappings. This leaves the actual PMD potentially half
1037 * initialized if the top or bottom section entry isn't used, leaving it
1038 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1039 * the virtual space left free by that unused section entry.
1040 *
1041 * Let's avoid the issue by inserting dummy vm entries covering the unused
1042 * PMD halves once the static mappings are in place.
1043 */
1044
pmd_empty_section_gap(unsigned long addr)1045 static void __init pmd_empty_section_gap(unsigned long addr)
1046 {
1047 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1048 }
1049
fill_pmd_gaps(void)1050 static void __init fill_pmd_gaps(void)
1051 {
1052 struct static_vm *svm;
1053 struct vm_struct *vm;
1054 unsigned long addr, next = 0;
1055 pmd_t *pmd;
1056
1057 list_for_each_entry(svm, &static_vmlist, list) {
1058 vm = &svm->vm;
1059 addr = (unsigned long)vm->addr;
1060 if (addr < next)
1061 continue;
1062
1063 /*
1064 * Check if this vm starts on an odd section boundary.
1065 * If so and the first section entry for this PMD is free
1066 * then we block the corresponding virtual address.
1067 */
1068 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1069 pmd = pmd_off_k(addr);
1070 if (pmd_none(*pmd))
1071 pmd_empty_section_gap(addr & PMD_MASK);
1072 }
1073
1074 /*
1075 * Then check if this vm ends on an odd section boundary.
1076 * If so and the second section entry for this PMD is empty
1077 * then we block the corresponding virtual address.
1078 */
1079 addr += vm->size;
1080 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1081 pmd = pmd_off_k(addr) + 1;
1082 if (pmd_none(*pmd))
1083 pmd_empty_section_gap(addr);
1084 }
1085
1086 /* no need to look at any vm entry until we hit the next PMD */
1087 next = (addr + PMD_SIZE - 1) & PMD_MASK;
1088 }
1089 }
1090
1091 #else
1092 #define fill_pmd_gaps() do { } while (0)
1093 #endif
1094
1095 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
pci_reserve_io(void)1096 static void __init pci_reserve_io(void)
1097 {
1098 struct static_vm *svm;
1099
1100 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1101 if (svm)
1102 return;
1103
1104 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1105 }
1106 #else
1107 #define pci_reserve_io() do { } while (0)
1108 #endif
1109
1110 #ifdef CONFIG_DEBUG_LL
debug_ll_io_init(void)1111 void __init debug_ll_io_init(void)
1112 {
1113 struct map_desc map;
1114
1115 debug_ll_addr(&map.pfn, &map.virtual);
1116 if (!map.pfn || !map.virtual)
1117 return;
1118 map.pfn = __phys_to_pfn(map.pfn);
1119 map.virtual &= PAGE_MASK;
1120 map.length = PAGE_SIZE;
1121 map.type = MT_DEVICE;
1122 iotable_init(&map, 1);
1123 }
1124 #endif
1125
1126 static void * __initdata vmalloc_min = (void *)VMALLOC_DEFAULT_BASE;
1127
1128 /*
1129 * vmalloc=size forces the vmalloc area to be exactly 'size'
1130 * bytes. This can be used to increase (or decrease) the vmalloc
1131 * area - the default is 240m.
1132 */
early_vmalloc(char * arg)1133 static int __init early_vmalloc(char *arg)
1134 {
1135 unsigned long vmalloc_reserve = memparse(arg, NULL);
1136
1137 if (vmalloc_reserve < SZ_16M) {
1138 vmalloc_reserve = SZ_16M;
1139 pr_warn("vmalloc area too small, limiting to %luMB\n",
1140 vmalloc_reserve >> 20);
1141 }
1142
1143 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1144 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1145 pr_warn("vmalloc area is too big, limiting to %luMB\n",
1146 vmalloc_reserve >> 20);
1147 }
1148
1149 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1150 return 0;
1151 }
1152 early_param("vmalloc", early_vmalloc);
1153
1154 phys_addr_t arm_lowmem_limit __initdata = 0;
1155
adjust_lowmem_bounds(void)1156 void __init adjust_lowmem_bounds(void)
1157 {
1158 phys_addr_t block_start, block_end, memblock_limit = 0;
1159 u64 vmalloc_limit, i;
1160 phys_addr_t lowmem_limit = 0;
1161
1162 /*
1163 * Let's use our own (unoptimized) equivalent of __pa() that is
1164 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1165 * The result is used as the upper bound on physical memory address
1166 * and may itself be outside the valid range for which phys_addr_t
1167 * and therefore __pa() is defined.
1168 */
1169 vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET;
1170
1171 /*
1172 * The first usable region must be PMD aligned. Mark its start
1173 * as MEMBLOCK_NOMAP if it isn't
1174 */
1175 for_each_mem_range(i, &block_start, &block_end) {
1176 if (!IS_ALIGNED(block_start, PMD_SIZE)) {
1177 phys_addr_t len;
1178
1179 len = round_up(block_start, PMD_SIZE) - block_start;
1180 memblock_mark_nomap(block_start, len);
1181 }
1182 break;
1183 }
1184
1185 for_each_mem_range(i, &block_start, &block_end) {
1186 if (block_start < vmalloc_limit) {
1187 if (block_end > lowmem_limit)
1188 /*
1189 * Compare as u64 to ensure vmalloc_limit does
1190 * not get truncated. block_end should always
1191 * fit in phys_addr_t so there should be no
1192 * issue with assignment.
1193 */
1194 lowmem_limit = min_t(u64,
1195 vmalloc_limit,
1196 block_end);
1197
1198 /*
1199 * Find the first non-pmd-aligned page, and point
1200 * memblock_limit at it. This relies on rounding the
1201 * limit down to be pmd-aligned, which happens at the
1202 * end of this function.
1203 *
1204 * With this algorithm, the start or end of almost any
1205 * bank can be non-pmd-aligned. The only exception is
1206 * that the start of the bank 0 must be section-
1207 * aligned, since otherwise memory would need to be
1208 * allocated when mapping the start of bank 0, which
1209 * occurs before any free memory is mapped.
1210 */
1211 if (!memblock_limit) {
1212 if (!IS_ALIGNED(block_start, PMD_SIZE))
1213 memblock_limit = block_start;
1214 else if (!IS_ALIGNED(block_end, PMD_SIZE))
1215 memblock_limit = lowmem_limit;
1216 }
1217
1218 }
1219 }
1220
1221 arm_lowmem_limit = lowmem_limit;
1222
1223 high_memory = __va(arm_lowmem_limit - 1) + 1;
1224
1225 if (!memblock_limit)
1226 memblock_limit = arm_lowmem_limit;
1227
1228 /*
1229 * Round the memblock limit down to a pmd size. This
1230 * helps to ensure that we will allocate memory from the
1231 * last full pmd, which should be mapped.
1232 */
1233 memblock_limit = round_down(memblock_limit, PMD_SIZE);
1234
1235 if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1236 if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1237 phys_addr_t end = memblock_end_of_DRAM();
1238
1239 pr_notice("Ignoring RAM at %pa-%pa\n",
1240 &memblock_limit, &end);
1241 pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1242
1243 memblock_remove(memblock_limit, end - memblock_limit);
1244 }
1245 }
1246
1247 memblock_set_current_limit(memblock_limit);
1248 }
1249
prepare_page_table(void)1250 static inline void prepare_page_table(void)
1251 {
1252 unsigned long addr;
1253 phys_addr_t end;
1254
1255 /*
1256 * Clear out all the mappings below the kernel image.
1257 */
1258 #ifdef CONFIG_KASAN
1259 /*
1260 * KASan's shadow memory inserts itself between the TASK_SIZE
1261 * and MODULES_VADDR. Do not clear the KASan shadow memory mappings.
1262 */
1263 for (addr = 0; addr < KASAN_SHADOW_START; addr += PMD_SIZE)
1264 pmd_clear(pmd_off_k(addr));
1265 /*
1266 * Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes
1267 * equal to MODULES_VADDR and then we exit the pmd clearing. If we
1268 * are using a thumb-compiled kernel, there there will be 8MB more
1269 * to clear as KASan always offset to 16 MB below MODULES_VADDR.
1270 */
1271 for (addr = KASAN_SHADOW_END; addr < MODULES_VADDR; addr += PMD_SIZE)
1272 pmd_clear(pmd_off_k(addr));
1273 #else
1274 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1275 pmd_clear(pmd_off_k(addr));
1276 #endif
1277
1278 #ifdef CONFIG_XIP_KERNEL
1279 /* The XIP kernel is mapped in the module area -- skip over it */
1280 addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1281 #endif
1282 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1283 pmd_clear(pmd_off_k(addr));
1284
1285 /*
1286 * Find the end of the first block of lowmem.
1287 */
1288 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1289 if (end >= arm_lowmem_limit)
1290 end = arm_lowmem_limit;
1291
1292 /*
1293 * Clear out all the kernel space mappings, except for the first
1294 * memory bank, up to the vmalloc region.
1295 */
1296 for (addr = __phys_to_virt(end);
1297 addr < VMALLOC_START; addr += PMD_SIZE)
1298 pmd_clear(pmd_off_k(addr));
1299 }
1300
1301 #ifdef CONFIG_ARM_LPAE
1302 /* the first page is reserved for pgd */
1303 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1304 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1305 #else
1306 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1307 #endif
1308
1309 /*
1310 * Reserve the special regions of memory
1311 */
arm_mm_memblock_reserve(void)1312 void __init arm_mm_memblock_reserve(void)
1313 {
1314 /*
1315 * Reserve the page tables. These are already in use,
1316 * and can only be in node 0.
1317 */
1318 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1319
1320 #ifdef CONFIG_SA1111
1321 /*
1322 * Because of the SA1111 DMA bug, we want to preserve our
1323 * precious DMA-able memory...
1324 */
1325 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1326 #endif
1327 }
1328
1329 /*
1330 * Set up the device mappings. Since we clear out the page tables for all
1331 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1332 * device mappings. This means earlycon can be used to debug this function
1333 * Any other function or debugging method which may touch any device _will_
1334 * crash the kernel.
1335 */
devicemaps_init(const struct machine_desc * mdesc)1336 static void __init devicemaps_init(const struct machine_desc *mdesc)
1337 {
1338 struct map_desc map;
1339 unsigned long addr;
1340 void *vectors;
1341
1342 /*
1343 * Allocate the vector page early.
1344 */
1345 vectors = early_alloc(PAGE_SIZE * 2);
1346
1347 early_trap_init(vectors);
1348
1349 /*
1350 * Clear page table except top pmd used by early fixmaps
1351 */
1352 for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1353 pmd_clear(pmd_off_k(addr));
1354
1355 if (__atags_pointer) {
1356 /* create a read-only mapping of the device tree */
1357 map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK);
1358 map.virtual = FDT_FIXED_BASE;
1359 map.length = FDT_FIXED_SIZE;
1360 map.type = MT_ROM;
1361 create_mapping(&map);
1362 }
1363
1364 /*
1365 * Map the kernel if it is XIP.
1366 * It is always first in the modulearea.
1367 */
1368 #ifdef CONFIG_XIP_KERNEL
1369 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1370 map.virtual = MODULES_VADDR;
1371 map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1372 map.type = MT_ROM;
1373 create_mapping(&map);
1374 #endif
1375
1376 /*
1377 * Map the cache flushing regions.
1378 */
1379 #ifdef FLUSH_BASE
1380 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1381 map.virtual = FLUSH_BASE;
1382 map.length = SZ_1M;
1383 map.type = MT_CACHECLEAN;
1384 create_mapping(&map);
1385 #endif
1386 #ifdef FLUSH_BASE_MINICACHE
1387 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1388 map.virtual = FLUSH_BASE_MINICACHE;
1389 map.length = SZ_1M;
1390 map.type = MT_MINICLEAN;
1391 create_mapping(&map);
1392 #endif
1393
1394 /*
1395 * Create a mapping for the machine vectors at the high-vectors
1396 * location (0xffff0000). If we aren't using high-vectors, also
1397 * create a mapping at the low-vectors virtual address.
1398 */
1399 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1400 map.virtual = 0xffff0000;
1401 map.length = PAGE_SIZE;
1402 #ifdef CONFIG_KUSER_HELPERS
1403 map.type = MT_HIGH_VECTORS;
1404 #else
1405 map.type = MT_LOW_VECTORS;
1406 #endif
1407 create_mapping(&map);
1408
1409 if (!vectors_high()) {
1410 map.virtual = 0;
1411 map.length = PAGE_SIZE * 2;
1412 map.type = MT_LOW_VECTORS;
1413 create_mapping(&map);
1414 }
1415
1416 /* Now create a kernel read-only mapping */
1417 map.pfn += 1;
1418 map.virtual = 0xffff0000 + PAGE_SIZE;
1419 map.length = PAGE_SIZE;
1420 map.type = MT_LOW_VECTORS;
1421 create_mapping(&map);
1422
1423 /*
1424 * Ask the machine support to map in the statically mapped devices.
1425 */
1426 if (mdesc->map_io)
1427 mdesc->map_io();
1428 else
1429 debug_ll_io_init();
1430 fill_pmd_gaps();
1431
1432 /* Reserve fixed i/o space in VMALLOC region */
1433 pci_reserve_io();
1434
1435 /*
1436 * Finally flush the caches and tlb to ensure that we're in a
1437 * consistent state wrt the writebuffer. This also ensures that
1438 * any write-allocated cache lines in the vector page are written
1439 * back. After this point, we can start to touch devices again.
1440 */
1441 local_flush_tlb_all();
1442 flush_cache_all();
1443
1444 /* Enable asynchronous aborts */
1445 early_abt_enable();
1446 }
1447
kmap_init(void)1448 static void __init kmap_init(void)
1449 {
1450 #ifdef CONFIG_HIGHMEM
1451 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1452 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1453 #endif
1454
1455 early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1456 _PAGE_KERNEL_TABLE);
1457 }
1458
map_lowmem(void)1459 static void __init map_lowmem(void)
1460 {
1461 phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE);
1462 phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1463 phys_addr_t start, end;
1464 u64 i;
1465
1466 /* Map all the lowmem memory banks. */
1467 for_each_mem_range(i, &start, &end) {
1468 struct map_desc map;
1469
1470 if (end > arm_lowmem_limit)
1471 end = arm_lowmem_limit;
1472 if (start >= end)
1473 break;
1474
1475 if (end < kernel_x_start) {
1476 map.pfn = __phys_to_pfn(start);
1477 map.virtual = __phys_to_virt(start);
1478 map.length = end - start;
1479 map.type = MT_MEMORY_RWX;
1480
1481 create_mapping(&map);
1482 } else if (start >= kernel_x_end) {
1483 map.pfn = __phys_to_pfn(start);
1484 map.virtual = __phys_to_virt(start);
1485 map.length = end - start;
1486 map.type = MT_MEMORY_RW;
1487
1488 create_mapping(&map);
1489 } else {
1490 /* This better cover the entire kernel */
1491 if (start < kernel_x_start) {
1492 map.pfn = __phys_to_pfn(start);
1493 map.virtual = __phys_to_virt(start);
1494 map.length = kernel_x_start - start;
1495 map.type = MT_MEMORY_RW;
1496
1497 create_mapping(&map);
1498 }
1499
1500 map.pfn = __phys_to_pfn(kernel_x_start);
1501 map.virtual = __phys_to_virt(kernel_x_start);
1502 map.length = kernel_x_end - kernel_x_start;
1503 map.type = MT_MEMORY_RWX;
1504
1505 create_mapping(&map);
1506
1507 if (kernel_x_end < end) {
1508 map.pfn = __phys_to_pfn(kernel_x_end);
1509 map.virtual = __phys_to_virt(kernel_x_end);
1510 map.length = end - kernel_x_end;
1511 map.type = MT_MEMORY_RW;
1512
1513 create_mapping(&map);
1514 }
1515 }
1516 }
1517 }
1518
1519 #ifdef CONFIG_ARM_PV_FIXUP
1520 typedef void pgtables_remap(long long offset, unsigned long pgd);
1521 pgtables_remap lpae_pgtables_remap_asm;
1522
1523 /*
1524 * early_paging_init() recreates boot time page table setup, allowing machines
1525 * to switch over to a high (>4G) address space on LPAE systems
1526 */
early_paging_init(const struct machine_desc * mdesc)1527 static void __init early_paging_init(const struct machine_desc *mdesc)
1528 {
1529 pgtables_remap *lpae_pgtables_remap;
1530 unsigned long pa_pgd;
1531 unsigned int cr, ttbcr;
1532 long long offset;
1533
1534 if (!mdesc->pv_fixup)
1535 return;
1536
1537 offset = mdesc->pv_fixup();
1538 if (offset == 0)
1539 return;
1540
1541 /*
1542 * Get the address of the remap function in the 1:1 identity
1543 * mapping setup by the early page table assembly code. We
1544 * must get this prior to the pv update. The following barrier
1545 * ensures that this is complete before we fixup any P:V offsets.
1546 */
1547 lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1548 pa_pgd = __pa(swapper_pg_dir);
1549 barrier();
1550
1551 pr_info("Switching physical address space to 0x%08llx\n",
1552 (u64)PHYS_OFFSET + offset);
1553
1554 /* Re-set the phys pfn offset, and the pv offset */
1555 __pv_offset += offset;
1556 __pv_phys_pfn_offset += PFN_DOWN(offset);
1557
1558 /* Run the patch stub to update the constants */
1559 fixup_pv_table(&__pv_table_begin,
1560 (&__pv_table_end - &__pv_table_begin) << 2);
1561
1562 /*
1563 * We changing not only the virtual to physical mapping, but also
1564 * the physical addresses used to access memory. We need to flush
1565 * all levels of cache in the system with caching disabled to
1566 * ensure that all data is written back, and nothing is prefetched
1567 * into the caches. We also need to prevent the TLB walkers
1568 * allocating into the caches too. Note that this is ARMv7 LPAE
1569 * specific.
1570 */
1571 cr = get_cr();
1572 set_cr(cr & ~(CR_I | CR_C));
1573 asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1574 asm volatile("mcr p15, 0, %0, c2, c0, 2"
1575 : : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1576 flush_cache_all();
1577
1578 /*
1579 * Fixup the page tables - this must be in the idmap region as
1580 * we need to disable the MMU to do this safely, and hence it
1581 * needs to be assembly. It's fairly simple, as we're using the
1582 * temporary tables setup by the initial assembly code.
1583 */
1584 lpae_pgtables_remap(offset, pa_pgd);
1585
1586 /* Re-enable the caches and cacheable TLB walks */
1587 asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1588 set_cr(cr);
1589 }
1590
1591 #else
1592
early_paging_init(const struct machine_desc * mdesc)1593 static void __init early_paging_init(const struct machine_desc *mdesc)
1594 {
1595 long long offset;
1596
1597 if (!mdesc->pv_fixup)
1598 return;
1599
1600 offset = mdesc->pv_fixup();
1601 if (offset == 0)
1602 return;
1603
1604 pr_crit("Physical address space modification is only to support Keystone2.\n");
1605 pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1606 pr_crit("feature. Your kernel may crash now, have a good day.\n");
1607 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1608 }
1609
1610 #endif
1611
early_fixmap_shutdown(void)1612 static void __init early_fixmap_shutdown(void)
1613 {
1614 int i;
1615 unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1616
1617 pte_offset_fixmap = pte_offset_late_fixmap;
1618 pmd_clear(fixmap_pmd(va));
1619 local_flush_tlb_kernel_page(va);
1620
1621 for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1622 pte_t *pte;
1623 struct map_desc map;
1624
1625 map.virtual = fix_to_virt(i);
1626 pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1627
1628 /* Only i/o device mappings are supported ATM */
1629 if (pte_none(*pte) ||
1630 (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1631 continue;
1632
1633 map.pfn = pte_pfn(*pte);
1634 map.type = MT_DEVICE;
1635 map.length = PAGE_SIZE;
1636
1637 create_mapping(&map);
1638 }
1639 }
1640
1641 /*
1642 * paging_init() sets up the page tables, initialises the zone memory
1643 * maps, and sets up the zero page, bad page and bad page tables.
1644 */
paging_init(const struct machine_desc * mdesc)1645 void __init paging_init(const struct machine_desc *mdesc)
1646 {
1647 void *zero_page;
1648
1649 prepare_page_table();
1650 map_lowmem();
1651 memblock_set_current_limit(arm_lowmem_limit);
1652 dma_contiguous_remap();
1653 early_fixmap_shutdown();
1654 devicemaps_init(mdesc);
1655 kmap_init();
1656 tcm_init();
1657
1658 top_pmd = pmd_off_k(0xffff0000);
1659
1660 /* allocate the zero page. */
1661 zero_page = early_alloc(PAGE_SIZE);
1662
1663 bootmem_init();
1664
1665 empty_zero_page = virt_to_page(zero_page);
1666 __flush_dcache_page(NULL, empty_zero_page);
1667 }
1668
early_mm_init(const struct machine_desc * mdesc)1669 void __init early_mm_init(const struct machine_desc *mdesc)
1670 {
1671 build_mem_type_table();
1672 early_paging_init(mdesc);
1673 }
1674
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pteval)1675 void set_pte_at(struct mm_struct *mm, unsigned long addr,
1676 pte_t *ptep, pte_t pteval)
1677 {
1678 unsigned long ext = 0;
1679
1680 if (addr < TASK_SIZE && pte_valid_user(pteval)) {
1681 if (!pte_special(pteval))
1682 __sync_icache_dcache(pteval);
1683 ext |= PTE_EXT_NG;
1684 }
1685
1686 set_pte_ext(ptep, pteval, ext);
1687 }
1688