1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/objtool.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "pmu.h"
14 #include "trace.h"
15 #include "vmx.h"
16 #include "x86.h"
17
18 static bool __read_mostly enable_shadow_vmcs = 1;
19 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
20
21 static bool __read_mostly nested_early_check = 0;
22 module_param(nested_early_check, bool, S_IRUGO);
23
24 #define CC(consistency_check) \
25 ({ \
26 bool failed = (consistency_check); \
27 if (failed) \
28 trace_kvm_nested_vmenter_failed(#consistency_check, 0); \
29 failed; \
30 })
31
32 /*
33 * Hyper-V requires all of these, so mark them as supported even though
34 * they are just treated the same as all-context.
35 */
36 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
37 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
38 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
39 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
40 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
41
42 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
43
44 enum {
45 VMX_VMREAD_BITMAP,
46 VMX_VMWRITE_BITMAP,
47 VMX_BITMAP_NR
48 };
49 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
50
51 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
52 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
53
54 struct shadow_vmcs_field {
55 u16 encoding;
56 u16 offset;
57 };
58 static struct shadow_vmcs_field shadow_read_only_fields[] = {
59 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
60 #include "vmcs_shadow_fields.h"
61 };
62 static int max_shadow_read_only_fields =
63 ARRAY_SIZE(shadow_read_only_fields);
64
65 static struct shadow_vmcs_field shadow_read_write_fields[] = {
66 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
67 #include "vmcs_shadow_fields.h"
68 };
69 static int max_shadow_read_write_fields =
70 ARRAY_SIZE(shadow_read_write_fields);
71
init_vmcs_shadow_fields(void)72 static void init_vmcs_shadow_fields(void)
73 {
74 int i, j;
75
76 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
77 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
78
79 for (i = j = 0; i < max_shadow_read_only_fields; i++) {
80 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
81 u16 field = entry.encoding;
82
83 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
84 (i + 1 == max_shadow_read_only_fields ||
85 shadow_read_only_fields[i + 1].encoding != field + 1))
86 pr_err("Missing field from shadow_read_only_field %x\n",
87 field + 1);
88
89 clear_bit(field, vmx_vmread_bitmap);
90 if (field & 1)
91 #ifdef CONFIG_X86_64
92 continue;
93 #else
94 entry.offset += sizeof(u32);
95 #endif
96 shadow_read_only_fields[j++] = entry;
97 }
98 max_shadow_read_only_fields = j;
99
100 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
101 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
102 u16 field = entry.encoding;
103
104 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
105 (i + 1 == max_shadow_read_write_fields ||
106 shadow_read_write_fields[i + 1].encoding != field + 1))
107 pr_err("Missing field from shadow_read_write_field %x\n",
108 field + 1);
109
110 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
111 field <= GUEST_TR_AR_BYTES,
112 "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
113
114 /*
115 * PML and the preemption timer can be emulated, but the
116 * processor cannot vmwrite to fields that don't exist
117 * on bare metal.
118 */
119 switch (field) {
120 case GUEST_PML_INDEX:
121 if (!cpu_has_vmx_pml())
122 continue;
123 break;
124 case VMX_PREEMPTION_TIMER_VALUE:
125 if (!cpu_has_vmx_preemption_timer())
126 continue;
127 break;
128 case GUEST_INTR_STATUS:
129 if (!cpu_has_vmx_apicv())
130 continue;
131 break;
132 default:
133 break;
134 }
135
136 clear_bit(field, vmx_vmwrite_bitmap);
137 clear_bit(field, vmx_vmread_bitmap);
138 if (field & 1)
139 #ifdef CONFIG_X86_64
140 continue;
141 #else
142 entry.offset += sizeof(u32);
143 #endif
144 shadow_read_write_fields[j++] = entry;
145 }
146 max_shadow_read_write_fields = j;
147 }
148
149 /*
150 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
151 * set the success or error code of an emulated VMX instruction (as specified
152 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
153 * instruction.
154 */
nested_vmx_succeed(struct kvm_vcpu * vcpu)155 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
156 {
157 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
158 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
159 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
160 return kvm_skip_emulated_instruction(vcpu);
161 }
162
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)163 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
164 {
165 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
166 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
167 X86_EFLAGS_SF | X86_EFLAGS_OF))
168 | X86_EFLAGS_CF);
169 return kvm_skip_emulated_instruction(vcpu);
170 }
171
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)172 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
173 u32 vm_instruction_error)
174 {
175 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
176 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
177 X86_EFLAGS_SF | X86_EFLAGS_OF))
178 | X86_EFLAGS_ZF);
179 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
180 /*
181 * We don't need to force a shadow sync because
182 * VM_INSTRUCTION_ERROR is not shadowed
183 */
184 return kvm_skip_emulated_instruction(vcpu);
185 }
186
nested_vmx_fail(struct kvm_vcpu * vcpu,u32 vm_instruction_error)187 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
188 {
189 struct vcpu_vmx *vmx = to_vmx(vcpu);
190
191 /*
192 * failValid writes the error number to the current VMCS, which
193 * can't be done if there isn't a current VMCS.
194 */
195 if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
196 return nested_vmx_failInvalid(vcpu);
197
198 return nested_vmx_failValid(vcpu, vm_instruction_error);
199 }
200
nested_vmx_abort(struct kvm_vcpu * vcpu,u32 indicator)201 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
202 {
203 /* TODO: not to reset guest simply here. */
204 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
205 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
206 }
207
vmx_control_verify(u32 control,u32 low,u32 high)208 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
209 {
210 return fixed_bits_valid(control, low, high);
211 }
212
vmx_control_msr(u32 low,u32 high)213 static inline u64 vmx_control_msr(u32 low, u32 high)
214 {
215 return low | ((u64)high << 32);
216 }
217
vmx_disable_shadow_vmcs(struct vcpu_vmx * vmx)218 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
219 {
220 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
221 vmcs_write64(VMCS_LINK_POINTER, -1ull);
222 vmx->nested.need_vmcs12_to_shadow_sync = false;
223 }
224
nested_release_evmcs(struct kvm_vcpu * vcpu)225 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
226 {
227 struct vcpu_vmx *vmx = to_vmx(vcpu);
228
229 if (!vmx->nested.hv_evmcs)
230 return;
231
232 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
233 vmx->nested.hv_evmcs_vmptr = 0;
234 vmx->nested.hv_evmcs = NULL;
235 }
236
vmx_sync_vmcs_host_state(struct vcpu_vmx * vmx,struct loaded_vmcs * prev)237 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
238 struct loaded_vmcs *prev)
239 {
240 struct vmcs_host_state *dest, *src;
241
242 if (unlikely(!vmx->guest_state_loaded))
243 return;
244
245 src = &prev->host_state;
246 dest = &vmx->loaded_vmcs->host_state;
247
248 vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
249 dest->ldt_sel = src->ldt_sel;
250 #ifdef CONFIG_X86_64
251 dest->ds_sel = src->ds_sel;
252 dest->es_sel = src->es_sel;
253 #endif
254 }
255
vmx_switch_vmcs(struct kvm_vcpu * vcpu,struct loaded_vmcs * vmcs)256 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
257 {
258 struct vcpu_vmx *vmx = to_vmx(vcpu);
259 struct loaded_vmcs *prev;
260 int cpu;
261
262 if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
263 return;
264
265 cpu = get_cpu();
266 prev = vmx->loaded_vmcs;
267 vmx->loaded_vmcs = vmcs;
268 vmx_vcpu_load_vmcs(vcpu, cpu, prev);
269 vmx_sync_vmcs_host_state(vmx, prev);
270 put_cpu();
271
272 vmx_register_cache_reset(vcpu);
273 }
274
275 /*
276 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
277 * just stops using VMX.
278 */
free_nested(struct kvm_vcpu * vcpu)279 static void free_nested(struct kvm_vcpu *vcpu)
280 {
281 struct vcpu_vmx *vmx = to_vmx(vcpu);
282
283 if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
284 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
285
286 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
287 return;
288
289 kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
290
291 vmx->nested.vmxon = false;
292 vmx->nested.smm.vmxon = false;
293 free_vpid(vmx->nested.vpid02);
294 vmx->nested.posted_intr_nv = -1;
295 vmx->nested.current_vmptr = -1ull;
296 if (enable_shadow_vmcs) {
297 vmx_disable_shadow_vmcs(vmx);
298 vmcs_clear(vmx->vmcs01.shadow_vmcs);
299 free_vmcs(vmx->vmcs01.shadow_vmcs);
300 vmx->vmcs01.shadow_vmcs = NULL;
301 }
302 kfree(vmx->nested.cached_vmcs12);
303 vmx->nested.cached_vmcs12 = NULL;
304 kfree(vmx->nested.cached_shadow_vmcs12);
305 vmx->nested.cached_shadow_vmcs12 = NULL;
306 /* Unpin physical memory we referred to in the vmcs02 */
307 if (vmx->nested.apic_access_page) {
308 kvm_release_page_clean(vmx->nested.apic_access_page);
309 vmx->nested.apic_access_page = NULL;
310 }
311 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
312 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
313 vmx->nested.pi_desc = NULL;
314
315 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
316
317 nested_release_evmcs(vcpu);
318
319 free_loaded_vmcs(&vmx->nested.vmcs02);
320 }
321
322 /*
323 * Ensure that the current vmcs of the logical processor is the
324 * vmcs01 of the vcpu before calling free_nested().
325 */
nested_vmx_free_vcpu(struct kvm_vcpu * vcpu)326 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
327 {
328 vcpu_load(vcpu);
329 vmx_leave_nested(vcpu);
330 vcpu_put(vcpu);
331 }
332
nested_ept_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)333 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
334 struct x86_exception *fault)
335 {
336 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
337 struct vcpu_vmx *vmx = to_vmx(vcpu);
338 u32 vm_exit_reason;
339 unsigned long exit_qualification = vcpu->arch.exit_qualification;
340
341 if (vmx->nested.pml_full) {
342 vm_exit_reason = EXIT_REASON_PML_FULL;
343 vmx->nested.pml_full = false;
344 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
345 } else if (fault->error_code & PFERR_RSVD_MASK)
346 vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
347 else
348 vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
349
350 nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
351 vmcs12->guest_physical_address = fault->address;
352 }
353
nested_ept_init_mmu_context(struct kvm_vcpu * vcpu)354 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
355 {
356 WARN_ON(mmu_is_nested(vcpu));
357
358 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
359 kvm_init_shadow_ept_mmu(vcpu,
360 to_vmx(vcpu)->nested.msrs.ept_caps &
361 VMX_EPT_EXECUTE_ONLY_BIT,
362 nested_ept_ad_enabled(vcpu),
363 nested_ept_get_eptp(vcpu));
364 vcpu->arch.mmu->get_guest_pgd = nested_ept_get_eptp;
365 vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
366 vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
367
368 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
369 }
370
nested_ept_uninit_mmu_context(struct kvm_vcpu * vcpu)371 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
372 {
373 vcpu->arch.mmu = &vcpu->arch.root_mmu;
374 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
375 }
376
nested_vmx_is_page_fault_vmexit(struct vmcs12 * vmcs12,u16 error_code)377 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
378 u16 error_code)
379 {
380 bool inequality, bit;
381
382 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
383 inequality =
384 (error_code & vmcs12->page_fault_error_code_mask) !=
385 vmcs12->page_fault_error_code_match;
386 return inequality ^ bit;
387 }
388
389
390 /*
391 * KVM wants to inject page-faults which it got to the guest. This function
392 * checks whether in a nested guest, we need to inject them to L1 or L2.
393 */
nested_vmx_check_exception(struct kvm_vcpu * vcpu,unsigned long * exit_qual)394 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
395 {
396 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
397 unsigned int nr = vcpu->arch.exception.nr;
398 bool has_payload = vcpu->arch.exception.has_payload;
399 unsigned long payload = vcpu->arch.exception.payload;
400
401 if (nr == PF_VECTOR) {
402 if (vcpu->arch.exception.nested_apf) {
403 *exit_qual = vcpu->arch.apf.nested_apf_token;
404 return 1;
405 }
406 if (nested_vmx_is_page_fault_vmexit(vmcs12,
407 vcpu->arch.exception.error_code)) {
408 *exit_qual = has_payload ? payload : vcpu->arch.cr2;
409 return 1;
410 }
411 } else if (vmcs12->exception_bitmap & (1u << nr)) {
412 if (nr == DB_VECTOR) {
413 if (!has_payload) {
414 payload = vcpu->arch.dr6;
415 payload &= ~(DR6_FIXED_1 | DR6_BT);
416 payload ^= DR6_RTM;
417 }
418 *exit_qual = payload;
419 } else
420 *exit_qual = 0;
421 return 1;
422 }
423
424 return 0;
425 }
426
427
vmx_inject_page_fault_nested(struct kvm_vcpu * vcpu,struct x86_exception * fault)428 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
429 struct x86_exception *fault)
430 {
431 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
432
433 WARN_ON(!is_guest_mode(vcpu));
434
435 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
436 !to_vmx(vcpu)->nested.nested_run_pending) {
437 vmcs12->vm_exit_intr_error_code = fault->error_code;
438 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
439 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
440 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
441 fault->address);
442 } else {
443 kvm_inject_page_fault(vcpu, fault);
444 }
445 }
446
nested_vmx_check_io_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)447 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
448 struct vmcs12 *vmcs12)
449 {
450 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
451 return 0;
452
453 if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
454 CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
455 return -EINVAL;
456
457 return 0;
458 }
459
nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)460 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
461 struct vmcs12 *vmcs12)
462 {
463 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
464 return 0;
465
466 if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
467 return -EINVAL;
468
469 return 0;
470 }
471
nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)472 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
473 struct vmcs12 *vmcs12)
474 {
475 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
476 return 0;
477
478 if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
479 return -EINVAL;
480
481 return 0;
482 }
483
484 /*
485 * Check if MSR is intercepted for L01 MSR bitmap.
486 */
msr_write_intercepted_l01(struct kvm_vcpu * vcpu,u32 msr)487 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
488 {
489 unsigned long *msr_bitmap;
490 int f = sizeof(unsigned long);
491
492 if (!cpu_has_vmx_msr_bitmap())
493 return true;
494
495 msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
496
497 if (msr <= 0x1fff) {
498 return !!test_bit(msr, msr_bitmap + 0x800 / f);
499 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
500 msr &= 0x1fff;
501 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
502 }
503
504 return true;
505 }
506
507 /*
508 * If a msr is allowed by L0, we should check whether it is allowed by L1.
509 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
510 */
nested_vmx_disable_intercept_for_msr(unsigned long * msr_bitmap_l1,unsigned long * msr_bitmap_nested,u32 msr,int type)511 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
512 unsigned long *msr_bitmap_nested,
513 u32 msr, int type)
514 {
515 int f = sizeof(unsigned long);
516
517 /*
518 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
519 * have the write-low and read-high bitmap offsets the wrong way round.
520 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
521 */
522 if (msr <= 0x1fff) {
523 if (type & MSR_TYPE_R &&
524 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
525 /* read-low */
526 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
527
528 if (type & MSR_TYPE_W &&
529 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
530 /* write-low */
531 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
532
533 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
534 msr &= 0x1fff;
535 if (type & MSR_TYPE_R &&
536 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
537 /* read-high */
538 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
539
540 if (type & MSR_TYPE_W &&
541 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
542 /* write-high */
543 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
544
545 }
546 }
547
enable_x2apic_msr_intercepts(unsigned long * msr_bitmap)548 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
549 {
550 int msr;
551
552 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
553 unsigned word = msr / BITS_PER_LONG;
554
555 msr_bitmap[word] = ~0;
556 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
557 }
558 }
559
560 /*
561 * Merge L0's and L1's MSR bitmap, return false to indicate that
562 * we do not use the hardware.
563 */
nested_vmx_prepare_msr_bitmap(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)564 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
565 struct vmcs12 *vmcs12)
566 {
567 int msr;
568 unsigned long *msr_bitmap_l1;
569 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
570 struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
571
572 /* Nothing to do if the MSR bitmap is not in use. */
573 if (!cpu_has_vmx_msr_bitmap() ||
574 !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
575 return false;
576
577 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
578 return false;
579
580 msr_bitmap_l1 = (unsigned long *)map->hva;
581
582 /*
583 * To keep the control flow simple, pay eight 8-byte writes (sixteen
584 * 4-byte writes on 32-bit systems) up front to enable intercepts for
585 * the x2APIC MSR range and selectively disable them below.
586 */
587 enable_x2apic_msr_intercepts(msr_bitmap_l0);
588
589 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
590 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
591 /*
592 * L0 need not intercept reads for MSRs between 0x800
593 * and 0x8ff, it just lets the processor take the value
594 * from the virtual-APIC page; take those 256 bits
595 * directly from the L1 bitmap.
596 */
597 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
598 unsigned word = msr / BITS_PER_LONG;
599
600 msr_bitmap_l0[word] = msr_bitmap_l1[word];
601 }
602 }
603
604 nested_vmx_disable_intercept_for_msr(
605 msr_bitmap_l1, msr_bitmap_l0,
606 X2APIC_MSR(APIC_TASKPRI),
607 MSR_TYPE_R | MSR_TYPE_W);
608
609 if (nested_cpu_has_vid(vmcs12)) {
610 nested_vmx_disable_intercept_for_msr(
611 msr_bitmap_l1, msr_bitmap_l0,
612 X2APIC_MSR(APIC_EOI),
613 MSR_TYPE_W);
614 nested_vmx_disable_intercept_for_msr(
615 msr_bitmap_l1, msr_bitmap_l0,
616 X2APIC_MSR(APIC_SELF_IPI),
617 MSR_TYPE_W);
618 }
619 }
620
621 /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
622 #ifdef CONFIG_X86_64
623 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
624 MSR_FS_BASE, MSR_TYPE_RW);
625
626 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
627 MSR_GS_BASE, MSR_TYPE_RW);
628
629 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
630 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
631 #endif
632
633 /*
634 * Checking the L0->L1 bitmap is trying to verify two things:
635 *
636 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
637 * ensures that we do not accidentally generate an L02 MSR bitmap
638 * from the L12 MSR bitmap that is too permissive.
639 * 2. That L1 or L2s have actually used the MSR. This avoids
640 * unnecessarily merging of the bitmap if the MSR is unused. This
641 * works properly because we only update the L01 MSR bitmap lazily.
642 * So even if L0 should pass L1 these MSRs, the L01 bitmap is only
643 * updated to reflect this when L1 (or its L2s) actually write to
644 * the MSR.
645 */
646 if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
647 nested_vmx_disable_intercept_for_msr(
648 msr_bitmap_l1, msr_bitmap_l0,
649 MSR_IA32_SPEC_CTRL,
650 MSR_TYPE_R | MSR_TYPE_W);
651
652 if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
653 nested_vmx_disable_intercept_for_msr(
654 msr_bitmap_l1, msr_bitmap_l0,
655 MSR_IA32_PRED_CMD,
656 MSR_TYPE_W);
657
658 kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
659
660 return true;
661 }
662
nested_cache_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)663 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
664 struct vmcs12 *vmcs12)
665 {
666 struct kvm_host_map map;
667 struct vmcs12 *shadow;
668
669 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
670 vmcs12->vmcs_link_pointer == -1ull)
671 return;
672
673 shadow = get_shadow_vmcs12(vcpu);
674
675 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
676 return;
677
678 memcpy(shadow, map.hva, VMCS12_SIZE);
679 kvm_vcpu_unmap(vcpu, &map, false);
680 }
681
nested_flush_cached_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)682 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
683 struct vmcs12 *vmcs12)
684 {
685 struct vcpu_vmx *vmx = to_vmx(vcpu);
686
687 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
688 vmcs12->vmcs_link_pointer == -1ull)
689 return;
690
691 kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
692 get_shadow_vmcs12(vcpu), VMCS12_SIZE);
693 }
694
695 /*
696 * In nested virtualization, check if L1 has set
697 * VM_EXIT_ACK_INTR_ON_EXIT
698 */
nested_exit_intr_ack_set(struct kvm_vcpu * vcpu)699 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
700 {
701 return get_vmcs12(vcpu)->vm_exit_controls &
702 VM_EXIT_ACK_INTR_ON_EXIT;
703 }
704
nested_vmx_check_apic_access_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)705 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
706 struct vmcs12 *vmcs12)
707 {
708 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
709 CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
710 return -EINVAL;
711 else
712 return 0;
713 }
714
nested_vmx_check_apicv_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)715 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
716 struct vmcs12 *vmcs12)
717 {
718 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
719 !nested_cpu_has_apic_reg_virt(vmcs12) &&
720 !nested_cpu_has_vid(vmcs12) &&
721 !nested_cpu_has_posted_intr(vmcs12))
722 return 0;
723
724 /*
725 * If virtualize x2apic mode is enabled,
726 * virtualize apic access must be disabled.
727 */
728 if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
729 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
730 return -EINVAL;
731
732 /*
733 * If virtual interrupt delivery is enabled,
734 * we must exit on external interrupts.
735 */
736 if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
737 return -EINVAL;
738
739 /*
740 * bits 15:8 should be zero in posted_intr_nv,
741 * the descriptor address has been already checked
742 * in nested_get_vmcs12_pages.
743 *
744 * bits 5:0 of posted_intr_desc_addr should be zero.
745 */
746 if (nested_cpu_has_posted_intr(vmcs12) &&
747 (CC(!nested_cpu_has_vid(vmcs12)) ||
748 CC(!nested_exit_intr_ack_set(vcpu)) ||
749 CC((vmcs12->posted_intr_nv & 0xff00)) ||
750 CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
751 CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
752 return -EINVAL;
753
754 /* tpr shadow is needed by all apicv features. */
755 if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
756 return -EINVAL;
757
758 return 0;
759 }
760
nested_vmx_check_msr_switch(struct kvm_vcpu * vcpu,u32 count,u64 addr)761 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
762 u32 count, u64 addr)
763 {
764 int maxphyaddr;
765
766 if (count == 0)
767 return 0;
768 maxphyaddr = cpuid_maxphyaddr(vcpu);
769 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
770 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
771 return -EINVAL;
772
773 return 0;
774 }
775
nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)776 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
777 struct vmcs12 *vmcs12)
778 {
779 if (CC(nested_vmx_check_msr_switch(vcpu,
780 vmcs12->vm_exit_msr_load_count,
781 vmcs12->vm_exit_msr_load_addr)) ||
782 CC(nested_vmx_check_msr_switch(vcpu,
783 vmcs12->vm_exit_msr_store_count,
784 vmcs12->vm_exit_msr_store_addr)))
785 return -EINVAL;
786
787 return 0;
788 }
789
nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)790 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
791 struct vmcs12 *vmcs12)
792 {
793 if (CC(nested_vmx_check_msr_switch(vcpu,
794 vmcs12->vm_entry_msr_load_count,
795 vmcs12->vm_entry_msr_load_addr)))
796 return -EINVAL;
797
798 return 0;
799 }
800
nested_vmx_check_pml_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)801 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
802 struct vmcs12 *vmcs12)
803 {
804 if (!nested_cpu_has_pml(vmcs12))
805 return 0;
806
807 if (CC(!nested_cpu_has_ept(vmcs12)) ||
808 CC(!page_address_valid(vcpu, vmcs12->pml_address)))
809 return -EINVAL;
810
811 return 0;
812 }
813
nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)814 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
815 struct vmcs12 *vmcs12)
816 {
817 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
818 !nested_cpu_has_ept(vmcs12)))
819 return -EINVAL;
820 return 0;
821 }
822
nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)823 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
824 struct vmcs12 *vmcs12)
825 {
826 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
827 !nested_cpu_has_ept(vmcs12)))
828 return -EINVAL;
829 return 0;
830 }
831
nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)832 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
833 struct vmcs12 *vmcs12)
834 {
835 if (!nested_cpu_has_shadow_vmcs(vmcs12))
836 return 0;
837
838 if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
839 CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
840 return -EINVAL;
841
842 return 0;
843 }
844
nested_vmx_msr_check_common(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)845 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
846 struct vmx_msr_entry *e)
847 {
848 /* x2APIC MSR accesses are not allowed */
849 if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
850 return -EINVAL;
851 if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
852 CC(e->index == MSR_IA32_UCODE_REV))
853 return -EINVAL;
854 if (CC(e->reserved != 0))
855 return -EINVAL;
856 return 0;
857 }
858
nested_vmx_load_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)859 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
860 struct vmx_msr_entry *e)
861 {
862 if (CC(e->index == MSR_FS_BASE) ||
863 CC(e->index == MSR_GS_BASE) ||
864 CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
865 nested_vmx_msr_check_common(vcpu, e))
866 return -EINVAL;
867 return 0;
868 }
869
nested_vmx_store_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)870 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
871 struct vmx_msr_entry *e)
872 {
873 if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
874 nested_vmx_msr_check_common(vcpu, e))
875 return -EINVAL;
876 return 0;
877 }
878
nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu * vcpu)879 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
880 {
881 struct vcpu_vmx *vmx = to_vmx(vcpu);
882 u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
883 vmx->nested.msrs.misc_high);
884
885 return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
886 }
887
888 /*
889 * Load guest's/host's msr at nested entry/exit.
890 * return 0 for success, entry index for failure.
891 *
892 * One of the failure modes for MSR load/store is when a list exceeds the
893 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
894 * as possible, process all valid entries before failing rather than precheck
895 * for a capacity violation.
896 */
nested_vmx_load_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)897 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
898 {
899 u32 i;
900 struct vmx_msr_entry e;
901 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
902
903 for (i = 0; i < count; i++) {
904 if (unlikely(i >= max_msr_list_size))
905 goto fail;
906
907 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
908 &e, sizeof(e))) {
909 pr_debug_ratelimited(
910 "%s cannot read MSR entry (%u, 0x%08llx)\n",
911 __func__, i, gpa + i * sizeof(e));
912 goto fail;
913 }
914 if (nested_vmx_load_msr_check(vcpu, &e)) {
915 pr_debug_ratelimited(
916 "%s check failed (%u, 0x%x, 0x%x)\n",
917 __func__, i, e.index, e.reserved);
918 goto fail;
919 }
920 if (kvm_set_msr(vcpu, e.index, e.value)) {
921 pr_debug_ratelimited(
922 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
923 __func__, i, e.index, e.value);
924 goto fail;
925 }
926 }
927 return 0;
928 fail:
929 /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
930 return i + 1;
931 }
932
nested_vmx_get_vmexit_msr_value(struct kvm_vcpu * vcpu,u32 msr_index,u64 * data)933 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
934 u32 msr_index,
935 u64 *data)
936 {
937 struct vcpu_vmx *vmx = to_vmx(vcpu);
938
939 /*
940 * If the L0 hypervisor stored a more accurate value for the TSC that
941 * does not include the time taken for emulation of the L2->L1
942 * VM-exit in L0, use the more accurate value.
943 */
944 if (msr_index == MSR_IA32_TSC) {
945 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
946 MSR_IA32_TSC);
947
948 if (i >= 0) {
949 u64 val = vmx->msr_autostore.guest.val[i].value;
950
951 *data = kvm_read_l1_tsc(vcpu, val);
952 return true;
953 }
954 }
955
956 if (kvm_get_msr(vcpu, msr_index, data)) {
957 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
958 msr_index);
959 return false;
960 }
961 return true;
962 }
963
read_and_check_msr_entry(struct kvm_vcpu * vcpu,u64 gpa,int i,struct vmx_msr_entry * e)964 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
965 struct vmx_msr_entry *e)
966 {
967 if (kvm_vcpu_read_guest(vcpu,
968 gpa + i * sizeof(*e),
969 e, 2 * sizeof(u32))) {
970 pr_debug_ratelimited(
971 "%s cannot read MSR entry (%u, 0x%08llx)\n",
972 __func__, i, gpa + i * sizeof(*e));
973 return false;
974 }
975 if (nested_vmx_store_msr_check(vcpu, e)) {
976 pr_debug_ratelimited(
977 "%s check failed (%u, 0x%x, 0x%x)\n",
978 __func__, i, e->index, e->reserved);
979 return false;
980 }
981 return true;
982 }
983
nested_vmx_store_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)984 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
985 {
986 u64 data;
987 u32 i;
988 struct vmx_msr_entry e;
989 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
990
991 for (i = 0; i < count; i++) {
992 if (unlikely(i >= max_msr_list_size))
993 return -EINVAL;
994
995 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
996 return -EINVAL;
997
998 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
999 return -EINVAL;
1000
1001 if (kvm_vcpu_write_guest(vcpu,
1002 gpa + i * sizeof(e) +
1003 offsetof(struct vmx_msr_entry, value),
1004 &data, sizeof(data))) {
1005 pr_debug_ratelimited(
1006 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1007 __func__, i, e.index, data);
1008 return -EINVAL;
1009 }
1010 }
1011 return 0;
1012 }
1013
nested_msr_store_list_has_msr(struct kvm_vcpu * vcpu,u32 msr_index)1014 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1015 {
1016 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1017 u32 count = vmcs12->vm_exit_msr_store_count;
1018 u64 gpa = vmcs12->vm_exit_msr_store_addr;
1019 struct vmx_msr_entry e;
1020 u32 i;
1021
1022 for (i = 0; i < count; i++) {
1023 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1024 return false;
1025
1026 if (e.index == msr_index)
1027 return true;
1028 }
1029 return false;
1030 }
1031
prepare_vmx_msr_autostore_list(struct kvm_vcpu * vcpu,u32 msr_index)1032 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1033 u32 msr_index)
1034 {
1035 struct vcpu_vmx *vmx = to_vmx(vcpu);
1036 struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1037 bool in_vmcs12_store_list;
1038 int msr_autostore_slot;
1039 bool in_autostore_list;
1040 int last;
1041
1042 msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1043 in_autostore_list = msr_autostore_slot >= 0;
1044 in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1045
1046 if (in_vmcs12_store_list && !in_autostore_list) {
1047 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1048 /*
1049 * Emulated VMEntry does not fail here. Instead a less
1050 * accurate value will be returned by
1051 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1052 * instead of reading the value from the vmcs02 VMExit
1053 * MSR-store area.
1054 */
1055 pr_warn_ratelimited(
1056 "Not enough msr entries in msr_autostore. Can't add msr %x\n",
1057 msr_index);
1058 return;
1059 }
1060 last = autostore->nr++;
1061 autostore->val[last].index = msr_index;
1062 } else if (!in_vmcs12_store_list && in_autostore_list) {
1063 last = --autostore->nr;
1064 autostore->val[msr_autostore_slot] = autostore->val[last];
1065 }
1066 }
1067
nested_cr3_valid(struct kvm_vcpu * vcpu,unsigned long val)1068 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
1069 {
1070 unsigned long invalid_mask;
1071
1072 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1073 return (val & invalid_mask) == 0;
1074 }
1075
1076 /*
1077 * Returns true if the MMU needs to be sync'd on nested VM-Enter/VM-Exit.
1078 * tl;dr: the MMU needs a sync if L0 is using shadow paging and L1 didn't
1079 * enable VPID for L2 (implying it expects a TLB flush on VMX transitions).
1080 * Here's why.
1081 *
1082 * If EPT is enabled by L0 a sync is never needed:
1083 * - if it is disabled by L1, then L0 is not shadowing L1 or L2 PTEs, there
1084 * cannot be unsync'd SPTEs for either L1 or L2.
1085 *
1086 * - if it is also enabled by L1, then L0 doesn't need to sync on VM-Enter
1087 * VM-Enter as VM-Enter isn't required to invalidate guest-physical mappings
1088 * (irrespective of VPID), i.e. L1 can't rely on the (virtual) CPU to flush
1089 * stale guest-physical mappings for L2 from the TLB. And as above, L0 isn't
1090 * shadowing L1 PTEs so there are no unsync'd SPTEs to sync on VM-Exit.
1091 *
1092 * If EPT is disabled by L0:
1093 * - if VPID is enabled by L1 (for L2), the situation is similar to when L1
1094 * enables EPT: L0 doesn't need to sync as VM-Enter and VM-Exit aren't
1095 * required to invalidate linear mappings (EPT is disabled so there are
1096 * no combined or guest-physical mappings), i.e. L1 can't rely on the
1097 * (virtual) CPU to flush stale linear mappings for either L2 or itself (L1).
1098 *
1099 * - however if VPID is disabled by L1, then a sync is needed as L1 expects all
1100 * linear mappings (EPT is disabled so there are no combined or guest-physical
1101 * mappings) to be invalidated on both VM-Enter and VM-Exit.
1102 *
1103 * Note, this logic is subtly different than nested_has_guest_tlb_tag(), which
1104 * additionally checks that L2 has been assigned a VPID (when EPT is disabled).
1105 * Whether or not L2 has been assigned a VPID by L0 is irrelevant with respect
1106 * to L1's expectations, e.g. L0 needs to invalidate hardware TLB entries if L2
1107 * doesn't have a unique VPID to prevent reusing L1's entries (assuming L1 has
1108 * been assigned a VPID), but L0 doesn't need to do a MMU sync because L1
1109 * doesn't expect stale (virtual) TLB entries to be flushed, i.e. L1 doesn't
1110 * know that L0 will flush the TLB and so L1 will do INVVPID as needed to flush
1111 * stale TLB entries, at which point L0 will sync L2's MMU.
1112 */
nested_vmx_transition_mmu_sync(struct kvm_vcpu * vcpu)1113 static bool nested_vmx_transition_mmu_sync(struct kvm_vcpu *vcpu)
1114 {
1115 return !enable_ept && !nested_cpu_has_vpid(get_vmcs12(vcpu));
1116 }
1117
1118 /*
1119 * Load guest's/host's cr3 at nested entry/exit. @nested_ept is true if we are
1120 * emulating VM-Entry into a guest with EPT enabled. On failure, the expected
1121 * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1122 * @entry_failure_code.
1123 */
nested_vmx_load_cr3(struct kvm_vcpu * vcpu,unsigned long cr3,bool nested_ept,enum vm_entry_failure_code * entry_failure_code)1124 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
1125 enum vm_entry_failure_code *entry_failure_code)
1126 {
1127 if (CC(!nested_cr3_valid(vcpu, cr3))) {
1128 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1129 return -EINVAL;
1130 }
1131
1132 /*
1133 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1134 * must not be dereferenced.
1135 */
1136 if (!nested_ept && is_pae_paging(vcpu) &&
1137 (cr3 != kvm_read_cr3(vcpu) || pdptrs_changed(vcpu))) {
1138 if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1139 *entry_failure_code = ENTRY_FAIL_PDPTE;
1140 return -EINVAL;
1141 }
1142 }
1143
1144 /*
1145 * Unconditionally skip the TLB flush on fast CR3 switch, all TLB
1146 * flushes are handled by nested_vmx_transition_tlb_flush().
1147 */
1148 if (!nested_ept) {
1149 kvm_mmu_new_pgd(vcpu, cr3, true, true);
1150
1151 /*
1152 * A TLB flush on VM-Enter/VM-Exit flushes all linear mappings
1153 * across all PCIDs, i.e. all PGDs need to be synchronized.
1154 * See nested_vmx_transition_mmu_sync() for more details.
1155 */
1156 if (nested_vmx_transition_mmu_sync(vcpu))
1157 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1158 }
1159
1160 vcpu->arch.cr3 = cr3;
1161 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1162
1163 kvm_init_mmu(vcpu, false);
1164
1165 return 0;
1166 }
1167
1168 /*
1169 * Returns if KVM is able to config CPU to tag TLB entries
1170 * populated by L2 differently than TLB entries populated
1171 * by L1.
1172 *
1173 * If L0 uses EPT, L1 and L2 run with different EPTP because
1174 * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1175 * are tagged with different EPTP.
1176 *
1177 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1178 * with different VPID (L1 entries are tagged with vmx->vpid
1179 * while L2 entries are tagged with vmx->nested.vpid02).
1180 */
nested_has_guest_tlb_tag(struct kvm_vcpu * vcpu)1181 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1182 {
1183 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1184
1185 return enable_ept ||
1186 (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1187 }
1188
nested_vmx_transition_tlb_flush(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool is_vmenter)1189 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1190 struct vmcs12 *vmcs12,
1191 bool is_vmenter)
1192 {
1193 struct vcpu_vmx *vmx = to_vmx(vcpu);
1194
1195 /*
1196 * If VPID is disabled, linear and combined mappings are flushed on
1197 * VM-Enter/VM-Exit, and guest-physical mappings are valid only for
1198 * their associated EPTP.
1199 */
1200 if (!enable_vpid)
1201 return;
1202
1203 /*
1204 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1205 * for *all* contexts to be flushed on VM-Enter/VM-Exit.
1206 *
1207 * If VPID is enabled and used by vmc12, but L2 does not have a unique
1208 * TLB tag (ASID), i.e. EPT is disabled and KVM was unable to allocate
1209 * a VPID for L2, flush the current context as the effective ASID is
1210 * common to both L1 and L2.
1211 *
1212 * Defer the flush so that it runs after vmcs02.EPTP has been set by
1213 * KVM_REQ_LOAD_MMU_PGD (if nested EPT is enabled) and to avoid
1214 * redundant flushes further down the nested pipeline.
1215 *
1216 * If a TLB flush isn't required due to any of the above, and vpid12 is
1217 * changing then the new "virtual" VPID (vpid12) will reuse the same
1218 * "real" VPID (vpid02), and so needs to be sync'd. There is no direct
1219 * mapping between vpid02 and vpid12, vpid02 is per-vCPU and reused for
1220 * all nested vCPUs.
1221 */
1222 if (!nested_cpu_has_vpid(vmcs12)) {
1223 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1224 } else if (!nested_has_guest_tlb_tag(vcpu)) {
1225 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1226 } else if (is_vmenter &&
1227 vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1228 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1229 vpid_sync_context(nested_get_vpid02(vcpu));
1230 }
1231 }
1232
is_bitwise_subset(u64 superset,u64 subset,u64 mask)1233 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1234 {
1235 superset &= mask;
1236 subset &= mask;
1237
1238 return (superset | subset) == superset;
1239 }
1240
vmx_restore_vmx_basic(struct vcpu_vmx * vmx,u64 data)1241 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1242 {
1243 const u64 feature_and_reserved =
1244 /* feature (except bit 48; see below) */
1245 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1246 /* reserved */
1247 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1248 u64 vmx_basic = vmx->nested.msrs.basic;
1249
1250 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1251 return -EINVAL;
1252
1253 /*
1254 * KVM does not emulate a version of VMX that constrains physical
1255 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1256 */
1257 if (data & BIT_ULL(48))
1258 return -EINVAL;
1259
1260 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1261 vmx_basic_vmcs_revision_id(data))
1262 return -EINVAL;
1263
1264 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1265 return -EINVAL;
1266
1267 vmx->nested.msrs.basic = data;
1268 return 0;
1269 }
1270
1271 static int
vmx_restore_control_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1272 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1273 {
1274 u64 supported;
1275 u32 *lowp, *highp;
1276
1277 switch (msr_index) {
1278 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1279 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1280 highp = &vmx->nested.msrs.pinbased_ctls_high;
1281 break;
1282 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1283 lowp = &vmx->nested.msrs.procbased_ctls_low;
1284 highp = &vmx->nested.msrs.procbased_ctls_high;
1285 break;
1286 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1287 lowp = &vmx->nested.msrs.exit_ctls_low;
1288 highp = &vmx->nested.msrs.exit_ctls_high;
1289 break;
1290 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1291 lowp = &vmx->nested.msrs.entry_ctls_low;
1292 highp = &vmx->nested.msrs.entry_ctls_high;
1293 break;
1294 case MSR_IA32_VMX_PROCBASED_CTLS2:
1295 lowp = &vmx->nested.msrs.secondary_ctls_low;
1296 highp = &vmx->nested.msrs.secondary_ctls_high;
1297 break;
1298 default:
1299 BUG();
1300 }
1301
1302 supported = vmx_control_msr(*lowp, *highp);
1303
1304 /* Check must-be-1 bits are still 1. */
1305 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1306 return -EINVAL;
1307
1308 /* Check must-be-0 bits are still 0. */
1309 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1310 return -EINVAL;
1311
1312 *lowp = data;
1313 *highp = data >> 32;
1314 return 0;
1315 }
1316
vmx_restore_vmx_misc(struct vcpu_vmx * vmx,u64 data)1317 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1318 {
1319 const u64 feature_and_reserved_bits =
1320 /* feature */
1321 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1322 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1323 /* reserved */
1324 GENMASK_ULL(13, 9) | BIT_ULL(31);
1325 u64 vmx_misc;
1326
1327 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1328 vmx->nested.msrs.misc_high);
1329
1330 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1331 return -EINVAL;
1332
1333 if ((vmx->nested.msrs.pinbased_ctls_high &
1334 PIN_BASED_VMX_PREEMPTION_TIMER) &&
1335 vmx_misc_preemption_timer_rate(data) !=
1336 vmx_misc_preemption_timer_rate(vmx_misc))
1337 return -EINVAL;
1338
1339 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1340 return -EINVAL;
1341
1342 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1343 return -EINVAL;
1344
1345 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1346 return -EINVAL;
1347
1348 vmx->nested.msrs.misc_low = data;
1349 vmx->nested.msrs.misc_high = data >> 32;
1350
1351 return 0;
1352 }
1353
vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx * vmx,u64 data)1354 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1355 {
1356 u64 vmx_ept_vpid_cap;
1357
1358 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1359 vmx->nested.msrs.vpid_caps);
1360
1361 /* Every bit is either reserved or a feature bit. */
1362 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1363 return -EINVAL;
1364
1365 vmx->nested.msrs.ept_caps = data;
1366 vmx->nested.msrs.vpid_caps = data >> 32;
1367 return 0;
1368 }
1369
vmx_restore_fixed0_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1370 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1371 {
1372 u64 *msr;
1373
1374 switch (msr_index) {
1375 case MSR_IA32_VMX_CR0_FIXED0:
1376 msr = &vmx->nested.msrs.cr0_fixed0;
1377 break;
1378 case MSR_IA32_VMX_CR4_FIXED0:
1379 msr = &vmx->nested.msrs.cr4_fixed0;
1380 break;
1381 default:
1382 BUG();
1383 }
1384
1385 /*
1386 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1387 * must be 1 in the restored value.
1388 */
1389 if (!is_bitwise_subset(data, *msr, -1ULL))
1390 return -EINVAL;
1391
1392 *msr = data;
1393 return 0;
1394 }
1395
1396 /*
1397 * Called when userspace is restoring VMX MSRs.
1398 *
1399 * Returns 0 on success, non-0 otherwise.
1400 */
vmx_set_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)1401 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1402 {
1403 struct vcpu_vmx *vmx = to_vmx(vcpu);
1404
1405 /*
1406 * Don't allow changes to the VMX capability MSRs while the vCPU
1407 * is in VMX operation.
1408 */
1409 if (vmx->nested.vmxon)
1410 return -EBUSY;
1411
1412 switch (msr_index) {
1413 case MSR_IA32_VMX_BASIC:
1414 return vmx_restore_vmx_basic(vmx, data);
1415 case MSR_IA32_VMX_PINBASED_CTLS:
1416 case MSR_IA32_VMX_PROCBASED_CTLS:
1417 case MSR_IA32_VMX_EXIT_CTLS:
1418 case MSR_IA32_VMX_ENTRY_CTLS:
1419 /*
1420 * The "non-true" VMX capability MSRs are generated from the
1421 * "true" MSRs, so we do not support restoring them directly.
1422 *
1423 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1424 * should restore the "true" MSRs with the must-be-1 bits
1425 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1426 * DEFAULT SETTINGS".
1427 */
1428 return -EINVAL;
1429 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1430 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1431 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1432 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1433 case MSR_IA32_VMX_PROCBASED_CTLS2:
1434 return vmx_restore_control_msr(vmx, msr_index, data);
1435 case MSR_IA32_VMX_MISC:
1436 return vmx_restore_vmx_misc(vmx, data);
1437 case MSR_IA32_VMX_CR0_FIXED0:
1438 case MSR_IA32_VMX_CR4_FIXED0:
1439 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1440 case MSR_IA32_VMX_CR0_FIXED1:
1441 case MSR_IA32_VMX_CR4_FIXED1:
1442 /*
1443 * These MSRs are generated based on the vCPU's CPUID, so we
1444 * do not support restoring them directly.
1445 */
1446 return -EINVAL;
1447 case MSR_IA32_VMX_EPT_VPID_CAP:
1448 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1449 case MSR_IA32_VMX_VMCS_ENUM:
1450 vmx->nested.msrs.vmcs_enum = data;
1451 return 0;
1452 case MSR_IA32_VMX_VMFUNC:
1453 if (data & ~vmx->nested.msrs.vmfunc_controls)
1454 return -EINVAL;
1455 vmx->nested.msrs.vmfunc_controls = data;
1456 return 0;
1457 default:
1458 /*
1459 * The rest of the VMX capability MSRs do not support restore.
1460 */
1461 return -EINVAL;
1462 }
1463 }
1464
1465 /* Returns 0 on success, non-0 otherwise. */
vmx_get_vmx_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u64 * pdata)1466 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1467 {
1468 switch (msr_index) {
1469 case MSR_IA32_VMX_BASIC:
1470 *pdata = msrs->basic;
1471 break;
1472 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1473 case MSR_IA32_VMX_PINBASED_CTLS:
1474 *pdata = vmx_control_msr(
1475 msrs->pinbased_ctls_low,
1476 msrs->pinbased_ctls_high);
1477 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1478 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1479 break;
1480 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1481 case MSR_IA32_VMX_PROCBASED_CTLS:
1482 *pdata = vmx_control_msr(
1483 msrs->procbased_ctls_low,
1484 msrs->procbased_ctls_high);
1485 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1486 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1487 break;
1488 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1489 case MSR_IA32_VMX_EXIT_CTLS:
1490 *pdata = vmx_control_msr(
1491 msrs->exit_ctls_low,
1492 msrs->exit_ctls_high);
1493 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1494 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1495 break;
1496 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1497 case MSR_IA32_VMX_ENTRY_CTLS:
1498 *pdata = vmx_control_msr(
1499 msrs->entry_ctls_low,
1500 msrs->entry_ctls_high);
1501 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1502 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1503 break;
1504 case MSR_IA32_VMX_MISC:
1505 *pdata = vmx_control_msr(
1506 msrs->misc_low,
1507 msrs->misc_high);
1508 break;
1509 case MSR_IA32_VMX_CR0_FIXED0:
1510 *pdata = msrs->cr0_fixed0;
1511 break;
1512 case MSR_IA32_VMX_CR0_FIXED1:
1513 *pdata = msrs->cr0_fixed1;
1514 break;
1515 case MSR_IA32_VMX_CR4_FIXED0:
1516 *pdata = msrs->cr4_fixed0;
1517 break;
1518 case MSR_IA32_VMX_CR4_FIXED1:
1519 *pdata = msrs->cr4_fixed1;
1520 break;
1521 case MSR_IA32_VMX_VMCS_ENUM:
1522 *pdata = msrs->vmcs_enum;
1523 break;
1524 case MSR_IA32_VMX_PROCBASED_CTLS2:
1525 *pdata = vmx_control_msr(
1526 msrs->secondary_ctls_low,
1527 msrs->secondary_ctls_high);
1528 break;
1529 case MSR_IA32_VMX_EPT_VPID_CAP:
1530 *pdata = msrs->ept_caps |
1531 ((u64)msrs->vpid_caps << 32);
1532 break;
1533 case MSR_IA32_VMX_VMFUNC:
1534 *pdata = msrs->vmfunc_controls;
1535 break;
1536 default:
1537 return 1;
1538 }
1539
1540 return 0;
1541 }
1542
1543 /*
1544 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1545 * been modified by the L1 guest. Note, "writable" in this context means
1546 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1547 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1548 * VM-exit information fields (which are actually writable if the vCPU is
1549 * configured to support "VMWRITE to any supported field in the VMCS").
1550 */
copy_shadow_to_vmcs12(struct vcpu_vmx * vmx)1551 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1552 {
1553 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1554 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1555 struct shadow_vmcs_field field;
1556 unsigned long val;
1557 int i;
1558
1559 if (WARN_ON(!shadow_vmcs))
1560 return;
1561
1562 preempt_disable();
1563
1564 vmcs_load(shadow_vmcs);
1565
1566 for (i = 0; i < max_shadow_read_write_fields; i++) {
1567 field = shadow_read_write_fields[i];
1568 val = __vmcs_readl(field.encoding);
1569 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1570 }
1571
1572 vmcs_clear(shadow_vmcs);
1573 vmcs_load(vmx->loaded_vmcs->vmcs);
1574
1575 preempt_enable();
1576 }
1577
copy_vmcs12_to_shadow(struct vcpu_vmx * vmx)1578 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1579 {
1580 const struct shadow_vmcs_field *fields[] = {
1581 shadow_read_write_fields,
1582 shadow_read_only_fields
1583 };
1584 const int max_fields[] = {
1585 max_shadow_read_write_fields,
1586 max_shadow_read_only_fields
1587 };
1588 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1589 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1590 struct shadow_vmcs_field field;
1591 unsigned long val;
1592 int i, q;
1593
1594 if (WARN_ON(!shadow_vmcs))
1595 return;
1596
1597 vmcs_load(shadow_vmcs);
1598
1599 for (q = 0; q < ARRAY_SIZE(fields); q++) {
1600 for (i = 0; i < max_fields[q]; i++) {
1601 field = fields[q][i];
1602 val = vmcs12_read_any(vmcs12, field.encoding,
1603 field.offset);
1604 __vmcs_writel(field.encoding, val);
1605 }
1606 }
1607
1608 vmcs_clear(shadow_vmcs);
1609 vmcs_load(vmx->loaded_vmcs->vmcs);
1610 }
1611
copy_enlightened_to_vmcs12(struct vcpu_vmx * vmx)1612 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1613 {
1614 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1615 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1616
1617 /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1618 vmcs12->tpr_threshold = evmcs->tpr_threshold;
1619 vmcs12->guest_rip = evmcs->guest_rip;
1620
1621 if (unlikely(!(evmcs->hv_clean_fields &
1622 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1623 vmcs12->guest_rsp = evmcs->guest_rsp;
1624 vmcs12->guest_rflags = evmcs->guest_rflags;
1625 vmcs12->guest_interruptibility_info =
1626 evmcs->guest_interruptibility_info;
1627 }
1628
1629 if (unlikely(!(evmcs->hv_clean_fields &
1630 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1631 vmcs12->cpu_based_vm_exec_control =
1632 evmcs->cpu_based_vm_exec_control;
1633 }
1634
1635 if (unlikely(!(evmcs->hv_clean_fields &
1636 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1637 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1638 }
1639
1640 if (unlikely(!(evmcs->hv_clean_fields &
1641 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1642 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1643 }
1644
1645 if (unlikely(!(evmcs->hv_clean_fields &
1646 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1647 vmcs12->vm_entry_intr_info_field =
1648 evmcs->vm_entry_intr_info_field;
1649 vmcs12->vm_entry_exception_error_code =
1650 evmcs->vm_entry_exception_error_code;
1651 vmcs12->vm_entry_instruction_len =
1652 evmcs->vm_entry_instruction_len;
1653 }
1654
1655 if (unlikely(!(evmcs->hv_clean_fields &
1656 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1657 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1658 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1659 vmcs12->host_cr0 = evmcs->host_cr0;
1660 vmcs12->host_cr3 = evmcs->host_cr3;
1661 vmcs12->host_cr4 = evmcs->host_cr4;
1662 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1663 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1664 vmcs12->host_rip = evmcs->host_rip;
1665 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1666 vmcs12->host_es_selector = evmcs->host_es_selector;
1667 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1668 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1669 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1670 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1671 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1672 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1673 }
1674
1675 if (unlikely(!(evmcs->hv_clean_fields &
1676 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1677 vmcs12->pin_based_vm_exec_control =
1678 evmcs->pin_based_vm_exec_control;
1679 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1680 vmcs12->secondary_vm_exec_control =
1681 evmcs->secondary_vm_exec_control;
1682 }
1683
1684 if (unlikely(!(evmcs->hv_clean_fields &
1685 HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1686 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1687 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1688 }
1689
1690 if (unlikely(!(evmcs->hv_clean_fields &
1691 HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1692 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1693 }
1694
1695 if (unlikely(!(evmcs->hv_clean_fields &
1696 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1697 vmcs12->guest_es_base = evmcs->guest_es_base;
1698 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1699 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1700 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1701 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1702 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1703 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1704 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1705 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1706 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1707 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1708 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1709 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1710 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1711 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1712 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1713 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1714 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1715 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1716 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1717 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1718 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1719 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1720 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1721 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1722 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1723 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1724 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1725 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1726 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1727 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1728 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1729 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1730 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1731 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1732 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1733 }
1734
1735 if (unlikely(!(evmcs->hv_clean_fields &
1736 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1737 vmcs12->tsc_offset = evmcs->tsc_offset;
1738 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1739 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1740 }
1741
1742 if (unlikely(!(evmcs->hv_clean_fields &
1743 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1744 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1745 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1746 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1747 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1748 vmcs12->guest_cr0 = evmcs->guest_cr0;
1749 vmcs12->guest_cr3 = evmcs->guest_cr3;
1750 vmcs12->guest_cr4 = evmcs->guest_cr4;
1751 vmcs12->guest_dr7 = evmcs->guest_dr7;
1752 }
1753
1754 if (unlikely(!(evmcs->hv_clean_fields &
1755 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1756 vmcs12->host_fs_base = evmcs->host_fs_base;
1757 vmcs12->host_gs_base = evmcs->host_gs_base;
1758 vmcs12->host_tr_base = evmcs->host_tr_base;
1759 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1760 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1761 vmcs12->host_rsp = evmcs->host_rsp;
1762 }
1763
1764 if (unlikely(!(evmcs->hv_clean_fields &
1765 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1766 vmcs12->ept_pointer = evmcs->ept_pointer;
1767 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1768 }
1769
1770 if (unlikely(!(evmcs->hv_clean_fields &
1771 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1772 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1773 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1774 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1775 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1776 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1777 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1778 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1779 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1780 vmcs12->guest_pending_dbg_exceptions =
1781 evmcs->guest_pending_dbg_exceptions;
1782 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1783 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1784 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1785 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1786 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1787 }
1788
1789 /*
1790 * Not used?
1791 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1792 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1793 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1794 * vmcs12->page_fault_error_code_mask =
1795 * evmcs->page_fault_error_code_mask;
1796 * vmcs12->page_fault_error_code_match =
1797 * evmcs->page_fault_error_code_match;
1798 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1799 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1800 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1801 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1802 */
1803
1804 /*
1805 * Read only fields:
1806 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1807 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1808 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1809 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1810 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1811 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1812 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1813 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1814 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1815 * vmcs12->exit_qualification = evmcs->exit_qualification;
1816 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1817 *
1818 * Not present in struct vmcs12:
1819 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1820 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1821 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1822 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1823 */
1824
1825 return 0;
1826 }
1827
copy_vmcs12_to_enlightened(struct vcpu_vmx * vmx)1828 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1829 {
1830 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1831 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1832
1833 /*
1834 * Should not be changed by KVM:
1835 *
1836 * evmcs->host_es_selector = vmcs12->host_es_selector;
1837 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1838 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1839 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1840 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1841 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1842 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1843 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1844 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1845 * evmcs->host_cr0 = vmcs12->host_cr0;
1846 * evmcs->host_cr3 = vmcs12->host_cr3;
1847 * evmcs->host_cr4 = vmcs12->host_cr4;
1848 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1849 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1850 * evmcs->host_rip = vmcs12->host_rip;
1851 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1852 * evmcs->host_fs_base = vmcs12->host_fs_base;
1853 * evmcs->host_gs_base = vmcs12->host_gs_base;
1854 * evmcs->host_tr_base = vmcs12->host_tr_base;
1855 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1856 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1857 * evmcs->host_rsp = vmcs12->host_rsp;
1858 * sync_vmcs02_to_vmcs12() doesn't read these:
1859 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1860 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1861 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1862 * evmcs->ept_pointer = vmcs12->ept_pointer;
1863 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1864 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1865 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1866 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1867 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1868 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1869 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1870 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1871 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1872 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1873 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1874 * evmcs->page_fault_error_code_mask =
1875 * vmcs12->page_fault_error_code_mask;
1876 * evmcs->page_fault_error_code_match =
1877 * vmcs12->page_fault_error_code_match;
1878 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1879 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1880 * evmcs->tsc_offset = vmcs12->tsc_offset;
1881 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1882 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1883 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1884 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1885 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1886 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1887 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1888 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1889 *
1890 * Not present in struct vmcs12:
1891 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1892 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1893 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1894 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1895 */
1896
1897 evmcs->guest_es_selector = vmcs12->guest_es_selector;
1898 evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1899 evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1900 evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1901 evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1902 evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1903 evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1904 evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1905
1906 evmcs->guest_es_limit = vmcs12->guest_es_limit;
1907 evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1908 evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1909 evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1910 evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1911 evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1912 evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1913 evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1914 evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1915 evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1916
1917 evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1918 evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1919 evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1920 evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1921 evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1922 evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1923 evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1924 evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1925
1926 evmcs->guest_es_base = vmcs12->guest_es_base;
1927 evmcs->guest_cs_base = vmcs12->guest_cs_base;
1928 evmcs->guest_ss_base = vmcs12->guest_ss_base;
1929 evmcs->guest_ds_base = vmcs12->guest_ds_base;
1930 evmcs->guest_fs_base = vmcs12->guest_fs_base;
1931 evmcs->guest_gs_base = vmcs12->guest_gs_base;
1932 evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1933 evmcs->guest_tr_base = vmcs12->guest_tr_base;
1934 evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1935 evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1936
1937 evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1938 evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1939
1940 evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1941 evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1942 evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1943 evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1944
1945 evmcs->guest_pending_dbg_exceptions =
1946 vmcs12->guest_pending_dbg_exceptions;
1947 evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1948 evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1949
1950 evmcs->guest_activity_state = vmcs12->guest_activity_state;
1951 evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1952
1953 evmcs->guest_cr0 = vmcs12->guest_cr0;
1954 evmcs->guest_cr3 = vmcs12->guest_cr3;
1955 evmcs->guest_cr4 = vmcs12->guest_cr4;
1956 evmcs->guest_dr7 = vmcs12->guest_dr7;
1957
1958 evmcs->guest_physical_address = vmcs12->guest_physical_address;
1959
1960 evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1961 evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1962 evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1963 evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1964 evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1965 evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1966 evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1967 evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1968
1969 evmcs->exit_qualification = vmcs12->exit_qualification;
1970
1971 evmcs->guest_linear_address = vmcs12->guest_linear_address;
1972 evmcs->guest_rsp = vmcs12->guest_rsp;
1973 evmcs->guest_rflags = vmcs12->guest_rflags;
1974
1975 evmcs->guest_interruptibility_info =
1976 vmcs12->guest_interruptibility_info;
1977 evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1978 evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1979 evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1980 evmcs->vm_entry_exception_error_code =
1981 vmcs12->vm_entry_exception_error_code;
1982 evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1983
1984 evmcs->guest_rip = vmcs12->guest_rip;
1985
1986 evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1987
1988 return 0;
1989 }
1990
1991 /*
1992 * This is an equivalent of the nested hypervisor executing the vmptrld
1993 * instruction.
1994 */
nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu * vcpu,bool from_launch)1995 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1996 struct kvm_vcpu *vcpu, bool from_launch)
1997 {
1998 struct vcpu_vmx *vmx = to_vmx(vcpu);
1999 bool evmcs_gpa_changed = false;
2000 u64 evmcs_gpa;
2001
2002 if (likely(!vmx->nested.enlightened_vmcs_enabled))
2003 return EVMPTRLD_DISABLED;
2004
2005 if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
2006 return EVMPTRLD_DISABLED;
2007
2008 if (unlikely(!vmx->nested.hv_evmcs ||
2009 evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2010 if (!vmx->nested.hv_evmcs)
2011 vmx->nested.current_vmptr = -1ull;
2012
2013 nested_release_evmcs(vcpu);
2014
2015 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2016 &vmx->nested.hv_evmcs_map))
2017 return EVMPTRLD_ERROR;
2018
2019 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2020
2021 /*
2022 * Currently, KVM only supports eVMCS version 1
2023 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2024 * value to first u32 field of eVMCS which should specify eVMCS
2025 * VersionNumber.
2026 *
2027 * Guest should be aware of supported eVMCS versions by host by
2028 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2029 * expected to set this CPUID leaf according to the value
2030 * returned in vmcs_version from nested_enable_evmcs().
2031 *
2032 * However, it turns out that Microsoft Hyper-V fails to comply
2033 * to their own invented interface: When Hyper-V use eVMCS, it
2034 * just sets first u32 field of eVMCS to revision_id specified
2035 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2036 * which is one of the supported versions specified in
2037 * CPUID.0x4000000A.EAX[0:15].
2038 *
2039 * To overcome Hyper-V bug, we accept here either a supported
2040 * eVMCS version or VMCS12 revision_id as valid values for first
2041 * u32 field of eVMCS.
2042 */
2043 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2044 (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2045 nested_release_evmcs(vcpu);
2046 return EVMPTRLD_VMFAIL;
2047 }
2048
2049 vmx->nested.dirty_vmcs12 = true;
2050 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2051
2052 evmcs_gpa_changed = true;
2053 /*
2054 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2055 * reloaded from guest's memory (read only fields, fields not
2056 * present in struct hv_enlightened_vmcs, ...). Make sure there
2057 * are no leftovers.
2058 */
2059 if (from_launch) {
2060 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2061 memset(vmcs12, 0, sizeof(*vmcs12));
2062 vmcs12->hdr.revision_id = VMCS12_REVISION;
2063 }
2064
2065 }
2066
2067 /*
2068 * Clean fields data can't be used on VMLAUNCH and when we switch
2069 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2070 */
2071 if (from_launch || evmcs_gpa_changed)
2072 vmx->nested.hv_evmcs->hv_clean_fields &=
2073 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2074
2075 return EVMPTRLD_SUCCEEDED;
2076 }
2077
nested_sync_vmcs12_to_shadow(struct kvm_vcpu * vcpu)2078 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2079 {
2080 struct vcpu_vmx *vmx = to_vmx(vcpu);
2081
2082 if (vmx->nested.hv_evmcs) {
2083 copy_vmcs12_to_enlightened(vmx);
2084 /* All fields are clean */
2085 vmx->nested.hv_evmcs->hv_clean_fields |=
2086 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2087 } else {
2088 copy_vmcs12_to_shadow(vmx);
2089 }
2090
2091 vmx->nested.need_vmcs12_to_shadow_sync = false;
2092 }
2093
vmx_preemption_timer_fn(struct hrtimer * timer)2094 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2095 {
2096 struct vcpu_vmx *vmx =
2097 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2098
2099 vmx->nested.preemption_timer_expired = true;
2100 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2101 kvm_vcpu_kick(&vmx->vcpu);
2102
2103 return HRTIMER_NORESTART;
2104 }
2105
vmx_calc_preemption_timer_value(struct kvm_vcpu * vcpu)2106 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2107 {
2108 struct vcpu_vmx *vmx = to_vmx(vcpu);
2109 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2110
2111 u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2112 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2113
2114 if (!vmx->nested.has_preemption_timer_deadline) {
2115 vmx->nested.preemption_timer_deadline =
2116 vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2117 vmx->nested.has_preemption_timer_deadline = true;
2118 }
2119 return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2120 }
2121
vmx_start_preemption_timer(struct kvm_vcpu * vcpu,u64 preemption_timeout)2122 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2123 u64 preemption_timeout)
2124 {
2125 struct vcpu_vmx *vmx = to_vmx(vcpu);
2126
2127 /*
2128 * A timer value of zero is architecturally guaranteed to cause
2129 * a VMExit prior to executing any instructions in the guest.
2130 */
2131 if (preemption_timeout == 0) {
2132 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2133 return;
2134 }
2135
2136 if (vcpu->arch.virtual_tsc_khz == 0)
2137 return;
2138
2139 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2140 preemption_timeout *= 1000000;
2141 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2142 hrtimer_start(&vmx->nested.preemption_timer,
2143 ktime_add_ns(ktime_get(), preemption_timeout),
2144 HRTIMER_MODE_ABS_PINNED);
2145 }
2146
nested_vmx_calc_efer(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2147 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2148 {
2149 if (vmx->nested.nested_run_pending &&
2150 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2151 return vmcs12->guest_ia32_efer;
2152 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2153 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2154 else
2155 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2156 }
2157
prepare_vmcs02_constant_state(struct vcpu_vmx * vmx)2158 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2159 {
2160 /*
2161 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2162 * according to L0's settings (vmcs12 is irrelevant here). Host
2163 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2164 * will be set as needed prior to VMLAUNCH/VMRESUME.
2165 */
2166 if (vmx->nested.vmcs02_initialized)
2167 return;
2168 vmx->nested.vmcs02_initialized = true;
2169
2170 /*
2171 * We don't care what the EPTP value is we just need to guarantee
2172 * it's valid so we don't get a false positive when doing early
2173 * consistency checks.
2174 */
2175 if (enable_ept && nested_early_check)
2176 vmcs_write64(EPT_POINTER,
2177 construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2178
2179 /* All VMFUNCs are currently emulated through L0 vmexits. */
2180 if (cpu_has_vmx_vmfunc())
2181 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2182
2183 if (cpu_has_vmx_posted_intr())
2184 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2185
2186 if (cpu_has_vmx_msr_bitmap())
2187 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2188
2189 /*
2190 * The PML address never changes, so it is constant in vmcs02.
2191 * Conceptually we want to copy the PML index from vmcs01 here,
2192 * and then back to vmcs01 on nested vmexit. But since we flush
2193 * the log and reset GUEST_PML_INDEX on each vmexit, the PML
2194 * index is also effectively constant in vmcs02.
2195 */
2196 if (enable_pml) {
2197 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
2198 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2199 }
2200
2201 if (cpu_has_vmx_encls_vmexit())
2202 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2203
2204 /*
2205 * Set the MSR load/store lists to match L0's settings. Only the
2206 * addresses are constant (for vmcs02), the counts can change based
2207 * on L2's behavior, e.g. switching to/from long mode.
2208 */
2209 vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2210 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2211 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2212
2213 vmx_set_constant_host_state(vmx);
2214 }
2215
prepare_vmcs02_early_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2216 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2217 struct vmcs12 *vmcs12)
2218 {
2219 prepare_vmcs02_constant_state(vmx);
2220
2221 vmcs_write64(VMCS_LINK_POINTER, -1ull);
2222
2223 if (enable_vpid) {
2224 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2225 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2226 else
2227 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2228 }
2229 }
2230
prepare_vmcs02_early(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2231 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2232 {
2233 u32 exec_control, vmcs12_exec_ctrl;
2234 u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2235
2236 if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2237 prepare_vmcs02_early_rare(vmx, vmcs12);
2238
2239 /*
2240 * PIN CONTROLS
2241 */
2242 exec_control = vmx_pin_based_exec_ctrl(vmx);
2243 exec_control |= (vmcs12->pin_based_vm_exec_control &
2244 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2245
2246 /* Posted interrupts setting is only taken from vmcs12. */
2247 vmx->nested.pi_pending = false;
2248 if (nested_cpu_has_posted_intr(vmcs12))
2249 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2250 else
2251 exec_control &= ~PIN_BASED_POSTED_INTR;
2252 pin_controls_set(vmx, exec_control);
2253
2254 /*
2255 * EXEC CONTROLS
2256 */
2257 exec_control = vmx_exec_control(vmx); /* L0's desires */
2258 exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2259 exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2260 exec_control &= ~CPU_BASED_TPR_SHADOW;
2261 exec_control |= vmcs12->cpu_based_vm_exec_control;
2262
2263 vmx->nested.l1_tpr_threshold = -1;
2264 if (exec_control & CPU_BASED_TPR_SHADOW)
2265 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2266 #ifdef CONFIG_X86_64
2267 else
2268 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2269 CPU_BASED_CR8_STORE_EXITING;
2270 #endif
2271
2272 /*
2273 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2274 * for I/O port accesses.
2275 */
2276 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2277 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2278
2279 /*
2280 * This bit will be computed in nested_get_vmcs12_pages, because
2281 * we do not have access to L1's MSR bitmap yet. For now, keep
2282 * the same bit as before, hoping to avoid multiple VMWRITEs that
2283 * only set/clear this bit.
2284 */
2285 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2286 exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2287
2288 exec_controls_set(vmx, exec_control);
2289
2290 /*
2291 * SECONDARY EXEC CONTROLS
2292 */
2293 if (cpu_has_secondary_exec_ctrls()) {
2294 exec_control = vmx->secondary_exec_control;
2295
2296 /* Take the following fields only from vmcs12 */
2297 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2298 SECONDARY_EXEC_ENABLE_INVPCID |
2299 SECONDARY_EXEC_ENABLE_RDTSCP |
2300 SECONDARY_EXEC_XSAVES |
2301 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2302 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2303 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2304 SECONDARY_EXEC_ENABLE_VMFUNC);
2305 if (nested_cpu_has(vmcs12,
2306 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2307 vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2308 ~SECONDARY_EXEC_ENABLE_PML;
2309 exec_control |= vmcs12_exec_ctrl;
2310 }
2311
2312 /* VMCS shadowing for L2 is emulated for now */
2313 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2314
2315 /*
2316 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2317 * will not have to rewrite the controls just for this bit.
2318 */
2319 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2320 (vmcs12->guest_cr4 & X86_CR4_UMIP))
2321 exec_control |= SECONDARY_EXEC_DESC;
2322
2323 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2324 vmcs_write16(GUEST_INTR_STATUS,
2325 vmcs12->guest_intr_status);
2326
2327 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2328 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2329
2330 secondary_exec_controls_set(vmx, exec_control);
2331 }
2332
2333 /*
2334 * ENTRY CONTROLS
2335 *
2336 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2337 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2338 * on the related bits (if supported by the CPU) in the hope that
2339 * we can avoid VMWrites during vmx_set_efer().
2340 */
2341 exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2342 ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2343 if (cpu_has_load_ia32_efer()) {
2344 if (guest_efer & EFER_LMA)
2345 exec_control |= VM_ENTRY_IA32E_MODE;
2346 if (guest_efer != host_efer)
2347 exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2348 }
2349 vm_entry_controls_set(vmx, exec_control);
2350
2351 /*
2352 * EXIT CONTROLS
2353 *
2354 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2355 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2356 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2357 */
2358 exec_control = vmx_vmexit_ctrl();
2359 if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2360 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2361 vm_exit_controls_set(vmx, exec_control);
2362
2363 /*
2364 * Interrupt/Exception Fields
2365 */
2366 if (vmx->nested.nested_run_pending) {
2367 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2368 vmcs12->vm_entry_intr_info_field);
2369 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2370 vmcs12->vm_entry_exception_error_code);
2371 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2372 vmcs12->vm_entry_instruction_len);
2373 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2374 vmcs12->guest_interruptibility_info);
2375 vmx->loaded_vmcs->nmi_known_unmasked =
2376 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2377 } else {
2378 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2379 }
2380 }
2381
prepare_vmcs02_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2382 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2383 {
2384 struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2385
2386 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2387 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2388 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2389 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2390 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2391 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2392 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2393 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2394 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2395 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2396 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2397 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2398 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2399 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2400 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2401 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2402 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2403 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2404 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2405 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2406 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2407 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2408 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2409 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2410 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2411 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2412 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2413 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2414 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2415 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2416 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2417 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2418 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2419 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2420 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2421 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2422 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2423 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2424
2425 vmx->segment_cache.bitmask = 0;
2426 }
2427
2428 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2429 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2430 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2431 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2432 vmcs12->guest_pending_dbg_exceptions);
2433 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2434 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2435
2436 /*
2437 * L1 may access the L2's PDPTR, so save them to construct
2438 * vmcs12
2439 */
2440 if (enable_ept) {
2441 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2442 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2443 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2444 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2445 }
2446
2447 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2448 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2449 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2450 }
2451
2452 if (nested_cpu_has_xsaves(vmcs12))
2453 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2454
2455 /*
2456 * Whether page-faults are trapped is determined by a combination of
2457 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. If L0
2458 * doesn't care about page faults then we should set all of these to
2459 * L1's desires. However, if L0 does care about (some) page faults, it
2460 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2461 * simply ask to exit on each and every L2 page fault. This is done by
2462 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2463 * Note that below we don't need special code to set EB.PF beyond the
2464 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2465 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2466 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2467 */
2468 if (vmx_need_pf_intercept(&vmx->vcpu)) {
2469 /*
2470 * TODO: if both L0 and L1 need the same MASK and MATCH,
2471 * go ahead and use it?
2472 */
2473 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2474 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2475 } else {
2476 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2477 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2478 }
2479
2480 if (cpu_has_vmx_apicv()) {
2481 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2482 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2483 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2484 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2485 }
2486
2487 /*
2488 * Make sure the msr_autostore list is up to date before we set the
2489 * count in the vmcs02.
2490 */
2491 prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2492
2493 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2494 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2495 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2496
2497 set_cr4_guest_host_mask(vmx);
2498 }
2499
2500 /*
2501 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2502 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2503 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2504 * guest in a way that will both be appropriate to L1's requests, and our
2505 * needs. In addition to modifying the active vmcs (which is vmcs02), this
2506 * function also has additional necessary side-effects, like setting various
2507 * vcpu->arch fields.
2508 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2509 * is assigned to entry_failure_code on failure.
2510 */
prepare_vmcs02(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,enum vm_entry_failure_code * entry_failure_code)2511 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2512 enum vm_entry_failure_code *entry_failure_code)
2513 {
2514 struct vcpu_vmx *vmx = to_vmx(vcpu);
2515 struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2516 bool load_guest_pdptrs_vmcs12 = false;
2517
2518 if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2519 prepare_vmcs02_rare(vmx, vmcs12);
2520 vmx->nested.dirty_vmcs12 = false;
2521
2522 load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2523 !(hv_evmcs->hv_clean_fields &
2524 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2525 }
2526
2527 if (vmx->nested.nested_run_pending &&
2528 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2529 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2530 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2531 } else {
2532 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2533 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2534 }
2535 if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2536 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2537 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2538 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2539
2540 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2541 * bitwise-or of what L1 wants to trap for L2, and what we want to
2542 * trap. Note that CR0.TS also needs updating - we do this later.
2543 */
2544 update_exception_bitmap(vcpu);
2545 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2546 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2547
2548 if (vmx->nested.nested_run_pending &&
2549 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2550 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2551 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2552 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2553 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2554 }
2555
2556 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2557
2558 if (kvm_has_tsc_control)
2559 decache_tsc_multiplier(vmx);
2560
2561 nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2562
2563 if (nested_cpu_has_ept(vmcs12))
2564 nested_ept_init_mmu_context(vcpu);
2565
2566 /*
2567 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2568 * bits which we consider mandatory enabled.
2569 * The CR0_READ_SHADOW is what L2 should have expected to read given
2570 * the specifications by L1; It's not enough to take
2571 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2572 * have more bits than L1 expected.
2573 */
2574 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2575 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2576
2577 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2578 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2579
2580 vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2581 /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2582 vmx_set_efer(vcpu, vcpu->arch.efer);
2583
2584 /*
2585 * Guest state is invalid and unrestricted guest is disabled,
2586 * which means L1 attempted VMEntry to L2 with invalid state.
2587 * Fail the VMEntry.
2588 */
2589 if (CC(!vmx_guest_state_valid(vcpu))) {
2590 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2591 return -EINVAL;
2592 }
2593
2594 /* Shadow page tables on either EPT or shadow page tables. */
2595 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2596 entry_failure_code))
2597 return -EINVAL;
2598
2599 /*
2600 * Immediately write vmcs02.GUEST_CR3. It will be propagated to vmcs12
2601 * on nested VM-Exit, which can occur without actually running L2 and
2602 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2603 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2604 * transition to HLT instead of running L2.
2605 */
2606 if (enable_ept)
2607 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2608
2609 /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2610 if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2611 is_pae_paging(vcpu)) {
2612 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2613 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2614 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2615 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2616 }
2617
2618 if (!enable_ept)
2619 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2620
2621 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2622 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2623 vmcs12->guest_ia32_perf_global_ctrl))) {
2624 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2625 return -EINVAL;
2626 }
2627
2628 kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2629 kvm_rip_write(vcpu, vmcs12->guest_rip);
2630 return 0;
2631 }
2632
nested_vmx_check_nmi_controls(struct vmcs12 * vmcs12)2633 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2634 {
2635 if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2636 nested_cpu_has_virtual_nmis(vmcs12)))
2637 return -EINVAL;
2638
2639 if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2640 nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2641 return -EINVAL;
2642
2643 return 0;
2644 }
2645
nested_vmx_check_eptp(struct kvm_vcpu * vcpu,u64 new_eptp)2646 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2647 {
2648 struct vcpu_vmx *vmx = to_vmx(vcpu);
2649 int maxphyaddr = cpuid_maxphyaddr(vcpu);
2650
2651 /* Check for memory type validity */
2652 switch (new_eptp & VMX_EPTP_MT_MASK) {
2653 case VMX_EPTP_MT_UC:
2654 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2655 return false;
2656 break;
2657 case VMX_EPTP_MT_WB:
2658 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2659 return false;
2660 break;
2661 default:
2662 return false;
2663 }
2664
2665 /* Page-walk levels validity. */
2666 switch (new_eptp & VMX_EPTP_PWL_MASK) {
2667 case VMX_EPTP_PWL_5:
2668 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2669 return false;
2670 break;
2671 case VMX_EPTP_PWL_4:
2672 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2673 return false;
2674 break;
2675 default:
2676 return false;
2677 }
2678
2679 /* Reserved bits should not be set */
2680 if (CC(new_eptp >> maxphyaddr || ((new_eptp >> 7) & 0x1f)))
2681 return false;
2682
2683 /* AD, if set, should be supported */
2684 if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2685 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2686 return false;
2687 }
2688
2689 return true;
2690 }
2691
2692 /*
2693 * Checks related to VM-Execution Control Fields
2694 */
nested_check_vm_execution_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2695 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2696 struct vmcs12 *vmcs12)
2697 {
2698 struct vcpu_vmx *vmx = to_vmx(vcpu);
2699
2700 if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2701 vmx->nested.msrs.pinbased_ctls_low,
2702 vmx->nested.msrs.pinbased_ctls_high)) ||
2703 CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2704 vmx->nested.msrs.procbased_ctls_low,
2705 vmx->nested.msrs.procbased_ctls_high)))
2706 return -EINVAL;
2707
2708 if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2709 CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2710 vmx->nested.msrs.secondary_ctls_low,
2711 vmx->nested.msrs.secondary_ctls_high)))
2712 return -EINVAL;
2713
2714 if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2715 nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2716 nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2717 nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2718 nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2719 nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2720 nested_vmx_check_nmi_controls(vmcs12) ||
2721 nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2722 nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2723 nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2724 nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2725 CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2726 return -EINVAL;
2727
2728 if (!nested_cpu_has_preemption_timer(vmcs12) &&
2729 nested_cpu_has_save_preemption_timer(vmcs12))
2730 return -EINVAL;
2731
2732 if (nested_cpu_has_ept(vmcs12) &&
2733 CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2734 return -EINVAL;
2735
2736 if (nested_cpu_has_vmfunc(vmcs12)) {
2737 if (CC(vmcs12->vm_function_control &
2738 ~vmx->nested.msrs.vmfunc_controls))
2739 return -EINVAL;
2740
2741 if (nested_cpu_has_eptp_switching(vmcs12)) {
2742 if (CC(!nested_cpu_has_ept(vmcs12)) ||
2743 CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2744 return -EINVAL;
2745 }
2746 }
2747
2748 return 0;
2749 }
2750
2751 /*
2752 * Checks related to VM-Exit Control Fields
2753 */
nested_check_vm_exit_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2754 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2755 struct vmcs12 *vmcs12)
2756 {
2757 struct vcpu_vmx *vmx = to_vmx(vcpu);
2758
2759 if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2760 vmx->nested.msrs.exit_ctls_low,
2761 vmx->nested.msrs.exit_ctls_high)) ||
2762 CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2763 return -EINVAL;
2764
2765 return 0;
2766 }
2767
2768 /*
2769 * Checks related to VM-Entry Control Fields
2770 */
nested_check_vm_entry_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2771 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2772 struct vmcs12 *vmcs12)
2773 {
2774 struct vcpu_vmx *vmx = to_vmx(vcpu);
2775
2776 if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2777 vmx->nested.msrs.entry_ctls_low,
2778 vmx->nested.msrs.entry_ctls_high)))
2779 return -EINVAL;
2780
2781 /*
2782 * From the Intel SDM, volume 3:
2783 * Fields relevant to VM-entry event injection must be set properly.
2784 * These fields are the VM-entry interruption-information field, the
2785 * VM-entry exception error code, and the VM-entry instruction length.
2786 */
2787 if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2788 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2789 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2790 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2791 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2792 bool should_have_error_code;
2793 bool urg = nested_cpu_has2(vmcs12,
2794 SECONDARY_EXEC_UNRESTRICTED_GUEST);
2795 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2796
2797 /* VM-entry interruption-info field: interruption type */
2798 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2799 CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2800 !nested_cpu_supports_monitor_trap_flag(vcpu)))
2801 return -EINVAL;
2802
2803 /* VM-entry interruption-info field: vector */
2804 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2805 CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2806 CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2807 return -EINVAL;
2808
2809 /* VM-entry interruption-info field: deliver error code */
2810 should_have_error_code =
2811 intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2812 x86_exception_has_error_code(vector);
2813 if (CC(has_error_code != should_have_error_code))
2814 return -EINVAL;
2815
2816 /* VM-entry exception error code */
2817 if (CC(has_error_code &&
2818 vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2819 return -EINVAL;
2820
2821 /* VM-entry interruption-info field: reserved bits */
2822 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2823 return -EINVAL;
2824
2825 /* VM-entry instruction length */
2826 switch (intr_type) {
2827 case INTR_TYPE_SOFT_EXCEPTION:
2828 case INTR_TYPE_SOFT_INTR:
2829 case INTR_TYPE_PRIV_SW_EXCEPTION:
2830 if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2831 CC(vmcs12->vm_entry_instruction_len == 0 &&
2832 CC(!nested_cpu_has_zero_length_injection(vcpu))))
2833 return -EINVAL;
2834 }
2835 }
2836
2837 if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2838 return -EINVAL;
2839
2840 return 0;
2841 }
2842
nested_vmx_check_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2843 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2844 struct vmcs12 *vmcs12)
2845 {
2846 if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2847 nested_check_vm_exit_controls(vcpu, vmcs12) ||
2848 nested_check_vm_entry_controls(vcpu, vmcs12))
2849 return -EINVAL;
2850
2851 if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2852 return nested_evmcs_check_controls(vmcs12);
2853
2854 return 0;
2855 }
2856
nested_vmx_check_address_space_size(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2857 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
2858 struct vmcs12 *vmcs12)
2859 {
2860 #ifdef CONFIG_X86_64
2861 if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
2862 !!(vcpu->arch.efer & EFER_LMA)))
2863 return -EINVAL;
2864 #endif
2865 return 0;
2866 }
2867
nested_vmx_check_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2868 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2869 struct vmcs12 *vmcs12)
2870 {
2871 bool ia32e;
2872
2873 if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2874 CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2875 CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
2876 return -EINVAL;
2877
2878 if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2879 CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2880 return -EINVAL;
2881
2882 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2883 CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2884 return -EINVAL;
2885
2886 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2887 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2888 vmcs12->host_ia32_perf_global_ctrl)))
2889 return -EINVAL;
2890
2891 #ifdef CONFIG_X86_64
2892 ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
2893 #else
2894 ia32e = false;
2895 #endif
2896
2897 if (ia32e) {
2898 if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2899 return -EINVAL;
2900 } else {
2901 if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2902 CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2903 CC((vmcs12->host_rip) >> 32))
2904 return -EINVAL;
2905 }
2906
2907 if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2908 CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2909 CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2910 CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2911 CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2912 CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2913 CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2914 CC(vmcs12->host_cs_selector == 0) ||
2915 CC(vmcs12->host_tr_selector == 0) ||
2916 CC(vmcs12->host_ss_selector == 0 && !ia32e))
2917 return -EINVAL;
2918
2919 if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2920 CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2921 CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2922 CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2923 CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2924 CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2925 return -EINVAL;
2926
2927 /*
2928 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2929 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2930 * the values of the LMA and LME bits in the field must each be that of
2931 * the host address-space size VM-exit control.
2932 */
2933 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2934 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2935 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2936 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2937 return -EINVAL;
2938 }
2939
2940 return 0;
2941 }
2942
nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2943 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2944 struct vmcs12 *vmcs12)
2945 {
2946 int r = 0;
2947 struct vmcs12 *shadow;
2948 struct kvm_host_map map;
2949
2950 if (vmcs12->vmcs_link_pointer == -1ull)
2951 return 0;
2952
2953 if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2954 return -EINVAL;
2955
2956 if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2957 return -EINVAL;
2958
2959 shadow = map.hva;
2960
2961 if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2962 CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2963 r = -EINVAL;
2964
2965 kvm_vcpu_unmap(vcpu, &map, false);
2966 return r;
2967 }
2968
2969 /*
2970 * Checks related to Guest Non-register State
2971 */
nested_check_guest_non_reg_state(struct vmcs12 * vmcs12)2972 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2973 {
2974 if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2975 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
2976 return -EINVAL;
2977
2978 return 0;
2979 }
2980
nested_vmx_check_guest_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,enum vm_entry_failure_code * entry_failure_code)2981 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2982 struct vmcs12 *vmcs12,
2983 enum vm_entry_failure_code *entry_failure_code)
2984 {
2985 bool ia32e;
2986
2987 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2988
2989 if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2990 CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2991 return -EINVAL;
2992
2993 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
2994 CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
2995 return -EINVAL;
2996
2997 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2998 CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2999 return -EINVAL;
3000
3001 if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3002 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3003 return -EINVAL;
3004 }
3005
3006 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3007 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3008 vmcs12->guest_ia32_perf_global_ctrl)))
3009 return -EINVAL;
3010
3011 /*
3012 * If the load IA32_EFER VM-entry control is 1, the following checks
3013 * are performed on the field for the IA32_EFER MSR:
3014 * - Bits reserved in the IA32_EFER MSR must be 0.
3015 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3016 * the IA-32e mode guest VM-exit control. It must also be identical
3017 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3018 * CR0.PG) is 1.
3019 */
3020 if (to_vmx(vcpu)->nested.nested_run_pending &&
3021 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3022 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
3023 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3024 CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3025 CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3026 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3027 return -EINVAL;
3028 }
3029
3030 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3031 (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3032 CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3033 return -EINVAL;
3034
3035 if (nested_check_guest_non_reg_state(vmcs12))
3036 return -EINVAL;
3037
3038 return 0;
3039 }
3040
nested_vmx_check_vmentry_hw(struct kvm_vcpu * vcpu)3041 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3042 {
3043 struct vcpu_vmx *vmx = to_vmx(vcpu);
3044 unsigned long cr3, cr4;
3045 bool vm_fail;
3046
3047 if (!nested_early_check)
3048 return 0;
3049
3050 if (vmx->msr_autoload.host.nr)
3051 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3052 if (vmx->msr_autoload.guest.nr)
3053 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3054
3055 preempt_disable();
3056
3057 vmx_prepare_switch_to_guest(vcpu);
3058
3059 /*
3060 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3061 * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
3062 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3063 * there is no need to preserve other bits or save/restore the field.
3064 */
3065 vmcs_writel(GUEST_RFLAGS, 0);
3066
3067 cr3 = __get_current_cr3_fast();
3068 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3069 vmcs_writel(HOST_CR3, cr3);
3070 vmx->loaded_vmcs->host_state.cr3 = cr3;
3071 }
3072
3073 cr4 = cr4_read_shadow();
3074 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3075 vmcs_writel(HOST_CR4, cr4);
3076 vmx->loaded_vmcs->host_state.cr4 = cr4;
3077 }
3078
3079 vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3080 __vmx_vcpu_run_flags(vmx));
3081
3082 if (vmx->msr_autoload.host.nr)
3083 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3084 if (vmx->msr_autoload.guest.nr)
3085 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3086
3087 if (vm_fail) {
3088 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3089
3090 preempt_enable();
3091
3092 trace_kvm_nested_vmenter_failed(
3093 "early hardware check VM-instruction error: ", error);
3094 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3095 return 1;
3096 }
3097
3098 /*
3099 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3100 */
3101 if (hw_breakpoint_active())
3102 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3103 local_irq_enable();
3104 preempt_enable();
3105
3106 /*
3107 * A non-failing VMEntry means we somehow entered guest mode with
3108 * an illegal RIP, and that's just the tip of the iceberg. There
3109 * is no telling what memory has been modified or what state has
3110 * been exposed to unknown code. Hitting this all but guarantees
3111 * a (very critical) hardware issue.
3112 */
3113 WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3114 VMX_EXIT_REASONS_FAILED_VMENTRY));
3115
3116 return 0;
3117 }
3118
nested_get_evmcs_page(struct kvm_vcpu * vcpu)3119 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3120 {
3121 struct vcpu_vmx *vmx = to_vmx(vcpu);
3122
3123 /*
3124 * hv_evmcs may end up being not mapped after migration (when
3125 * L2 was running), map it here to make sure vmcs12 changes are
3126 * properly reflected.
3127 */
3128 if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs) {
3129 enum nested_evmptrld_status evmptrld_status =
3130 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3131
3132 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3133 evmptrld_status == EVMPTRLD_ERROR)
3134 return false;
3135 }
3136
3137 return true;
3138 }
3139
nested_get_vmcs12_pages(struct kvm_vcpu * vcpu)3140 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3141 {
3142 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3143 struct vcpu_vmx *vmx = to_vmx(vcpu);
3144 struct kvm_host_map *map;
3145 struct page *page;
3146 u64 hpa;
3147
3148 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3149 /*
3150 * Translate L1 physical address to host physical
3151 * address for vmcs02. Keep the page pinned, so this
3152 * physical address remains valid. We keep a reference
3153 * to it so we can release it later.
3154 */
3155 if (vmx->nested.apic_access_page) { /* shouldn't happen */
3156 kvm_release_page_clean(vmx->nested.apic_access_page);
3157 vmx->nested.apic_access_page = NULL;
3158 }
3159 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3160 if (!is_error_page(page)) {
3161 vmx->nested.apic_access_page = page;
3162 hpa = page_to_phys(vmx->nested.apic_access_page);
3163 vmcs_write64(APIC_ACCESS_ADDR, hpa);
3164 } else {
3165 pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3166 __func__);
3167 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3168 vcpu->run->internal.suberror =
3169 KVM_INTERNAL_ERROR_EMULATION;
3170 vcpu->run->internal.ndata = 0;
3171 return false;
3172 }
3173 }
3174
3175 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3176 map = &vmx->nested.virtual_apic_map;
3177
3178 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3179 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3180 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3181 nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3182 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3183 /*
3184 * The processor will never use the TPR shadow, simply
3185 * clear the bit from the execution control. Such a
3186 * configuration is useless, but it happens in tests.
3187 * For any other configuration, failing the vm entry is
3188 * _not_ what the processor does but it's basically the
3189 * only possibility we have.
3190 */
3191 exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3192 } else {
3193 /*
3194 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3195 * force VM-Entry to fail.
3196 */
3197 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3198 }
3199 }
3200
3201 if (nested_cpu_has_posted_intr(vmcs12)) {
3202 map = &vmx->nested.pi_desc_map;
3203
3204 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3205 vmx->nested.pi_desc =
3206 (struct pi_desc *)(((void *)map->hva) +
3207 offset_in_page(vmcs12->posted_intr_desc_addr));
3208 vmcs_write64(POSTED_INTR_DESC_ADDR,
3209 pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3210 }
3211 }
3212 if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3213 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3214 else
3215 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3216
3217 return true;
3218 }
3219
vmx_get_nested_state_pages(struct kvm_vcpu * vcpu)3220 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3221 {
3222 if (!nested_get_evmcs_page(vcpu)) {
3223 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3224 __func__);
3225 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3226 vcpu->run->internal.suberror =
3227 KVM_INTERNAL_ERROR_EMULATION;
3228 vcpu->run->internal.ndata = 0;
3229
3230 return false;
3231 }
3232
3233 if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3234 return false;
3235
3236 return true;
3237 }
3238
nested_vmx_write_pml_buffer(struct kvm_vcpu * vcpu,gpa_t gpa)3239 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3240 {
3241 struct vmcs12 *vmcs12;
3242 struct vcpu_vmx *vmx = to_vmx(vcpu);
3243 gpa_t dst;
3244
3245 if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3246 return 0;
3247
3248 if (WARN_ON_ONCE(vmx->nested.pml_full))
3249 return 1;
3250
3251 /*
3252 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3253 * set is already checked as part of A/D emulation.
3254 */
3255 vmcs12 = get_vmcs12(vcpu);
3256 if (!nested_cpu_has_pml(vmcs12))
3257 return 0;
3258
3259 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3260 vmx->nested.pml_full = true;
3261 return 1;
3262 }
3263
3264 gpa &= ~0xFFFull;
3265 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3266
3267 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3268 offset_in_page(dst), sizeof(gpa)))
3269 return 0;
3270
3271 vmcs12->guest_pml_index--;
3272
3273 return 0;
3274 }
3275
3276 /*
3277 * Intel's VMX Instruction Reference specifies a common set of prerequisites
3278 * for running VMX instructions (except VMXON, whose prerequisites are
3279 * slightly different). It also specifies what exception to inject otherwise.
3280 * Note that many of these exceptions have priority over VM exits, so they
3281 * don't have to be checked again here.
3282 */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)3283 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3284 {
3285 if (!to_vmx(vcpu)->nested.vmxon) {
3286 kvm_queue_exception(vcpu, UD_VECTOR);
3287 return 0;
3288 }
3289
3290 if (vmx_get_cpl(vcpu)) {
3291 kvm_inject_gp(vcpu, 0);
3292 return 0;
3293 }
3294
3295 return 1;
3296 }
3297
vmx_has_apicv_interrupt(struct kvm_vcpu * vcpu)3298 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3299 {
3300 u8 rvi = vmx_get_rvi();
3301 u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3302
3303 return ((rvi & 0xf0) > (vppr & 0xf0));
3304 }
3305
3306 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3307 struct vmcs12 *vmcs12);
3308
3309 /*
3310 * If from_vmentry is false, this is being called from state restore (either RSM
3311 * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
3312 *
3313 * Returns:
3314 * NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3315 * NVMX_VMENTRY_VMFAIL: Consistency check VMFail
3316 * NVMX_VMENTRY_VMEXIT: Consistency check VMExit
3317 * NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3318 */
nested_vmx_enter_non_root_mode(struct kvm_vcpu * vcpu,bool from_vmentry)3319 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3320 bool from_vmentry)
3321 {
3322 struct vcpu_vmx *vmx = to_vmx(vcpu);
3323 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3324 enum vm_entry_failure_code entry_failure_code;
3325 bool evaluate_pending_interrupts;
3326 union vmx_exit_reason exit_reason = {
3327 .basic = EXIT_REASON_INVALID_STATE,
3328 .failed_vmentry = 1,
3329 };
3330 u32 failed_index;
3331
3332 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3333 kvm_vcpu_flush_tlb_current(vcpu);
3334
3335 evaluate_pending_interrupts = exec_controls_get(vmx) &
3336 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3337 if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3338 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3339
3340 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3341 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3342 if (kvm_mpx_supported() &&
3343 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3344 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3345
3346 /*
3347 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3348 * nested early checks are disabled. In the event of a "late" VM-Fail,
3349 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3350 * software model to the pre-VMEntry host state. When EPT is disabled,
3351 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3352 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3. Stuffing
3353 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3354 * the correct value. Smashing vmcs01.GUEST_CR3 is safe because nested
3355 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3356 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3357 * L1. Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3358 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3359 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3360 * path would need to manually save/restore vmcs01.GUEST_CR3.
3361 */
3362 if (!enable_ept && !nested_early_check)
3363 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3364
3365 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3366
3367 prepare_vmcs02_early(vmx, vmcs12);
3368
3369 if (from_vmentry) {
3370 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3371 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3372 return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3373 }
3374
3375 if (nested_vmx_check_vmentry_hw(vcpu)) {
3376 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3377 return NVMX_VMENTRY_VMFAIL;
3378 }
3379
3380 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3381 &entry_failure_code)) {
3382 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3383 vmcs12->exit_qualification = entry_failure_code;
3384 goto vmentry_fail_vmexit;
3385 }
3386 }
3387
3388 enter_guest_mode(vcpu);
3389 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3390 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3391
3392 if (prepare_vmcs02(vcpu, vmcs12, &entry_failure_code)) {
3393 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3394 vmcs12->exit_qualification = entry_failure_code;
3395 goto vmentry_fail_vmexit_guest_mode;
3396 }
3397
3398 if (from_vmentry) {
3399 failed_index = nested_vmx_load_msr(vcpu,
3400 vmcs12->vm_entry_msr_load_addr,
3401 vmcs12->vm_entry_msr_load_count);
3402 if (failed_index) {
3403 exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3404 vmcs12->exit_qualification = failed_index;
3405 goto vmentry_fail_vmexit_guest_mode;
3406 }
3407 } else {
3408 /*
3409 * The MMU is not initialized to point at the right entities yet and
3410 * "get pages" would need to read data from the guest (i.e. we will
3411 * need to perform gpa to hpa translation). Request a call
3412 * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
3413 * have already been set at vmentry time and should not be reset.
3414 */
3415 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3416 }
3417
3418 /*
3419 * If L1 had a pending IRQ/NMI until it executed
3420 * VMLAUNCH/VMRESUME which wasn't delivered because it was
3421 * disallowed (e.g. interrupts disabled), L0 needs to
3422 * evaluate if this pending event should cause an exit from L2
3423 * to L1 or delivered directly to L2 (e.g. In case L1 don't
3424 * intercept EXTERNAL_INTERRUPT).
3425 *
3426 * Usually this would be handled by the processor noticing an
3427 * IRQ/NMI window request, or checking RVI during evaluation of
3428 * pending virtual interrupts. However, this setting was done
3429 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3430 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3431 */
3432 if (unlikely(evaluate_pending_interrupts))
3433 kvm_make_request(KVM_REQ_EVENT, vcpu);
3434
3435 /*
3436 * Do not start the preemption timer hrtimer until after we know
3437 * we are successful, so that only nested_vmx_vmexit needs to cancel
3438 * the timer.
3439 */
3440 vmx->nested.preemption_timer_expired = false;
3441 if (nested_cpu_has_preemption_timer(vmcs12)) {
3442 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3443 vmx_start_preemption_timer(vcpu, timer_value);
3444 }
3445
3446 /*
3447 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3448 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3449 * returned as far as L1 is concerned. It will only return (and set
3450 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3451 */
3452 return NVMX_VMENTRY_SUCCESS;
3453
3454 /*
3455 * A failed consistency check that leads to a VMExit during L1's
3456 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3457 * 26.7 "VM-entry failures during or after loading guest state".
3458 */
3459 vmentry_fail_vmexit_guest_mode:
3460 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3461 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3462 leave_guest_mode(vcpu);
3463
3464 vmentry_fail_vmexit:
3465 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3466
3467 if (!from_vmentry)
3468 return NVMX_VMENTRY_VMEXIT;
3469
3470 load_vmcs12_host_state(vcpu, vmcs12);
3471 vmcs12->vm_exit_reason = exit_reason.full;
3472 if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3473 vmx->nested.need_vmcs12_to_shadow_sync = true;
3474 return NVMX_VMENTRY_VMEXIT;
3475 }
3476
3477 /*
3478 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3479 * for running an L2 nested guest.
3480 */
nested_vmx_run(struct kvm_vcpu * vcpu,bool launch)3481 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3482 {
3483 struct vmcs12 *vmcs12;
3484 enum nvmx_vmentry_status status;
3485 struct vcpu_vmx *vmx = to_vmx(vcpu);
3486 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3487 enum nested_evmptrld_status evmptrld_status;
3488
3489 if (!nested_vmx_check_permission(vcpu))
3490 return 1;
3491
3492 evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3493 if (evmptrld_status == EVMPTRLD_ERROR) {
3494 kvm_queue_exception(vcpu, UD_VECTOR);
3495 return 1;
3496 } else if (CC(evmptrld_status == EVMPTRLD_VMFAIL)) {
3497 return nested_vmx_failInvalid(vcpu);
3498 }
3499
3500 if (CC(!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull))
3501 return nested_vmx_failInvalid(vcpu);
3502
3503 vmcs12 = get_vmcs12(vcpu);
3504
3505 /*
3506 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3507 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3508 * rather than RFLAGS.ZF, and no error number is stored to the
3509 * VM-instruction error field.
3510 */
3511 if (CC(vmcs12->hdr.shadow_vmcs))
3512 return nested_vmx_failInvalid(vcpu);
3513
3514 if (vmx->nested.hv_evmcs) {
3515 copy_enlightened_to_vmcs12(vmx);
3516 /* Enlightened VMCS doesn't have launch state */
3517 vmcs12->launch_state = !launch;
3518 } else if (enable_shadow_vmcs) {
3519 copy_shadow_to_vmcs12(vmx);
3520 }
3521
3522 /*
3523 * The nested entry process starts with enforcing various prerequisites
3524 * on vmcs12 as required by the Intel SDM, and act appropriately when
3525 * they fail: As the SDM explains, some conditions should cause the
3526 * instruction to fail, while others will cause the instruction to seem
3527 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3528 * To speed up the normal (success) code path, we should avoid checking
3529 * for misconfigurations which will anyway be caught by the processor
3530 * when using the merged vmcs02.
3531 */
3532 if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3533 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3534
3535 if (CC(vmcs12->launch_state == launch))
3536 return nested_vmx_fail(vcpu,
3537 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3538 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3539
3540 if (nested_vmx_check_controls(vcpu, vmcs12))
3541 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3542
3543 if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3544 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3545
3546 if (nested_vmx_check_host_state(vcpu, vmcs12))
3547 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3548
3549 /*
3550 * We're finally done with prerequisite checking, and can start with
3551 * the nested entry.
3552 */
3553 vmx->nested.nested_run_pending = 1;
3554 vmx->nested.has_preemption_timer_deadline = false;
3555 status = nested_vmx_enter_non_root_mode(vcpu, true);
3556 if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3557 goto vmentry_failed;
3558
3559 /* Emulate processing of posted interrupts on VM-Enter. */
3560 if (nested_cpu_has_posted_intr(vmcs12) &&
3561 kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3562 vmx->nested.pi_pending = true;
3563 kvm_make_request(KVM_REQ_EVENT, vcpu);
3564 kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3565 }
3566
3567 /* Hide L1D cache contents from the nested guest. */
3568 vmx->vcpu.arch.l1tf_flush_l1d = true;
3569
3570 /*
3571 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3572 * also be used as part of restoring nVMX state for
3573 * snapshot restore (migration).
3574 *
3575 * In this flow, it is assumed that vmcs12 cache was
3576 * trasferred as part of captured nVMX state and should
3577 * therefore not be read from guest memory (which may not
3578 * exist on destination host yet).
3579 */
3580 nested_cache_shadow_vmcs12(vcpu, vmcs12);
3581
3582 /*
3583 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3584 * awakened by event injection or by an NMI-window VM-exit or
3585 * by an interrupt-window VM-exit, halt the vcpu.
3586 */
3587 if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3588 !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3589 !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_NMI_WINDOW_EXITING) &&
3590 !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_INTR_WINDOW_EXITING) &&
3591 (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3592 vmx->nested.nested_run_pending = 0;
3593 return kvm_vcpu_halt(vcpu);
3594 }
3595 return 1;
3596
3597 vmentry_failed:
3598 vmx->nested.nested_run_pending = 0;
3599 if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3600 return 0;
3601 if (status == NVMX_VMENTRY_VMEXIT)
3602 return 1;
3603 WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3604 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3605 }
3606
3607 /*
3608 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3609 * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3610 * This function returns the new value we should put in vmcs12.guest_cr0.
3611 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3612 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3613 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3614 * didn't trap the bit, because if L1 did, so would L0).
3615 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3616 * been modified by L2, and L1 knows it. So just leave the old value of
3617 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3618 * isn't relevant, because if L0 traps this bit it can set it to anything.
3619 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3620 * changed these bits, and therefore they need to be updated, but L0
3621 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3622 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3623 */
3624 static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3625 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3626 {
3627 return
3628 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3629 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3630 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3631 vcpu->arch.cr0_guest_owned_bits));
3632 }
3633
3634 static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3635 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3636 {
3637 return
3638 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3639 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3640 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3641 vcpu->arch.cr4_guest_owned_bits));
3642 }
3643
vmcs12_save_pending_event(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3644 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3645 struct vmcs12 *vmcs12)
3646 {
3647 u32 idt_vectoring;
3648 unsigned int nr;
3649
3650 if (vcpu->arch.exception.injected) {
3651 nr = vcpu->arch.exception.nr;
3652 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3653
3654 if (kvm_exception_is_soft(nr)) {
3655 vmcs12->vm_exit_instruction_len =
3656 vcpu->arch.event_exit_inst_len;
3657 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3658 } else
3659 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3660
3661 if (vcpu->arch.exception.has_error_code) {
3662 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3663 vmcs12->idt_vectoring_error_code =
3664 vcpu->arch.exception.error_code;
3665 }
3666
3667 vmcs12->idt_vectoring_info_field = idt_vectoring;
3668 } else if (vcpu->arch.nmi_injected) {
3669 vmcs12->idt_vectoring_info_field =
3670 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3671 } else if (vcpu->arch.interrupt.injected) {
3672 nr = vcpu->arch.interrupt.nr;
3673 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3674
3675 if (vcpu->arch.interrupt.soft) {
3676 idt_vectoring |= INTR_TYPE_SOFT_INTR;
3677 vmcs12->vm_entry_instruction_len =
3678 vcpu->arch.event_exit_inst_len;
3679 } else
3680 idt_vectoring |= INTR_TYPE_EXT_INTR;
3681
3682 vmcs12->idt_vectoring_info_field = idt_vectoring;
3683 }
3684 }
3685
3686
nested_mark_vmcs12_pages_dirty(struct kvm_vcpu * vcpu)3687 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3688 {
3689 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3690 gfn_t gfn;
3691
3692 /*
3693 * Don't need to mark the APIC access page dirty; it is never
3694 * written to by the CPU during APIC virtualization.
3695 */
3696
3697 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3698 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3699 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3700 }
3701
3702 if (nested_cpu_has_posted_intr(vmcs12)) {
3703 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3704 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3705 }
3706 }
3707
vmx_complete_nested_posted_interrupt(struct kvm_vcpu * vcpu)3708 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3709 {
3710 struct vcpu_vmx *vmx = to_vmx(vcpu);
3711 int max_irr;
3712 void *vapic_page;
3713 u16 status;
3714
3715 if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3716 return;
3717
3718 vmx->nested.pi_pending = false;
3719 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3720 return;
3721
3722 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3723 if (max_irr != 256) {
3724 vapic_page = vmx->nested.virtual_apic_map.hva;
3725 if (!vapic_page)
3726 return;
3727
3728 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3729 vapic_page, &max_irr);
3730 status = vmcs_read16(GUEST_INTR_STATUS);
3731 if ((u8)max_irr > ((u8)status & 0xff)) {
3732 status &= ~0xff;
3733 status |= (u8)max_irr;
3734 vmcs_write16(GUEST_INTR_STATUS, status);
3735 }
3736 }
3737
3738 nested_mark_vmcs12_pages_dirty(vcpu);
3739 }
3740
nested_vmx_inject_exception_vmexit(struct kvm_vcpu * vcpu,unsigned long exit_qual)3741 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3742 unsigned long exit_qual)
3743 {
3744 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3745 unsigned int nr = vcpu->arch.exception.nr;
3746 u32 intr_info = nr | INTR_INFO_VALID_MASK;
3747
3748 if (vcpu->arch.exception.has_error_code) {
3749 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3750 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3751 }
3752
3753 if (kvm_exception_is_soft(nr))
3754 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3755 else
3756 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3757
3758 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3759 vmx_get_nmi_mask(vcpu))
3760 intr_info |= INTR_INFO_UNBLOCK_NMI;
3761
3762 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3763 }
3764
3765 /*
3766 * Returns true if a debug trap is pending delivery.
3767 *
3768 * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3769 * exception may be inferred from the presence of an exception payload.
3770 */
vmx_pending_dbg_trap(struct kvm_vcpu * vcpu)3771 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3772 {
3773 return vcpu->arch.exception.pending &&
3774 vcpu->arch.exception.nr == DB_VECTOR &&
3775 vcpu->arch.exception.payload;
3776 }
3777
3778 /*
3779 * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3780 * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3781 * represents these debug traps with a payload that is said to be compatible
3782 * with the 'pending debug exceptions' field, write the payload to the VMCS
3783 * field if a VM-exit is delivered before the debug trap.
3784 */
nested_vmx_update_pending_dbg(struct kvm_vcpu * vcpu)3785 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3786 {
3787 if (vmx_pending_dbg_trap(vcpu))
3788 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3789 vcpu->arch.exception.payload);
3790 }
3791
nested_vmx_preemption_timer_pending(struct kvm_vcpu * vcpu)3792 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3793 {
3794 return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3795 to_vmx(vcpu)->nested.preemption_timer_expired;
3796 }
3797
vmx_check_nested_events(struct kvm_vcpu * vcpu)3798 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3799 {
3800 struct vcpu_vmx *vmx = to_vmx(vcpu);
3801 unsigned long exit_qual;
3802 bool block_nested_events =
3803 vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3804 bool mtf_pending = vmx->nested.mtf_pending;
3805 struct kvm_lapic *apic = vcpu->arch.apic;
3806
3807 /*
3808 * Clear the MTF state. If a higher priority VM-exit is delivered first,
3809 * this state is discarded.
3810 */
3811 if (!block_nested_events)
3812 vmx->nested.mtf_pending = false;
3813
3814 if (lapic_in_kernel(vcpu) &&
3815 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3816 if (block_nested_events)
3817 return -EBUSY;
3818 nested_vmx_update_pending_dbg(vcpu);
3819 clear_bit(KVM_APIC_INIT, &apic->pending_events);
3820 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3821 return 0;
3822 }
3823
3824 /*
3825 * Process any exceptions that are not debug traps before MTF.
3826 */
3827 if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3828 if (block_nested_events)
3829 return -EBUSY;
3830 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3831 goto no_vmexit;
3832 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3833 return 0;
3834 }
3835
3836 if (mtf_pending) {
3837 if (block_nested_events)
3838 return -EBUSY;
3839 nested_vmx_update_pending_dbg(vcpu);
3840 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3841 return 0;
3842 }
3843
3844 if (vcpu->arch.exception.pending) {
3845 if (block_nested_events)
3846 return -EBUSY;
3847 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3848 goto no_vmexit;
3849 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3850 return 0;
3851 }
3852
3853 if (nested_vmx_preemption_timer_pending(vcpu)) {
3854 if (block_nested_events)
3855 return -EBUSY;
3856 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3857 return 0;
3858 }
3859
3860 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3861 if (block_nested_events)
3862 return -EBUSY;
3863 goto no_vmexit;
3864 }
3865
3866 if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3867 if (block_nested_events)
3868 return -EBUSY;
3869 if (!nested_exit_on_nmi(vcpu))
3870 goto no_vmexit;
3871
3872 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3873 NMI_VECTOR | INTR_TYPE_NMI_INTR |
3874 INTR_INFO_VALID_MASK, 0);
3875 /*
3876 * The NMI-triggered VM exit counts as injection:
3877 * clear this one and block further NMIs.
3878 */
3879 vcpu->arch.nmi_pending = 0;
3880 vmx_set_nmi_mask(vcpu, true);
3881 return 0;
3882 }
3883
3884 if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3885 if (block_nested_events)
3886 return -EBUSY;
3887 if (!nested_exit_on_intr(vcpu))
3888 goto no_vmexit;
3889 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3890 return 0;
3891 }
3892
3893 no_vmexit:
3894 vmx_complete_nested_posted_interrupt(vcpu);
3895 return 0;
3896 }
3897
vmx_get_preemption_timer_value(struct kvm_vcpu * vcpu)3898 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3899 {
3900 ktime_t remaining =
3901 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3902 u64 value;
3903
3904 if (ktime_to_ns(remaining) <= 0)
3905 return 0;
3906
3907 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3908 do_div(value, 1000000);
3909 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3910 }
3911
is_vmcs12_ext_field(unsigned long field)3912 static bool is_vmcs12_ext_field(unsigned long field)
3913 {
3914 switch (field) {
3915 case GUEST_ES_SELECTOR:
3916 case GUEST_CS_SELECTOR:
3917 case GUEST_SS_SELECTOR:
3918 case GUEST_DS_SELECTOR:
3919 case GUEST_FS_SELECTOR:
3920 case GUEST_GS_SELECTOR:
3921 case GUEST_LDTR_SELECTOR:
3922 case GUEST_TR_SELECTOR:
3923 case GUEST_ES_LIMIT:
3924 case GUEST_CS_LIMIT:
3925 case GUEST_SS_LIMIT:
3926 case GUEST_DS_LIMIT:
3927 case GUEST_FS_LIMIT:
3928 case GUEST_GS_LIMIT:
3929 case GUEST_LDTR_LIMIT:
3930 case GUEST_TR_LIMIT:
3931 case GUEST_GDTR_LIMIT:
3932 case GUEST_IDTR_LIMIT:
3933 case GUEST_ES_AR_BYTES:
3934 case GUEST_DS_AR_BYTES:
3935 case GUEST_FS_AR_BYTES:
3936 case GUEST_GS_AR_BYTES:
3937 case GUEST_LDTR_AR_BYTES:
3938 case GUEST_TR_AR_BYTES:
3939 case GUEST_ES_BASE:
3940 case GUEST_CS_BASE:
3941 case GUEST_SS_BASE:
3942 case GUEST_DS_BASE:
3943 case GUEST_FS_BASE:
3944 case GUEST_GS_BASE:
3945 case GUEST_LDTR_BASE:
3946 case GUEST_TR_BASE:
3947 case GUEST_GDTR_BASE:
3948 case GUEST_IDTR_BASE:
3949 case GUEST_PENDING_DBG_EXCEPTIONS:
3950 case GUEST_BNDCFGS:
3951 return true;
3952 default:
3953 break;
3954 }
3955
3956 return false;
3957 }
3958
sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3959 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3960 struct vmcs12 *vmcs12)
3961 {
3962 struct vcpu_vmx *vmx = to_vmx(vcpu);
3963
3964 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3965 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3966 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3967 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3968 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3969 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3970 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3971 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3972 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3973 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3974 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3975 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3976 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3977 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3978 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3979 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3980 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3981 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3982 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3983 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3984 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3985 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3986 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3987 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3988 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3989 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3990 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3991 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3992 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3993 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3994 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3995 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3996 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3997 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3998 vmcs12->guest_pending_dbg_exceptions =
3999 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4000 if (kvm_mpx_supported())
4001 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
4002
4003 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4004 }
4005
copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4006 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4007 struct vmcs12 *vmcs12)
4008 {
4009 struct vcpu_vmx *vmx = to_vmx(vcpu);
4010 int cpu;
4011
4012 if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4013 return;
4014
4015
4016 WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4017
4018 cpu = get_cpu();
4019 vmx->loaded_vmcs = &vmx->nested.vmcs02;
4020 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4021
4022 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4023
4024 vmx->loaded_vmcs = &vmx->vmcs01;
4025 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4026 put_cpu();
4027 }
4028
4029 /*
4030 * Update the guest state fields of vmcs12 to reflect changes that
4031 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4032 * VM-entry controls is also updated, since this is really a guest
4033 * state bit.)
4034 */
sync_vmcs02_to_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4035 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4036 {
4037 struct vcpu_vmx *vmx = to_vmx(vcpu);
4038
4039 if (vmx->nested.hv_evmcs)
4040 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4041
4042 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
4043
4044 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4045 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4046
4047 vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4048 vmcs12->guest_rip = kvm_rip_read(vcpu);
4049 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4050
4051 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4052 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4053
4054 vmcs12->guest_interruptibility_info =
4055 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4056
4057 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4058 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4059 else
4060 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4061
4062 if (nested_cpu_has_preemption_timer(vmcs12) &&
4063 vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4064 !vmx->nested.nested_run_pending)
4065 vmcs12->vmx_preemption_timer_value =
4066 vmx_get_preemption_timer_value(vcpu);
4067
4068 /*
4069 * In some cases (usually, nested EPT), L2 is allowed to change its
4070 * own CR3 without exiting. If it has changed it, we must keep it.
4071 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4072 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4073 *
4074 * Additionally, restore L2's PDPTR to vmcs12.
4075 */
4076 if (enable_ept) {
4077 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4078 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4079 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4080 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4081 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4082 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4083 }
4084 }
4085
4086 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4087
4088 if (nested_cpu_has_vid(vmcs12))
4089 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4090
4091 vmcs12->vm_entry_controls =
4092 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4093 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4094
4095 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4096 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4097
4098 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4099 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4100 }
4101
4102 /*
4103 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4104 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4105 * and this function updates it to reflect the changes to the guest state while
4106 * L2 was running (and perhaps made some exits which were handled directly by L0
4107 * without going back to L1), and to reflect the exit reason.
4108 * Note that we do not have to copy here all VMCS fields, just those that
4109 * could have changed by the L2 guest or the exit - i.e., the guest-state and
4110 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4111 * which already writes to vmcs12 directly.
4112 */
prepare_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification)4113 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4114 u32 vm_exit_reason, u32 exit_intr_info,
4115 unsigned long exit_qualification)
4116 {
4117 /* update exit information fields: */
4118 vmcs12->vm_exit_reason = vm_exit_reason;
4119 vmcs12->exit_qualification = exit_qualification;
4120 vmcs12->vm_exit_intr_info = exit_intr_info;
4121
4122 vmcs12->idt_vectoring_info_field = 0;
4123 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4124 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4125
4126 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4127 vmcs12->launch_state = 1;
4128
4129 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4130 * instead of reading the real value. */
4131 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4132
4133 /*
4134 * Transfer the event that L0 or L1 may wanted to inject into
4135 * L2 to IDT_VECTORING_INFO_FIELD.
4136 */
4137 vmcs12_save_pending_event(vcpu, vmcs12);
4138
4139 /*
4140 * According to spec, there's no need to store the guest's
4141 * MSRs if the exit is due to a VM-entry failure that occurs
4142 * during or after loading the guest state. Since this exit
4143 * does not fall in that category, we need to save the MSRs.
4144 */
4145 if (nested_vmx_store_msr(vcpu,
4146 vmcs12->vm_exit_msr_store_addr,
4147 vmcs12->vm_exit_msr_store_count))
4148 nested_vmx_abort(vcpu,
4149 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4150 }
4151
4152 /*
4153 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
4154 * preserved above and would only end up incorrectly in L1.
4155 */
4156 vcpu->arch.nmi_injected = false;
4157 kvm_clear_exception_queue(vcpu);
4158 kvm_clear_interrupt_queue(vcpu);
4159 }
4160
4161 /*
4162 * A part of what we need to when the nested L2 guest exits and we want to
4163 * run its L1 parent, is to reset L1's guest state to the host state specified
4164 * in vmcs12.
4165 * This function is to be called not only on normal nested exit, but also on
4166 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4167 * Failures During or After Loading Guest State").
4168 * This function should be called when the active VMCS is L1's (vmcs01).
4169 */
load_vmcs12_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4170 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4171 struct vmcs12 *vmcs12)
4172 {
4173 enum vm_entry_failure_code ignored;
4174 struct kvm_segment seg;
4175
4176 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4177 vcpu->arch.efer = vmcs12->host_ia32_efer;
4178 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4179 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4180 else
4181 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4182 vmx_set_efer(vcpu, vcpu->arch.efer);
4183
4184 kvm_rsp_write(vcpu, vmcs12->host_rsp);
4185 kvm_rip_write(vcpu, vmcs12->host_rip);
4186 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4187 vmx_set_interrupt_shadow(vcpu, 0);
4188
4189 /*
4190 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4191 * actually changed, because vmx_set_cr0 refers to efer set above.
4192 *
4193 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4194 * (KVM doesn't change it);
4195 */
4196 vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4197 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4198
4199 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4200 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4201 vmx_set_cr4(vcpu, vmcs12->host_cr4);
4202
4203 nested_ept_uninit_mmu_context(vcpu);
4204
4205 /*
4206 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4207 * couldn't have changed.
4208 */
4209 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &ignored))
4210 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4211
4212 if (!enable_ept)
4213 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
4214
4215 nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4216
4217 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4218 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4219 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4220 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4221 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4222 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4223 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4224
4225 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
4226 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4227 vmcs_write64(GUEST_BNDCFGS, 0);
4228
4229 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4230 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4231 vcpu->arch.pat = vmcs12->host_ia32_pat;
4232 }
4233 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4234 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4235 vmcs12->host_ia32_perf_global_ctrl));
4236
4237 /* Set L1 segment info according to Intel SDM
4238 27.5.2 Loading Host Segment and Descriptor-Table Registers */
4239 seg = (struct kvm_segment) {
4240 .base = 0,
4241 .limit = 0xFFFFFFFF,
4242 .selector = vmcs12->host_cs_selector,
4243 .type = 11,
4244 .present = 1,
4245 .s = 1,
4246 .g = 1
4247 };
4248 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4249 seg.l = 1;
4250 else
4251 seg.db = 1;
4252 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4253 seg = (struct kvm_segment) {
4254 .base = 0,
4255 .limit = 0xFFFFFFFF,
4256 .type = 3,
4257 .present = 1,
4258 .s = 1,
4259 .db = 1,
4260 .g = 1
4261 };
4262 seg.selector = vmcs12->host_ds_selector;
4263 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4264 seg.selector = vmcs12->host_es_selector;
4265 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4266 seg.selector = vmcs12->host_ss_selector;
4267 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4268 seg.selector = vmcs12->host_fs_selector;
4269 seg.base = vmcs12->host_fs_base;
4270 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4271 seg.selector = vmcs12->host_gs_selector;
4272 seg.base = vmcs12->host_gs_base;
4273 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4274 seg = (struct kvm_segment) {
4275 .base = vmcs12->host_tr_base,
4276 .limit = 0x67,
4277 .selector = vmcs12->host_tr_selector,
4278 .type = 11,
4279 .present = 1
4280 };
4281 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4282
4283 kvm_set_dr(vcpu, 7, 0x400);
4284 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4285
4286 if (cpu_has_vmx_msr_bitmap())
4287 vmx_update_msr_bitmap(vcpu);
4288
4289 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4290 vmcs12->vm_exit_msr_load_count))
4291 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4292 }
4293
nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx * vmx)4294 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4295 {
4296 struct vmx_uret_msr *efer_msr;
4297 unsigned int i;
4298
4299 if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4300 return vmcs_read64(GUEST_IA32_EFER);
4301
4302 if (cpu_has_load_ia32_efer())
4303 return host_efer;
4304
4305 for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4306 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4307 return vmx->msr_autoload.guest.val[i].value;
4308 }
4309
4310 efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4311 if (efer_msr)
4312 return efer_msr->data;
4313
4314 return host_efer;
4315 }
4316
nested_vmx_restore_host_state(struct kvm_vcpu * vcpu)4317 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4318 {
4319 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4320 struct vcpu_vmx *vmx = to_vmx(vcpu);
4321 struct vmx_msr_entry g, h;
4322 gpa_t gpa;
4323 u32 i, j;
4324
4325 vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4326
4327 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4328 /*
4329 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4330 * as vmcs01.GUEST_DR7 contains a userspace defined value
4331 * and vcpu->arch.dr7 is not squirreled away before the
4332 * nested VMENTER (not worth adding a variable in nested_vmx).
4333 */
4334 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4335 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4336 else
4337 WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4338 }
4339
4340 /*
4341 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4342 * handle a variety of side effects to KVM's software model.
4343 */
4344 vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4345
4346 vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4347 vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4348
4349 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4350 vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4351
4352 nested_ept_uninit_mmu_context(vcpu);
4353 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4354 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4355
4356 /*
4357 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4358 * from vmcs01 (if necessary). The PDPTRs are not loaded on
4359 * VMFail, like everything else we just need to ensure our
4360 * software model is up-to-date.
4361 */
4362 if (enable_ept && is_pae_paging(vcpu))
4363 ept_save_pdptrs(vcpu);
4364
4365 kvm_mmu_reset_context(vcpu);
4366
4367 if (cpu_has_vmx_msr_bitmap())
4368 vmx_update_msr_bitmap(vcpu);
4369
4370 /*
4371 * This nasty bit of open coding is a compromise between blindly
4372 * loading L1's MSRs using the exit load lists (incorrect emulation
4373 * of VMFail), leaving the nested VM's MSRs in the software model
4374 * (incorrect behavior) and snapshotting the modified MSRs (too
4375 * expensive since the lists are unbound by hardware). For each
4376 * MSR that was (prematurely) loaded from the nested VMEntry load
4377 * list, reload it from the exit load list if it exists and differs
4378 * from the guest value. The intent is to stuff host state as
4379 * silently as possible, not to fully process the exit load list.
4380 */
4381 for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4382 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4383 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4384 pr_debug_ratelimited(
4385 "%s read MSR index failed (%u, 0x%08llx)\n",
4386 __func__, i, gpa);
4387 goto vmabort;
4388 }
4389
4390 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4391 gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4392 if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4393 pr_debug_ratelimited(
4394 "%s read MSR failed (%u, 0x%08llx)\n",
4395 __func__, j, gpa);
4396 goto vmabort;
4397 }
4398 if (h.index != g.index)
4399 continue;
4400 if (h.value == g.value)
4401 break;
4402
4403 if (nested_vmx_load_msr_check(vcpu, &h)) {
4404 pr_debug_ratelimited(
4405 "%s check failed (%u, 0x%x, 0x%x)\n",
4406 __func__, j, h.index, h.reserved);
4407 goto vmabort;
4408 }
4409
4410 if (kvm_set_msr(vcpu, h.index, h.value)) {
4411 pr_debug_ratelimited(
4412 "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4413 __func__, j, h.index, h.value);
4414 goto vmabort;
4415 }
4416 }
4417 }
4418
4419 return;
4420
4421 vmabort:
4422 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4423 }
4424
4425 /*
4426 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4427 * and modify vmcs12 to make it see what it would expect to see there if
4428 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4429 */
nested_vmx_vmexit(struct kvm_vcpu * vcpu,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification)4430 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4431 u32 exit_intr_info, unsigned long exit_qualification)
4432 {
4433 struct vcpu_vmx *vmx = to_vmx(vcpu);
4434 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4435
4436 /* trying to cancel vmlaunch/vmresume is a bug */
4437 WARN_ON_ONCE(vmx->nested.nested_run_pending);
4438
4439 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4440 /*
4441 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4442 * Enlightened VMCS after migration and we still need to
4443 * do that when something is forcing L2->L1 exit prior to
4444 * the first L2 run.
4445 */
4446 (void)nested_get_evmcs_page(vcpu);
4447 }
4448
4449 /* Service the TLB flush request for L2 before switching to L1. */
4450 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
4451 kvm_vcpu_flush_tlb_current(vcpu);
4452
4453 /*
4454 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4455 * now and the new vmentry. Ensure that the VMCS02 PDPTR fields are
4456 * up-to-date before switching to L1.
4457 */
4458 if (enable_ept && is_pae_paging(vcpu))
4459 vmx_ept_load_pdptrs(vcpu);
4460
4461 leave_guest_mode(vcpu);
4462
4463 if (nested_cpu_has_preemption_timer(vmcs12))
4464 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4465
4466 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
4467 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4468
4469 if (likely(!vmx->fail)) {
4470 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4471
4472 if (vm_exit_reason != -1)
4473 prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4474 exit_intr_info, exit_qualification);
4475
4476 /*
4477 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4478 * also be used to capture vmcs12 cache as part of
4479 * capturing nVMX state for snapshot (migration).
4480 *
4481 * Otherwise, this flush will dirty guest memory at a
4482 * point it is already assumed by user-space to be
4483 * immutable.
4484 */
4485 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4486 } else {
4487 /*
4488 * The only expected VM-instruction error is "VM entry with
4489 * invalid control field(s)." Anything else indicates a
4490 * problem with L0. And we should never get here with a
4491 * VMFail of any type if early consistency checks are enabled.
4492 */
4493 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4494 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4495 WARN_ON_ONCE(nested_early_check);
4496 }
4497
4498 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4499
4500 /*
4501 * If IBRS is advertised to the vCPU, KVM must flush the indirect
4502 * branch predictors when transitioning from L2 to L1, as L1 expects
4503 * hardware (KVM in this case) to provide separate predictor modes.
4504 * Bare metal isolates VMX root (host) from VMX non-root (guest), but
4505 * doesn't isolate different VMCSs, i.e. in this case, doesn't provide
4506 * separate modes for L2 vs L1.
4507 */
4508 if (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
4509 indirect_branch_prediction_barrier();
4510
4511 /* Update any VMCS fields that might have changed while L2 ran */
4512 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4513 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4514 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4515 if (vmx->nested.l1_tpr_threshold != -1)
4516 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4517
4518 if (kvm_has_tsc_control)
4519 decache_tsc_multiplier(vmx);
4520
4521 if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4522 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4523 vmx_set_virtual_apic_mode(vcpu);
4524 }
4525
4526 /* Unpin physical memory we referred to in vmcs02 */
4527 if (vmx->nested.apic_access_page) {
4528 kvm_release_page_clean(vmx->nested.apic_access_page);
4529 vmx->nested.apic_access_page = NULL;
4530 }
4531 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4532 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4533 vmx->nested.pi_desc = NULL;
4534
4535 if (vmx->nested.reload_vmcs01_apic_access_page) {
4536 vmx->nested.reload_vmcs01_apic_access_page = false;
4537 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4538 }
4539
4540 if ((vm_exit_reason != -1) &&
4541 (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4542 vmx->nested.need_vmcs12_to_shadow_sync = true;
4543
4544 /* in case we halted in L2 */
4545 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4546
4547 if (likely(!vmx->fail)) {
4548 if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4549 nested_exit_intr_ack_set(vcpu)) {
4550 int irq = kvm_cpu_get_interrupt(vcpu);
4551 WARN_ON(irq < 0);
4552 vmcs12->vm_exit_intr_info = irq |
4553 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4554 }
4555
4556 if (vm_exit_reason != -1)
4557 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4558 vmcs12->exit_qualification,
4559 vmcs12->idt_vectoring_info_field,
4560 vmcs12->vm_exit_intr_info,
4561 vmcs12->vm_exit_intr_error_code,
4562 KVM_ISA_VMX);
4563
4564 load_vmcs12_host_state(vcpu, vmcs12);
4565
4566 return;
4567 }
4568
4569 /*
4570 * After an early L2 VM-entry failure, we're now back
4571 * in L1 which thinks it just finished a VMLAUNCH or
4572 * VMRESUME instruction, so we need to set the failure
4573 * flag and the VM-instruction error field of the VMCS
4574 * accordingly, and skip the emulated instruction.
4575 */
4576 (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4577
4578 /*
4579 * Restore L1's host state to KVM's software model. We're here
4580 * because a consistency check was caught by hardware, which
4581 * means some amount of guest state has been propagated to KVM's
4582 * model and needs to be unwound to the host's state.
4583 */
4584 nested_vmx_restore_host_state(vcpu);
4585
4586 vmx->fail = 0;
4587 }
4588
4589 /*
4590 * Decode the memory-address operand of a vmx instruction, as recorded on an
4591 * exit caused by such an instruction (run by a guest hypervisor).
4592 * On success, returns 0. When the operand is invalid, returns 1 and throws
4593 * #UD, #GP, or #SS.
4594 */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,bool wr,int len,gva_t * ret)4595 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4596 u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4597 {
4598 gva_t off;
4599 bool exn;
4600 struct kvm_segment s;
4601
4602 /*
4603 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4604 * Execution", on an exit, vmx_instruction_info holds most of the
4605 * addressing components of the operand. Only the displacement part
4606 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4607 * For how an actual address is calculated from all these components,
4608 * refer to Vol. 1, "Operand Addressing".
4609 */
4610 int scaling = vmx_instruction_info & 3;
4611 int addr_size = (vmx_instruction_info >> 7) & 7;
4612 bool is_reg = vmx_instruction_info & (1u << 10);
4613 int seg_reg = (vmx_instruction_info >> 15) & 7;
4614 int index_reg = (vmx_instruction_info >> 18) & 0xf;
4615 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4616 int base_reg = (vmx_instruction_info >> 23) & 0xf;
4617 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
4618
4619 if (is_reg) {
4620 kvm_queue_exception(vcpu, UD_VECTOR);
4621 return 1;
4622 }
4623
4624 /* Addr = segment_base + offset */
4625 /* offset = base + [index * scale] + displacement */
4626 off = exit_qualification; /* holds the displacement */
4627 if (addr_size == 1)
4628 off = (gva_t)sign_extend64(off, 31);
4629 else if (addr_size == 0)
4630 off = (gva_t)sign_extend64(off, 15);
4631 if (base_is_valid)
4632 off += kvm_register_readl(vcpu, base_reg);
4633 if (index_is_valid)
4634 off += kvm_register_readl(vcpu, index_reg) << scaling;
4635 vmx_get_segment(vcpu, &s, seg_reg);
4636
4637 /*
4638 * The effective address, i.e. @off, of a memory operand is truncated
4639 * based on the address size of the instruction. Note that this is
4640 * the *effective address*, i.e. the address prior to accounting for
4641 * the segment's base.
4642 */
4643 if (addr_size == 1) /* 32 bit */
4644 off &= 0xffffffff;
4645 else if (addr_size == 0) /* 16 bit */
4646 off &= 0xffff;
4647
4648 /* Checks for #GP/#SS exceptions. */
4649 exn = false;
4650 if (is_long_mode(vcpu)) {
4651 /*
4652 * The virtual/linear address is never truncated in 64-bit
4653 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4654 * address when using FS/GS with a non-zero base.
4655 */
4656 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4657 *ret = s.base + off;
4658 else
4659 *ret = off;
4660
4661 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4662 * non-canonical form. This is the only check on the memory
4663 * destination for long mode!
4664 */
4665 exn = is_noncanonical_address(*ret, vcpu);
4666 } else {
4667 /*
4668 * When not in long mode, the virtual/linear address is
4669 * unconditionally truncated to 32 bits regardless of the
4670 * address size.
4671 */
4672 *ret = (s.base + off) & 0xffffffff;
4673
4674 /* Protected mode: apply checks for segment validity in the
4675 * following order:
4676 * - segment type check (#GP(0) may be thrown)
4677 * - usability check (#GP(0)/#SS(0))
4678 * - limit check (#GP(0)/#SS(0))
4679 */
4680 if (wr)
4681 /* #GP(0) if the destination operand is located in a
4682 * read-only data segment or any code segment.
4683 */
4684 exn = ((s.type & 0xa) == 0 || (s.type & 8));
4685 else
4686 /* #GP(0) if the source operand is located in an
4687 * execute-only code segment
4688 */
4689 exn = ((s.type & 0xa) == 8);
4690 if (exn) {
4691 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4692 return 1;
4693 }
4694 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4695 */
4696 exn = (s.unusable != 0);
4697
4698 /*
4699 * Protected mode: #GP(0)/#SS(0) if the memory operand is
4700 * outside the segment limit. All CPUs that support VMX ignore
4701 * limit checks for flat segments, i.e. segments with base==0,
4702 * limit==0xffffffff and of type expand-up data or code.
4703 */
4704 if (!(s.base == 0 && s.limit == 0xffffffff &&
4705 ((s.type & 8) || !(s.type & 4))))
4706 exn = exn || ((u64)off + len - 1 > s.limit);
4707 }
4708 if (exn) {
4709 kvm_queue_exception_e(vcpu,
4710 seg_reg == VCPU_SREG_SS ?
4711 SS_VECTOR : GP_VECTOR,
4712 0);
4713 return 1;
4714 }
4715
4716 return 0;
4717 }
4718
nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu * vcpu)4719 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4720 {
4721 struct vcpu_vmx *vmx;
4722
4723 if (!nested_vmx_allowed(vcpu))
4724 return;
4725
4726 vmx = to_vmx(vcpu);
4727 if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4728 vmx->nested.msrs.entry_ctls_high |=
4729 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4730 vmx->nested.msrs.exit_ctls_high |=
4731 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4732 } else {
4733 vmx->nested.msrs.entry_ctls_high &=
4734 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4735 vmx->nested.msrs.exit_ctls_high &=
4736 ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4737 }
4738 }
4739
nested_vmx_get_vmptr(struct kvm_vcpu * vcpu,gpa_t * vmpointer,int * ret)4740 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
4741 int *ret)
4742 {
4743 gva_t gva;
4744 struct x86_exception e;
4745 int r;
4746
4747 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4748 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4749 sizeof(*vmpointer), &gva)) {
4750 *ret = 1;
4751 return -EINVAL;
4752 }
4753
4754 r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
4755 if (r != X86EMUL_CONTINUE) {
4756 *ret = kvm_handle_memory_failure(vcpu, r, &e);
4757 return -EINVAL;
4758 }
4759
4760 return 0;
4761 }
4762
4763 /*
4764 * Allocate a shadow VMCS and associate it with the currently loaded
4765 * VMCS, unless such a shadow VMCS already exists. The newly allocated
4766 * VMCS is also VMCLEARed, so that it is ready for use.
4767 */
alloc_shadow_vmcs(struct kvm_vcpu * vcpu)4768 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4769 {
4770 struct vcpu_vmx *vmx = to_vmx(vcpu);
4771 struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4772
4773 /*
4774 * We should allocate a shadow vmcs for vmcs01 only when L1
4775 * executes VMXON and free it when L1 executes VMXOFF.
4776 * As it is invalid to execute VMXON twice, we shouldn't reach
4777 * here when vmcs01 already have an allocated shadow vmcs.
4778 */
4779 WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4780
4781 if (!loaded_vmcs->shadow_vmcs) {
4782 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4783 if (loaded_vmcs->shadow_vmcs)
4784 vmcs_clear(loaded_vmcs->shadow_vmcs);
4785 }
4786 return loaded_vmcs->shadow_vmcs;
4787 }
4788
enter_vmx_operation(struct kvm_vcpu * vcpu)4789 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4790 {
4791 struct vcpu_vmx *vmx = to_vmx(vcpu);
4792 int r;
4793
4794 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4795 if (r < 0)
4796 goto out_vmcs02;
4797
4798 vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4799 if (!vmx->nested.cached_vmcs12)
4800 goto out_cached_vmcs12;
4801
4802 vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4803 if (!vmx->nested.cached_shadow_vmcs12)
4804 goto out_cached_shadow_vmcs12;
4805
4806 if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4807 goto out_shadow_vmcs;
4808
4809 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4810 HRTIMER_MODE_ABS_PINNED);
4811 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4812
4813 vmx->nested.vpid02 = allocate_vpid();
4814
4815 vmx->nested.vmcs02_initialized = false;
4816 vmx->nested.vmxon = true;
4817
4818 if (vmx_pt_mode_is_host_guest()) {
4819 vmx->pt_desc.guest.ctl = 0;
4820 pt_update_intercept_for_msr(vcpu);
4821 }
4822
4823 return 0;
4824
4825 out_shadow_vmcs:
4826 kfree(vmx->nested.cached_shadow_vmcs12);
4827
4828 out_cached_shadow_vmcs12:
4829 kfree(vmx->nested.cached_vmcs12);
4830
4831 out_cached_vmcs12:
4832 free_loaded_vmcs(&vmx->nested.vmcs02);
4833
4834 out_vmcs02:
4835 return -ENOMEM;
4836 }
4837
4838 /*
4839 * Emulate the VMXON instruction.
4840 * Currently, we just remember that VMX is active, and do not save or even
4841 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4842 * do not currently need to store anything in that guest-allocated memory
4843 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4844 * argument is different from the VMXON pointer (which the spec says they do).
4845 */
handle_vmon(struct kvm_vcpu * vcpu)4846 static int handle_vmon(struct kvm_vcpu *vcpu)
4847 {
4848 int ret;
4849 gpa_t vmptr;
4850 uint32_t revision;
4851 struct vcpu_vmx *vmx = to_vmx(vcpu);
4852 const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4853 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4854
4855 /*
4856 * The Intel VMX Instruction Reference lists a bunch of bits that are
4857 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4858 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4859 * Otherwise, we should fail with #UD. But most faulting conditions
4860 * have already been checked by hardware, prior to the VM-exit for
4861 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
4862 * that bit set to 1 in non-root mode.
4863 */
4864 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4865 kvm_queue_exception(vcpu, UD_VECTOR);
4866 return 1;
4867 }
4868
4869 /* CPL=0 must be checked manually. */
4870 if (vmx_get_cpl(vcpu)) {
4871 kvm_inject_gp(vcpu, 0);
4872 return 1;
4873 }
4874
4875 if (vmx->nested.vmxon)
4876 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4877
4878 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4879 != VMXON_NEEDED_FEATURES) {
4880 kvm_inject_gp(vcpu, 0);
4881 return 1;
4882 }
4883
4884 if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
4885 return ret;
4886
4887 /*
4888 * SDM 3: 24.11.5
4889 * The first 4 bytes of VMXON region contain the supported
4890 * VMCS revision identifier
4891 *
4892 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4893 * which replaces physical address width with 32
4894 */
4895 if (!page_address_valid(vcpu, vmptr))
4896 return nested_vmx_failInvalid(vcpu);
4897
4898 if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4899 revision != VMCS12_REVISION)
4900 return nested_vmx_failInvalid(vcpu);
4901
4902 vmx->nested.vmxon_ptr = vmptr;
4903 ret = enter_vmx_operation(vcpu);
4904 if (ret)
4905 return ret;
4906
4907 return nested_vmx_succeed(vcpu);
4908 }
4909
nested_release_vmcs12(struct kvm_vcpu * vcpu)4910 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4911 {
4912 struct vcpu_vmx *vmx = to_vmx(vcpu);
4913
4914 if (vmx->nested.current_vmptr == -1ull)
4915 return;
4916
4917 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4918
4919 if (enable_shadow_vmcs) {
4920 /* copy to memory all shadowed fields in case
4921 they were modified */
4922 copy_shadow_to_vmcs12(vmx);
4923 vmx_disable_shadow_vmcs(vmx);
4924 }
4925 vmx->nested.posted_intr_nv = -1;
4926
4927 /* Flush VMCS12 to guest memory */
4928 kvm_vcpu_write_guest_page(vcpu,
4929 vmx->nested.current_vmptr >> PAGE_SHIFT,
4930 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4931
4932 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4933
4934 vmx->nested.current_vmptr = -1ull;
4935 }
4936
4937 /* Emulate the VMXOFF instruction */
handle_vmoff(struct kvm_vcpu * vcpu)4938 static int handle_vmoff(struct kvm_vcpu *vcpu)
4939 {
4940 if (!nested_vmx_check_permission(vcpu))
4941 return 1;
4942
4943 free_nested(vcpu);
4944
4945 /* Process a latched INIT during time CPU was in VMX operation */
4946 kvm_make_request(KVM_REQ_EVENT, vcpu);
4947
4948 return nested_vmx_succeed(vcpu);
4949 }
4950
4951 /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)4952 static int handle_vmclear(struct kvm_vcpu *vcpu)
4953 {
4954 struct vcpu_vmx *vmx = to_vmx(vcpu);
4955 u32 zero = 0;
4956 gpa_t vmptr;
4957 u64 evmcs_gpa;
4958 int r;
4959
4960 if (!nested_vmx_check_permission(vcpu))
4961 return 1;
4962
4963 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
4964 return r;
4965
4966 if (!page_address_valid(vcpu, vmptr))
4967 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
4968
4969 if (vmptr == vmx->nested.vmxon_ptr)
4970 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
4971
4972 /*
4973 * When Enlightened VMEntry is enabled on the calling CPU we treat
4974 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4975 * way to distinguish it from VMCS12) and we must not corrupt it by
4976 * writing to the non-existent 'launch_state' field. The area doesn't
4977 * have to be the currently active EVMCS on the calling CPU and there's
4978 * nothing KVM has to do to transition it from 'active' to 'non-active'
4979 * state. It is possible that the area will stay mapped as
4980 * vmx->nested.hv_evmcs but this shouldn't be a problem.
4981 */
4982 if (likely(!vmx->nested.enlightened_vmcs_enabled ||
4983 !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
4984 if (vmptr == vmx->nested.current_vmptr)
4985 nested_release_vmcs12(vcpu);
4986
4987 kvm_vcpu_write_guest(vcpu,
4988 vmptr + offsetof(struct vmcs12,
4989 launch_state),
4990 &zero, sizeof(zero));
4991 }
4992
4993 return nested_vmx_succeed(vcpu);
4994 }
4995
4996 /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)4997 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4998 {
4999 return nested_vmx_run(vcpu, true);
5000 }
5001
5002 /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)5003 static int handle_vmresume(struct kvm_vcpu *vcpu)
5004 {
5005
5006 return nested_vmx_run(vcpu, false);
5007 }
5008
handle_vmread(struct kvm_vcpu * vcpu)5009 static int handle_vmread(struct kvm_vcpu *vcpu)
5010 {
5011 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5012 : get_vmcs12(vcpu);
5013 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5014 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5015 struct vcpu_vmx *vmx = to_vmx(vcpu);
5016 struct x86_exception e;
5017 unsigned long field;
5018 u64 value;
5019 gva_t gva = 0;
5020 short offset;
5021 int len, r;
5022
5023 if (!nested_vmx_check_permission(vcpu))
5024 return 1;
5025
5026 /*
5027 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5028 * any VMREAD sets the ALU flags for VMfailInvalid.
5029 */
5030 if (vmx->nested.current_vmptr == -1ull ||
5031 (is_guest_mode(vcpu) &&
5032 get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5033 return nested_vmx_failInvalid(vcpu);
5034
5035 /* Decode instruction info and find the field to read */
5036 field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
5037
5038 offset = vmcs_field_to_offset(field);
5039 if (offset < 0)
5040 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5041
5042 if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5043 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5044
5045 /* Read the field, zero-extended to a u64 value */
5046 value = vmcs12_read_any(vmcs12, field, offset);
5047
5048 /*
5049 * Now copy part of this value to register or memory, as requested.
5050 * Note that the number of bits actually copied is 32 or 64 depending
5051 * on the guest's mode (32 or 64 bit), not on the given field's length.
5052 */
5053 if (instr_info & BIT(10)) {
5054 kvm_register_writel(vcpu, (((instr_info) >> 3) & 0xf), value);
5055 } else {
5056 len = is_64_bit_mode(vcpu) ? 8 : 4;
5057 if (get_vmx_mem_address(vcpu, exit_qualification,
5058 instr_info, true, len, &gva))
5059 return 1;
5060 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5061 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5062 if (r != X86EMUL_CONTINUE)
5063 return kvm_handle_memory_failure(vcpu, r, &e);
5064 }
5065
5066 return nested_vmx_succeed(vcpu);
5067 }
5068
is_shadow_field_rw(unsigned long field)5069 static bool is_shadow_field_rw(unsigned long field)
5070 {
5071 switch (field) {
5072 #define SHADOW_FIELD_RW(x, y) case x:
5073 #include "vmcs_shadow_fields.h"
5074 return true;
5075 default:
5076 break;
5077 }
5078 return false;
5079 }
5080
is_shadow_field_ro(unsigned long field)5081 static bool is_shadow_field_ro(unsigned long field)
5082 {
5083 switch (field) {
5084 #define SHADOW_FIELD_RO(x, y) case x:
5085 #include "vmcs_shadow_fields.h"
5086 return true;
5087 default:
5088 break;
5089 }
5090 return false;
5091 }
5092
handle_vmwrite(struct kvm_vcpu * vcpu)5093 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5094 {
5095 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5096 : get_vmcs12(vcpu);
5097 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5098 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5099 struct vcpu_vmx *vmx = to_vmx(vcpu);
5100 struct x86_exception e;
5101 unsigned long field;
5102 short offset;
5103 gva_t gva;
5104 int len, r;
5105
5106 /*
5107 * The value to write might be 32 or 64 bits, depending on L1's long
5108 * mode, and eventually we need to write that into a field of several
5109 * possible lengths. The code below first zero-extends the value to 64
5110 * bit (value), and then copies only the appropriate number of
5111 * bits into the vmcs12 field.
5112 */
5113 u64 value = 0;
5114
5115 if (!nested_vmx_check_permission(vcpu))
5116 return 1;
5117
5118 /*
5119 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5120 * any VMWRITE sets the ALU flags for VMfailInvalid.
5121 */
5122 if (vmx->nested.current_vmptr == -1ull ||
5123 (is_guest_mode(vcpu) &&
5124 get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5125 return nested_vmx_failInvalid(vcpu);
5126
5127 if (instr_info & BIT(10))
5128 value = kvm_register_readl(vcpu, (((instr_info) >> 3) & 0xf));
5129 else {
5130 len = is_64_bit_mode(vcpu) ? 8 : 4;
5131 if (get_vmx_mem_address(vcpu, exit_qualification,
5132 instr_info, false, len, &gva))
5133 return 1;
5134 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5135 if (r != X86EMUL_CONTINUE)
5136 return kvm_handle_memory_failure(vcpu, r, &e);
5137 }
5138
5139 field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
5140
5141 offset = vmcs_field_to_offset(field);
5142 if (offset < 0)
5143 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5144
5145 /*
5146 * If the vCPU supports "VMWRITE to any supported field in the
5147 * VMCS," then the "read-only" fields are actually read/write.
5148 */
5149 if (vmcs_field_readonly(field) &&
5150 !nested_cpu_has_vmwrite_any_field(vcpu))
5151 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5152
5153 /*
5154 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5155 * vmcs12, else we may crush a field or consume a stale value.
5156 */
5157 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5158 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5159
5160 /*
5161 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5162 * fields on VMWRITE. Emulate this behavior to ensure consistent KVM
5163 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5164 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5165 * from L1 will return a different value than VMREAD from L2 (L1 sees
5166 * the stripped down value, L2 sees the full value as stored by KVM).
5167 */
5168 if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5169 value &= 0x1f0ff;
5170
5171 vmcs12_write_any(vmcs12, field, offset, value);
5172
5173 /*
5174 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5175 * dirty shadow vmcs12 instead of vmcs12. Fields that can be updated
5176 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5177 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5178 */
5179 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5180 /*
5181 * L1 can read these fields without exiting, ensure the
5182 * shadow VMCS is up-to-date.
5183 */
5184 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5185 preempt_disable();
5186 vmcs_load(vmx->vmcs01.shadow_vmcs);
5187
5188 __vmcs_writel(field, value);
5189
5190 vmcs_clear(vmx->vmcs01.shadow_vmcs);
5191 vmcs_load(vmx->loaded_vmcs->vmcs);
5192 preempt_enable();
5193 }
5194 vmx->nested.dirty_vmcs12 = true;
5195 }
5196
5197 return nested_vmx_succeed(vcpu);
5198 }
5199
set_current_vmptr(struct vcpu_vmx * vmx,gpa_t vmptr)5200 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5201 {
5202 vmx->nested.current_vmptr = vmptr;
5203 if (enable_shadow_vmcs) {
5204 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5205 vmcs_write64(VMCS_LINK_POINTER,
5206 __pa(vmx->vmcs01.shadow_vmcs));
5207 vmx->nested.need_vmcs12_to_shadow_sync = true;
5208 }
5209 vmx->nested.dirty_vmcs12 = true;
5210 }
5211
5212 /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)5213 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5214 {
5215 struct vcpu_vmx *vmx = to_vmx(vcpu);
5216 gpa_t vmptr;
5217 int r;
5218
5219 if (!nested_vmx_check_permission(vcpu))
5220 return 1;
5221
5222 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5223 return r;
5224
5225 if (!page_address_valid(vcpu, vmptr))
5226 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5227
5228 if (vmptr == vmx->nested.vmxon_ptr)
5229 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5230
5231 /* Forbid normal VMPTRLD if Enlightened version was used */
5232 if (vmx->nested.hv_evmcs)
5233 return 1;
5234
5235 if (vmx->nested.current_vmptr != vmptr) {
5236 struct kvm_host_map map;
5237 struct vmcs12 *new_vmcs12;
5238
5239 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
5240 /*
5241 * Reads from an unbacked page return all 1s,
5242 * which means that the 32 bits located at the
5243 * given physical address won't match the required
5244 * VMCS12_REVISION identifier.
5245 */
5246 return nested_vmx_fail(vcpu,
5247 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5248 }
5249
5250 new_vmcs12 = map.hva;
5251
5252 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5253 (new_vmcs12->hdr.shadow_vmcs &&
5254 !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5255 kvm_vcpu_unmap(vcpu, &map, false);
5256 return nested_vmx_fail(vcpu,
5257 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5258 }
5259
5260 nested_release_vmcs12(vcpu);
5261
5262 /*
5263 * Load VMCS12 from guest memory since it is not already
5264 * cached.
5265 */
5266 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5267 kvm_vcpu_unmap(vcpu, &map, false);
5268
5269 set_current_vmptr(vmx, vmptr);
5270 }
5271
5272 return nested_vmx_succeed(vcpu);
5273 }
5274
5275 /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)5276 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5277 {
5278 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5279 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5280 gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5281 struct x86_exception e;
5282 gva_t gva;
5283 int r;
5284
5285 if (!nested_vmx_check_permission(vcpu))
5286 return 1;
5287
5288 if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
5289 return 1;
5290
5291 if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5292 true, sizeof(gpa_t), &gva))
5293 return 1;
5294 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5295 r = kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr,
5296 sizeof(gpa_t), &e);
5297 if (r != X86EMUL_CONTINUE)
5298 return kvm_handle_memory_failure(vcpu, r, &e);
5299
5300 return nested_vmx_succeed(vcpu);
5301 }
5302
5303 #define EPTP_PA_MASK GENMASK_ULL(51, 12)
5304
nested_ept_root_matches(hpa_t root_hpa,u64 root_eptp,u64 eptp)5305 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
5306 {
5307 return VALID_PAGE(root_hpa) &&
5308 ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
5309 }
5310
5311 /* Emulate the INVEPT instruction */
handle_invept(struct kvm_vcpu * vcpu)5312 static int handle_invept(struct kvm_vcpu *vcpu)
5313 {
5314 struct vcpu_vmx *vmx = to_vmx(vcpu);
5315 u32 vmx_instruction_info, types;
5316 unsigned long type, roots_to_free;
5317 struct kvm_mmu *mmu;
5318 gva_t gva;
5319 struct x86_exception e;
5320 struct {
5321 u64 eptp, gpa;
5322 } operand;
5323 int i, r;
5324
5325 if (!(vmx->nested.msrs.secondary_ctls_high &
5326 SECONDARY_EXEC_ENABLE_EPT) ||
5327 !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5328 kvm_queue_exception(vcpu, UD_VECTOR);
5329 return 1;
5330 }
5331
5332 if (!nested_vmx_check_permission(vcpu))
5333 return 1;
5334
5335 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5336 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5337
5338 types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5339
5340 if (type >= 32 || !(types & (1 << type)))
5341 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5342
5343 /* According to the Intel VMX instruction reference, the memory
5344 * operand is read even if it isn't needed (e.g., for type==global)
5345 */
5346 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5347 vmx_instruction_info, false, sizeof(operand), &gva))
5348 return 1;
5349 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5350 if (r != X86EMUL_CONTINUE)
5351 return kvm_handle_memory_failure(vcpu, r, &e);
5352
5353 /*
5354 * Nested EPT roots are always held through guest_mmu,
5355 * not root_mmu.
5356 */
5357 mmu = &vcpu->arch.guest_mmu;
5358
5359 switch (type) {
5360 case VMX_EPT_EXTENT_CONTEXT:
5361 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5362 return nested_vmx_fail(vcpu,
5363 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5364
5365 roots_to_free = 0;
5366 if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
5367 operand.eptp))
5368 roots_to_free |= KVM_MMU_ROOT_CURRENT;
5369
5370 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5371 if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5372 mmu->prev_roots[i].pgd,
5373 operand.eptp))
5374 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5375 }
5376 break;
5377 case VMX_EPT_EXTENT_GLOBAL:
5378 roots_to_free = KVM_MMU_ROOTS_ALL;
5379 break;
5380 default:
5381 BUG();
5382 break;
5383 }
5384
5385 if (roots_to_free)
5386 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
5387
5388 return nested_vmx_succeed(vcpu);
5389 }
5390
handle_invvpid(struct kvm_vcpu * vcpu)5391 static int handle_invvpid(struct kvm_vcpu *vcpu)
5392 {
5393 struct vcpu_vmx *vmx = to_vmx(vcpu);
5394 u32 vmx_instruction_info;
5395 unsigned long type, types;
5396 gva_t gva;
5397 struct x86_exception e;
5398 struct {
5399 u64 vpid;
5400 u64 gla;
5401 } operand;
5402 u16 vpid02;
5403 int r;
5404
5405 if (!(vmx->nested.msrs.secondary_ctls_high &
5406 SECONDARY_EXEC_ENABLE_VPID) ||
5407 !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5408 kvm_queue_exception(vcpu, UD_VECTOR);
5409 return 1;
5410 }
5411
5412 if (!nested_vmx_check_permission(vcpu))
5413 return 1;
5414
5415 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5416 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5417
5418 types = (vmx->nested.msrs.vpid_caps &
5419 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5420
5421 if (type >= 32 || !(types & (1 << type)))
5422 return nested_vmx_fail(vcpu,
5423 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5424
5425 /* according to the intel vmx instruction reference, the memory
5426 * operand is read even if it isn't needed (e.g., for type==global)
5427 */
5428 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5429 vmx_instruction_info, false, sizeof(operand), &gva))
5430 return 1;
5431 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5432 if (r != X86EMUL_CONTINUE)
5433 return kvm_handle_memory_failure(vcpu, r, &e);
5434
5435 if (operand.vpid >> 16)
5436 return nested_vmx_fail(vcpu,
5437 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5438
5439 vpid02 = nested_get_vpid02(vcpu);
5440 switch (type) {
5441 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5442 if (!operand.vpid ||
5443 is_noncanonical_address(operand.gla, vcpu))
5444 return nested_vmx_fail(vcpu,
5445 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5446 vpid_sync_vcpu_addr(vpid02, operand.gla);
5447 break;
5448 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5449 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5450 if (!operand.vpid)
5451 return nested_vmx_fail(vcpu,
5452 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5453 vpid_sync_context(vpid02);
5454 break;
5455 case VMX_VPID_EXTENT_ALL_CONTEXT:
5456 vpid_sync_context(vpid02);
5457 break;
5458 default:
5459 WARN_ON_ONCE(1);
5460 return kvm_skip_emulated_instruction(vcpu);
5461 }
5462
5463 /*
5464 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5465 * linear mappings for L2 (tagged with L2's VPID). Free all roots as
5466 * VPIDs are not tracked in the MMU role.
5467 *
5468 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5469 * an MMU when EPT is disabled.
5470 *
5471 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5472 */
5473 if (!enable_ept)
5474 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu,
5475 KVM_MMU_ROOTS_ALL);
5476
5477 return nested_vmx_succeed(vcpu);
5478 }
5479
nested_vmx_eptp_switching(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5480 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5481 struct vmcs12 *vmcs12)
5482 {
5483 u32 index = kvm_rcx_read(vcpu);
5484 u64 new_eptp;
5485
5486 if (!nested_cpu_has_eptp_switching(vmcs12) ||
5487 !nested_cpu_has_ept(vmcs12))
5488 return 1;
5489
5490 if (index >= VMFUNC_EPTP_ENTRIES)
5491 return 1;
5492
5493 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5494 &new_eptp, index * 8, 8))
5495 return 1;
5496
5497 /*
5498 * If the (L2) guest does a vmfunc to the currently
5499 * active ept pointer, we don't have to do anything else
5500 */
5501 if (vmcs12->ept_pointer != new_eptp) {
5502 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5503 return 1;
5504
5505 vmcs12->ept_pointer = new_eptp;
5506
5507 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
5508 }
5509
5510 return 0;
5511 }
5512
handle_vmfunc(struct kvm_vcpu * vcpu)5513 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5514 {
5515 struct vcpu_vmx *vmx = to_vmx(vcpu);
5516 struct vmcs12 *vmcs12;
5517 u32 function = kvm_rax_read(vcpu);
5518
5519 /*
5520 * VMFUNC is only supported for nested guests, but we always enable the
5521 * secondary control for simplicity; for non-nested mode, fake that we
5522 * didn't by injecting #UD.
5523 */
5524 if (!is_guest_mode(vcpu)) {
5525 kvm_queue_exception(vcpu, UD_VECTOR);
5526 return 1;
5527 }
5528
5529 vmcs12 = get_vmcs12(vcpu);
5530 if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5531 goto fail;
5532
5533 switch (function) {
5534 case 0:
5535 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5536 goto fail;
5537 break;
5538 default:
5539 goto fail;
5540 }
5541 return kvm_skip_emulated_instruction(vcpu);
5542
5543 fail:
5544 /*
5545 * This is effectively a reflected VM-Exit, as opposed to a synthesized
5546 * nested VM-Exit. Pass the original exit reason, i.e. don't hardcode
5547 * EXIT_REASON_VMFUNC as the exit reason.
5548 */
5549 nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5550 vmx_get_intr_info(vcpu),
5551 vmx_get_exit_qual(vcpu));
5552 return 1;
5553 }
5554
5555 /*
5556 * Return true if an IO instruction with the specified port and size should cause
5557 * a VM-exit into L1.
5558 */
nested_vmx_check_io_bitmaps(struct kvm_vcpu * vcpu,unsigned int port,int size)5559 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5560 int size)
5561 {
5562 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5563 gpa_t bitmap, last_bitmap;
5564 u8 b;
5565
5566 last_bitmap = (gpa_t)-1;
5567 b = -1;
5568
5569 while (size > 0) {
5570 if (port < 0x8000)
5571 bitmap = vmcs12->io_bitmap_a;
5572 else if (port < 0x10000)
5573 bitmap = vmcs12->io_bitmap_b;
5574 else
5575 return true;
5576 bitmap += (port & 0x7fff) / 8;
5577
5578 if (last_bitmap != bitmap)
5579 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5580 return true;
5581 if (b & (1 << (port & 7)))
5582 return true;
5583
5584 port++;
5585 size--;
5586 last_bitmap = bitmap;
5587 }
5588
5589 return false;
5590 }
5591
nested_vmx_exit_handled_io(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5592 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5593 struct vmcs12 *vmcs12)
5594 {
5595 unsigned long exit_qualification;
5596 unsigned short port;
5597 int size;
5598
5599 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5600 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5601
5602 exit_qualification = vmx_get_exit_qual(vcpu);
5603
5604 port = exit_qualification >> 16;
5605 size = (exit_qualification & 7) + 1;
5606
5607 return nested_vmx_check_io_bitmaps(vcpu, port, size);
5608 }
5609
5610 /*
5611 * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5612 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5613 * disinterest in the current event (read or write a specific MSR) by using an
5614 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5615 */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,union vmx_exit_reason exit_reason)5616 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5617 struct vmcs12 *vmcs12,
5618 union vmx_exit_reason exit_reason)
5619 {
5620 u32 msr_index = kvm_rcx_read(vcpu);
5621 gpa_t bitmap;
5622
5623 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5624 return true;
5625
5626 /*
5627 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5628 * for the four combinations of read/write and low/high MSR numbers.
5629 * First we need to figure out which of the four to use:
5630 */
5631 bitmap = vmcs12->msr_bitmap;
5632 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5633 bitmap += 2048;
5634 if (msr_index >= 0xc0000000) {
5635 msr_index -= 0xc0000000;
5636 bitmap += 1024;
5637 }
5638
5639 /* Then read the msr_index'th bit from this bitmap: */
5640 if (msr_index < 1024*8) {
5641 unsigned char b;
5642 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5643 return true;
5644 return 1 & (b >> (msr_index & 7));
5645 } else
5646 return true; /* let L1 handle the wrong parameter */
5647 }
5648
5649 /*
5650 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5651 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5652 * intercept (via guest_host_mask etc.) the current event.
5653 */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5654 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5655 struct vmcs12 *vmcs12)
5656 {
5657 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5658 int cr = exit_qualification & 15;
5659 int reg;
5660 unsigned long val;
5661
5662 switch ((exit_qualification >> 4) & 3) {
5663 case 0: /* mov to cr */
5664 reg = (exit_qualification >> 8) & 15;
5665 val = kvm_register_readl(vcpu, reg);
5666 switch (cr) {
5667 case 0:
5668 if (vmcs12->cr0_guest_host_mask &
5669 (val ^ vmcs12->cr0_read_shadow))
5670 return true;
5671 break;
5672 case 3:
5673 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5674 return true;
5675 break;
5676 case 4:
5677 if (vmcs12->cr4_guest_host_mask &
5678 (vmcs12->cr4_read_shadow ^ val))
5679 return true;
5680 break;
5681 case 8:
5682 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5683 return true;
5684 break;
5685 }
5686 break;
5687 case 2: /* clts */
5688 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5689 (vmcs12->cr0_read_shadow & X86_CR0_TS))
5690 return true;
5691 break;
5692 case 1: /* mov from cr */
5693 switch (cr) {
5694 case 3:
5695 if (vmcs12->cpu_based_vm_exec_control &
5696 CPU_BASED_CR3_STORE_EXITING)
5697 return true;
5698 break;
5699 case 8:
5700 if (vmcs12->cpu_based_vm_exec_control &
5701 CPU_BASED_CR8_STORE_EXITING)
5702 return true;
5703 break;
5704 }
5705 break;
5706 case 3: /* lmsw */
5707 /*
5708 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5709 * cr0. Other attempted changes are ignored, with no exit.
5710 */
5711 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5712 if (vmcs12->cr0_guest_host_mask & 0xe &
5713 (val ^ vmcs12->cr0_read_shadow))
5714 return true;
5715 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5716 !(vmcs12->cr0_read_shadow & 0x1) &&
5717 (val & 0x1))
5718 return true;
5719 break;
5720 }
5721 return false;
5722 }
5723
nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,gpa_t bitmap)5724 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5725 struct vmcs12 *vmcs12, gpa_t bitmap)
5726 {
5727 u32 vmx_instruction_info;
5728 unsigned long field;
5729 u8 b;
5730
5731 if (!nested_cpu_has_shadow_vmcs(vmcs12))
5732 return true;
5733
5734 /* Decode instruction info and find the field to access */
5735 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5736 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5737
5738 /* Out-of-range fields always cause a VM exit from L2 to L1 */
5739 if (field >> 15)
5740 return true;
5741
5742 if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5743 return true;
5744
5745 return 1 & (b >> (field & 7));
5746 }
5747
nested_vmx_exit_handled_mtf(struct vmcs12 * vmcs12)5748 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5749 {
5750 u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5751
5752 if (nested_cpu_has_mtf(vmcs12))
5753 return true;
5754
5755 /*
5756 * An MTF VM-exit may be injected into the guest by setting the
5757 * interruption-type to 7 (other event) and the vector field to 0. Such
5758 * is the case regardless of the 'monitor trap flag' VM-execution
5759 * control.
5760 */
5761 return entry_intr_info == (INTR_INFO_VALID_MASK
5762 | INTR_TYPE_OTHER_EVENT);
5763 }
5764
5765 /*
5766 * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5767 * L1 wants the exit. Only call this when in is_guest_mode (L2).
5768 */
nested_vmx_l0_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)5769 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
5770 union vmx_exit_reason exit_reason)
5771 {
5772 u32 intr_info;
5773
5774 switch ((u16)exit_reason.basic) {
5775 case EXIT_REASON_EXCEPTION_NMI:
5776 intr_info = vmx_get_intr_info(vcpu);
5777 if (is_nmi(intr_info))
5778 return true;
5779 else if (is_page_fault(intr_info))
5780 return vcpu->arch.apf.host_apf_flags ||
5781 vmx_need_pf_intercept(vcpu);
5782 else if (is_debug(intr_info) &&
5783 vcpu->guest_debug &
5784 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5785 return true;
5786 else if (is_breakpoint(intr_info) &&
5787 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5788 return true;
5789 else if (is_alignment_check(intr_info) &&
5790 !vmx_guest_inject_ac(vcpu))
5791 return true;
5792 return false;
5793 case EXIT_REASON_EXTERNAL_INTERRUPT:
5794 return true;
5795 case EXIT_REASON_MCE_DURING_VMENTRY:
5796 return true;
5797 case EXIT_REASON_EPT_VIOLATION:
5798 /*
5799 * L0 always deals with the EPT violation. If nested EPT is
5800 * used, and the nested mmu code discovers that the address is
5801 * missing in the guest EPT table (EPT12), the EPT violation
5802 * will be injected with nested_ept_inject_page_fault()
5803 */
5804 return true;
5805 case EXIT_REASON_EPT_MISCONFIG:
5806 /*
5807 * L2 never uses directly L1's EPT, but rather L0's own EPT
5808 * table (shadow on EPT) or a merged EPT table that L0 built
5809 * (EPT on EPT). So any problems with the structure of the
5810 * table is L0's fault.
5811 */
5812 return true;
5813 case EXIT_REASON_PREEMPTION_TIMER:
5814 return true;
5815 case EXIT_REASON_PML_FULL:
5816 /* We emulate PML support to L1. */
5817 return true;
5818 case EXIT_REASON_VMFUNC:
5819 /* VM functions are emulated through L2->L0 vmexits. */
5820 return true;
5821 case EXIT_REASON_ENCLS:
5822 /* SGX is never exposed to L1 */
5823 return true;
5824 default:
5825 break;
5826 }
5827 return false;
5828 }
5829
5830 /*
5831 * Return 1 if L1 wants to intercept an exit from L2. Only call this when in
5832 * is_guest_mode (L2).
5833 */
nested_vmx_l1_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)5834 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
5835 union vmx_exit_reason exit_reason)
5836 {
5837 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5838 u32 intr_info;
5839
5840 switch ((u16)exit_reason.basic) {
5841 case EXIT_REASON_EXCEPTION_NMI:
5842 intr_info = vmx_get_intr_info(vcpu);
5843 if (is_nmi(intr_info))
5844 return true;
5845 else if (is_page_fault(intr_info))
5846 return true;
5847 return vmcs12->exception_bitmap &
5848 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5849 case EXIT_REASON_EXTERNAL_INTERRUPT:
5850 return nested_exit_on_intr(vcpu);
5851 case EXIT_REASON_TRIPLE_FAULT:
5852 return true;
5853 case EXIT_REASON_INTERRUPT_WINDOW:
5854 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5855 case EXIT_REASON_NMI_WINDOW:
5856 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5857 case EXIT_REASON_TASK_SWITCH:
5858 return true;
5859 case EXIT_REASON_CPUID:
5860 return true;
5861 case EXIT_REASON_HLT:
5862 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5863 case EXIT_REASON_INVD:
5864 return true;
5865 case EXIT_REASON_INVLPG:
5866 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5867 case EXIT_REASON_RDPMC:
5868 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5869 case EXIT_REASON_RDRAND:
5870 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5871 case EXIT_REASON_RDSEED:
5872 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5873 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5874 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5875 case EXIT_REASON_VMREAD:
5876 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5877 vmcs12->vmread_bitmap);
5878 case EXIT_REASON_VMWRITE:
5879 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5880 vmcs12->vmwrite_bitmap);
5881 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5882 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5883 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5884 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5885 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5886 /*
5887 * VMX instructions trap unconditionally. This allows L1 to
5888 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5889 */
5890 return true;
5891 case EXIT_REASON_CR_ACCESS:
5892 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5893 case EXIT_REASON_DR_ACCESS:
5894 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5895 case EXIT_REASON_IO_INSTRUCTION:
5896 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5897 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5898 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5899 case EXIT_REASON_MSR_READ:
5900 case EXIT_REASON_MSR_WRITE:
5901 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5902 case EXIT_REASON_INVALID_STATE:
5903 return true;
5904 case EXIT_REASON_MWAIT_INSTRUCTION:
5905 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5906 case EXIT_REASON_MONITOR_TRAP_FLAG:
5907 return nested_vmx_exit_handled_mtf(vmcs12);
5908 case EXIT_REASON_MONITOR_INSTRUCTION:
5909 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5910 case EXIT_REASON_PAUSE_INSTRUCTION:
5911 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5912 nested_cpu_has2(vmcs12,
5913 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5914 case EXIT_REASON_MCE_DURING_VMENTRY:
5915 return true;
5916 case EXIT_REASON_TPR_BELOW_THRESHOLD:
5917 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5918 case EXIT_REASON_APIC_ACCESS:
5919 case EXIT_REASON_APIC_WRITE:
5920 case EXIT_REASON_EOI_INDUCED:
5921 /*
5922 * The controls for "virtualize APIC accesses," "APIC-
5923 * register virtualization," and "virtual-interrupt
5924 * delivery" only come from vmcs12.
5925 */
5926 return true;
5927 case EXIT_REASON_INVPCID:
5928 return
5929 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5930 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5931 case EXIT_REASON_WBINVD:
5932 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5933 case EXIT_REASON_XSETBV:
5934 return true;
5935 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5936 /*
5937 * This should never happen, since it is not possible to
5938 * set XSS to a non-zero value---neither in L1 nor in L2.
5939 * If if it were, XSS would have to be checked against
5940 * the XSS exit bitmap in vmcs12.
5941 */
5942 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5943 case EXIT_REASON_UMWAIT:
5944 case EXIT_REASON_TPAUSE:
5945 return nested_cpu_has2(vmcs12,
5946 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
5947 default:
5948 return true;
5949 }
5950 }
5951
5952 /*
5953 * Conditionally reflect a VM-Exit into L1. Returns %true if the VM-Exit was
5954 * reflected into L1.
5955 */
nested_vmx_reflect_vmexit(struct kvm_vcpu * vcpu)5956 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
5957 {
5958 struct vcpu_vmx *vmx = to_vmx(vcpu);
5959 union vmx_exit_reason exit_reason = vmx->exit_reason;
5960 unsigned long exit_qual;
5961 u32 exit_intr_info;
5962
5963 WARN_ON_ONCE(vmx->nested.nested_run_pending);
5964
5965 /*
5966 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
5967 * has already loaded L2's state.
5968 */
5969 if (unlikely(vmx->fail)) {
5970 trace_kvm_nested_vmenter_failed(
5971 "hardware VM-instruction error: ",
5972 vmcs_read32(VM_INSTRUCTION_ERROR));
5973 exit_intr_info = 0;
5974 exit_qual = 0;
5975 goto reflect_vmexit;
5976 }
5977
5978 trace_kvm_nested_vmexit(exit_reason.full, vcpu, KVM_ISA_VMX);
5979
5980 /* If L0 (KVM) wants the exit, it trumps L1's desires. */
5981 if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
5982 return false;
5983
5984 /* If L1 doesn't want the exit, handle it in L0. */
5985 if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
5986 return false;
5987
5988 /*
5989 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits. For
5990 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
5991 * need to be synthesized by querying the in-kernel LAPIC, but external
5992 * interrupts are never reflected to L1 so it's a non-issue.
5993 */
5994 exit_intr_info = vmx_get_intr_info(vcpu);
5995 if (is_exception_with_error_code(exit_intr_info)) {
5996 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5997
5998 vmcs12->vm_exit_intr_error_code =
5999 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6000 }
6001 exit_qual = vmx_get_exit_qual(vcpu);
6002
6003 reflect_vmexit:
6004 nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6005 return true;
6006 }
6007
vmx_get_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,u32 user_data_size)6008 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6009 struct kvm_nested_state __user *user_kvm_nested_state,
6010 u32 user_data_size)
6011 {
6012 struct vcpu_vmx *vmx;
6013 struct vmcs12 *vmcs12;
6014 struct kvm_nested_state kvm_state = {
6015 .flags = 0,
6016 .format = KVM_STATE_NESTED_FORMAT_VMX,
6017 .size = sizeof(kvm_state),
6018 .hdr.vmx.flags = 0,
6019 .hdr.vmx.vmxon_pa = -1ull,
6020 .hdr.vmx.vmcs12_pa = -1ull,
6021 .hdr.vmx.preemption_timer_deadline = 0,
6022 };
6023 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6024 &user_kvm_nested_state->data.vmx[0];
6025
6026 if (!vcpu)
6027 return kvm_state.size + sizeof(*user_vmx_nested_state);
6028
6029 vmx = to_vmx(vcpu);
6030 vmcs12 = get_vmcs12(vcpu);
6031
6032 if (nested_vmx_allowed(vcpu) &&
6033 (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6034 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6035 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6036
6037 if (vmx_has_valid_vmcs12(vcpu)) {
6038 kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6039
6040 if (vmx->nested.hv_evmcs)
6041 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6042
6043 if (is_guest_mode(vcpu) &&
6044 nested_cpu_has_shadow_vmcs(vmcs12) &&
6045 vmcs12->vmcs_link_pointer != -1ull)
6046 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6047 }
6048
6049 if (vmx->nested.smm.vmxon)
6050 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6051
6052 if (vmx->nested.smm.guest_mode)
6053 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6054
6055 if (is_guest_mode(vcpu)) {
6056 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6057
6058 if (vmx->nested.nested_run_pending)
6059 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6060
6061 if (vmx->nested.mtf_pending)
6062 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6063
6064 if (nested_cpu_has_preemption_timer(vmcs12) &&
6065 vmx->nested.has_preemption_timer_deadline) {
6066 kvm_state.hdr.vmx.flags |=
6067 KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6068 kvm_state.hdr.vmx.preemption_timer_deadline =
6069 vmx->nested.preemption_timer_deadline;
6070 }
6071 }
6072 }
6073
6074 if (user_data_size < kvm_state.size)
6075 goto out;
6076
6077 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6078 return -EFAULT;
6079
6080 if (!vmx_has_valid_vmcs12(vcpu))
6081 goto out;
6082
6083 /*
6084 * When running L2, the authoritative vmcs12 state is in the
6085 * vmcs02. When running L1, the authoritative vmcs12 state is
6086 * in the shadow or enlightened vmcs linked to vmcs01, unless
6087 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6088 * vmcs12 state is in the vmcs12 already.
6089 */
6090 if (is_guest_mode(vcpu)) {
6091 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6092 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6093 } else {
6094 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6095 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6096 if (vmx->nested.hv_evmcs)
6097 copy_enlightened_to_vmcs12(vmx);
6098 else if (enable_shadow_vmcs)
6099 copy_shadow_to_vmcs12(vmx);
6100 }
6101 }
6102
6103 BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6104 BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6105
6106 /*
6107 * Copy over the full allocated size of vmcs12 rather than just the size
6108 * of the struct.
6109 */
6110 if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6111 return -EFAULT;
6112
6113 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6114 vmcs12->vmcs_link_pointer != -1ull) {
6115 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6116 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6117 return -EFAULT;
6118 }
6119 out:
6120 return kvm_state.size;
6121 }
6122
6123 /*
6124 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
6125 */
vmx_leave_nested(struct kvm_vcpu * vcpu)6126 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6127 {
6128 if (is_guest_mode(vcpu)) {
6129 to_vmx(vcpu)->nested.nested_run_pending = 0;
6130 nested_vmx_vmexit(vcpu, -1, 0, 0);
6131 }
6132 free_nested(vcpu);
6133 }
6134
vmx_set_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,struct kvm_nested_state * kvm_state)6135 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6136 struct kvm_nested_state __user *user_kvm_nested_state,
6137 struct kvm_nested_state *kvm_state)
6138 {
6139 struct vcpu_vmx *vmx = to_vmx(vcpu);
6140 struct vmcs12 *vmcs12;
6141 enum vm_entry_failure_code ignored;
6142 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6143 &user_kvm_nested_state->data.vmx[0];
6144 int ret;
6145
6146 if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6147 return -EINVAL;
6148
6149 if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
6150 if (kvm_state->hdr.vmx.smm.flags)
6151 return -EINVAL;
6152
6153 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
6154 return -EINVAL;
6155
6156 /*
6157 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6158 * enable eVMCS capability on vCPU. However, since then
6159 * code was changed such that flag signals vmcs12 should
6160 * be copied into eVMCS in guest memory.
6161 *
6162 * To preserve backwards compatability, allow user
6163 * to set this flag even when there is no VMXON region.
6164 */
6165 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6166 return -EINVAL;
6167 } else {
6168 if (!nested_vmx_allowed(vcpu))
6169 return -EINVAL;
6170
6171 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6172 return -EINVAL;
6173 }
6174
6175 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6176 (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6177 return -EINVAL;
6178
6179 if (kvm_state->hdr.vmx.smm.flags &
6180 ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6181 return -EINVAL;
6182
6183 if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6184 return -EINVAL;
6185
6186 /*
6187 * SMM temporarily disables VMX, so we cannot be in guest mode,
6188 * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
6189 * must be zero.
6190 */
6191 if (is_smm(vcpu) ?
6192 (kvm_state->flags &
6193 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6194 : kvm_state->hdr.vmx.smm.flags)
6195 return -EINVAL;
6196
6197 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6198 !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6199 return -EINVAL;
6200
6201 if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6202 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6203 return -EINVAL;
6204
6205 vmx_leave_nested(vcpu);
6206
6207 if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
6208 return 0;
6209
6210 vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6211 ret = enter_vmx_operation(vcpu);
6212 if (ret)
6213 return ret;
6214
6215 /* Empty 'VMXON' state is permitted if no VMCS loaded */
6216 if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6217 /* See vmx_has_valid_vmcs12. */
6218 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6219 (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6220 (kvm_state->hdr.vmx.vmcs12_pa != -1ull))
6221 return -EINVAL;
6222 else
6223 return 0;
6224 }
6225
6226 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
6227 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6228 !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6229 return -EINVAL;
6230
6231 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6232 } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6233 /*
6234 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6235 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6236 * restored yet. EVMCS will be mapped from
6237 * nested_get_vmcs12_pages().
6238 */
6239 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6240 } else {
6241 return -EINVAL;
6242 }
6243
6244 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6245 vmx->nested.smm.vmxon = true;
6246 vmx->nested.vmxon = false;
6247
6248 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6249 vmx->nested.smm.guest_mode = true;
6250 }
6251
6252 vmcs12 = get_vmcs12(vcpu);
6253 if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6254 return -EFAULT;
6255
6256 if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6257 return -EINVAL;
6258
6259 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6260 return 0;
6261
6262 vmx->nested.nested_run_pending =
6263 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6264
6265 vmx->nested.mtf_pending =
6266 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6267
6268 ret = -EINVAL;
6269 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6270 vmcs12->vmcs_link_pointer != -1ull) {
6271 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6272
6273 if (kvm_state->size <
6274 sizeof(*kvm_state) +
6275 sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6276 goto error_guest_mode;
6277
6278 if (copy_from_user(shadow_vmcs12,
6279 user_vmx_nested_state->shadow_vmcs12,
6280 sizeof(*shadow_vmcs12))) {
6281 ret = -EFAULT;
6282 goto error_guest_mode;
6283 }
6284
6285 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6286 !shadow_vmcs12->hdr.shadow_vmcs)
6287 goto error_guest_mode;
6288 }
6289
6290 vmx->nested.has_preemption_timer_deadline = false;
6291 if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6292 vmx->nested.has_preemption_timer_deadline = true;
6293 vmx->nested.preemption_timer_deadline =
6294 kvm_state->hdr.vmx.preemption_timer_deadline;
6295 }
6296
6297 if (nested_vmx_check_controls(vcpu, vmcs12) ||
6298 nested_vmx_check_host_state(vcpu, vmcs12) ||
6299 nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6300 goto error_guest_mode;
6301
6302 vmx->nested.dirty_vmcs12 = true;
6303 ret = nested_vmx_enter_non_root_mode(vcpu, false);
6304 if (ret)
6305 goto error_guest_mode;
6306
6307 return 0;
6308
6309 error_guest_mode:
6310 vmx->nested.nested_run_pending = 0;
6311 return ret;
6312 }
6313
nested_vmx_set_vmcs_shadowing_bitmap(void)6314 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6315 {
6316 if (enable_shadow_vmcs) {
6317 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6318 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6319 }
6320 }
6321
6322 /*
6323 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6324 * returned for the various VMX controls MSRs when nested VMX is enabled.
6325 * The same values should also be used to verify that vmcs12 control fields are
6326 * valid during nested entry from L1 to L2.
6327 * Each of these control msrs has a low and high 32-bit half: A low bit is on
6328 * if the corresponding bit in the (32-bit) control field *must* be on, and a
6329 * bit in the high half is on if the corresponding bit in the control field
6330 * may be on. See also vmx_control_verify().
6331 */
nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs * msrs,u32 ept_caps)6332 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6333 {
6334 /*
6335 * Note that as a general rule, the high half of the MSRs (bits in
6336 * the control fields which may be 1) should be initialized by the
6337 * intersection of the underlying hardware's MSR (i.e., features which
6338 * can be supported) and the list of features we want to expose -
6339 * because they are known to be properly supported in our code.
6340 * Also, usually, the low half of the MSRs (bits which must be 1) can
6341 * be set to 0, meaning that L1 may turn off any of these bits. The
6342 * reason is that if one of these bits is necessary, it will appear
6343 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6344 * fields of vmcs01 and vmcs02, will turn these bits off - and
6345 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6346 * These rules have exceptions below.
6347 */
6348
6349 /* pin-based controls */
6350 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6351 msrs->pinbased_ctls_low,
6352 msrs->pinbased_ctls_high);
6353 msrs->pinbased_ctls_low |=
6354 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6355 msrs->pinbased_ctls_high &=
6356 PIN_BASED_EXT_INTR_MASK |
6357 PIN_BASED_NMI_EXITING |
6358 PIN_BASED_VIRTUAL_NMIS |
6359 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6360 msrs->pinbased_ctls_high |=
6361 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6362 PIN_BASED_VMX_PREEMPTION_TIMER;
6363
6364 /* exit controls */
6365 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6366 msrs->exit_ctls_low,
6367 msrs->exit_ctls_high);
6368 msrs->exit_ctls_low =
6369 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6370
6371 msrs->exit_ctls_high &=
6372 #ifdef CONFIG_X86_64
6373 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6374 #endif
6375 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6376 VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6377 msrs->exit_ctls_high |=
6378 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6379 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6380 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6381
6382 /* We support free control of debug control saving. */
6383 msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6384
6385 /* entry controls */
6386 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6387 msrs->entry_ctls_low,
6388 msrs->entry_ctls_high);
6389 msrs->entry_ctls_low =
6390 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6391 msrs->entry_ctls_high &=
6392 #ifdef CONFIG_X86_64
6393 VM_ENTRY_IA32E_MODE |
6394 #endif
6395 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
6396 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
6397 msrs->entry_ctls_high |=
6398 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6399
6400 /* We support free control of debug control loading. */
6401 msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6402
6403 /* cpu-based controls */
6404 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6405 msrs->procbased_ctls_low,
6406 msrs->procbased_ctls_high);
6407 msrs->procbased_ctls_low =
6408 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6409 msrs->procbased_ctls_high &=
6410 CPU_BASED_INTR_WINDOW_EXITING |
6411 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6412 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6413 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6414 CPU_BASED_CR3_STORE_EXITING |
6415 #ifdef CONFIG_X86_64
6416 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6417 #endif
6418 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6419 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6420 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6421 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6422 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6423 /*
6424 * We can allow some features even when not supported by the
6425 * hardware. For example, L1 can specify an MSR bitmap - and we
6426 * can use it to avoid exits to L1 - even when L0 runs L2
6427 * without MSR bitmaps.
6428 */
6429 msrs->procbased_ctls_high |=
6430 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6431 CPU_BASED_USE_MSR_BITMAPS;
6432
6433 /* We support free control of CR3 access interception. */
6434 msrs->procbased_ctls_low &=
6435 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6436
6437 /*
6438 * secondary cpu-based controls. Do not include those that
6439 * depend on CPUID bits, they are added later by
6440 * vmx_vcpu_after_set_cpuid.
6441 */
6442 if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6443 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6444 msrs->secondary_ctls_low,
6445 msrs->secondary_ctls_high);
6446
6447 msrs->secondary_ctls_low = 0;
6448 msrs->secondary_ctls_high &=
6449 SECONDARY_EXEC_DESC |
6450 SECONDARY_EXEC_ENABLE_RDTSCP |
6451 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6452 SECONDARY_EXEC_WBINVD_EXITING |
6453 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6454 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6455 SECONDARY_EXEC_RDRAND_EXITING |
6456 SECONDARY_EXEC_ENABLE_INVPCID |
6457 SECONDARY_EXEC_RDSEED_EXITING |
6458 SECONDARY_EXEC_XSAVES;
6459
6460 /*
6461 * We can emulate "VMCS shadowing," even if the hardware
6462 * doesn't support it.
6463 */
6464 msrs->secondary_ctls_high |=
6465 SECONDARY_EXEC_SHADOW_VMCS;
6466
6467 if (enable_ept) {
6468 /* nested EPT: emulate EPT also to L1 */
6469 msrs->secondary_ctls_high |=
6470 SECONDARY_EXEC_ENABLE_EPT;
6471 msrs->ept_caps =
6472 VMX_EPT_PAGE_WALK_4_BIT |
6473 VMX_EPT_PAGE_WALK_5_BIT |
6474 VMX_EPTP_WB_BIT |
6475 VMX_EPT_INVEPT_BIT |
6476 VMX_EPT_EXECUTE_ONLY_BIT;
6477
6478 msrs->ept_caps &= ept_caps;
6479 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6480 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6481 VMX_EPT_1GB_PAGE_BIT;
6482 if (enable_ept_ad_bits) {
6483 msrs->secondary_ctls_high |=
6484 SECONDARY_EXEC_ENABLE_PML;
6485 msrs->ept_caps |= VMX_EPT_AD_BIT;
6486 }
6487 }
6488
6489 if (cpu_has_vmx_vmfunc()) {
6490 msrs->secondary_ctls_high |=
6491 SECONDARY_EXEC_ENABLE_VMFUNC;
6492 /*
6493 * Advertise EPTP switching unconditionally
6494 * since we emulate it
6495 */
6496 if (enable_ept)
6497 msrs->vmfunc_controls =
6498 VMX_VMFUNC_EPTP_SWITCHING;
6499 }
6500
6501 /*
6502 * Old versions of KVM use the single-context version without
6503 * checking for support, so declare that it is supported even
6504 * though it is treated as global context. The alternative is
6505 * not failing the single-context invvpid, and it is worse.
6506 */
6507 if (enable_vpid) {
6508 msrs->secondary_ctls_high |=
6509 SECONDARY_EXEC_ENABLE_VPID;
6510 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6511 VMX_VPID_EXTENT_SUPPORTED_MASK;
6512 }
6513
6514 if (enable_unrestricted_guest)
6515 msrs->secondary_ctls_high |=
6516 SECONDARY_EXEC_UNRESTRICTED_GUEST;
6517
6518 if (flexpriority_enabled)
6519 msrs->secondary_ctls_high |=
6520 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6521
6522 /* miscellaneous data */
6523 rdmsr(MSR_IA32_VMX_MISC,
6524 msrs->misc_low,
6525 msrs->misc_high);
6526 msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6527 msrs->misc_low |=
6528 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6529 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6530 VMX_MISC_ACTIVITY_HLT;
6531 msrs->misc_high = 0;
6532
6533 /*
6534 * This MSR reports some information about VMX support. We
6535 * should return information about the VMX we emulate for the
6536 * guest, and the VMCS structure we give it - not about the
6537 * VMX support of the underlying hardware.
6538 */
6539 msrs->basic =
6540 VMCS12_REVISION |
6541 VMX_BASIC_TRUE_CTLS |
6542 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6543 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6544
6545 if (cpu_has_vmx_basic_inout())
6546 msrs->basic |= VMX_BASIC_INOUT;
6547
6548 /*
6549 * These MSRs specify bits which the guest must keep fixed on
6550 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6551 * We picked the standard core2 setting.
6552 */
6553 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6554 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
6555 msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6556 msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6557
6558 /* These MSRs specify bits which the guest must keep fixed off. */
6559 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6560 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6561
6562 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
6563 msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
6564 }
6565
nested_vmx_hardware_unsetup(void)6566 void nested_vmx_hardware_unsetup(void)
6567 {
6568 int i;
6569
6570 if (enable_shadow_vmcs) {
6571 for (i = 0; i < VMX_BITMAP_NR; i++)
6572 free_page((unsigned long)vmx_bitmap[i]);
6573 }
6574 }
6575
nested_vmx_hardware_setup(int (* exit_handlers[])(struct kvm_vcpu *))6576 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6577 {
6578 int i;
6579
6580 if (!cpu_has_vmx_shadow_vmcs())
6581 enable_shadow_vmcs = 0;
6582 if (enable_shadow_vmcs) {
6583 for (i = 0; i < VMX_BITMAP_NR; i++) {
6584 /*
6585 * The vmx_bitmap is not tied to a VM and so should
6586 * not be charged to a memcg.
6587 */
6588 vmx_bitmap[i] = (unsigned long *)
6589 __get_free_page(GFP_KERNEL);
6590 if (!vmx_bitmap[i]) {
6591 nested_vmx_hardware_unsetup();
6592 return -ENOMEM;
6593 }
6594 }
6595
6596 init_vmcs_shadow_fields();
6597 }
6598
6599 exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear;
6600 exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch;
6601 exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld;
6602 exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst;
6603 exit_handlers[EXIT_REASON_VMREAD] = handle_vmread;
6604 exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume;
6605 exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite;
6606 exit_handlers[EXIT_REASON_VMOFF] = handle_vmoff;
6607 exit_handlers[EXIT_REASON_VMON] = handle_vmon;
6608 exit_handlers[EXIT_REASON_INVEPT] = handle_invept;
6609 exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid;
6610 exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc;
6611
6612 return 0;
6613 }
6614
6615 struct kvm_x86_nested_ops vmx_nested_ops = {
6616 .leave_nested = vmx_leave_nested,
6617 .check_events = vmx_check_nested_events,
6618 .hv_timer_pending = nested_vmx_preemption_timer_pending,
6619 .get_state = vmx_get_nested_state,
6620 .set_state = vmx_set_nested_state,
6621 .get_nested_state_pages = vmx_get_nested_state_pages,
6622 .write_log_dirty = nested_vmx_write_pml_buffer,
6623 .enable_evmcs = nested_enable_evmcs,
6624 .get_evmcs_version = nested_get_evmcs_version,
6625 };
6626