• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 
18 /*
19  * We need the mmu code to access both 32-bit and 64-bit guest ptes,
20  * so the code in this file is compiled twice, once per pte size.
21  */
22 
23 #if PTTYPE == 64
24 	#define pt_element_t u64
25 	#define guest_walker guest_walker64
26 	#define FNAME(name) paging##64_##name
27 	#define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK
28 	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
29 	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
30 	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
31 	#define PT_LEVEL_BITS PT64_LEVEL_BITS
32 	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
33 	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
34 	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
35 	#ifdef CONFIG_X86_64
36 	#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
37 	#define CMPXCHG cmpxchg
38 	#else
39 	#define CMPXCHG cmpxchg64
40 	#define PT_MAX_FULL_LEVELS 2
41 	#endif
42 #elif PTTYPE == 32
43 	#define pt_element_t u32
44 	#define guest_walker guest_walker32
45 	#define FNAME(name) paging##32_##name
46 	#define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
47 	#define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
48 	#define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
49 	#define PT_INDEX(addr, level) PT32_INDEX(addr, level)
50 	#define PT_LEVEL_BITS PT32_LEVEL_BITS
51 	#define PT_MAX_FULL_LEVELS 2
52 	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
53 	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
54 	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
55 	#define CMPXCHG cmpxchg
56 #elif PTTYPE == PTTYPE_EPT
57 	#define pt_element_t u64
58 	#define guest_walker guest_walkerEPT
59 	#define FNAME(name) ept_##name
60 	#define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK
61 	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
62 	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
63 	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
64 	#define PT_LEVEL_BITS PT64_LEVEL_BITS
65 	#define PT_GUEST_DIRTY_SHIFT 9
66 	#define PT_GUEST_ACCESSED_SHIFT 8
67 	#define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad)
68 	#define CMPXCHG cmpxchg64
69 	#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
70 #else
71 	#error Invalid PTTYPE value
72 #endif
73 
74 #define PT_GUEST_DIRTY_MASK    (1 << PT_GUEST_DIRTY_SHIFT)
75 #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
76 
77 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
78 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K)
79 
80 /*
81  * The guest_walker structure emulates the behavior of the hardware page
82  * table walker.
83  */
84 struct guest_walker {
85 	int level;
86 	unsigned max_level;
87 	gfn_t table_gfn[PT_MAX_FULL_LEVELS];
88 	pt_element_t ptes[PT_MAX_FULL_LEVELS];
89 	pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
90 	gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
91 	pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
92 	bool pte_writable[PT_MAX_FULL_LEVELS];
93 	unsigned int pt_access[PT_MAX_FULL_LEVELS];
94 	unsigned int pte_access;
95 	gfn_t gfn;
96 	struct x86_exception fault;
97 };
98 
gpte_to_gfn_lvl(pt_element_t gpte,int lvl)99 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
100 {
101 	return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
102 }
103 
FNAME(protect_clean_gpte)104 static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
105 					     unsigned gpte)
106 {
107 	unsigned mask;
108 
109 	/* dirty bit is not supported, so no need to track it */
110 	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
111 		return;
112 
113 	BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
114 
115 	mask = (unsigned)~ACC_WRITE_MASK;
116 	/* Allow write access to dirty gptes */
117 	mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
118 		PT_WRITABLE_MASK;
119 	*access &= mask;
120 }
121 
FNAME(is_present_gpte)122 static inline int FNAME(is_present_gpte)(unsigned long pte)
123 {
124 #if PTTYPE != PTTYPE_EPT
125 	return pte & PT_PRESENT_MASK;
126 #else
127 	return pte & 7;
128 #endif
129 }
130 
FNAME(is_bad_mt_xwr)131 static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte)
132 {
133 #if PTTYPE != PTTYPE_EPT
134 	return false;
135 #else
136 	return __is_bad_mt_xwr(rsvd_check, gpte);
137 #endif
138 }
139 
FNAME(is_rsvd_bits_set)140 static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
141 {
142 	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) ||
143 	       FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte);
144 }
145 
FNAME(cmpxchg_gpte)146 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
147 			       pt_element_t __user *ptep_user, unsigned index,
148 			       pt_element_t orig_pte, pt_element_t new_pte)
149 {
150 	int npages;
151 	pt_element_t ret;
152 	pt_element_t *table;
153 	struct page *page;
154 
155 	npages = get_user_pages_fast((unsigned long)ptep_user, 1, FOLL_WRITE, &page);
156 	if (likely(npages == 1)) {
157 		table = kmap_atomic(page);
158 		ret = CMPXCHG(&table[index], orig_pte, new_pte);
159 		kunmap_atomic(table);
160 
161 		kvm_release_page_dirty(page);
162 	} else {
163 		struct vm_area_struct *vma;
164 		unsigned long vaddr = (unsigned long)ptep_user & PAGE_MASK;
165 		unsigned long pfn;
166 		unsigned long paddr;
167 
168 		mmap_read_lock(current->mm);
169 		vma = find_vma_intersection(current->mm, vaddr, vaddr + PAGE_SIZE);
170 		if (!vma || !(vma->vm_flags & VM_PFNMAP)) {
171 			mmap_read_unlock(current->mm);
172 			return -EFAULT;
173 		}
174 		pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
175 		paddr = pfn << PAGE_SHIFT;
176 		table = memremap(paddr, PAGE_SIZE, MEMREMAP_WB);
177 		if (!table) {
178 			mmap_read_unlock(current->mm);
179 			return -EFAULT;
180 		}
181 		ret = CMPXCHG(&table[index], orig_pte, new_pte);
182 		memunmap(table);
183 		mmap_read_unlock(current->mm);
184 	}
185 
186 	return (ret != orig_pte);
187 }
188 
FNAME(prefetch_invalid_gpte)189 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
190 				  struct kvm_mmu_page *sp, u64 *spte,
191 				  u64 gpte)
192 {
193 	if (!FNAME(is_present_gpte)(gpte))
194 		goto no_present;
195 
196 	/* if accessed bit is not supported prefetch non accessed gpte */
197 	if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
198 	    !(gpte & PT_GUEST_ACCESSED_MASK))
199 		goto no_present;
200 
201 	if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K))
202 		goto no_present;
203 
204 	return false;
205 
206 no_present:
207 	drop_spte(vcpu->kvm, spte);
208 	return true;
209 }
210 
211 /*
212  * For PTTYPE_EPT, a page table can be executable but not readable
213  * on supported processors. Therefore, set_spte does not automatically
214  * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
215  * to signify readability since it isn't used in the EPT case
216  */
FNAME(gpte_access)217 static inline unsigned FNAME(gpte_access)(u64 gpte)
218 {
219 	unsigned access;
220 #if PTTYPE == PTTYPE_EPT
221 	access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
222 		((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
223 		((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
224 #else
225 	BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
226 	BUILD_BUG_ON(ACC_EXEC_MASK != 1);
227 	access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
228 	/* Combine NX with P (which is set here) to get ACC_EXEC_MASK.  */
229 	access ^= (gpte >> PT64_NX_SHIFT);
230 #endif
231 
232 	return access;
233 }
234 
FNAME(update_accessed_dirty_bits)235 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
236 					     struct kvm_mmu *mmu,
237 					     struct guest_walker *walker,
238 					     gpa_t addr, int write_fault)
239 {
240 	unsigned level, index;
241 	pt_element_t pte, orig_pte;
242 	pt_element_t __user *ptep_user;
243 	gfn_t table_gfn;
244 	int ret;
245 
246 	/* dirty/accessed bits are not supported, so no need to update them */
247 	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
248 		return 0;
249 
250 	for (level = walker->max_level; level >= walker->level; --level) {
251 		pte = orig_pte = walker->ptes[level - 1];
252 		table_gfn = walker->table_gfn[level - 1];
253 		ptep_user = walker->ptep_user[level - 1];
254 		index = offset_in_page(ptep_user) / sizeof(pt_element_t);
255 		if (!(pte & PT_GUEST_ACCESSED_MASK)) {
256 			trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
257 			pte |= PT_GUEST_ACCESSED_MASK;
258 		}
259 		if (level == walker->level && write_fault &&
260 				!(pte & PT_GUEST_DIRTY_MASK)) {
261 			trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
262 #if PTTYPE == PTTYPE_EPT
263 			if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr))
264 				return -EINVAL;
265 #endif
266 			pte |= PT_GUEST_DIRTY_MASK;
267 		}
268 		if (pte == orig_pte)
269 			continue;
270 
271 		/*
272 		 * If the slot is read-only, simply do not process the accessed
273 		 * and dirty bits.  This is the correct thing to do if the slot
274 		 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
275 		 * are only supported if the accessed and dirty bits are already
276 		 * set in the ROM (so that MMIO writes are never needed).
277 		 *
278 		 * Note that NPT does not allow this at all and faults, since
279 		 * it always wants nested page table entries for the guest
280 		 * page tables to be writable.  And EPT works but will simply
281 		 * overwrite the read-only memory to set the accessed and dirty
282 		 * bits.
283 		 */
284 		if (unlikely(!walker->pte_writable[level - 1]))
285 			continue;
286 
287 		ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
288 		if (ret)
289 			return ret;
290 
291 		kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
292 		walker->ptes[level - 1] = pte;
293 	}
294 	return 0;
295 }
296 
FNAME(gpte_pkeys)297 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
298 {
299 	unsigned pkeys = 0;
300 #if PTTYPE == 64
301 	pte_t pte = {.pte = gpte};
302 
303 	pkeys = pte_flags_pkey(pte_flags(pte));
304 #endif
305 	return pkeys;
306 }
307 
308 /*
309  * Fetch a guest pte for a guest virtual address, or for an L2's GPA.
310  */
FNAME(walk_addr_generic)311 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
312 				    struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
313 				    gpa_t addr, u32 access)
314 {
315 	int ret;
316 	pt_element_t pte;
317 	pt_element_t __user *ptep_user;
318 	gfn_t table_gfn;
319 	u64 pt_access, pte_access;
320 	unsigned index, accessed_dirty, pte_pkey;
321 	unsigned nested_access;
322 	gpa_t pte_gpa;
323 	bool have_ad;
324 	int offset;
325 	u64 walk_nx_mask = 0;
326 	const int write_fault = access & PFERR_WRITE_MASK;
327 	const int user_fault  = access & PFERR_USER_MASK;
328 	const int fetch_fault = access & PFERR_FETCH_MASK;
329 	u16 errcode = 0;
330 	gpa_t real_gpa;
331 	gfn_t gfn;
332 
333 	trace_kvm_mmu_pagetable_walk(addr, access);
334 retry_walk:
335 	walker->level = mmu->root_level;
336 	pte           = mmu->get_guest_pgd(vcpu);
337 	have_ad       = PT_HAVE_ACCESSED_DIRTY(mmu);
338 
339 #if PTTYPE == 64
340 	walk_nx_mask = 1ULL << PT64_NX_SHIFT;
341 	if (walker->level == PT32E_ROOT_LEVEL) {
342 		pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
343 		trace_kvm_mmu_paging_element(pte, walker->level);
344 		if (!FNAME(is_present_gpte)(pte))
345 			goto error;
346 		--walker->level;
347 	}
348 #endif
349 	walker->max_level = walker->level;
350 	ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
351 
352 	/*
353 	 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
354 	 * by the MOV to CR instruction are treated as reads and do not cause the
355 	 * processor to set the dirty flag in any EPT paging-structure entry.
356 	 */
357 	nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
358 
359 	pte_access = ~0;
360 	++walker->level;
361 
362 	do {
363 		unsigned long host_addr;
364 
365 		pt_access = pte_access;
366 		--walker->level;
367 
368 		index = PT_INDEX(addr, walker->level);
369 		table_gfn = gpte_to_gfn(pte);
370 		offset    = index * sizeof(pt_element_t);
371 		pte_gpa   = gfn_to_gpa(table_gfn) + offset;
372 
373 		BUG_ON(walker->level < 1);
374 		walker->table_gfn[walker->level - 1] = table_gfn;
375 		walker->pte_gpa[walker->level - 1] = pte_gpa;
376 
377 		real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
378 					      nested_access,
379 					      &walker->fault);
380 
381 		/*
382 		 * FIXME: This can happen if emulation (for of an INS/OUTS
383 		 * instruction) triggers a nested page fault.  The exit
384 		 * qualification / exit info field will incorrectly have
385 		 * "guest page access" as the nested page fault's cause,
386 		 * instead of "guest page structure access".  To fix this,
387 		 * the x86_exception struct should be augmented with enough
388 		 * information to fix the exit_qualification or exit_info_1
389 		 * fields.
390 		 */
391 		if (unlikely(real_gpa == UNMAPPED_GVA))
392 			return 0;
393 
394 		host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gpa_to_gfn(real_gpa),
395 					    &walker->pte_writable[walker->level - 1]);
396 		if (unlikely(kvm_is_error_hva(host_addr)))
397 			goto error;
398 
399 		ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
400 		if (unlikely(__get_user(pte, ptep_user)))
401 			goto error;
402 		walker->ptep_user[walker->level - 1] = ptep_user;
403 
404 		trace_kvm_mmu_paging_element(pte, walker->level);
405 
406 		/*
407 		 * Inverting the NX it lets us AND it like other
408 		 * permission bits.
409 		 */
410 		pte_access = pt_access & (pte ^ walk_nx_mask);
411 
412 		if (unlikely(!FNAME(is_present_gpte)(pte)))
413 			goto error;
414 
415 		if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) {
416 			errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
417 			goto error;
418 		}
419 
420 		walker->ptes[walker->level - 1] = pte;
421 
422 		/* Convert to ACC_*_MASK flags for struct guest_walker.  */
423 		walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
424 	} while (!is_last_gpte(mmu, walker->level, pte));
425 
426 	pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
427 	accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
428 
429 	/* Convert to ACC_*_MASK flags for struct guest_walker.  */
430 	walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
431 	errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
432 	if (unlikely(errcode))
433 		goto error;
434 
435 	gfn = gpte_to_gfn_lvl(pte, walker->level);
436 	gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
437 
438 	if (PTTYPE == 32 && walker->level > PG_LEVEL_4K && is_cpuid_PSE36())
439 		gfn += pse36_gfn_delta(pte);
440 
441 	real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
442 	if (real_gpa == UNMAPPED_GVA)
443 		return 0;
444 
445 	walker->gfn = real_gpa >> PAGE_SHIFT;
446 
447 	if (!write_fault)
448 		FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
449 	else
450 		/*
451 		 * On a write fault, fold the dirty bit into accessed_dirty.
452 		 * For modes without A/D bits support accessed_dirty will be
453 		 * always clear.
454 		 */
455 		accessed_dirty &= pte >>
456 			(PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
457 
458 	if (unlikely(!accessed_dirty)) {
459 		ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker,
460 							addr, write_fault);
461 		if (unlikely(ret < 0))
462 			goto error;
463 		else if (ret)
464 			goto retry_walk;
465 	}
466 
467 	pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
468 		 __func__, (u64)pte, walker->pte_access,
469 		 walker->pt_access[walker->level - 1]);
470 	return 1;
471 
472 error:
473 	errcode |= write_fault | user_fault;
474 	if (fetch_fault && (mmu->nx || mmu->mmu_role.ext.cr4_smep))
475 		errcode |= PFERR_FETCH_MASK;
476 
477 	walker->fault.vector = PF_VECTOR;
478 	walker->fault.error_code_valid = true;
479 	walker->fault.error_code = errcode;
480 
481 #if PTTYPE == PTTYPE_EPT
482 	/*
483 	 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
484 	 * misconfiguration requires to be injected. The detection is
485 	 * done by is_rsvd_bits_set() above.
486 	 *
487 	 * We set up the value of exit_qualification to inject:
488 	 * [2:0] - Derive from the access bits. The exit_qualification might be
489 	 *         out of date if it is serving an EPT misconfiguration.
490 	 * [5:3] - Calculated by the page walk of the guest EPT page tables
491 	 * [7:8] - Derived from [7:8] of real exit_qualification
492 	 *
493 	 * The other bits are set to 0.
494 	 */
495 	if (!(errcode & PFERR_RSVD_MASK)) {
496 		vcpu->arch.exit_qualification &= 0x180;
497 		if (write_fault)
498 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
499 		if (user_fault)
500 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
501 		if (fetch_fault)
502 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
503 		vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3;
504 	}
505 #endif
506 	walker->fault.address = addr;
507 	walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
508 
509 	trace_kvm_mmu_walker_error(walker->fault.error_code);
510 	return 0;
511 }
512 
FNAME(walk_addr)513 static int FNAME(walk_addr)(struct guest_walker *walker,
514 			    struct kvm_vcpu *vcpu, gpa_t addr, u32 access)
515 {
516 	return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
517 					access);
518 }
519 
520 #if PTTYPE != PTTYPE_EPT
FNAME(walk_addr_nested)521 static int FNAME(walk_addr_nested)(struct guest_walker *walker,
522 				   struct kvm_vcpu *vcpu, gva_t addr,
523 				   u32 access)
524 {
525 	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
526 					addr, access);
527 }
528 #endif
529 
530 static bool
FNAME(prefetch_gpte)531 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
532 		     u64 *spte, pt_element_t gpte, bool no_dirty_log)
533 {
534 	unsigned pte_access;
535 	gfn_t gfn;
536 	kvm_pfn_t pfn;
537 
538 	if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
539 		return false;
540 
541 	pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
542 
543 	gfn = gpte_to_gfn(gpte);
544 	pte_access = sp->role.access & FNAME(gpte_access)(gpte);
545 	FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
546 	pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
547 			no_dirty_log && (pte_access & ACC_WRITE_MASK));
548 	if (is_error_pfn(pfn))
549 		return false;
550 
551 	/*
552 	 * we call mmu_set_spte() with host_writable = true because
553 	 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
554 	 */
555 	mmu_set_spte(vcpu, spte, pte_access, false, PG_LEVEL_4K, gfn, pfn,
556 		     true, true);
557 
558 	kvm_release_pfn_clean(pfn);
559 	return true;
560 }
561 
FNAME(update_pte)562 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
563 			      u64 *spte, const void *pte)
564 {
565 	pt_element_t gpte = *(const pt_element_t *)pte;
566 
567 	FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
568 }
569 
FNAME(gpte_changed)570 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
571 				struct guest_walker *gw, int level)
572 {
573 	pt_element_t curr_pte;
574 	gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
575 	u64 mask;
576 	int r, index;
577 
578 	if (level == PG_LEVEL_4K) {
579 		mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
580 		base_gpa = pte_gpa & ~mask;
581 		index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
582 
583 		r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
584 				gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
585 		curr_pte = gw->prefetch_ptes[index];
586 	} else
587 		r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
588 				  &curr_pte, sizeof(curr_pte));
589 
590 	return r || curr_pte != gw->ptes[level - 1];
591 }
592 
FNAME(pte_prefetch)593 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
594 				u64 *sptep)
595 {
596 	struct kvm_mmu_page *sp;
597 	pt_element_t *gptep = gw->prefetch_ptes;
598 	u64 *spte;
599 	int i;
600 
601 	sp = sptep_to_sp(sptep);
602 
603 	if (sp->role.level > PG_LEVEL_4K)
604 		return;
605 
606 	if (sp->role.direct)
607 		return __direct_pte_prefetch(vcpu, sp, sptep);
608 
609 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
610 	spte = sp->spt + i;
611 
612 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
613 		if (spte == sptep)
614 			continue;
615 
616 		if (is_shadow_present_pte(*spte))
617 			continue;
618 
619 		if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
620 			break;
621 	}
622 }
623 
624 /*
625  * Fetch a shadow pte for a specific level in the paging hierarchy.
626  * If the guest tries to write a write-protected page, we need to
627  * emulate this operation, return 1 to indicate this case.
628  */
FNAME(fetch)629 static int FNAME(fetch)(struct kvm_vcpu *vcpu, gpa_t addr,
630 			 struct guest_walker *gw, u32 error_code,
631 			 int max_level, kvm_pfn_t pfn, bool map_writable,
632 			 bool prefault)
633 {
634 	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
635 	bool write_fault = error_code & PFERR_WRITE_MASK;
636 	bool exec = error_code & PFERR_FETCH_MASK;
637 	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
638 	struct kvm_mmu_page *sp = NULL;
639 	struct kvm_shadow_walk_iterator it;
640 	unsigned int direct_access, access;
641 	int top_level, level, req_level, ret;
642 	gfn_t base_gfn = gw->gfn;
643 
644 	direct_access = gw->pte_access;
645 
646 	top_level = vcpu->arch.mmu->root_level;
647 	if (top_level == PT32E_ROOT_LEVEL)
648 		top_level = PT32_ROOT_LEVEL;
649 	/*
650 	 * Verify that the top-level gpte is still there.  Since the page
651 	 * is a root page, it is either write protected (and cannot be
652 	 * changed from now on) or it is invalid (in which case, we don't
653 	 * really care if it changes underneath us after this point).
654 	 */
655 	if (FNAME(gpte_changed)(vcpu, gw, top_level))
656 		goto out_gpte_changed;
657 
658 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
659 		goto out_gpte_changed;
660 
661 	for (shadow_walk_init(&it, vcpu, addr);
662 	     shadow_walk_okay(&it) && it.level > gw->level;
663 	     shadow_walk_next(&it)) {
664 		gfn_t table_gfn;
665 
666 		clear_sp_write_flooding_count(it.sptep);
667 		drop_large_spte(vcpu, it.sptep);
668 
669 		sp = NULL;
670 		if (!is_shadow_present_pte(*it.sptep)) {
671 			table_gfn = gw->table_gfn[it.level - 2];
672 			access = gw->pt_access[it.level - 2];
673 			sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
674 					      false, access);
675 		}
676 
677 		/*
678 		 * Verify that the gpte in the page we've just write
679 		 * protected is still there.
680 		 */
681 		if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
682 			goto out_gpte_changed;
683 
684 		if (sp)
685 			link_shadow_page(vcpu, it.sptep, sp);
686 	}
687 
688 	level = kvm_mmu_hugepage_adjust(vcpu, gw->gfn, max_level, &pfn,
689 					huge_page_disallowed, &req_level);
690 
691 	trace_kvm_mmu_spte_requested(addr, gw->level, pfn);
692 
693 	for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
694 		clear_sp_write_flooding_count(it.sptep);
695 
696 		/*
697 		 * We cannot overwrite existing page tables with an NX
698 		 * large page, as the leaf could be executable.
699 		 */
700 		if (nx_huge_page_workaround_enabled)
701 			disallowed_hugepage_adjust(*it.sptep, gw->gfn, it.level,
702 						   &pfn, &level);
703 
704 		base_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
705 		if (it.level == level)
706 			break;
707 
708 		validate_direct_spte(vcpu, it.sptep, direct_access);
709 
710 		drop_large_spte(vcpu, it.sptep);
711 
712 		if (!is_shadow_present_pte(*it.sptep)) {
713 			sp = kvm_mmu_get_page(vcpu, base_gfn, addr,
714 					      it.level - 1, true, direct_access);
715 			link_shadow_page(vcpu, it.sptep, sp);
716 			if (huge_page_disallowed && req_level >= it.level)
717 				account_huge_nx_page(vcpu->kvm, sp);
718 		}
719 	}
720 
721 	ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
722 			   it.level, base_gfn, pfn, prefault, map_writable);
723 	if (ret == RET_PF_SPURIOUS)
724 		return ret;
725 
726 	FNAME(pte_prefetch)(vcpu, gw, it.sptep);
727 	++vcpu->stat.pf_fixed;
728 	return ret;
729 
730 out_gpte_changed:
731 	return RET_PF_RETRY;
732 }
733 
734  /*
735  * To see whether the mapped gfn can write its page table in the current
736  * mapping.
737  *
738  * It is the helper function of FNAME(page_fault). When guest uses large page
739  * size to map the writable gfn which is used as current page table, we should
740  * force kvm to use small page size to map it because new shadow page will be
741  * created when kvm establishes shadow page table that stop kvm using large
742  * page size. Do it early can avoid unnecessary #PF and emulation.
743  *
744  * @write_fault_to_shadow_pgtable will return true if the fault gfn is
745  * currently used as its page table.
746  *
747  * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
748  * since the PDPT is always shadowed, that means, we can not use large page
749  * size to map the gfn which is used as PDPT.
750  */
751 static bool
FNAME(is_self_change_mapping)752 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
753 			      struct guest_walker *walker, bool user_fault,
754 			      bool *write_fault_to_shadow_pgtable)
755 {
756 	int level;
757 	gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
758 	bool self_changed = false;
759 
760 	if (!(walker->pte_access & ACC_WRITE_MASK ||
761 	      (!is_write_protection(vcpu) && !user_fault)))
762 		return false;
763 
764 	for (level = walker->level; level <= walker->max_level; level++) {
765 		gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
766 
767 		self_changed |= !(gfn & mask);
768 		*write_fault_to_shadow_pgtable |= !gfn;
769 	}
770 
771 	return self_changed;
772 }
773 
774 /*
775  * Page fault handler.  There are several causes for a page fault:
776  *   - there is no shadow pte for the guest pte
777  *   - write access through a shadow pte marked read only so that we can set
778  *     the dirty bit
779  *   - write access to a shadow pte marked read only so we can update the page
780  *     dirty bitmap, when userspace requests it
781  *   - mmio access; in this case we will never install a present shadow pte
782  *   - normal guest page fault due to the guest pte marked not present, not
783  *     writable, or not executable
784  *
785  *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
786  *           a negative value on error.
787  */
FNAME(page_fault)788 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gpa_t addr, u32 error_code,
789 			     bool prefault)
790 {
791 	bool write_fault = error_code & PFERR_WRITE_MASK;
792 	bool user_fault = error_code & PFERR_USER_MASK;
793 	struct guest_walker walker;
794 	int r;
795 	kvm_pfn_t pfn;
796 	unsigned long mmu_seq;
797 	bool map_writable, is_self_change_mapping;
798 	int max_level;
799 
800 	pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
801 
802 	/*
803 	 * If PFEC.RSVD is set, this is a shadow page fault.
804 	 * The bit needs to be cleared before walking guest page tables.
805 	 */
806 	error_code &= ~PFERR_RSVD_MASK;
807 
808 	/*
809 	 * Look up the guest pte for the faulting address.
810 	 */
811 	r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
812 
813 	/*
814 	 * The page is not mapped by the guest.  Let the guest handle it.
815 	 */
816 	if (!r) {
817 		pgprintk("%s: guest page fault\n", __func__);
818 		if (!prefault)
819 			kvm_inject_emulated_page_fault(vcpu, &walker.fault);
820 
821 		return RET_PF_RETRY;
822 	}
823 
824 	if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
825 		shadow_page_table_clear_flood(vcpu, addr);
826 		return RET_PF_EMULATE;
827 	}
828 
829 	r = mmu_topup_memory_caches(vcpu, true);
830 	if (r)
831 		return r;
832 
833 	vcpu->arch.write_fault_to_shadow_pgtable = false;
834 
835 	is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
836 	      &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
837 
838 	if (is_self_change_mapping)
839 		max_level = PG_LEVEL_4K;
840 	else
841 		max_level = walker.level;
842 
843 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
844 	smp_rmb();
845 
846 	if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
847 			 &map_writable))
848 		return RET_PF_RETRY;
849 
850 	if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r))
851 		return r;
852 
853 	/*
854 	 * Do not change pte_access if the pfn is a mmio page, otherwise
855 	 * we will cache the incorrect access into mmio spte.
856 	 */
857 	if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
858 	     !is_write_protection(vcpu) && !user_fault &&
859 	      !is_noslot_pfn(pfn)) {
860 		walker.pte_access |= ACC_WRITE_MASK;
861 		walker.pte_access &= ~ACC_USER_MASK;
862 
863 		/*
864 		 * If we converted a user page to a kernel page,
865 		 * so that the kernel can write to it when cr0.wp=0,
866 		 * then we should prevent the kernel from executing it
867 		 * if SMEP is enabled.
868 		 */
869 		if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
870 			walker.pte_access &= ~ACC_EXEC_MASK;
871 	}
872 
873 	r = RET_PF_RETRY;
874 	spin_lock(&vcpu->kvm->mmu_lock);
875 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
876 		goto out_unlock;
877 
878 	kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
879 	r = make_mmu_pages_available(vcpu);
880 	if (r)
881 		goto out_unlock;
882 	r = FNAME(fetch)(vcpu, addr, &walker, error_code, max_level, pfn,
883 			 map_writable, prefault);
884 	kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
885 
886 out_unlock:
887 	spin_unlock(&vcpu->kvm->mmu_lock);
888 	kvm_release_pfn_clean(pfn);
889 	return r;
890 }
891 
FNAME(get_level1_sp_gpa)892 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
893 {
894 	int offset = 0;
895 
896 	WARN_ON(sp->role.level != PG_LEVEL_4K);
897 
898 	if (PTTYPE == 32)
899 		offset = sp->role.quadrant << PT64_LEVEL_BITS;
900 
901 	return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
902 }
903 
FNAME(invlpg)904 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
905 {
906 	struct kvm_shadow_walk_iterator iterator;
907 	struct kvm_mmu_page *sp;
908 	u64 old_spte;
909 	int level;
910 	u64 *sptep;
911 
912 	vcpu_clear_mmio_info(vcpu, gva);
913 
914 	/*
915 	 * No need to check return value here, rmap_can_add() can
916 	 * help us to skip pte prefetch later.
917 	 */
918 	mmu_topup_memory_caches(vcpu, true);
919 
920 	if (!VALID_PAGE(root_hpa)) {
921 		WARN_ON(1);
922 		return;
923 	}
924 
925 	spin_lock(&vcpu->kvm->mmu_lock);
926 	for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
927 		level = iterator.level;
928 		sptep = iterator.sptep;
929 
930 		sp = sptep_to_sp(sptep);
931 		old_spte = *sptep;
932 		if (is_last_spte(old_spte, level)) {
933 			pt_element_t gpte;
934 			gpa_t pte_gpa;
935 
936 			if (!sp->unsync)
937 				break;
938 
939 			pte_gpa = FNAME(get_level1_sp_gpa)(sp);
940 			pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
941 
942 			mmu_page_zap_pte(vcpu->kvm, sp, sptep, NULL);
943 			if (is_shadow_present_pte(old_spte))
944 				kvm_flush_remote_tlbs_with_address(vcpu->kvm,
945 					sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
946 
947 			if (!rmap_can_add(vcpu))
948 				break;
949 
950 			if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
951 						       sizeof(pt_element_t)))
952 				break;
953 
954 			FNAME(update_pte)(vcpu, sp, sptep, &gpte);
955 		}
956 
957 		if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
958 			break;
959 	}
960 	spin_unlock(&vcpu->kvm->mmu_lock);
961 }
962 
963 /* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */
FNAME(gva_to_gpa)964 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t addr, u32 access,
965 			       struct x86_exception *exception)
966 {
967 	struct guest_walker walker;
968 	gpa_t gpa = UNMAPPED_GVA;
969 	int r;
970 
971 	r = FNAME(walk_addr)(&walker, vcpu, addr, access);
972 
973 	if (r) {
974 		gpa = gfn_to_gpa(walker.gfn);
975 		gpa |= addr & ~PAGE_MASK;
976 	} else if (exception)
977 		*exception = walker.fault;
978 
979 	return gpa;
980 }
981 
982 #if PTTYPE != PTTYPE_EPT
983 /* Note, gva_to_gpa_nested() is only used to translate L2 GVAs. */
FNAME(gva_to_gpa_nested)984 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gpa_t vaddr,
985 				      u32 access,
986 				      struct x86_exception *exception)
987 {
988 	struct guest_walker walker;
989 	gpa_t gpa = UNMAPPED_GVA;
990 	int r;
991 
992 #ifndef CONFIG_X86_64
993 	/* A 64-bit GVA should be impossible on 32-bit KVM. */
994 	WARN_ON_ONCE(vaddr >> 32);
995 #endif
996 
997 	r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
998 
999 	if (r) {
1000 		gpa = gfn_to_gpa(walker.gfn);
1001 		gpa |= vaddr & ~PAGE_MASK;
1002 	} else if (exception)
1003 		*exception = walker.fault;
1004 
1005 	return gpa;
1006 }
1007 #endif
1008 
1009 /*
1010  * Using the cached information from sp->gfns is safe because:
1011  * - The spte has a reference to the struct page, so the pfn for a given gfn
1012  *   can't change unless all sptes pointing to it are nuked first.
1013  *
1014  * Note:
1015  *   We should flush all tlbs if spte is dropped even though guest is
1016  *   responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
1017  *   and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
1018  *   used by guest then tlbs are not flushed, so guest is allowed to access the
1019  *   freed pages.
1020  *   And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
1021  */
FNAME(sync_page)1022 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1023 {
1024 	int i, nr_present = 0;
1025 	bool host_writable;
1026 	gpa_t first_pte_gpa;
1027 	int set_spte_ret = 0;
1028 
1029 	/* direct kvm_mmu_page can not be unsync. */
1030 	BUG_ON(sp->role.direct);
1031 
1032 	first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
1033 
1034 	for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
1035 		unsigned pte_access;
1036 		pt_element_t gpte;
1037 		gpa_t pte_gpa;
1038 		gfn_t gfn;
1039 
1040 		if (!sp->spt[i])
1041 			continue;
1042 
1043 		pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
1044 
1045 		if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
1046 					       sizeof(pt_element_t)))
1047 			return 0;
1048 
1049 		if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
1050 			/*
1051 			 * Update spte before increasing tlbs_dirty to make
1052 			 * sure no tlb flush is lost after spte is zapped; see
1053 			 * the comments in kvm_flush_remote_tlbs().
1054 			 */
1055 			smp_wmb();
1056 			vcpu->kvm->tlbs_dirty++;
1057 			continue;
1058 		}
1059 
1060 		gfn = gpte_to_gfn(gpte);
1061 		pte_access = sp->role.access;
1062 		pte_access &= FNAME(gpte_access)(gpte);
1063 		FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
1064 
1065 		if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
1066 		      &nr_present))
1067 			continue;
1068 
1069 		if (gfn != sp->gfns[i]) {
1070 			drop_spte(vcpu->kvm, &sp->spt[i]);
1071 			/*
1072 			 * The same as above where we are doing
1073 			 * prefetch_invalid_gpte().
1074 			 */
1075 			smp_wmb();
1076 			vcpu->kvm->tlbs_dirty++;
1077 			continue;
1078 		}
1079 
1080 		nr_present++;
1081 
1082 		host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
1083 
1084 		set_spte_ret |= set_spte(vcpu, &sp->spt[i],
1085 					 pte_access, PG_LEVEL_4K,
1086 					 gfn, spte_to_pfn(sp->spt[i]),
1087 					 true, false, host_writable);
1088 	}
1089 
1090 	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH)
1091 		kvm_flush_remote_tlbs(vcpu->kvm);
1092 
1093 	return nr_present;
1094 }
1095 
1096 #undef pt_element_t
1097 #undef guest_walker
1098 #undef FNAME
1099 #undef PT_BASE_ADDR_MASK
1100 #undef PT_INDEX
1101 #undef PT_LVL_ADDR_MASK
1102 #undef PT_LVL_OFFSET_MASK
1103 #undef PT_LEVEL_BITS
1104 #undef PT_MAX_FULL_LEVELS
1105 #undef gpte_to_gfn
1106 #undef gpte_to_gfn_lvl
1107 #undef CMPXCHG
1108 #undef PT_GUEST_ACCESSED_MASK
1109 #undef PT_GUEST_DIRTY_MASK
1110 #undef PT_GUEST_DIRTY_SHIFT
1111 #undef PT_GUEST_ACCESSED_SHIFT
1112 #undef PT_HAVE_ACCESSED_DIRTY
1113