1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * pSeries NUMA support
4 *
5 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6 */
7 #define pr_fmt(fmt) "numa: " fmt
8
9 #include <linux/threads.h>
10 #include <linux/memblock.h>
11 #include <linux/init.h>
12 #include <linux/mm.h>
13 #include <linux/mmzone.h>
14 #include <linux/export.h>
15 #include <linux/nodemask.h>
16 #include <linux/cpu.h>
17 #include <linux/notifier.h>
18 #include <linux/of.h>
19 #include <linux/pfn.h>
20 #include <linux/cpuset.h>
21 #include <linux/node.h>
22 #include <linux/stop_machine.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <asm/cputhreads.h>
28 #include <asm/sparsemem.h>
29 #include <asm/prom.h>
30 #include <asm/smp.h>
31 #include <asm/topology.h>
32 #include <asm/firmware.h>
33 #include <asm/paca.h>
34 #include <asm/hvcall.h>
35 #include <asm/setup.h>
36 #include <asm/vdso.h>
37 #include <asm/drmem.h>
38
39 static int numa_enabled = 1;
40
41 static char *cmdline __initdata;
42
43 static int numa_debug;
44 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
45
46 int numa_cpu_lookup_table[NR_CPUS];
47 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
48 struct pglist_data *node_data[MAX_NUMNODES];
49
50 EXPORT_SYMBOL(numa_cpu_lookup_table);
51 EXPORT_SYMBOL(node_to_cpumask_map);
52 EXPORT_SYMBOL(node_data);
53
54 static int min_common_depth;
55 static int n_mem_addr_cells, n_mem_size_cells;
56 static int form1_affinity;
57
58 #define MAX_DISTANCE_REF_POINTS 4
59 static int distance_ref_points_depth;
60 static const __be32 *distance_ref_points;
61 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
62
63 /*
64 * Allocate node_to_cpumask_map based on number of available nodes
65 * Requires node_possible_map to be valid.
66 *
67 * Note: cpumask_of_node() is not valid until after this is done.
68 */
setup_node_to_cpumask_map(void)69 static void __init setup_node_to_cpumask_map(void)
70 {
71 unsigned int node;
72
73 /* setup nr_node_ids if not done yet */
74 if (nr_node_ids == MAX_NUMNODES)
75 setup_nr_node_ids();
76
77 /* allocate the map */
78 for_each_node(node)
79 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
80
81 /* cpumask_of_node() will now work */
82 dbg("Node to cpumask map for %u nodes\n", nr_node_ids);
83 }
84
fake_numa_create_new_node(unsigned long end_pfn,unsigned int * nid)85 static int __init fake_numa_create_new_node(unsigned long end_pfn,
86 unsigned int *nid)
87 {
88 unsigned long long mem;
89 char *p = cmdline;
90 static unsigned int fake_nid;
91 static unsigned long long curr_boundary;
92
93 /*
94 * Modify node id, iff we started creating NUMA nodes
95 * We want to continue from where we left of the last time
96 */
97 if (fake_nid)
98 *nid = fake_nid;
99 /*
100 * In case there are no more arguments to parse, the
101 * node_id should be the same as the last fake node id
102 * (we've handled this above).
103 */
104 if (!p)
105 return 0;
106
107 mem = memparse(p, &p);
108 if (!mem)
109 return 0;
110
111 if (mem < curr_boundary)
112 return 0;
113
114 curr_boundary = mem;
115
116 if ((end_pfn << PAGE_SHIFT) > mem) {
117 /*
118 * Skip commas and spaces
119 */
120 while (*p == ',' || *p == ' ' || *p == '\t')
121 p++;
122
123 cmdline = p;
124 fake_nid++;
125 *nid = fake_nid;
126 dbg("created new fake_node with id %d\n", fake_nid);
127 return 1;
128 }
129 return 0;
130 }
131
reset_numa_cpu_lookup_table(void)132 static void reset_numa_cpu_lookup_table(void)
133 {
134 unsigned int cpu;
135
136 for_each_possible_cpu(cpu)
137 numa_cpu_lookup_table[cpu] = -1;
138 }
139
map_cpu_to_node(int cpu,int node)140 void map_cpu_to_node(int cpu, int node)
141 {
142 update_numa_cpu_lookup_table(cpu, node);
143
144 dbg("adding cpu %d to node %d\n", cpu, node);
145
146 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
147 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
148 }
149
150 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
unmap_cpu_from_node(unsigned long cpu)151 void unmap_cpu_from_node(unsigned long cpu)
152 {
153 int node = numa_cpu_lookup_table[cpu];
154
155 dbg("removing cpu %lu from node %d\n", cpu, node);
156
157 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
158 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
159 } else {
160 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
161 cpu, node);
162 }
163 }
164 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
165
cpu_distance(__be32 * cpu1_assoc,__be32 * cpu2_assoc)166 int cpu_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
167 {
168 int dist = 0;
169
170 int i, index;
171
172 for (i = 0; i < distance_ref_points_depth; i++) {
173 index = be32_to_cpu(distance_ref_points[i]);
174 if (cpu1_assoc[index] == cpu2_assoc[index])
175 break;
176 dist++;
177 }
178
179 return dist;
180 }
181
182 /* must hold reference to node during call */
of_get_associativity(struct device_node * dev)183 static const __be32 *of_get_associativity(struct device_node *dev)
184 {
185 return of_get_property(dev, "ibm,associativity", NULL);
186 }
187
__node_distance(int a,int b)188 int __node_distance(int a, int b)
189 {
190 int i;
191 int distance = LOCAL_DISTANCE;
192
193 if (!form1_affinity)
194 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
195
196 for (i = 0; i < distance_ref_points_depth; i++) {
197 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
198 break;
199
200 /* Double the distance for each NUMA level */
201 distance *= 2;
202 }
203
204 return distance;
205 }
206 EXPORT_SYMBOL(__node_distance);
207
initialize_distance_lookup_table(int nid,const __be32 * associativity)208 static void initialize_distance_lookup_table(int nid,
209 const __be32 *associativity)
210 {
211 int i;
212
213 if (!form1_affinity)
214 return;
215
216 for (i = 0; i < distance_ref_points_depth; i++) {
217 const __be32 *entry;
218
219 entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
220 distance_lookup_table[nid][i] = of_read_number(entry, 1);
221 }
222 }
223
224 /*
225 * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA
226 * info is found.
227 */
associativity_to_nid(const __be32 * associativity)228 static int associativity_to_nid(const __be32 *associativity)
229 {
230 int nid = NUMA_NO_NODE;
231
232 if (!numa_enabled)
233 goto out;
234
235 if (of_read_number(associativity, 1) >= min_common_depth)
236 nid = of_read_number(&associativity[min_common_depth], 1);
237
238 /* POWER4 LPAR uses 0xffff as invalid node */
239 if (nid == 0xffff || nid >= nr_node_ids)
240 nid = NUMA_NO_NODE;
241
242 if (nid > 0 &&
243 of_read_number(associativity, 1) >= distance_ref_points_depth) {
244 /*
245 * Skip the length field and send start of associativity array
246 */
247 initialize_distance_lookup_table(nid, associativity + 1);
248 }
249
250 out:
251 return nid;
252 }
253
254 /* Returns the nid associated with the given device tree node,
255 * or -1 if not found.
256 */
of_node_to_nid_single(struct device_node * device)257 static int of_node_to_nid_single(struct device_node *device)
258 {
259 int nid = NUMA_NO_NODE;
260 const __be32 *tmp;
261
262 tmp = of_get_associativity(device);
263 if (tmp)
264 nid = associativity_to_nid(tmp);
265 return nid;
266 }
267
268 /* Walk the device tree upwards, looking for an associativity id */
of_node_to_nid(struct device_node * device)269 int of_node_to_nid(struct device_node *device)
270 {
271 int nid = NUMA_NO_NODE;
272
273 of_node_get(device);
274 while (device) {
275 nid = of_node_to_nid_single(device);
276 if (nid != -1)
277 break;
278
279 device = of_get_next_parent(device);
280 }
281 of_node_put(device);
282
283 return nid;
284 }
285 EXPORT_SYMBOL(of_node_to_nid);
286
find_min_common_depth(void)287 static int __init find_min_common_depth(void)
288 {
289 int depth;
290 struct device_node *root;
291
292 if (firmware_has_feature(FW_FEATURE_OPAL))
293 root = of_find_node_by_path("/ibm,opal");
294 else
295 root = of_find_node_by_path("/rtas");
296 if (!root)
297 root = of_find_node_by_path("/");
298
299 /*
300 * This property is a set of 32-bit integers, each representing
301 * an index into the ibm,associativity nodes.
302 *
303 * With form 0 affinity the first integer is for an SMP configuration
304 * (should be all 0's) and the second is for a normal NUMA
305 * configuration. We have only one level of NUMA.
306 *
307 * With form 1 affinity the first integer is the most significant
308 * NUMA boundary and the following are progressively less significant
309 * boundaries. There can be more than one level of NUMA.
310 */
311 distance_ref_points = of_get_property(root,
312 "ibm,associativity-reference-points",
313 &distance_ref_points_depth);
314
315 if (!distance_ref_points) {
316 dbg("NUMA: ibm,associativity-reference-points not found.\n");
317 goto err;
318 }
319
320 distance_ref_points_depth /= sizeof(int);
321
322 if (firmware_has_feature(FW_FEATURE_OPAL) ||
323 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
324 dbg("Using form 1 affinity\n");
325 form1_affinity = 1;
326 }
327
328 if (form1_affinity) {
329 depth = of_read_number(distance_ref_points, 1);
330 } else {
331 if (distance_ref_points_depth < 2) {
332 printk(KERN_WARNING "NUMA: "
333 "short ibm,associativity-reference-points\n");
334 goto err;
335 }
336
337 depth = of_read_number(&distance_ref_points[1], 1);
338 }
339
340 /*
341 * Warn and cap if the hardware supports more than
342 * MAX_DISTANCE_REF_POINTS domains.
343 */
344 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
345 printk(KERN_WARNING "NUMA: distance array capped at "
346 "%d entries\n", MAX_DISTANCE_REF_POINTS);
347 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
348 }
349
350 of_node_put(root);
351 return depth;
352
353 err:
354 of_node_put(root);
355 return -1;
356 }
357
get_n_mem_cells(int * n_addr_cells,int * n_size_cells)358 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
359 {
360 struct device_node *memory = NULL;
361
362 memory = of_find_node_by_type(memory, "memory");
363 if (!memory)
364 panic("numa.c: No memory nodes found!");
365
366 *n_addr_cells = of_n_addr_cells(memory);
367 *n_size_cells = of_n_size_cells(memory);
368 of_node_put(memory);
369 }
370
read_n_cells(int n,const __be32 ** buf)371 static unsigned long read_n_cells(int n, const __be32 **buf)
372 {
373 unsigned long result = 0;
374
375 while (n--) {
376 result = (result << 32) | of_read_number(*buf, 1);
377 (*buf)++;
378 }
379 return result;
380 }
381
382 struct assoc_arrays {
383 u32 n_arrays;
384 u32 array_sz;
385 const __be32 *arrays;
386 };
387
388 /*
389 * Retrieve and validate the list of associativity arrays for drconf
390 * memory from the ibm,associativity-lookup-arrays property of the
391 * device tree..
392 *
393 * The layout of the ibm,associativity-lookup-arrays property is a number N
394 * indicating the number of associativity arrays, followed by a number M
395 * indicating the size of each associativity array, followed by a list
396 * of N associativity arrays.
397 */
of_get_assoc_arrays(struct assoc_arrays * aa)398 static int of_get_assoc_arrays(struct assoc_arrays *aa)
399 {
400 struct device_node *memory;
401 const __be32 *prop;
402 u32 len;
403
404 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
405 if (!memory)
406 return -1;
407
408 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
409 if (!prop || len < 2 * sizeof(unsigned int)) {
410 of_node_put(memory);
411 return -1;
412 }
413
414 aa->n_arrays = of_read_number(prop++, 1);
415 aa->array_sz = of_read_number(prop++, 1);
416
417 of_node_put(memory);
418
419 /* Now that we know the number of arrays and size of each array,
420 * revalidate the size of the property read in.
421 */
422 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
423 return -1;
424
425 aa->arrays = prop;
426 return 0;
427 }
428
429 /*
430 * This is like of_node_to_nid_single() for memory represented in the
431 * ibm,dynamic-reconfiguration-memory node.
432 */
of_drconf_to_nid_single(struct drmem_lmb * lmb)433 int of_drconf_to_nid_single(struct drmem_lmb *lmb)
434 {
435 struct assoc_arrays aa = { .arrays = NULL };
436 int default_nid = NUMA_NO_NODE;
437 int nid = default_nid;
438 int rc, index;
439
440 if ((min_common_depth < 0) || !numa_enabled)
441 return default_nid;
442
443 rc = of_get_assoc_arrays(&aa);
444 if (rc)
445 return default_nid;
446
447 if (min_common_depth <= aa.array_sz &&
448 !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
449 index = lmb->aa_index * aa.array_sz + min_common_depth - 1;
450 nid = of_read_number(&aa.arrays[index], 1);
451
452 if (nid == 0xffff || nid >= nr_node_ids)
453 nid = default_nid;
454
455 if (nid > 0) {
456 index = lmb->aa_index * aa.array_sz;
457 initialize_distance_lookup_table(nid,
458 &aa.arrays[index]);
459 }
460 }
461
462 return nid;
463 }
464
465 #ifdef CONFIG_PPC_SPLPAR
vphn_get_nid(long lcpu)466 static int vphn_get_nid(long lcpu)
467 {
468 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
469 long rc, hwid;
470
471 /*
472 * On a shared lpar, device tree will not have node associativity.
473 * At this time lppaca, or its __old_status field may not be
474 * updated. Hence kernel cannot detect if its on a shared lpar. So
475 * request an explicit associativity irrespective of whether the
476 * lpar is shared or dedicated. Use the device tree property as a
477 * fallback. cpu_to_phys_id is only valid between
478 * smp_setup_cpu_maps() and smp_setup_pacas().
479 */
480 if (firmware_has_feature(FW_FEATURE_VPHN)) {
481 if (cpu_to_phys_id)
482 hwid = cpu_to_phys_id[lcpu];
483 else
484 hwid = get_hard_smp_processor_id(lcpu);
485
486 rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity);
487 if (rc == H_SUCCESS)
488 return associativity_to_nid(associativity);
489 }
490
491 return NUMA_NO_NODE;
492 }
493 #else
vphn_get_nid(long unused)494 static int vphn_get_nid(long unused)
495 {
496 return NUMA_NO_NODE;
497 }
498 #endif /* CONFIG_PPC_SPLPAR */
499
500 /*
501 * Figure out to which domain a cpu belongs and stick it there.
502 * Return the id of the domain used.
503 */
numa_setup_cpu(unsigned long lcpu)504 static int numa_setup_cpu(unsigned long lcpu)
505 {
506 struct device_node *cpu;
507 int fcpu = cpu_first_thread_sibling(lcpu);
508 int nid = NUMA_NO_NODE;
509
510 if (!cpu_present(lcpu)) {
511 set_cpu_numa_node(lcpu, first_online_node);
512 return first_online_node;
513 }
514
515 /*
516 * If a valid cpu-to-node mapping is already available, use it
517 * directly instead of querying the firmware, since it represents
518 * the most recent mapping notified to us by the platform (eg: VPHN).
519 * Since cpu_to_node binding remains the same for all threads in the
520 * core. If a valid cpu-to-node mapping is already available, for
521 * the first thread in the core, use it.
522 */
523 nid = numa_cpu_lookup_table[fcpu];
524 if (nid >= 0) {
525 map_cpu_to_node(lcpu, nid);
526 return nid;
527 }
528
529 nid = vphn_get_nid(lcpu);
530 if (nid != NUMA_NO_NODE)
531 goto out_present;
532
533 cpu = of_get_cpu_node(lcpu, NULL);
534
535 if (!cpu) {
536 WARN_ON(1);
537 if (cpu_present(lcpu))
538 goto out_present;
539 else
540 goto out;
541 }
542
543 nid = of_node_to_nid_single(cpu);
544 of_node_put(cpu);
545
546 out_present:
547 if (nid < 0 || !node_possible(nid))
548 nid = first_online_node;
549
550 /*
551 * Update for the first thread of the core. All threads of a core
552 * have to be part of the same node. This not only avoids querying
553 * for every other thread in the core, but always avoids a case
554 * where virtual node associativity change causes subsequent threads
555 * of a core to be associated with different nid. However if first
556 * thread is already online, expect it to have a valid mapping.
557 */
558 if (fcpu != lcpu) {
559 WARN_ON(cpu_online(fcpu));
560 map_cpu_to_node(fcpu, nid);
561 }
562
563 map_cpu_to_node(lcpu, nid);
564 out:
565 return nid;
566 }
567
verify_cpu_node_mapping(int cpu,int node)568 static void verify_cpu_node_mapping(int cpu, int node)
569 {
570 int base, sibling, i;
571
572 /* Verify that all the threads in the core belong to the same node */
573 base = cpu_first_thread_sibling(cpu);
574
575 for (i = 0; i < threads_per_core; i++) {
576 sibling = base + i;
577
578 if (sibling == cpu || cpu_is_offline(sibling))
579 continue;
580
581 if (cpu_to_node(sibling) != node) {
582 WARN(1, "CPU thread siblings %d and %d don't belong"
583 " to the same node!\n", cpu, sibling);
584 break;
585 }
586 }
587 }
588
589 /* Must run before sched domains notifier. */
ppc_numa_cpu_prepare(unsigned int cpu)590 static int ppc_numa_cpu_prepare(unsigned int cpu)
591 {
592 int nid;
593
594 nid = numa_setup_cpu(cpu);
595 verify_cpu_node_mapping(cpu, nid);
596 return 0;
597 }
598
ppc_numa_cpu_dead(unsigned int cpu)599 static int ppc_numa_cpu_dead(unsigned int cpu)
600 {
601 return 0;
602 }
603
604 /*
605 * Check and possibly modify a memory region to enforce the memory limit.
606 *
607 * Returns the size the region should have to enforce the memory limit.
608 * This will either be the original value of size, a truncated value,
609 * or zero. If the returned value of size is 0 the region should be
610 * discarded as it lies wholly above the memory limit.
611 */
numa_enforce_memory_limit(unsigned long start,unsigned long size)612 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
613 unsigned long size)
614 {
615 /*
616 * We use memblock_end_of_DRAM() in here instead of memory_limit because
617 * we've already adjusted it for the limit and it takes care of
618 * having memory holes below the limit. Also, in the case of
619 * iommu_is_off, memory_limit is not set but is implicitly enforced.
620 */
621
622 if (start + size <= memblock_end_of_DRAM())
623 return size;
624
625 if (start >= memblock_end_of_DRAM())
626 return 0;
627
628 return memblock_end_of_DRAM() - start;
629 }
630
631 /*
632 * Reads the counter for a given entry in
633 * linux,drconf-usable-memory property
634 */
read_usm_ranges(const __be32 ** usm)635 static inline int __init read_usm_ranges(const __be32 **usm)
636 {
637 /*
638 * For each lmb in ibm,dynamic-memory a corresponding
639 * entry in linux,drconf-usable-memory property contains
640 * a counter followed by that many (base, size) duple.
641 * read the counter from linux,drconf-usable-memory
642 */
643 return read_n_cells(n_mem_size_cells, usm);
644 }
645
646 /*
647 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
648 * node. This assumes n_mem_{addr,size}_cells have been set.
649 */
numa_setup_drmem_lmb(struct drmem_lmb * lmb,const __be32 ** usm,void * data)650 static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
651 const __be32 **usm,
652 void *data)
653 {
654 unsigned int ranges, is_kexec_kdump = 0;
655 unsigned long base, size, sz;
656 int nid;
657
658 /*
659 * Skip this block if the reserved bit is set in flags (0x80)
660 * or if the block is not assigned to this partition (0x8)
661 */
662 if ((lmb->flags & DRCONF_MEM_RESERVED)
663 || !(lmb->flags & DRCONF_MEM_ASSIGNED))
664 return 0;
665
666 if (*usm)
667 is_kexec_kdump = 1;
668
669 base = lmb->base_addr;
670 size = drmem_lmb_size();
671 ranges = 1;
672
673 if (is_kexec_kdump) {
674 ranges = read_usm_ranges(usm);
675 if (!ranges) /* there are no (base, size) duple */
676 return 0;
677 }
678
679 do {
680 if (is_kexec_kdump) {
681 base = read_n_cells(n_mem_addr_cells, usm);
682 size = read_n_cells(n_mem_size_cells, usm);
683 }
684
685 nid = of_drconf_to_nid_single(lmb);
686 fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
687 &nid);
688 node_set_online(nid);
689 sz = numa_enforce_memory_limit(base, size);
690 if (sz)
691 memblock_set_node(base, sz, &memblock.memory, nid);
692 } while (--ranges);
693
694 return 0;
695 }
696
parse_numa_properties(void)697 static int __init parse_numa_properties(void)
698 {
699 struct device_node *memory;
700 int default_nid = 0;
701 unsigned long i;
702
703 if (numa_enabled == 0) {
704 printk(KERN_WARNING "NUMA disabled by user\n");
705 return -1;
706 }
707
708 min_common_depth = find_min_common_depth();
709
710 if (min_common_depth < 0) {
711 /*
712 * if we fail to parse min_common_depth from device tree
713 * mark the numa disabled, boot with numa disabled.
714 */
715 numa_enabled = false;
716 return min_common_depth;
717 }
718
719 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
720
721 /*
722 * Even though we connect cpus to numa domains later in SMP
723 * init, we need to know the node ids now. This is because
724 * each node to be onlined must have NODE_DATA etc backing it.
725 */
726 for_each_present_cpu(i) {
727 struct device_node *cpu;
728 int nid = vphn_get_nid(i);
729
730 /*
731 * Don't fall back to default_nid yet -- we will plug
732 * cpus into nodes once the memory scan has discovered
733 * the topology.
734 */
735 if (nid == NUMA_NO_NODE) {
736 cpu = of_get_cpu_node(i, NULL);
737 BUG_ON(!cpu);
738 nid = of_node_to_nid_single(cpu);
739 of_node_put(cpu);
740 }
741
742 node_set_online(nid);
743 }
744
745 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
746
747 for_each_node_by_type(memory, "memory") {
748 unsigned long start;
749 unsigned long size;
750 int nid;
751 int ranges;
752 const __be32 *memcell_buf;
753 unsigned int len;
754
755 memcell_buf = of_get_property(memory,
756 "linux,usable-memory", &len);
757 if (!memcell_buf || len <= 0)
758 memcell_buf = of_get_property(memory, "reg", &len);
759 if (!memcell_buf || len <= 0)
760 continue;
761
762 /* ranges in cell */
763 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
764 new_range:
765 /* these are order-sensitive, and modify the buffer pointer */
766 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
767 size = read_n_cells(n_mem_size_cells, &memcell_buf);
768
769 /*
770 * Assumption: either all memory nodes or none will
771 * have associativity properties. If none, then
772 * everything goes to default_nid.
773 */
774 nid = of_node_to_nid_single(memory);
775 if (nid < 0)
776 nid = default_nid;
777
778 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
779 node_set_online(nid);
780
781 size = numa_enforce_memory_limit(start, size);
782 if (size)
783 memblock_set_node(start, size, &memblock.memory, nid);
784
785 if (--ranges)
786 goto new_range;
787 }
788
789 /*
790 * Now do the same thing for each MEMBLOCK listed in the
791 * ibm,dynamic-memory property in the
792 * ibm,dynamic-reconfiguration-memory node.
793 */
794 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
795 if (memory) {
796 walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb);
797 of_node_put(memory);
798 }
799
800 return 0;
801 }
802
setup_nonnuma(void)803 static void __init setup_nonnuma(void)
804 {
805 unsigned long top_of_ram = memblock_end_of_DRAM();
806 unsigned long total_ram = memblock_phys_mem_size();
807 unsigned long start_pfn, end_pfn;
808 unsigned int nid = 0;
809 int i;
810
811 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
812 top_of_ram, total_ram);
813 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
814 (top_of_ram - total_ram) >> 20);
815
816 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
817 fake_numa_create_new_node(end_pfn, &nid);
818 memblock_set_node(PFN_PHYS(start_pfn),
819 PFN_PHYS(end_pfn - start_pfn),
820 &memblock.memory, nid);
821 node_set_online(nid);
822 }
823 }
824
dump_numa_cpu_topology(void)825 void __init dump_numa_cpu_topology(void)
826 {
827 unsigned int node;
828 unsigned int cpu, count;
829
830 if (!numa_enabled)
831 return;
832
833 for_each_online_node(node) {
834 pr_info("Node %d CPUs:", node);
835
836 count = 0;
837 /*
838 * If we used a CPU iterator here we would miss printing
839 * the holes in the cpumap.
840 */
841 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
842 if (cpumask_test_cpu(cpu,
843 node_to_cpumask_map[node])) {
844 if (count == 0)
845 pr_cont(" %u", cpu);
846 ++count;
847 } else {
848 if (count > 1)
849 pr_cont("-%u", cpu - 1);
850 count = 0;
851 }
852 }
853
854 if (count > 1)
855 pr_cont("-%u", nr_cpu_ids - 1);
856 pr_cont("\n");
857 }
858 }
859
860 /* Initialize NODE_DATA for a node on the local memory */
setup_node_data(int nid,u64 start_pfn,u64 end_pfn)861 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
862 {
863 u64 spanned_pages = end_pfn - start_pfn;
864 const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
865 u64 nd_pa;
866 void *nd;
867 int tnid;
868
869 nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
870 if (!nd_pa)
871 panic("Cannot allocate %zu bytes for node %d data\n",
872 nd_size, nid);
873
874 nd = __va(nd_pa);
875
876 /* report and initialize */
877 pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n",
878 nd_pa, nd_pa + nd_size - 1);
879 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
880 if (tnid != nid)
881 pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid);
882
883 node_data[nid] = nd;
884 memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
885 NODE_DATA(nid)->node_id = nid;
886 NODE_DATA(nid)->node_start_pfn = start_pfn;
887 NODE_DATA(nid)->node_spanned_pages = spanned_pages;
888 }
889
find_possible_nodes(void)890 static void __init find_possible_nodes(void)
891 {
892 struct device_node *rtas;
893 const __be32 *domains = NULL;
894 int prop_length, max_nodes;
895 u32 i;
896
897 if (!numa_enabled)
898 return;
899
900 rtas = of_find_node_by_path("/rtas");
901 if (!rtas)
902 return;
903
904 /*
905 * ibm,current-associativity-domains is a fairly recent property. If
906 * it doesn't exist, then fallback on ibm,max-associativity-domains.
907 * Current denotes what the platform can support compared to max
908 * which denotes what the Hypervisor can support.
909 *
910 * If the LPAR is migratable, new nodes might be activated after a LPM,
911 * so we should consider the max number in that case.
912 */
913 if (!of_get_property(of_root, "ibm,migratable-partition", NULL))
914 domains = of_get_property(rtas,
915 "ibm,current-associativity-domains",
916 &prop_length);
917 if (!domains) {
918 domains = of_get_property(rtas, "ibm,max-associativity-domains",
919 &prop_length);
920 if (!domains)
921 goto out;
922 }
923
924 max_nodes = of_read_number(&domains[min_common_depth], 1);
925 pr_info("Partition configured for %d NUMA nodes.\n", max_nodes);
926
927 for (i = 0; i < max_nodes; i++) {
928 if (!node_possible(i))
929 node_set(i, node_possible_map);
930 }
931
932 prop_length /= sizeof(int);
933 if (prop_length > min_common_depth + 2)
934 coregroup_enabled = 1;
935
936 out:
937 of_node_put(rtas);
938 }
939
mem_topology_setup(void)940 void __init mem_topology_setup(void)
941 {
942 int cpu;
943
944 /*
945 * Linux/mm assumes node 0 to be online at boot. However this is not
946 * true on PowerPC, where node 0 is similar to any other node, it
947 * could be cpuless, memoryless node. So force node 0 to be offline
948 * for now. This will prevent cpuless, memoryless node 0 showing up
949 * unnecessarily as online. If a node has cpus or memory that need
950 * to be online, then node will anyway be marked online.
951 */
952 node_set_offline(0);
953
954 if (parse_numa_properties())
955 setup_nonnuma();
956
957 /*
958 * Modify the set of possible NUMA nodes to reflect information
959 * available about the set of online nodes, and the set of nodes
960 * that we expect to make use of for this platform's affinity
961 * calculations.
962 */
963 nodes_and(node_possible_map, node_possible_map, node_online_map);
964
965 find_possible_nodes();
966
967 setup_node_to_cpumask_map();
968
969 reset_numa_cpu_lookup_table();
970
971 for_each_possible_cpu(cpu) {
972 /*
973 * Powerpc with CONFIG_NUMA always used to have a node 0,
974 * even if it was memoryless or cpuless. For all cpus that
975 * are possible but not present, cpu_to_node() would point
976 * to node 0. To remove a cpuless, memoryless dummy node,
977 * powerpc need to make sure all possible but not present
978 * cpu_to_node are set to a proper node.
979 */
980 numa_setup_cpu(cpu);
981 }
982 }
983
initmem_init(void)984 void __init initmem_init(void)
985 {
986 int nid;
987
988 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
989 max_pfn = max_low_pfn;
990
991 memblock_dump_all();
992
993 for_each_online_node(nid) {
994 unsigned long start_pfn, end_pfn;
995
996 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
997 setup_node_data(nid, start_pfn, end_pfn);
998 }
999
1000 sparse_init();
1001
1002 /*
1003 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
1004 * even before we online them, so that we can use cpu_to_{node,mem}
1005 * early in boot, cf. smp_prepare_cpus().
1006 * _nocalls() + manual invocation is used because cpuhp is not yet
1007 * initialized for the boot CPU.
1008 */
1009 cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
1010 ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
1011 }
1012
early_numa(char * p)1013 static int __init early_numa(char *p)
1014 {
1015 if (!p)
1016 return 0;
1017
1018 if (strstr(p, "off"))
1019 numa_enabled = 0;
1020
1021 if (strstr(p, "debug"))
1022 numa_debug = 1;
1023
1024 p = strstr(p, "fake=");
1025 if (p)
1026 cmdline = p + strlen("fake=");
1027
1028 return 0;
1029 }
1030 early_param("numa", early_numa);
1031
1032 #ifdef CONFIG_MEMORY_HOTPLUG
1033 /*
1034 * Find the node associated with a hot added memory section for
1035 * memory represented in the device tree by the property
1036 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1037 */
hot_add_drconf_scn_to_nid(unsigned long scn_addr)1038 static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
1039 {
1040 struct drmem_lmb *lmb;
1041 unsigned long lmb_size;
1042 int nid = NUMA_NO_NODE;
1043
1044 lmb_size = drmem_lmb_size();
1045
1046 for_each_drmem_lmb(lmb) {
1047 /* skip this block if it is reserved or not assigned to
1048 * this partition */
1049 if ((lmb->flags & DRCONF_MEM_RESERVED)
1050 || !(lmb->flags & DRCONF_MEM_ASSIGNED))
1051 continue;
1052
1053 if ((scn_addr < lmb->base_addr)
1054 || (scn_addr >= (lmb->base_addr + lmb_size)))
1055 continue;
1056
1057 nid = of_drconf_to_nid_single(lmb);
1058 break;
1059 }
1060
1061 return nid;
1062 }
1063
1064 /*
1065 * Find the node associated with a hot added memory section for memory
1066 * represented in the device tree as a node (i.e. memory@XXXX) for
1067 * each memblock.
1068 */
hot_add_node_scn_to_nid(unsigned long scn_addr)1069 static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1070 {
1071 struct device_node *memory;
1072 int nid = NUMA_NO_NODE;
1073
1074 for_each_node_by_type(memory, "memory") {
1075 unsigned long start, size;
1076 int ranges;
1077 const __be32 *memcell_buf;
1078 unsigned int len;
1079
1080 memcell_buf = of_get_property(memory, "reg", &len);
1081 if (!memcell_buf || len <= 0)
1082 continue;
1083
1084 /* ranges in cell */
1085 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1086
1087 while (ranges--) {
1088 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1089 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1090
1091 if ((scn_addr < start) || (scn_addr >= (start + size)))
1092 continue;
1093
1094 nid = of_node_to_nid_single(memory);
1095 break;
1096 }
1097
1098 if (nid >= 0)
1099 break;
1100 }
1101
1102 of_node_put(memory);
1103
1104 return nid;
1105 }
1106
1107 /*
1108 * Find the node associated with a hot added memory section. Section
1109 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1110 * sections are fully contained within a single MEMBLOCK.
1111 */
hot_add_scn_to_nid(unsigned long scn_addr)1112 int hot_add_scn_to_nid(unsigned long scn_addr)
1113 {
1114 struct device_node *memory = NULL;
1115 int nid;
1116
1117 if (!numa_enabled)
1118 return first_online_node;
1119
1120 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1121 if (memory) {
1122 nid = hot_add_drconf_scn_to_nid(scn_addr);
1123 of_node_put(memory);
1124 } else {
1125 nid = hot_add_node_scn_to_nid(scn_addr);
1126 }
1127
1128 if (nid < 0 || !node_possible(nid))
1129 nid = first_online_node;
1130
1131 return nid;
1132 }
1133
hot_add_drconf_memory_max(void)1134 static u64 hot_add_drconf_memory_max(void)
1135 {
1136 struct device_node *memory = NULL;
1137 struct device_node *dn = NULL;
1138 const __be64 *lrdr = NULL;
1139
1140 dn = of_find_node_by_path("/rtas");
1141 if (dn) {
1142 lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1143 of_node_put(dn);
1144 if (lrdr)
1145 return be64_to_cpup(lrdr);
1146 }
1147
1148 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1149 if (memory) {
1150 of_node_put(memory);
1151 return drmem_lmb_memory_max();
1152 }
1153 return 0;
1154 }
1155
1156 /*
1157 * memory_hotplug_max - return max address of memory that may be added
1158 *
1159 * This is currently only used on systems that support drconfig memory
1160 * hotplug.
1161 */
memory_hotplug_max(void)1162 u64 memory_hotplug_max(void)
1163 {
1164 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1165 }
1166 #endif /* CONFIG_MEMORY_HOTPLUG */
1167
1168 /* Virtual Processor Home Node (VPHN) support */
1169 #ifdef CONFIG_PPC_SPLPAR
1170 static int topology_inited;
1171
1172 /*
1173 * Retrieve the new associativity information for a virtual processor's
1174 * home node.
1175 */
vphn_get_associativity(unsigned long cpu,__be32 * associativity)1176 static long vphn_get_associativity(unsigned long cpu,
1177 __be32 *associativity)
1178 {
1179 long rc;
1180
1181 rc = hcall_vphn(get_hard_smp_processor_id(cpu),
1182 VPHN_FLAG_VCPU, associativity);
1183
1184 switch (rc) {
1185 case H_SUCCESS:
1186 dbg("VPHN hcall succeeded. Reset polling...\n");
1187 goto out;
1188
1189 case H_FUNCTION:
1190 pr_err_ratelimited("VPHN unsupported. Disabling polling...\n");
1191 break;
1192 case H_HARDWARE:
1193 pr_err_ratelimited("hcall_vphn() experienced a hardware fault "
1194 "preventing VPHN. Disabling polling...\n");
1195 break;
1196 case H_PARAMETER:
1197 pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. "
1198 "Disabling polling...\n");
1199 break;
1200 default:
1201 pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n"
1202 , rc);
1203 break;
1204 }
1205 out:
1206 return rc;
1207 }
1208
find_and_online_cpu_nid(int cpu)1209 int find_and_online_cpu_nid(int cpu)
1210 {
1211 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1212 int new_nid;
1213
1214 /* Use associativity from first thread for all siblings */
1215 if (vphn_get_associativity(cpu, associativity))
1216 return cpu_to_node(cpu);
1217
1218 new_nid = associativity_to_nid(associativity);
1219 if (new_nid < 0 || !node_possible(new_nid))
1220 new_nid = first_online_node;
1221
1222 if (NODE_DATA(new_nid) == NULL) {
1223 #ifdef CONFIG_MEMORY_HOTPLUG
1224 /*
1225 * Need to ensure that NODE_DATA is initialized for a node from
1226 * available memory (see memblock_alloc_try_nid). If unable to
1227 * init the node, then default to nearest node that has memory
1228 * installed. Skip onlining a node if the subsystems are not
1229 * yet initialized.
1230 */
1231 if (!topology_inited || try_online_node(new_nid))
1232 new_nid = first_online_node;
1233 #else
1234 /*
1235 * Default to using the nearest node that has memory installed.
1236 * Otherwise, it would be necessary to patch the kernel MM code
1237 * to deal with more memoryless-node error conditions.
1238 */
1239 new_nid = first_online_node;
1240 #endif
1241 }
1242
1243 pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
1244 cpu, new_nid);
1245 return new_nid;
1246 }
1247
cpu_to_coregroup_id(int cpu)1248 int cpu_to_coregroup_id(int cpu)
1249 {
1250 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1251 int index;
1252
1253 if (cpu < 0 || cpu > nr_cpu_ids)
1254 return -1;
1255
1256 if (!coregroup_enabled)
1257 goto out;
1258
1259 if (!firmware_has_feature(FW_FEATURE_VPHN))
1260 goto out;
1261
1262 if (vphn_get_associativity(cpu, associativity))
1263 goto out;
1264
1265 index = of_read_number(associativity, 1);
1266 if (index > min_common_depth + 1)
1267 return of_read_number(&associativity[index - 1], 1);
1268
1269 out:
1270 return cpu_to_core_id(cpu);
1271 }
1272
topology_update_init(void)1273 static int topology_update_init(void)
1274 {
1275 topology_inited = 1;
1276 return 0;
1277 }
1278 device_initcall(topology_update_init);
1279 #endif /* CONFIG_PPC_SPLPAR */
1280