1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Core of Xen paravirt_ops implementation.
4 *
5 * This file contains the xen_paravirt_ops structure itself, and the
6 * implementations for:
7 * - privileged instructions
8 * - interrupt flags
9 * - segment operations
10 * - booting and setup
11 *
12 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
13 */
14
15 #include <linux/cpu.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/smp.h>
19 #include <linux/preempt.h>
20 #include <linux/hardirq.h>
21 #include <linux/percpu.h>
22 #include <linux/delay.h>
23 #include <linux/start_kernel.h>
24 #include <linux/sched.h>
25 #include <linux/kprobes.h>
26 #include <linux/memblock.h>
27 #include <linux/export.h>
28 #include <linux/mm.h>
29 #include <linux/page-flags.h>
30 #include <linux/highmem.h>
31 #include <linux/console.h>
32 #include <linux/pci.h>
33 #include <linux/gfp.h>
34 #include <linux/edd.h>
35 #include <linux/objtool.h>
36
37 #include <xen/xen.h>
38 #include <xen/events.h>
39 #include <xen/interface/xen.h>
40 #include <xen/interface/version.h>
41 #include <xen/interface/physdev.h>
42 #include <xen/interface/vcpu.h>
43 #include <xen/interface/memory.h>
44 #include <xen/interface/nmi.h>
45 #include <xen/interface/xen-mca.h>
46 #include <xen/features.h>
47 #include <xen/page.h>
48 #include <xen/hvc-console.h>
49 #include <xen/acpi.h>
50
51 #include <asm/paravirt.h>
52 #include <asm/apic.h>
53 #include <asm/page.h>
54 #include <asm/xen/pci.h>
55 #include <asm/xen/hypercall.h>
56 #include <asm/xen/hypervisor.h>
57 #include <asm/xen/cpuid.h>
58 #include <asm/fixmap.h>
59 #include <asm/processor.h>
60 #include <asm/proto.h>
61 #include <asm/msr-index.h>
62 #include <asm/traps.h>
63 #include <asm/setup.h>
64 #include <asm/desc.h>
65 #include <asm/pgalloc.h>
66 #include <asm/tlbflush.h>
67 #include <asm/reboot.h>
68 #include <asm/stackprotector.h>
69 #include <asm/hypervisor.h>
70 #include <asm/mach_traps.h>
71 #include <asm/mwait.h>
72 #include <asm/pci_x86.h>
73 #include <asm/cpu.h>
74 #ifdef CONFIG_X86_IOPL_IOPERM
75 #include <asm/io_bitmap.h>
76 #endif
77
78 #ifdef CONFIG_ACPI
79 #include <linux/acpi.h>
80 #include <asm/acpi.h>
81 #include <acpi/pdc_intel.h>
82 #include <acpi/processor.h>
83 #include <xen/interface/platform.h>
84 #endif
85
86 #include "xen-ops.h"
87 #include "mmu.h"
88 #include "smp.h"
89 #include "multicalls.h"
90 #include "pmu.h"
91
92 #include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
93
94 void *xen_initial_gdt;
95
96 static int xen_cpu_up_prepare_pv(unsigned int cpu);
97 static int xen_cpu_dead_pv(unsigned int cpu);
98
99 struct tls_descs {
100 struct desc_struct desc[3];
101 };
102
103 /*
104 * Updating the 3 TLS descriptors in the GDT on every task switch is
105 * surprisingly expensive so we avoid updating them if they haven't
106 * changed. Since Xen writes different descriptors than the one
107 * passed in the update_descriptor hypercall we keep shadow copies to
108 * compare against.
109 */
110 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
111
xen_banner(void)112 static void __init xen_banner(void)
113 {
114 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
115 struct xen_extraversion extra;
116 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
117
118 pr_info("Booting paravirtualized kernel on %s\n", pv_info.name);
119 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
120 version >> 16, version & 0xffff, extra.extraversion,
121 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
122 }
123
xen_pv_init_platform(void)124 static void __init xen_pv_init_platform(void)
125 {
126 populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
127
128 set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
129 HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
130
131 /* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
132 xen_vcpu_info_reset(0);
133
134 /* pvclock is in shared info area */
135 xen_init_time_ops();
136 }
137
xen_pv_guest_late_init(void)138 static void __init xen_pv_guest_late_init(void)
139 {
140 #ifndef CONFIG_SMP
141 /* Setup shared vcpu info for non-smp configurations */
142 xen_setup_vcpu_info_placement();
143 #endif
144 }
145
146 /* Check if running on Xen version (major, minor) or later */
147 bool
xen_running_on_version_or_later(unsigned int major,unsigned int minor)148 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
149 {
150 unsigned int version;
151
152 if (!xen_domain())
153 return false;
154
155 version = HYPERVISOR_xen_version(XENVER_version, NULL);
156 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
157 ((version >> 16) > major))
158 return true;
159 return false;
160 }
161
162 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
163 static __read_mostly unsigned int cpuid_leaf5_edx_val;
164
xen_cpuid(unsigned int * ax,unsigned int * bx,unsigned int * cx,unsigned int * dx)165 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
166 unsigned int *cx, unsigned int *dx)
167 {
168 unsigned maskebx = ~0;
169
170 /*
171 * Mask out inconvenient features, to try and disable as many
172 * unsupported kernel subsystems as possible.
173 */
174 switch (*ax) {
175 case CPUID_MWAIT_LEAF:
176 /* Synthesize the values.. */
177 *ax = 0;
178 *bx = 0;
179 *cx = cpuid_leaf5_ecx_val;
180 *dx = cpuid_leaf5_edx_val;
181 return;
182
183 case 0xb:
184 /* Suppress extended topology stuff */
185 maskebx = 0;
186 break;
187 }
188
189 asm(XEN_EMULATE_PREFIX "cpuid"
190 : "=a" (*ax),
191 "=b" (*bx),
192 "=c" (*cx),
193 "=d" (*dx)
194 : "0" (*ax), "2" (*cx));
195
196 *bx &= maskebx;
197 }
198 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
199
xen_check_mwait(void)200 static bool __init xen_check_mwait(void)
201 {
202 #ifdef CONFIG_ACPI
203 struct xen_platform_op op = {
204 .cmd = XENPF_set_processor_pminfo,
205 .u.set_pminfo.id = -1,
206 .u.set_pminfo.type = XEN_PM_PDC,
207 };
208 uint32_t buf[3];
209 unsigned int ax, bx, cx, dx;
210 unsigned int mwait_mask;
211
212 /* We need to determine whether it is OK to expose the MWAIT
213 * capability to the kernel to harvest deeper than C3 states from ACPI
214 * _CST using the processor_harvest_xen.c module. For this to work, we
215 * need to gather the MWAIT_LEAF values (which the cstate.c code
216 * checks against). The hypervisor won't expose the MWAIT flag because
217 * it would break backwards compatibility; so we will find out directly
218 * from the hardware and hypercall.
219 */
220 if (!xen_initial_domain())
221 return false;
222
223 /*
224 * When running under platform earlier than Xen4.2, do not expose
225 * mwait, to avoid the risk of loading native acpi pad driver
226 */
227 if (!xen_running_on_version_or_later(4, 2))
228 return false;
229
230 ax = 1;
231 cx = 0;
232
233 native_cpuid(&ax, &bx, &cx, &dx);
234
235 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
236 (1 << (X86_FEATURE_MWAIT % 32));
237
238 if ((cx & mwait_mask) != mwait_mask)
239 return false;
240
241 /* We need to emulate the MWAIT_LEAF and for that we need both
242 * ecx and edx. The hypercall provides only partial information.
243 */
244
245 ax = CPUID_MWAIT_LEAF;
246 bx = 0;
247 cx = 0;
248 dx = 0;
249
250 native_cpuid(&ax, &bx, &cx, &dx);
251
252 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
253 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
254 */
255 buf[0] = ACPI_PDC_REVISION_ID;
256 buf[1] = 1;
257 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
258
259 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
260
261 if ((HYPERVISOR_platform_op(&op) == 0) &&
262 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
263 cpuid_leaf5_ecx_val = cx;
264 cpuid_leaf5_edx_val = dx;
265 }
266 return true;
267 #else
268 return false;
269 #endif
270 }
271
xen_check_xsave(void)272 static bool __init xen_check_xsave(void)
273 {
274 unsigned int cx, xsave_mask;
275
276 cx = cpuid_ecx(1);
277
278 xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
279 (1 << (X86_FEATURE_OSXSAVE % 32));
280
281 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
282 return (cx & xsave_mask) == xsave_mask;
283 }
284
xen_init_capabilities(void)285 static void __init xen_init_capabilities(void)
286 {
287 setup_force_cpu_cap(X86_FEATURE_XENPV);
288 setup_clear_cpu_cap(X86_FEATURE_DCA);
289 setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
290 setup_clear_cpu_cap(X86_FEATURE_MTRR);
291 setup_clear_cpu_cap(X86_FEATURE_ACC);
292 setup_clear_cpu_cap(X86_FEATURE_X2APIC);
293 setup_clear_cpu_cap(X86_FEATURE_SME);
294
295 /*
296 * Xen PV would need some work to support PCID: CR3 handling as well
297 * as xen_flush_tlb_others() would need updating.
298 */
299 setup_clear_cpu_cap(X86_FEATURE_PCID);
300
301 if (!xen_initial_domain())
302 setup_clear_cpu_cap(X86_FEATURE_ACPI);
303
304 if (xen_check_mwait())
305 setup_force_cpu_cap(X86_FEATURE_MWAIT);
306 else
307 setup_clear_cpu_cap(X86_FEATURE_MWAIT);
308
309 if (!xen_check_xsave()) {
310 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
311 setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
312 }
313 }
314
xen_set_debugreg(int reg,unsigned long val)315 static void xen_set_debugreg(int reg, unsigned long val)
316 {
317 HYPERVISOR_set_debugreg(reg, val);
318 }
319
xen_get_debugreg(int reg)320 static unsigned long xen_get_debugreg(int reg)
321 {
322 return HYPERVISOR_get_debugreg(reg);
323 }
324
xen_end_context_switch(struct task_struct * next)325 static void xen_end_context_switch(struct task_struct *next)
326 {
327 xen_mc_flush();
328 paravirt_end_context_switch(next);
329 }
330
xen_store_tr(void)331 static unsigned long xen_store_tr(void)
332 {
333 return 0;
334 }
335
336 /*
337 * Set the page permissions for a particular virtual address. If the
338 * address is a vmalloc mapping (or other non-linear mapping), then
339 * find the linear mapping of the page and also set its protections to
340 * match.
341 */
set_aliased_prot(void * v,pgprot_t prot)342 static void set_aliased_prot(void *v, pgprot_t prot)
343 {
344 int level;
345 pte_t *ptep;
346 pte_t pte;
347 unsigned long pfn;
348 unsigned char dummy;
349 void *va;
350
351 ptep = lookup_address((unsigned long)v, &level);
352 BUG_ON(ptep == NULL);
353
354 pfn = pte_pfn(*ptep);
355 pte = pfn_pte(pfn, prot);
356
357 /*
358 * Careful: update_va_mapping() will fail if the virtual address
359 * we're poking isn't populated in the page tables. We don't
360 * need to worry about the direct map (that's always in the page
361 * tables), but we need to be careful about vmap space. In
362 * particular, the top level page table can lazily propagate
363 * entries between processes, so if we've switched mms since we
364 * vmapped the target in the first place, we might not have the
365 * top-level page table entry populated.
366 *
367 * We disable preemption because we want the same mm active when
368 * we probe the target and when we issue the hypercall. We'll
369 * have the same nominal mm, but if we're a kernel thread, lazy
370 * mm dropping could change our pgd.
371 *
372 * Out of an abundance of caution, this uses __get_user() to fault
373 * in the target address just in case there's some obscure case
374 * in which the target address isn't readable.
375 */
376
377 preempt_disable();
378
379 copy_from_kernel_nofault(&dummy, v, 1);
380
381 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
382 BUG();
383
384 va = __va(PFN_PHYS(pfn));
385
386 if (va != v && HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
387 BUG();
388
389 preempt_enable();
390 }
391
xen_alloc_ldt(struct desc_struct * ldt,unsigned entries)392 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
393 {
394 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
395 int i;
396
397 /*
398 * We need to mark the all aliases of the LDT pages RO. We
399 * don't need to call vm_flush_aliases(), though, since that's
400 * only responsible for flushing aliases out the TLBs, not the
401 * page tables, and Xen will flush the TLB for us if needed.
402 *
403 * To avoid confusing future readers: none of this is necessary
404 * to load the LDT. The hypervisor only checks this when the
405 * LDT is faulted in due to subsequent descriptor access.
406 */
407
408 for (i = 0; i < entries; i += entries_per_page)
409 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
410 }
411
xen_free_ldt(struct desc_struct * ldt,unsigned entries)412 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
413 {
414 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
415 int i;
416
417 for (i = 0; i < entries; i += entries_per_page)
418 set_aliased_prot(ldt + i, PAGE_KERNEL);
419 }
420
xen_set_ldt(const void * addr,unsigned entries)421 static void xen_set_ldt(const void *addr, unsigned entries)
422 {
423 struct mmuext_op *op;
424 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
425
426 trace_xen_cpu_set_ldt(addr, entries);
427
428 op = mcs.args;
429 op->cmd = MMUEXT_SET_LDT;
430 op->arg1.linear_addr = (unsigned long)addr;
431 op->arg2.nr_ents = entries;
432
433 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
434
435 xen_mc_issue(PARAVIRT_LAZY_CPU);
436 }
437
xen_load_gdt(const struct desc_ptr * dtr)438 static void xen_load_gdt(const struct desc_ptr *dtr)
439 {
440 unsigned long va = dtr->address;
441 unsigned int size = dtr->size + 1;
442 unsigned long pfn, mfn;
443 int level;
444 pte_t *ptep;
445 void *virt;
446
447 /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
448 BUG_ON(size > PAGE_SIZE);
449 BUG_ON(va & ~PAGE_MASK);
450
451 /*
452 * The GDT is per-cpu and is in the percpu data area.
453 * That can be virtually mapped, so we need to do a
454 * page-walk to get the underlying MFN for the
455 * hypercall. The page can also be in the kernel's
456 * linear range, so we need to RO that mapping too.
457 */
458 ptep = lookup_address(va, &level);
459 BUG_ON(ptep == NULL);
460
461 pfn = pte_pfn(*ptep);
462 mfn = pfn_to_mfn(pfn);
463 virt = __va(PFN_PHYS(pfn));
464
465 make_lowmem_page_readonly((void *)va);
466 make_lowmem_page_readonly(virt);
467
468 if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
469 BUG();
470 }
471
472 /*
473 * load_gdt for early boot, when the gdt is only mapped once
474 */
xen_load_gdt_boot(const struct desc_ptr * dtr)475 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
476 {
477 unsigned long va = dtr->address;
478 unsigned int size = dtr->size + 1;
479 unsigned long pfn, mfn;
480 pte_t pte;
481
482 /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
483 BUG_ON(size > PAGE_SIZE);
484 BUG_ON(va & ~PAGE_MASK);
485
486 pfn = virt_to_pfn(va);
487 mfn = pfn_to_mfn(pfn);
488
489 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
490
491 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
492 BUG();
493
494 if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
495 BUG();
496 }
497
desc_equal(const struct desc_struct * d1,const struct desc_struct * d2)498 static inline bool desc_equal(const struct desc_struct *d1,
499 const struct desc_struct *d2)
500 {
501 return !memcmp(d1, d2, sizeof(*d1));
502 }
503
load_TLS_descriptor(struct thread_struct * t,unsigned int cpu,unsigned int i)504 static void load_TLS_descriptor(struct thread_struct *t,
505 unsigned int cpu, unsigned int i)
506 {
507 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
508 struct desc_struct *gdt;
509 xmaddr_t maddr;
510 struct multicall_space mc;
511
512 if (desc_equal(shadow, &t->tls_array[i]))
513 return;
514
515 *shadow = t->tls_array[i];
516
517 gdt = get_cpu_gdt_rw(cpu);
518 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
519 mc = __xen_mc_entry(0);
520
521 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
522 }
523
xen_load_tls(struct thread_struct * t,unsigned int cpu)524 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
525 {
526 /*
527 * In lazy mode we need to zero %fs, otherwise we may get an
528 * exception between the new %fs descriptor being loaded and
529 * %fs being effectively cleared at __switch_to().
530 */
531 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
532 loadsegment(fs, 0);
533
534 xen_mc_batch();
535
536 load_TLS_descriptor(t, cpu, 0);
537 load_TLS_descriptor(t, cpu, 1);
538 load_TLS_descriptor(t, cpu, 2);
539
540 xen_mc_issue(PARAVIRT_LAZY_CPU);
541 }
542
xen_load_gs_index(unsigned int idx)543 static void xen_load_gs_index(unsigned int idx)
544 {
545 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
546 BUG();
547 }
548
xen_write_ldt_entry(struct desc_struct * dt,int entrynum,const void * ptr)549 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
550 const void *ptr)
551 {
552 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
553 u64 entry = *(u64 *)ptr;
554
555 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
556
557 preempt_disable();
558
559 xen_mc_flush();
560 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
561 BUG();
562
563 preempt_enable();
564 }
565
566 void noist_exc_debug(struct pt_regs *regs);
567
DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)568 DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)
569 {
570 /* On Xen PV, NMI doesn't use IST. The C part is the sane as native. */
571 exc_nmi(regs);
572 }
573
DEFINE_IDTENTRY_RAW(xenpv_exc_debug)574 DEFINE_IDTENTRY_RAW(xenpv_exc_debug)
575 {
576 /*
577 * There's no IST on Xen PV, but we still need to dispatch
578 * to the correct handler.
579 */
580 if (user_mode(regs))
581 noist_exc_debug(regs);
582 else
583 exc_debug(regs);
584 }
585
DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap)586 DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap)
587 {
588 /* This should never happen and there is no way to handle it. */
589 instrumentation_begin();
590 pr_err("Unknown trap in Xen PV mode.");
591 BUG();
592 instrumentation_end();
593 }
594
595 struct trap_array_entry {
596 void (*orig)(void);
597 void (*xen)(void);
598 bool ist_okay;
599 };
600
601 #define TRAP_ENTRY(func, ist_ok) { \
602 .orig = asm_##func, \
603 .xen = xen_asm_##func, \
604 .ist_okay = ist_ok }
605
606 #define TRAP_ENTRY_REDIR(func, ist_ok) { \
607 .orig = asm_##func, \
608 .xen = xen_asm_xenpv_##func, \
609 .ist_okay = ist_ok }
610
611 static struct trap_array_entry trap_array[] = {
612 TRAP_ENTRY_REDIR(exc_debug, true ),
613 TRAP_ENTRY(exc_double_fault, true ),
614 #ifdef CONFIG_X86_MCE
615 TRAP_ENTRY(exc_machine_check, true ),
616 #endif
617 TRAP_ENTRY_REDIR(exc_nmi, true ),
618 TRAP_ENTRY(exc_int3, false ),
619 TRAP_ENTRY(exc_overflow, false ),
620 #ifdef CONFIG_IA32_EMULATION
621 { entry_INT80_compat, xen_entry_INT80_compat, false },
622 #endif
623 TRAP_ENTRY(exc_page_fault, false ),
624 TRAP_ENTRY(exc_divide_error, false ),
625 TRAP_ENTRY(exc_bounds, false ),
626 TRAP_ENTRY(exc_invalid_op, false ),
627 TRAP_ENTRY(exc_device_not_available, false ),
628 TRAP_ENTRY(exc_coproc_segment_overrun, false ),
629 TRAP_ENTRY(exc_invalid_tss, false ),
630 TRAP_ENTRY(exc_segment_not_present, false ),
631 TRAP_ENTRY(exc_stack_segment, false ),
632 TRAP_ENTRY(exc_general_protection, false ),
633 TRAP_ENTRY(exc_spurious_interrupt_bug, false ),
634 TRAP_ENTRY(exc_coprocessor_error, false ),
635 TRAP_ENTRY(exc_alignment_check, false ),
636 TRAP_ENTRY(exc_simd_coprocessor_error, false ),
637 };
638
get_trap_addr(void ** addr,unsigned int ist)639 static bool __ref get_trap_addr(void **addr, unsigned int ist)
640 {
641 unsigned int nr;
642 bool ist_okay = false;
643 bool found = false;
644
645 /*
646 * Replace trap handler addresses by Xen specific ones.
647 * Check for known traps using IST and whitelist them.
648 * The debugger ones are the only ones we care about.
649 * Xen will handle faults like double_fault, so we should never see
650 * them. Warn if there's an unexpected IST-using fault handler.
651 */
652 for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
653 struct trap_array_entry *entry = trap_array + nr;
654
655 if (*addr == entry->orig) {
656 *addr = entry->xen;
657 ist_okay = entry->ist_okay;
658 found = true;
659 break;
660 }
661 }
662
663 if (nr == ARRAY_SIZE(trap_array) &&
664 *addr >= (void *)early_idt_handler_array[0] &&
665 *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
666 nr = (*addr - (void *)early_idt_handler_array[0]) /
667 EARLY_IDT_HANDLER_SIZE;
668 *addr = (void *)xen_early_idt_handler_array[nr];
669 found = true;
670 }
671
672 if (!found)
673 *addr = (void *)xen_asm_exc_xen_unknown_trap;
674
675 if (WARN_ON(found && ist != 0 && !ist_okay))
676 return false;
677
678 return true;
679 }
680
cvt_gate_to_trap(int vector,const gate_desc * val,struct trap_info * info)681 static int cvt_gate_to_trap(int vector, const gate_desc *val,
682 struct trap_info *info)
683 {
684 unsigned long addr;
685
686 if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
687 return 0;
688
689 info->vector = vector;
690
691 addr = gate_offset(val);
692 if (!get_trap_addr((void **)&addr, val->bits.ist))
693 return 0;
694 info->address = addr;
695
696 info->cs = gate_segment(val);
697 info->flags = val->bits.dpl;
698 /* interrupt gates clear IF */
699 if (val->bits.type == GATE_INTERRUPT)
700 info->flags |= 1 << 2;
701
702 return 1;
703 }
704
705 /* Locations of each CPU's IDT */
706 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
707
708 /* Set an IDT entry. If the entry is part of the current IDT, then
709 also update Xen. */
xen_write_idt_entry(gate_desc * dt,int entrynum,const gate_desc * g)710 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
711 {
712 unsigned long p = (unsigned long)&dt[entrynum];
713 unsigned long start, end;
714
715 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
716
717 preempt_disable();
718
719 start = __this_cpu_read(idt_desc.address);
720 end = start + __this_cpu_read(idt_desc.size) + 1;
721
722 xen_mc_flush();
723
724 native_write_idt_entry(dt, entrynum, g);
725
726 if (p >= start && (p + 8) <= end) {
727 struct trap_info info[2];
728
729 info[1].address = 0;
730
731 if (cvt_gate_to_trap(entrynum, g, &info[0]))
732 if (HYPERVISOR_set_trap_table(info))
733 BUG();
734 }
735
736 preempt_enable();
737 }
738
xen_convert_trap_info(const struct desc_ptr * desc,struct trap_info * traps,bool full)739 static unsigned xen_convert_trap_info(const struct desc_ptr *desc,
740 struct trap_info *traps, bool full)
741 {
742 unsigned in, out, count;
743
744 count = (desc->size+1) / sizeof(gate_desc);
745 BUG_ON(count > 256);
746
747 for (in = out = 0; in < count; in++) {
748 gate_desc *entry = (gate_desc *)(desc->address) + in;
749
750 if (cvt_gate_to_trap(in, entry, &traps[out]) || full)
751 out++;
752 }
753
754 return out;
755 }
756
xen_copy_trap_info(struct trap_info * traps)757 void xen_copy_trap_info(struct trap_info *traps)
758 {
759 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
760
761 xen_convert_trap_info(desc, traps, true);
762 }
763
764 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
765 hold a spinlock to protect the static traps[] array (static because
766 it avoids allocation, and saves stack space). */
xen_load_idt(const struct desc_ptr * desc)767 static void xen_load_idt(const struct desc_ptr *desc)
768 {
769 static DEFINE_SPINLOCK(lock);
770 static struct trap_info traps[257];
771 unsigned out;
772
773 trace_xen_cpu_load_idt(desc);
774
775 spin_lock(&lock);
776
777 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
778
779 out = xen_convert_trap_info(desc, traps, false);
780 memset(&traps[out], 0, sizeof(traps[0]));
781
782 xen_mc_flush();
783 if (HYPERVISOR_set_trap_table(traps))
784 BUG();
785
786 spin_unlock(&lock);
787 }
788
789 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
790 they're handled differently. */
xen_write_gdt_entry(struct desc_struct * dt,int entry,const void * desc,int type)791 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
792 const void *desc, int type)
793 {
794 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
795
796 preempt_disable();
797
798 switch (type) {
799 case DESC_LDT:
800 case DESC_TSS:
801 /* ignore */
802 break;
803
804 default: {
805 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
806
807 xen_mc_flush();
808 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
809 BUG();
810 }
811
812 }
813
814 preempt_enable();
815 }
816
817 /*
818 * Version of write_gdt_entry for use at early boot-time needed to
819 * update an entry as simply as possible.
820 */
xen_write_gdt_entry_boot(struct desc_struct * dt,int entry,const void * desc,int type)821 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
822 const void *desc, int type)
823 {
824 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
825
826 switch (type) {
827 case DESC_LDT:
828 case DESC_TSS:
829 /* ignore */
830 break;
831
832 default: {
833 xmaddr_t maddr = virt_to_machine(&dt[entry]);
834
835 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
836 dt[entry] = *(struct desc_struct *)desc;
837 }
838
839 }
840 }
841
xen_load_sp0(unsigned long sp0)842 static void xen_load_sp0(unsigned long sp0)
843 {
844 struct multicall_space mcs;
845
846 mcs = xen_mc_entry(0);
847 MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
848 xen_mc_issue(PARAVIRT_LAZY_CPU);
849 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
850 }
851
852 #ifdef CONFIG_X86_IOPL_IOPERM
xen_invalidate_io_bitmap(void)853 static void xen_invalidate_io_bitmap(void)
854 {
855 struct physdev_set_iobitmap iobitmap = {
856 .bitmap = NULL,
857 .nr_ports = 0,
858 };
859
860 native_tss_invalidate_io_bitmap();
861 HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
862 }
863
xen_update_io_bitmap(void)864 static void xen_update_io_bitmap(void)
865 {
866 struct physdev_set_iobitmap iobitmap;
867 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
868
869 native_tss_update_io_bitmap();
870
871 iobitmap.bitmap = (uint8_t *)(&tss->x86_tss) +
872 tss->x86_tss.io_bitmap_base;
873 if (tss->x86_tss.io_bitmap_base == IO_BITMAP_OFFSET_INVALID)
874 iobitmap.nr_ports = 0;
875 else
876 iobitmap.nr_ports = IO_BITMAP_BITS;
877
878 HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
879 }
880 #endif
881
xen_io_delay(void)882 static void xen_io_delay(void)
883 {
884 }
885
886 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
887
xen_read_cr0(void)888 static unsigned long xen_read_cr0(void)
889 {
890 unsigned long cr0 = this_cpu_read(xen_cr0_value);
891
892 if (unlikely(cr0 == 0)) {
893 cr0 = native_read_cr0();
894 this_cpu_write(xen_cr0_value, cr0);
895 }
896
897 return cr0;
898 }
899
xen_write_cr0(unsigned long cr0)900 static void xen_write_cr0(unsigned long cr0)
901 {
902 struct multicall_space mcs;
903
904 this_cpu_write(xen_cr0_value, cr0);
905
906 /* Only pay attention to cr0.TS; everything else is
907 ignored. */
908 mcs = xen_mc_entry(0);
909
910 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
911
912 xen_mc_issue(PARAVIRT_LAZY_CPU);
913 }
914
xen_write_cr4(unsigned long cr4)915 static void xen_write_cr4(unsigned long cr4)
916 {
917 cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
918
919 native_write_cr4(cr4);
920 }
921
xen_read_msr_safe(unsigned int msr,int * err)922 static u64 xen_read_msr_safe(unsigned int msr, int *err)
923 {
924 u64 val;
925
926 if (pmu_msr_read(msr, &val, err))
927 return val;
928
929 val = native_read_msr_safe(msr, err);
930 switch (msr) {
931 case MSR_IA32_APICBASE:
932 val &= ~X2APIC_ENABLE;
933 break;
934 }
935 return val;
936 }
937
xen_write_msr_safe(unsigned int msr,unsigned low,unsigned high)938 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
939 {
940 int ret;
941 unsigned int which;
942 u64 base;
943
944 ret = 0;
945
946 switch (msr) {
947 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
948 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
949 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
950
951 set:
952 base = ((u64)high << 32) | low;
953 if (HYPERVISOR_set_segment_base(which, base) != 0)
954 ret = -EIO;
955 break;
956
957 case MSR_STAR:
958 case MSR_CSTAR:
959 case MSR_LSTAR:
960 case MSR_SYSCALL_MASK:
961 case MSR_IA32_SYSENTER_CS:
962 case MSR_IA32_SYSENTER_ESP:
963 case MSR_IA32_SYSENTER_EIP:
964 /* Fast syscall setup is all done in hypercalls, so
965 these are all ignored. Stub them out here to stop
966 Xen console noise. */
967 break;
968
969 default:
970 if (!pmu_msr_write(msr, low, high, &ret))
971 ret = native_write_msr_safe(msr, low, high);
972 }
973
974 return ret;
975 }
976
xen_read_msr(unsigned int msr)977 static u64 xen_read_msr(unsigned int msr)
978 {
979 /*
980 * This will silently swallow a #GP from RDMSR. It may be worth
981 * changing that.
982 */
983 int err;
984
985 return xen_read_msr_safe(msr, &err);
986 }
987
xen_write_msr(unsigned int msr,unsigned low,unsigned high)988 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
989 {
990 /*
991 * This will silently swallow a #GP from WRMSR. It may be worth
992 * changing that.
993 */
994 xen_write_msr_safe(msr, low, high);
995 }
996
997 /* This is called once we have the cpu_possible_mask */
xen_setup_vcpu_info_placement(void)998 void __init xen_setup_vcpu_info_placement(void)
999 {
1000 int cpu;
1001
1002 for_each_possible_cpu(cpu) {
1003 /* Set up direct vCPU id mapping for PV guests. */
1004 per_cpu(xen_vcpu_id, cpu) = cpu;
1005
1006 /*
1007 * xen_vcpu_setup(cpu) can fail -- in which case it
1008 * falls back to the shared_info version for cpus
1009 * where xen_vcpu_nr(cpu) < MAX_VIRT_CPUS.
1010 *
1011 * xen_cpu_up_prepare_pv() handles the rest by failing
1012 * them in hotplug.
1013 */
1014 (void) xen_vcpu_setup(cpu);
1015 }
1016
1017 /*
1018 * xen_vcpu_setup managed to place the vcpu_info within the
1019 * percpu area for all cpus, so make use of it.
1020 */
1021 if (xen_have_vcpu_info_placement) {
1022 pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1023 pv_ops.irq.restore_fl =
1024 __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1025 pv_ops.irq.irq_disable =
1026 __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1027 pv_ops.irq.irq_enable =
1028 __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1029 pv_ops.mmu.read_cr2 =
1030 __PV_IS_CALLEE_SAVE(xen_read_cr2_direct);
1031 }
1032 }
1033
1034 static const struct pv_info xen_info __initconst = {
1035 .extra_user_64bit_cs = FLAT_USER_CS64,
1036 .name = "Xen",
1037 };
1038
1039 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1040 .cpuid = xen_cpuid,
1041
1042 .set_debugreg = xen_set_debugreg,
1043 .get_debugreg = xen_get_debugreg,
1044
1045 .read_cr0 = xen_read_cr0,
1046 .write_cr0 = xen_write_cr0,
1047
1048 .write_cr4 = xen_write_cr4,
1049
1050 .wbinvd = native_wbinvd,
1051
1052 .read_msr = xen_read_msr,
1053 .write_msr = xen_write_msr,
1054
1055 .read_msr_safe = xen_read_msr_safe,
1056 .write_msr_safe = xen_write_msr_safe,
1057
1058 .read_pmc = xen_read_pmc,
1059
1060 .iret = xen_iret,
1061 .usergs_sysret64 = xen_sysret64,
1062
1063 .load_tr_desc = paravirt_nop,
1064 .set_ldt = xen_set_ldt,
1065 .load_gdt = xen_load_gdt,
1066 .load_idt = xen_load_idt,
1067 .load_tls = xen_load_tls,
1068 .load_gs_index = xen_load_gs_index,
1069
1070 .alloc_ldt = xen_alloc_ldt,
1071 .free_ldt = xen_free_ldt,
1072
1073 .store_tr = xen_store_tr,
1074
1075 .write_ldt_entry = xen_write_ldt_entry,
1076 .write_gdt_entry = xen_write_gdt_entry,
1077 .write_idt_entry = xen_write_idt_entry,
1078 .load_sp0 = xen_load_sp0,
1079
1080 #ifdef CONFIG_X86_IOPL_IOPERM
1081 .invalidate_io_bitmap = xen_invalidate_io_bitmap,
1082 .update_io_bitmap = xen_update_io_bitmap,
1083 #endif
1084 .io_delay = xen_io_delay,
1085
1086 .start_context_switch = paravirt_start_context_switch,
1087 .end_context_switch = xen_end_context_switch,
1088 };
1089
xen_restart(char * msg)1090 static void xen_restart(char *msg)
1091 {
1092 xen_reboot(SHUTDOWN_reboot);
1093 }
1094
xen_machine_halt(void)1095 static void xen_machine_halt(void)
1096 {
1097 xen_reboot(SHUTDOWN_poweroff);
1098 }
1099
xen_machine_power_off(void)1100 static void xen_machine_power_off(void)
1101 {
1102 if (pm_power_off)
1103 pm_power_off();
1104 xen_reboot(SHUTDOWN_poweroff);
1105 }
1106
xen_crash_shutdown(struct pt_regs * regs)1107 static void xen_crash_shutdown(struct pt_regs *regs)
1108 {
1109 xen_reboot(SHUTDOWN_crash);
1110 }
1111
1112 static const struct machine_ops xen_machine_ops __initconst = {
1113 .restart = xen_restart,
1114 .halt = xen_machine_halt,
1115 .power_off = xen_machine_power_off,
1116 .shutdown = xen_machine_halt,
1117 .crash_shutdown = xen_crash_shutdown,
1118 .emergency_restart = xen_emergency_restart,
1119 };
1120
xen_get_nmi_reason(void)1121 static unsigned char xen_get_nmi_reason(void)
1122 {
1123 unsigned char reason = 0;
1124
1125 /* Construct a value which looks like it came from port 0x61. */
1126 if (test_bit(_XEN_NMIREASON_io_error,
1127 &HYPERVISOR_shared_info->arch.nmi_reason))
1128 reason |= NMI_REASON_IOCHK;
1129 if (test_bit(_XEN_NMIREASON_pci_serr,
1130 &HYPERVISOR_shared_info->arch.nmi_reason))
1131 reason |= NMI_REASON_SERR;
1132
1133 return reason;
1134 }
1135
xen_boot_params_init_edd(void)1136 static void __init xen_boot_params_init_edd(void)
1137 {
1138 #if IS_ENABLED(CONFIG_EDD)
1139 struct xen_platform_op op;
1140 struct edd_info *edd_info;
1141 u32 *mbr_signature;
1142 unsigned nr;
1143 int ret;
1144
1145 edd_info = boot_params.eddbuf;
1146 mbr_signature = boot_params.edd_mbr_sig_buffer;
1147
1148 op.cmd = XENPF_firmware_info;
1149
1150 op.u.firmware_info.type = XEN_FW_DISK_INFO;
1151 for (nr = 0; nr < EDDMAXNR; nr++) {
1152 struct edd_info *info = edd_info + nr;
1153
1154 op.u.firmware_info.index = nr;
1155 info->params.length = sizeof(info->params);
1156 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1157 &info->params);
1158 ret = HYPERVISOR_platform_op(&op);
1159 if (ret)
1160 break;
1161
1162 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1163 C(device);
1164 C(version);
1165 C(interface_support);
1166 C(legacy_max_cylinder);
1167 C(legacy_max_head);
1168 C(legacy_sectors_per_track);
1169 #undef C
1170 }
1171 boot_params.eddbuf_entries = nr;
1172
1173 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1174 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1175 op.u.firmware_info.index = nr;
1176 ret = HYPERVISOR_platform_op(&op);
1177 if (ret)
1178 break;
1179 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1180 }
1181 boot_params.edd_mbr_sig_buf_entries = nr;
1182 #endif
1183 }
1184
1185 /*
1186 * Set up the GDT and segment registers for -fstack-protector. Until
1187 * we do this, we have to be careful not to call any stack-protected
1188 * function, which is most of the kernel.
1189 */
xen_setup_gdt(int cpu)1190 static void __init xen_setup_gdt(int cpu)
1191 {
1192 pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
1193 pv_ops.cpu.load_gdt = xen_load_gdt_boot;
1194
1195 setup_stack_canary_segment(cpu);
1196 switch_to_new_gdt(cpu);
1197
1198 pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
1199 pv_ops.cpu.load_gdt = xen_load_gdt;
1200 }
1201
xen_dom0_set_legacy_features(void)1202 static void __init xen_dom0_set_legacy_features(void)
1203 {
1204 x86_platform.legacy.rtc = 1;
1205 }
1206
xen_domu_set_legacy_features(void)1207 static void __init xen_domu_set_legacy_features(void)
1208 {
1209 x86_platform.legacy.rtc = 0;
1210 }
1211
1212 /* First C function to be called on Xen boot */
xen_start_kernel(void)1213 asmlinkage __visible void __init xen_start_kernel(void)
1214 {
1215 struct physdev_set_iopl set_iopl;
1216 unsigned long initrd_start = 0;
1217 int rc;
1218
1219 if (!xen_start_info)
1220 return;
1221
1222 xen_domain_type = XEN_PV_DOMAIN;
1223 xen_start_flags = xen_start_info->flags;
1224
1225 xen_setup_features();
1226
1227 /* Install Xen paravirt ops */
1228 pv_info = xen_info;
1229 pv_ops.init.patch = paravirt_patch_default;
1230 pv_ops.cpu = xen_cpu_ops;
1231 xen_init_irq_ops();
1232
1233 /*
1234 * Setup xen_vcpu early because it is needed for
1235 * local_irq_disable(), irqs_disabled(), e.g. in printk().
1236 *
1237 * Don't do the full vcpu_info placement stuff until we have
1238 * the cpu_possible_mask and a non-dummy shared_info.
1239 */
1240 xen_vcpu_info_reset(0);
1241
1242 x86_platform.get_nmi_reason = xen_get_nmi_reason;
1243
1244 x86_init.resources.memory_setup = xen_memory_setup;
1245 x86_init.irqs.intr_mode_select = x86_init_noop;
1246 x86_init.irqs.intr_mode_init = x86_init_noop;
1247 x86_init.oem.arch_setup = xen_arch_setup;
1248 x86_init.oem.banner = xen_banner;
1249 x86_init.hyper.init_platform = xen_pv_init_platform;
1250 x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
1251
1252 /*
1253 * Set up some pagetable state before starting to set any ptes.
1254 */
1255
1256 xen_setup_machphys_mapping();
1257 xen_init_mmu_ops();
1258
1259 /* Prevent unwanted bits from being set in PTEs. */
1260 __supported_pte_mask &= ~_PAGE_GLOBAL;
1261 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1262
1263 /*
1264 * Prevent page tables from being allocated in highmem, even
1265 * if CONFIG_HIGHPTE is enabled.
1266 */
1267 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1268
1269 /* Get mfn list */
1270 xen_build_dynamic_phys_to_machine();
1271
1272 /* Work out if we support NX */
1273 get_cpu_cap(&boot_cpu_data);
1274 x86_configure_nx();
1275
1276 /*
1277 * Set up kernel GDT and segment registers, mainly so that
1278 * -fstack-protector code can be executed.
1279 */
1280 xen_setup_gdt(0);
1281
1282 /* Determine virtual and physical address sizes */
1283 get_cpu_address_sizes(&boot_cpu_data);
1284
1285 /* Let's presume PV guests always boot on vCPU with id 0. */
1286 per_cpu(xen_vcpu_id, 0) = 0;
1287
1288 idt_setup_early_handler();
1289
1290 xen_init_capabilities();
1291
1292 #ifdef CONFIG_X86_LOCAL_APIC
1293 /*
1294 * set up the basic apic ops.
1295 */
1296 xen_init_apic();
1297 #endif
1298
1299 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1300 pv_ops.mmu.ptep_modify_prot_start =
1301 xen_ptep_modify_prot_start;
1302 pv_ops.mmu.ptep_modify_prot_commit =
1303 xen_ptep_modify_prot_commit;
1304 }
1305
1306 machine_ops = xen_machine_ops;
1307
1308 /*
1309 * The only reliable way to retain the initial address of the
1310 * percpu gdt_page is to remember it here, so we can go and
1311 * mark it RW later, when the initial percpu area is freed.
1312 */
1313 xen_initial_gdt = &per_cpu(gdt_page, 0);
1314
1315 xen_smp_init();
1316
1317 #ifdef CONFIG_ACPI_NUMA
1318 /*
1319 * The pages we from Xen are not related to machine pages, so
1320 * any NUMA information the kernel tries to get from ACPI will
1321 * be meaningless. Prevent it from trying.
1322 */
1323 disable_srat();
1324 #endif
1325 WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1326
1327 local_irq_disable();
1328 early_boot_irqs_disabled = true;
1329
1330 xen_raw_console_write("mapping kernel into physical memory\n");
1331 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1332 xen_start_info->nr_pages);
1333 xen_reserve_special_pages();
1334
1335 /*
1336 * We used to do this in xen_arch_setup, but that is too late
1337 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1338 * early_amd_init which pokes 0xcf8 port.
1339 */
1340 set_iopl.iopl = 1;
1341 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1342 if (rc != 0)
1343 xen_raw_printk("physdev_op failed %d\n", rc);
1344
1345
1346 if (xen_start_info->mod_start) {
1347 if (xen_start_info->flags & SIF_MOD_START_PFN)
1348 initrd_start = PFN_PHYS(xen_start_info->mod_start);
1349 else
1350 initrd_start = __pa(xen_start_info->mod_start);
1351 }
1352
1353 /* Poke various useful things into boot_params */
1354 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1355 boot_params.hdr.ramdisk_image = initrd_start;
1356 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1357 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1358 boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1359
1360 if (!xen_initial_domain()) {
1361 add_preferred_console("xenboot", 0, NULL);
1362 if (pci_xen)
1363 x86_init.pci.arch_init = pci_xen_init;
1364 x86_platform.set_legacy_features =
1365 xen_domu_set_legacy_features;
1366 } else {
1367 const struct dom0_vga_console_info *info =
1368 (void *)((char *)xen_start_info +
1369 xen_start_info->console.dom0.info_off);
1370 struct xen_platform_op op = {
1371 .cmd = XENPF_firmware_info,
1372 .interface_version = XENPF_INTERFACE_VERSION,
1373 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1374 };
1375
1376 x86_platform.set_legacy_features =
1377 xen_dom0_set_legacy_features;
1378 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1379 xen_start_info->console.domU.mfn = 0;
1380 xen_start_info->console.domU.evtchn = 0;
1381
1382 if (HYPERVISOR_platform_op(&op) == 0)
1383 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1384
1385 /* Make sure ACS will be enabled */
1386 pci_request_acs();
1387
1388 xen_acpi_sleep_register();
1389
1390 /* Avoid searching for BIOS MP tables */
1391 x86_init.mpparse.find_smp_config = x86_init_noop;
1392 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1393
1394 xen_boot_params_init_edd();
1395
1396 #ifdef CONFIG_ACPI
1397 /*
1398 * Disable selecting "Firmware First mode" for correctable
1399 * memory errors, as this is the duty of the hypervisor to
1400 * decide.
1401 */
1402 acpi_disable_cmcff = 1;
1403 #endif
1404 }
1405
1406 if (!boot_params.screen_info.orig_video_isVGA)
1407 add_preferred_console("tty", 0, NULL);
1408 add_preferred_console("hvc", 0, NULL);
1409 if (boot_params.screen_info.orig_video_isVGA)
1410 add_preferred_console("tty", 0, NULL);
1411
1412 #ifdef CONFIG_PCI
1413 /* PCI BIOS service won't work from a PV guest. */
1414 pci_probe &= ~PCI_PROBE_BIOS;
1415 #endif
1416 xen_raw_console_write("about to get started...\n");
1417
1418 /* We need this for printk timestamps */
1419 xen_setup_runstate_info(0);
1420
1421 xen_efi_init(&boot_params);
1422
1423 /* Start the world */
1424 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1425 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1426 }
1427
xen_cpu_up_prepare_pv(unsigned int cpu)1428 static int xen_cpu_up_prepare_pv(unsigned int cpu)
1429 {
1430 int rc;
1431
1432 if (per_cpu(xen_vcpu, cpu) == NULL)
1433 return -ENODEV;
1434
1435 xen_setup_timer(cpu);
1436
1437 rc = xen_smp_intr_init(cpu);
1438 if (rc) {
1439 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1440 cpu, rc);
1441 return rc;
1442 }
1443
1444 rc = xen_smp_intr_init_pv(cpu);
1445 if (rc) {
1446 WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1447 cpu, rc);
1448 return rc;
1449 }
1450
1451 return 0;
1452 }
1453
xen_cpu_dead_pv(unsigned int cpu)1454 static int xen_cpu_dead_pv(unsigned int cpu)
1455 {
1456 xen_smp_intr_free(cpu);
1457 xen_smp_intr_free_pv(cpu);
1458
1459 xen_teardown_timer(cpu);
1460
1461 return 0;
1462 }
1463
xen_platform_pv(void)1464 static uint32_t __init xen_platform_pv(void)
1465 {
1466 if (xen_pv_domain())
1467 return xen_cpuid_base();
1468
1469 return 0;
1470 }
1471
1472 const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1473 .name = "Xen PV",
1474 .detect = xen_platform_pv,
1475 .type = X86_HYPER_XEN_PV,
1476 .runtime.pin_vcpu = xen_pin_vcpu,
1477 .ignore_nopv = true,
1478 };
1479