• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Bluetooth Software UART Qualcomm protocol
4  *
5  *  HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
6  *  protocol extension to H4.
7  *
8  *  Copyright (C) 2007 Texas Instruments, Inc.
9  *  Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
10  *
11  *  Acknowledgements:
12  *  This file is based on hci_ll.c, which was...
13  *  Written by Ohad Ben-Cohen <ohad@bencohen.org>
14  *  which was in turn based on hci_h4.c, which was written
15  *  by Maxim Krasnyansky and Marcel Holtmann.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/debugfs.h>
22 #include <linux/delay.h>
23 #include <linux/devcoredump.h>
24 #include <linux/device.h>
25 #include <linux/gpio/consumer.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/acpi.h>
30 #include <linux/platform_device.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/serdev.h>
33 #include <linux/mutex.h>
34 #include <asm/unaligned.h>
35 
36 #include <net/bluetooth/bluetooth.h>
37 #include <net/bluetooth/hci_core.h>
38 
39 #include "hci_uart.h"
40 #include "btqca.h"
41 
42 /* HCI_IBS protocol messages */
43 #define HCI_IBS_SLEEP_IND	0xFE
44 #define HCI_IBS_WAKE_IND	0xFD
45 #define HCI_IBS_WAKE_ACK	0xFC
46 #define HCI_MAX_IBS_SIZE	10
47 
48 #define IBS_WAKE_RETRANS_TIMEOUT_MS	100
49 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS	200
50 #define IBS_HOST_TX_IDLE_TIMEOUT_MS	2000
51 #define CMD_TRANS_TIMEOUT_MS		100
52 #define MEMDUMP_TIMEOUT_MS		8000
53 
54 /* susclk rate */
55 #define SUSCLK_RATE_32KHZ	32768
56 
57 /* Controller debug log header */
58 #define QCA_DEBUG_HANDLE	0x2EDC
59 
60 /* max retry count when init fails */
61 #define MAX_INIT_RETRIES 3
62 
63 /* Controller dump header */
64 #define QCA_SSR_DUMP_HANDLE		0x0108
65 #define QCA_DUMP_PACKET_SIZE		255
66 #define QCA_LAST_SEQUENCE_NUM		0xFFFF
67 #define QCA_CRASHBYTE_PACKET_LEN	1096
68 #define QCA_MEMDUMP_BYTE		0xFB
69 
70 enum qca_flags {
71 	QCA_IBS_ENABLED,
72 	QCA_DROP_VENDOR_EVENT,
73 	QCA_SUSPENDING,
74 	QCA_MEMDUMP_COLLECTION,
75 	QCA_HW_ERROR_EVENT,
76 	QCA_SSR_TRIGGERED
77 };
78 
79 enum qca_capabilities {
80 	QCA_CAP_WIDEBAND_SPEECH = BIT(0),
81 	QCA_CAP_VALID_LE_STATES = BIT(1),
82 };
83 
84 /* HCI_IBS transmit side sleep protocol states */
85 enum tx_ibs_states {
86 	HCI_IBS_TX_ASLEEP,
87 	HCI_IBS_TX_WAKING,
88 	HCI_IBS_TX_AWAKE,
89 };
90 
91 /* HCI_IBS receive side sleep protocol states */
92 enum rx_states {
93 	HCI_IBS_RX_ASLEEP,
94 	HCI_IBS_RX_AWAKE,
95 };
96 
97 /* HCI_IBS transmit and receive side clock state vote */
98 enum hci_ibs_clock_state_vote {
99 	HCI_IBS_VOTE_STATS_UPDATE,
100 	HCI_IBS_TX_VOTE_CLOCK_ON,
101 	HCI_IBS_TX_VOTE_CLOCK_OFF,
102 	HCI_IBS_RX_VOTE_CLOCK_ON,
103 	HCI_IBS_RX_VOTE_CLOCK_OFF,
104 };
105 
106 /* Controller memory dump states */
107 enum qca_memdump_states {
108 	QCA_MEMDUMP_IDLE,
109 	QCA_MEMDUMP_COLLECTING,
110 	QCA_MEMDUMP_COLLECTED,
111 	QCA_MEMDUMP_TIMEOUT,
112 };
113 
114 struct qca_memdump_data {
115 	char *memdump_buf_head;
116 	char *memdump_buf_tail;
117 	u32 current_seq_no;
118 	u32 received_dump;
119 	u32 ram_dump_size;
120 };
121 
122 struct qca_memdump_event_hdr {
123 	__u8    evt;
124 	__u8    plen;
125 	__u16   opcode;
126 	__u16   seq_no;
127 	__u8    reserved;
128 } __packed;
129 
130 
131 struct qca_dump_size {
132 	u32 dump_size;
133 } __packed;
134 
135 struct qca_data {
136 	struct hci_uart *hu;
137 	struct sk_buff *rx_skb;
138 	struct sk_buff_head txq;
139 	struct sk_buff_head tx_wait_q;	/* HCI_IBS wait queue	*/
140 	struct sk_buff_head rx_memdump_q;	/* Memdump wait queue	*/
141 	spinlock_t hci_ibs_lock;	/* HCI_IBS state lock	*/
142 	u8 tx_ibs_state;	/* HCI_IBS transmit side power state*/
143 	u8 rx_ibs_state;	/* HCI_IBS receive side power state */
144 	bool tx_vote;		/* Clock must be on for TX */
145 	bool rx_vote;		/* Clock must be on for RX */
146 	struct timer_list tx_idle_timer;
147 	u32 tx_idle_delay;
148 	struct timer_list wake_retrans_timer;
149 	u32 wake_retrans;
150 	struct workqueue_struct *workqueue;
151 	struct work_struct ws_awake_rx;
152 	struct work_struct ws_awake_device;
153 	struct work_struct ws_rx_vote_off;
154 	struct work_struct ws_tx_vote_off;
155 	struct work_struct ctrl_memdump_evt;
156 	struct delayed_work ctrl_memdump_timeout;
157 	struct qca_memdump_data *qca_memdump;
158 	unsigned long flags;
159 	struct completion drop_ev_comp;
160 	wait_queue_head_t suspend_wait_q;
161 	enum qca_memdump_states memdump_state;
162 	struct mutex hci_memdump_lock;
163 
164 	/* For debugging purpose */
165 	u64 ibs_sent_wacks;
166 	u64 ibs_sent_slps;
167 	u64 ibs_sent_wakes;
168 	u64 ibs_recv_wacks;
169 	u64 ibs_recv_slps;
170 	u64 ibs_recv_wakes;
171 	u64 vote_last_jif;
172 	u32 vote_on_ms;
173 	u32 vote_off_ms;
174 	u64 tx_votes_on;
175 	u64 rx_votes_on;
176 	u64 tx_votes_off;
177 	u64 rx_votes_off;
178 	u64 votes_on;
179 	u64 votes_off;
180 };
181 
182 enum qca_speed_type {
183 	QCA_INIT_SPEED = 1,
184 	QCA_OPER_SPEED
185 };
186 
187 /*
188  * Voltage regulator information required for configuring the
189  * QCA Bluetooth chipset
190  */
191 struct qca_vreg {
192 	const char *name;
193 	unsigned int load_uA;
194 };
195 
196 struct qca_device_data {
197 	enum qca_btsoc_type soc_type;
198 	struct qca_vreg *vregs;
199 	size_t num_vregs;
200 	uint32_t capabilities;
201 };
202 
203 /*
204  * Platform data for the QCA Bluetooth power driver.
205  */
206 struct qca_power {
207 	struct device *dev;
208 	struct regulator_bulk_data *vreg_bulk;
209 	int num_vregs;
210 	bool vregs_on;
211 };
212 
213 struct qca_serdev {
214 	struct hci_uart	 serdev_hu;
215 	struct gpio_desc *bt_en;
216 	struct clk	 *susclk;
217 	enum qca_btsoc_type btsoc_type;
218 	struct qca_power *bt_power;
219 	u32 init_speed;
220 	u32 oper_speed;
221 	const char *firmware_name;
222 };
223 
224 static int qca_regulator_enable(struct qca_serdev *qcadev);
225 static void qca_regulator_disable(struct qca_serdev *qcadev);
226 static void qca_power_shutdown(struct hci_uart *hu);
227 static int qca_power_off(struct hci_dev *hdev);
228 static void qca_controller_memdump(struct work_struct *work);
229 
qca_soc_type(struct hci_uart * hu)230 static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu)
231 {
232 	enum qca_btsoc_type soc_type;
233 
234 	if (hu->serdev) {
235 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
236 
237 		soc_type = qsd->btsoc_type;
238 	} else {
239 		soc_type = QCA_ROME;
240 	}
241 
242 	return soc_type;
243 }
244 
qca_get_firmware_name(struct hci_uart * hu)245 static const char *qca_get_firmware_name(struct hci_uart *hu)
246 {
247 	if (hu->serdev) {
248 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
249 
250 		return qsd->firmware_name;
251 	} else {
252 		return NULL;
253 	}
254 }
255 
__serial_clock_on(struct tty_struct * tty)256 static void __serial_clock_on(struct tty_struct *tty)
257 {
258 	/* TODO: Some chipset requires to enable UART clock on client
259 	 * side to save power consumption or manual work is required.
260 	 * Please put your code to control UART clock here if needed
261 	 */
262 }
263 
__serial_clock_off(struct tty_struct * tty)264 static void __serial_clock_off(struct tty_struct *tty)
265 {
266 	/* TODO: Some chipset requires to disable UART clock on client
267 	 * side to save power consumption or manual work is required.
268 	 * Please put your code to control UART clock off here if needed
269 	 */
270 }
271 
272 /* serial_clock_vote needs to be called with the ibs lock held */
serial_clock_vote(unsigned long vote,struct hci_uart * hu)273 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
274 {
275 	struct qca_data *qca = hu->priv;
276 	unsigned int diff;
277 
278 	bool old_vote = (qca->tx_vote | qca->rx_vote);
279 	bool new_vote;
280 
281 	switch (vote) {
282 	case HCI_IBS_VOTE_STATS_UPDATE:
283 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
284 
285 		if (old_vote)
286 			qca->vote_off_ms += diff;
287 		else
288 			qca->vote_on_ms += diff;
289 		return;
290 
291 	case HCI_IBS_TX_VOTE_CLOCK_ON:
292 		qca->tx_vote = true;
293 		qca->tx_votes_on++;
294 		break;
295 
296 	case HCI_IBS_RX_VOTE_CLOCK_ON:
297 		qca->rx_vote = true;
298 		qca->rx_votes_on++;
299 		break;
300 
301 	case HCI_IBS_TX_VOTE_CLOCK_OFF:
302 		qca->tx_vote = false;
303 		qca->tx_votes_off++;
304 		break;
305 
306 	case HCI_IBS_RX_VOTE_CLOCK_OFF:
307 		qca->rx_vote = false;
308 		qca->rx_votes_off++;
309 		break;
310 
311 	default:
312 		BT_ERR("Voting irregularity");
313 		return;
314 	}
315 
316 	new_vote = qca->rx_vote | qca->tx_vote;
317 
318 	if (new_vote != old_vote) {
319 		if (new_vote)
320 			__serial_clock_on(hu->tty);
321 		else
322 			__serial_clock_off(hu->tty);
323 
324 		BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false",
325 		       vote ? "true" : "false");
326 
327 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
328 
329 		if (new_vote) {
330 			qca->votes_on++;
331 			qca->vote_off_ms += diff;
332 		} else {
333 			qca->votes_off++;
334 			qca->vote_on_ms += diff;
335 		}
336 		qca->vote_last_jif = jiffies;
337 	}
338 }
339 
340 /* Builds and sends an HCI_IBS command packet.
341  * These are very simple packets with only 1 cmd byte.
342  */
send_hci_ibs_cmd(u8 cmd,struct hci_uart * hu)343 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
344 {
345 	int err = 0;
346 	struct sk_buff *skb = NULL;
347 	struct qca_data *qca = hu->priv;
348 
349 	BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
350 
351 	skb = bt_skb_alloc(1, GFP_ATOMIC);
352 	if (!skb) {
353 		BT_ERR("Failed to allocate memory for HCI_IBS packet");
354 		return -ENOMEM;
355 	}
356 
357 	/* Assign HCI_IBS type */
358 	skb_put_u8(skb, cmd);
359 
360 	skb_queue_tail(&qca->txq, skb);
361 
362 	return err;
363 }
364 
qca_wq_awake_device(struct work_struct * work)365 static void qca_wq_awake_device(struct work_struct *work)
366 {
367 	struct qca_data *qca = container_of(work, struct qca_data,
368 					    ws_awake_device);
369 	struct hci_uart *hu = qca->hu;
370 	unsigned long retrans_delay;
371 	unsigned long flags;
372 
373 	BT_DBG("hu %p wq awake device", hu);
374 
375 	/* Vote for serial clock */
376 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
377 
378 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
379 
380 	/* Send wake indication to device */
381 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
382 		BT_ERR("Failed to send WAKE to device");
383 
384 	qca->ibs_sent_wakes++;
385 
386 	/* Start retransmit timer */
387 	retrans_delay = msecs_to_jiffies(qca->wake_retrans);
388 	mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
389 
390 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
391 
392 	/* Actually send the packets */
393 	hci_uart_tx_wakeup(hu);
394 }
395 
qca_wq_awake_rx(struct work_struct * work)396 static void qca_wq_awake_rx(struct work_struct *work)
397 {
398 	struct qca_data *qca = container_of(work, struct qca_data,
399 					    ws_awake_rx);
400 	struct hci_uart *hu = qca->hu;
401 	unsigned long flags;
402 
403 	BT_DBG("hu %p wq awake rx", hu);
404 
405 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
406 
407 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
408 	qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
409 
410 	/* Always acknowledge device wake up,
411 	 * sending IBS message doesn't count as TX ON.
412 	 */
413 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
414 		BT_ERR("Failed to acknowledge device wake up");
415 
416 	qca->ibs_sent_wacks++;
417 
418 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
419 
420 	/* Actually send the packets */
421 	hci_uart_tx_wakeup(hu);
422 }
423 
qca_wq_serial_rx_clock_vote_off(struct work_struct * work)424 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
425 {
426 	struct qca_data *qca = container_of(work, struct qca_data,
427 					    ws_rx_vote_off);
428 	struct hci_uart *hu = qca->hu;
429 
430 	BT_DBG("hu %p rx clock vote off", hu);
431 
432 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
433 }
434 
qca_wq_serial_tx_clock_vote_off(struct work_struct * work)435 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
436 {
437 	struct qca_data *qca = container_of(work, struct qca_data,
438 					    ws_tx_vote_off);
439 	struct hci_uart *hu = qca->hu;
440 
441 	BT_DBG("hu %p tx clock vote off", hu);
442 
443 	/* Run HCI tx handling unlocked */
444 	hci_uart_tx_wakeup(hu);
445 
446 	/* Now that message queued to tty driver, vote for tty clocks off.
447 	 * It is up to the tty driver to pend the clocks off until tx done.
448 	 */
449 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
450 }
451 
hci_ibs_tx_idle_timeout(struct timer_list * t)452 static void hci_ibs_tx_idle_timeout(struct timer_list *t)
453 {
454 	struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
455 	struct hci_uart *hu = qca->hu;
456 	unsigned long flags;
457 
458 	BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
459 
460 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
461 				 flags, SINGLE_DEPTH_NESTING);
462 
463 	switch (qca->tx_ibs_state) {
464 	case HCI_IBS_TX_AWAKE:
465 		/* TX_IDLE, go to SLEEP */
466 		if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
467 			BT_ERR("Failed to send SLEEP to device");
468 			break;
469 		}
470 		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
471 		qca->ibs_sent_slps++;
472 		queue_work(qca->workqueue, &qca->ws_tx_vote_off);
473 		break;
474 
475 	case HCI_IBS_TX_ASLEEP:
476 	case HCI_IBS_TX_WAKING:
477 	default:
478 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
479 		break;
480 	}
481 
482 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
483 }
484 
hci_ibs_wake_retrans_timeout(struct timer_list * t)485 static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
486 {
487 	struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
488 	struct hci_uart *hu = qca->hu;
489 	unsigned long flags, retrans_delay;
490 	bool retransmit = false;
491 
492 	BT_DBG("hu %p wake retransmit timeout in %d state",
493 		hu, qca->tx_ibs_state);
494 
495 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
496 				 flags, SINGLE_DEPTH_NESTING);
497 
498 	/* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */
499 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
500 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
501 		return;
502 	}
503 
504 	switch (qca->tx_ibs_state) {
505 	case HCI_IBS_TX_WAKING:
506 		/* No WAKE_ACK, retransmit WAKE */
507 		retransmit = true;
508 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
509 			BT_ERR("Failed to acknowledge device wake up");
510 			break;
511 		}
512 		qca->ibs_sent_wakes++;
513 		retrans_delay = msecs_to_jiffies(qca->wake_retrans);
514 		mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
515 		break;
516 
517 	case HCI_IBS_TX_ASLEEP:
518 	case HCI_IBS_TX_AWAKE:
519 	default:
520 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
521 		break;
522 	}
523 
524 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
525 
526 	if (retransmit)
527 		hci_uart_tx_wakeup(hu);
528 }
529 
530 
qca_controller_memdump_timeout(struct work_struct * work)531 static void qca_controller_memdump_timeout(struct work_struct *work)
532 {
533 	struct qca_data *qca = container_of(work, struct qca_data,
534 					ctrl_memdump_timeout.work);
535 	struct hci_uart *hu = qca->hu;
536 
537 	mutex_lock(&qca->hci_memdump_lock);
538 	if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
539 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
540 		if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
541 			/* Inject hw error event to reset the device
542 			 * and driver.
543 			 */
544 			hci_reset_dev(hu->hdev);
545 		}
546 	}
547 
548 	mutex_unlock(&qca->hci_memdump_lock);
549 }
550 
551 
552 /* Initialize protocol */
qca_open(struct hci_uart * hu)553 static int qca_open(struct hci_uart *hu)
554 {
555 	struct qca_serdev *qcadev;
556 	struct qca_data *qca;
557 
558 	BT_DBG("hu %p qca_open", hu);
559 
560 	if (!hci_uart_has_flow_control(hu))
561 		return -EOPNOTSUPP;
562 
563 	qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL);
564 	if (!qca)
565 		return -ENOMEM;
566 
567 	skb_queue_head_init(&qca->txq);
568 	skb_queue_head_init(&qca->tx_wait_q);
569 	skb_queue_head_init(&qca->rx_memdump_q);
570 	spin_lock_init(&qca->hci_ibs_lock);
571 	mutex_init(&qca->hci_memdump_lock);
572 	qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
573 	if (!qca->workqueue) {
574 		BT_ERR("QCA Workqueue not initialized properly");
575 		kfree(qca);
576 		return -ENOMEM;
577 	}
578 
579 	INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
580 	INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
581 	INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
582 	INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
583 	INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump);
584 	INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout,
585 			  qca_controller_memdump_timeout);
586 	init_waitqueue_head(&qca->suspend_wait_q);
587 
588 	qca->hu = hu;
589 	init_completion(&qca->drop_ev_comp);
590 
591 	/* Assume we start with both sides asleep -- extra wakes OK */
592 	qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
593 	qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
594 
595 	qca->vote_last_jif = jiffies;
596 
597 	hu->priv = qca;
598 
599 	if (hu->serdev) {
600 		qcadev = serdev_device_get_drvdata(hu->serdev);
601 
602 		if (qca_is_wcn399x(qcadev->btsoc_type))
603 			hu->init_speed = qcadev->init_speed;
604 
605 		if (qcadev->oper_speed)
606 			hu->oper_speed = qcadev->oper_speed;
607 	}
608 
609 	timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
610 	qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
611 
612 	timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
613 	qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS;
614 
615 	BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
616 	       qca->tx_idle_delay, qca->wake_retrans);
617 
618 	return 0;
619 }
620 
qca_debugfs_init(struct hci_dev * hdev)621 static void qca_debugfs_init(struct hci_dev *hdev)
622 {
623 	struct hci_uart *hu = hci_get_drvdata(hdev);
624 	struct qca_data *qca = hu->priv;
625 	struct dentry *ibs_dir;
626 	umode_t mode;
627 
628 	if (!hdev->debugfs)
629 		return;
630 
631 	ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
632 
633 	/* read only */
634 	mode = S_IRUGO;
635 	debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
636 	debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
637 	debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
638 			   &qca->ibs_sent_slps);
639 	debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
640 			   &qca->ibs_sent_wakes);
641 	debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
642 			   &qca->ibs_sent_wacks);
643 	debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
644 			   &qca->ibs_recv_slps);
645 	debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
646 			   &qca->ibs_recv_wakes);
647 	debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
648 			   &qca->ibs_recv_wacks);
649 	debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
650 	debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
651 	debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
652 	debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
653 	debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
654 	debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
655 	debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
656 	debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
657 	debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
658 	debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
659 
660 	/* read/write */
661 	mode = S_IRUGO | S_IWUSR;
662 	debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
663 	debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
664 			   &qca->tx_idle_delay);
665 }
666 
667 /* Flush protocol data */
qca_flush(struct hci_uart * hu)668 static int qca_flush(struct hci_uart *hu)
669 {
670 	struct qca_data *qca = hu->priv;
671 
672 	BT_DBG("hu %p qca flush", hu);
673 
674 	skb_queue_purge(&qca->tx_wait_q);
675 	skb_queue_purge(&qca->txq);
676 
677 	return 0;
678 }
679 
680 /* Close protocol */
qca_close(struct hci_uart * hu)681 static int qca_close(struct hci_uart *hu)
682 {
683 	struct qca_data *qca = hu->priv;
684 
685 	BT_DBG("hu %p qca close", hu);
686 
687 	serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
688 
689 	skb_queue_purge(&qca->tx_wait_q);
690 	skb_queue_purge(&qca->txq);
691 	skb_queue_purge(&qca->rx_memdump_q);
692 	del_timer(&qca->tx_idle_timer);
693 	del_timer(&qca->wake_retrans_timer);
694 	destroy_workqueue(qca->workqueue);
695 	qca->hu = NULL;
696 
697 	kfree_skb(qca->rx_skb);
698 
699 	hu->priv = NULL;
700 
701 	kfree(qca);
702 
703 	return 0;
704 }
705 
706 /* Called upon a wake-up-indication from the device.
707  */
device_want_to_wakeup(struct hci_uart * hu)708 static void device_want_to_wakeup(struct hci_uart *hu)
709 {
710 	unsigned long flags;
711 	struct qca_data *qca = hu->priv;
712 
713 	BT_DBG("hu %p want to wake up", hu);
714 
715 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
716 
717 	qca->ibs_recv_wakes++;
718 
719 	/* Don't wake the rx up when suspending. */
720 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
721 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
722 		return;
723 	}
724 
725 	switch (qca->rx_ibs_state) {
726 	case HCI_IBS_RX_ASLEEP:
727 		/* Make sure clock is on - we may have turned clock off since
728 		 * receiving the wake up indicator awake rx clock.
729 		 */
730 		queue_work(qca->workqueue, &qca->ws_awake_rx);
731 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
732 		return;
733 
734 	case HCI_IBS_RX_AWAKE:
735 		/* Always acknowledge device wake up,
736 		 * sending IBS message doesn't count as TX ON.
737 		 */
738 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
739 			BT_ERR("Failed to acknowledge device wake up");
740 			break;
741 		}
742 		qca->ibs_sent_wacks++;
743 		break;
744 
745 	default:
746 		/* Any other state is illegal */
747 		BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
748 		       qca->rx_ibs_state);
749 		break;
750 	}
751 
752 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
753 
754 	/* Actually send the packets */
755 	hci_uart_tx_wakeup(hu);
756 }
757 
758 /* Called upon a sleep-indication from the device.
759  */
device_want_to_sleep(struct hci_uart * hu)760 static void device_want_to_sleep(struct hci_uart *hu)
761 {
762 	unsigned long flags;
763 	struct qca_data *qca = hu->priv;
764 
765 	BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state);
766 
767 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
768 
769 	qca->ibs_recv_slps++;
770 
771 	switch (qca->rx_ibs_state) {
772 	case HCI_IBS_RX_AWAKE:
773 		/* Update state */
774 		qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
775 		/* Vote off rx clock under workqueue */
776 		queue_work(qca->workqueue, &qca->ws_rx_vote_off);
777 		break;
778 
779 	case HCI_IBS_RX_ASLEEP:
780 		break;
781 
782 	default:
783 		/* Any other state is illegal */
784 		BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
785 		       qca->rx_ibs_state);
786 		break;
787 	}
788 
789 	wake_up_interruptible(&qca->suspend_wait_q);
790 
791 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
792 }
793 
794 /* Called upon wake-up-acknowledgement from the device
795  */
device_woke_up(struct hci_uart * hu)796 static void device_woke_up(struct hci_uart *hu)
797 {
798 	unsigned long flags, idle_delay;
799 	struct qca_data *qca = hu->priv;
800 	struct sk_buff *skb = NULL;
801 
802 	BT_DBG("hu %p woke up", hu);
803 
804 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
805 
806 	qca->ibs_recv_wacks++;
807 
808 	/* Don't react to the wake-up-acknowledgment when suspending. */
809 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
810 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
811 		return;
812 	}
813 
814 	switch (qca->tx_ibs_state) {
815 	case HCI_IBS_TX_AWAKE:
816 		/* Expect one if we send 2 WAKEs */
817 		BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
818 		       qca->tx_ibs_state);
819 		break;
820 
821 	case HCI_IBS_TX_WAKING:
822 		/* Send pending packets */
823 		while ((skb = skb_dequeue(&qca->tx_wait_q)))
824 			skb_queue_tail(&qca->txq, skb);
825 
826 		/* Switch timers and change state to HCI_IBS_TX_AWAKE */
827 		del_timer(&qca->wake_retrans_timer);
828 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
829 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
830 		qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
831 		break;
832 
833 	case HCI_IBS_TX_ASLEEP:
834 	default:
835 		BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
836 		       qca->tx_ibs_state);
837 		break;
838 	}
839 
840 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
841 
842 	/* Actually send the packets */
843 	hci_uart_tx_wakeup(hu);
844 }
845 
846 /* Enqueue frame for transmittion (padding, crc, etc) may be called from
847  * two simultaneous tasklets.
848  */
qca_enqueue(struct hci_uart * hu,struct sk_buff * skb)849 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
850 {
851 	unsigned long flags = 0, idle_delay;
852 	struct qca_data *qca = hu->priv;
853 
854 	BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
855 	       qca->tx_ibs_state);
856 
857 	if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
858 		/* As SSR is in progress, ignore the packets */
859 		bt_dev_dbg(hu->hdev, "SSR is in progress");
860 		kfree_skb(skb);
861 		return 0;
862 	}
863 
864 	/* Prepend skb with frame type */
865 	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
866 
867 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
868 
869 	/* Don't go to sleep in middle of patch download or
870 	 * Out-Of-Band(GPIOs control) sleep is selected.
871 	 * Don't wake the device up when suspending.
872 	 */
873 	if (!test_bit(QCA_IBS_ENABLED, &qca->flags) ||
874 	    test_bit(QCA_SUSPENDING, &qca->flags)) {
875 		skb_queue_tail(&qca->txq, skb);
876 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
877 		return 0;
878 	}
879 
880 	/* Act according to current state */
881 	switch (qca->tx_ibs_state) {
882 	case HCI_IBS_TX_AWAKE:
883 		BT_DBG("Device awake, sending normally");
884 		skb_queue_tail(&qca->txq, skb);
885 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
886 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
887 		break;
888 
889 	case HCI_IBS_TX_ASLEEP:
890 		BT_DBG("Device asleep, waking up and queueing packet");
891 		/* Save packet for later */
892 		skb_queue_tail(&qca->tx_wait_q, skb);
893 
894 		qca->tx_ibs_state = HCI_IBS_TX_WAKING;
895 		/* Schedule a work queue to wake up device */
896 		queue_work(qca->workqueue, &qca->ws_awake_device);
897 		break;
898 
899 	case HCI_IBS_TX_WAKING:
900 		BT_DBG("Device waking up, queueing packet");
901 		/* Transient state; just keep packet for later */
902 		skb_queue_tail(&qca->tx_wait_q, skb);
903 		break;
904 
905 	default:
906 		BT_ERR("Illegal tx state: %d (losing packet)",
907 		       qca->tx_ibs_state);
908 		kfree_skb(skb);
909 		break;
910 	}
911 
912 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
913 
914 	return 0;
915 }
916 
qca_ibs_sleep_ind(struct hci_dev * hdev,struct sk_buff * skb)917 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
918 {
919 	struct hci_uart *hu = hci_get_drvdata(hdev);
920 
921 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
922 
923 	device_want_to_sleep(hu);
924 
925 	kfree_skb(skb);
926 	return 0;
927 }
928 
qca_ibs_wake_ind(struct hci_dev * hdev,struct sk_buff * skb)929 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
930 {
931 	struct hci_uart *hu = hci_get_drvdata(hdev);
932 
933 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
934 
935 	device_want_to_wakeup(hu);
936 
937 	kfree_skb(skb);
938 	return 0;
939 }
940 
qca_ibs_wake_ack(struct hci_dev * hdev,struct sk_buff * skb)941 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
942 {
943 	struct hci_uart *hu = hci_get_drvdata(hdev);
944 
945 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
946 
947 	device_woke_up(hu);
948 
949 	kfree_skb(skb);
950 	return 0;
951 }
952 
qca_recv_acl_data(struct hci_dev * hdev,struct sk_buff * skb)953 static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
954 {
955 	/* We receive debug logs from chip as an ACL packets.
956 	 * Instead of sending the data to ACL to decode the
957 	 * received data, we are pushing them to the above layers
958 	 * as a diagnostic packet.
959 	 */
960 	if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
961 		return hci_recv_diag(hdev, skb);
962 
963 	return hci_recv_frame(hdev, skb);
964 }
965 
qca_controller_memdump(struct work_struct * work)966 static void qca_controller_memdump(struct work_struct *work)
967 {
968 	struct qca_data *qca = container_of(work, struct qca_data,
969 					    ctrl_memdump_evt);
970 	struct hci_uart *hu = qca->hu;
971 	struct sk_buff *skb;
972 	struct qca_memdump_event_hdr *cmd_hdr;
973 	struct qca_memdump_data *qca_memdump = qca->qca_memdump;
974 	struct qca_dump_size *dump;
975 	char *memdump_buf;
976 	char nullBuff[QCA_DUMP_PACKET_SIZE] = { 0 };
977 	u16 seq_no;
978 	u32 dump_size;
979 	u32 rx_size;
980 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
981 
982 	while ((skb = skb_dequeue(&qca->rx_memdump_q))) {
983 
984 		mutex_lock(&qca->hci_memdump_lock);
985 		/* Skip processing the received packets if timeout detected
986 		 * or memdump collection completed.
987 		 */
988 		if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
989 		    qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
990 			mutex_unlock(&qca->hci_memdump_lock);
991 			return;
992 		}
993 
994 		if (!qca_memdump) {
995 			qca_memdump = kzalloc(sizeof(struct qca_memdump_data),
996 					      GFP_ATOMIC);
997 			if (!qca_memdump) {
998 				mutex_unlock(&qca->hci_memdump_lock);
999 				return;
1000 			}
1001 
1002 			qca->qca_memdump = qca_memdump;
1003 		}
1004 
1005 		qca->memdump_state = QCA_MEMDUMP_COLLECTING;
1006 		cmd_hdr = (void *) skb->data;
1007 		seq_no = __le16_to_cpu(cmd_hdr->seq_no);
1008 		skb_pull(skb, sizeof(struct qca_memdump_event_hdr));
1009 
1010 		if (!seq_no) {
1011 
1012 			/* This is the first frame of memdump packet from
1013 			 * the controller, Disable IBS to recevie dump
1014 			 * with out any interruption, ideally time required for
1015 			 * the controller to send the dump is 8 seconds. let us
1016 			 * start timer to handle this asynchronous activity.
1017 			 */
1018 			clear_bit(QCA_IBS_ENABLED, &qca->flags);
1019 			set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1020 			dump = (void *) skb->data;
1021 			dump_size = __le32_to_cpu(dump->dump_size);
1022 			if (!(dump_size)) {
1023 				bt_dev_err(hu->hdev, "Rx invalid memdump size");
1024 				kfree(qca_memdump);
1025 				kfree_skb(skb);
1026 				qca->qca_memdump = NULL;
1027 				mutex_unlock(&qca->hci_memdump_lock);
1028 				return;
1029 			}
1030 
1031 			bt_dev_info(hu->hdev, "QCA collecting dump of size:%u",
1032 				    dump_size);
1033 			queue_delayed_work(qca->workqueue,
1034 					   &qca->ctrl_memdump_timeout,
1035 					   msecs_to_jiffies(MEMDUMP_TIMEOUT_MS)
1036 					  );
1037 
1038 			skb_pull(skb, sizeof(dump_size));
1039 			memdump_buf = vmalloc(dump_size);
1040 			qca_memdump->ram_dump_size = dump_size;
1041 			qca_memdump->memdump_buf_head = memdump_buf;
1042 			qca_memdump->memdump_buf_tail = memdump_buf;
1043 		}
1044 
1045 		memdump_buf = qca_memdump->memdump_buf_tail;
1046 
1047 		/* If sequence no 0 is missed then there is no point in
1048 		 * accepting the other sequences.
1049 		 */
1050 		if (!memdump_buf) {
1051 			bt_dev_err(hu->hdev, "QCA: Discarding other packets");
1052 			kfree(qca_memdump);
1053 			kfree_skb(skb);
1054 			qca->qca_memdump = NULL;
1055 			mutex_unlock(&qca->hci_memdump_lock);
1056 			return;
1057 		}
1058 
1059 		/* There could be chance of missing some packets from
1060 		 * the controller. In such cases let us store the dummy
1061 		 * packets in the buffer.
1062 		 */
1063 		/* For QCA6390, controller does not lost packets but
1064 		 * sequence number field of packat sometimes has error
1065 		 * bits, so skip this checking for missing packet.
1066 		 */
1067 		while ((seq_no > qca_memdump->current_seq_no + 1) &&
1068 		       (soc_type != QCA_QCA6390) &&
1069 		       seq_no != QCA_LAST_SEQUENCE_NUM) {
1070 			bt_dev_err(hu->hdev, "QCA controller missed packet:%d",
1071 				   qca_memdump->current_seq_no);
1072 			rx_size = qca_memdump->received_dump;
1073 			rx_size += QCA_DUMP_PACKET_SIZE;
1074 			if (rx_size > qca_memdump->ram_dump_size) {
1075 				bt_dev_err(hu->hdev,
1076 					   "QCA memdump received %d, no space for missed packet",
1077 					   qca_memdump->received_dump);
1078 				break;
1079 			}
1080 			memcpy(memdump_buf, nullBuff, QCA_DUMP_PACKET_SIZE);
1081 			memdump_buf = memdump_buf + QCA_DUMP_PACKET_SIZE;
1082 			qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE;
1083 			qca_memdump->current_seq_no++;
1084 		}
1085 
1086 		rx_size = qca_memdump->received_dump + skb->len;
1087 		if (rx_size <= qca_memdump->ram_dump_size) {
1088 			if ((seq_no != QCA_LAST_SEQUENCE_NUM) &&
1089 			    (seq_no != qca_memdump->current_seq_no))
1090 				bt_dev_err(hu->hdev,
1091 					   "QCA memdump unexpected packet %d",
1092 					   seq_no);
1093 			bt_dev_dbg(hu->hdev,
1094 				   "QCA memdump packet %d with length %d",
1095 				   seq_no, skb->len);
1096 			memcpy(memdump_buf, (unsigned char *)skb->data,
1097 			       skb->len);
1098 			memdump_buf = memdump_buf + skb->len;
1099 			qca_memdump->memdump_buf_tail = memdump_buf;
1100 			qca_memdump->current_seq_no = seq_no + 1;
1101 			qca_memdump->received_dump += skb->len;
1102 		} else {
1103 			bt_dev_err(hu->hdev,
1104 				   "QCA memdump received %d, no space for packet %d",
1105 				   qca_memdump->received_dump, seq_no);
1106 		}
1107 		qca->qca_memdump = qca_memdump;
1108 		kfree_skb(skb);
1109 		if (seq_no == QCA_LAST_SEQUENCE_NUM) {
1110 			bt_dev_info(hu->hdev,
1111 				    "QCA memdump Done, received %d, total %d",
1112 				    qca_memdump->received_dump,
1113 				    qca_memdump->ram_dump_size);
1114 			memdump_buf = qca_memdump->memdump_buf_head;
1115 			dev_coredumpv(&hu->serdev->dev, memdump_buf,
1116 				      qca_memdump->received_dump, GFP_KERNEL);
1117 			cancel_delayed_work(&qca->ctrl_memdump_timeout);
1118 			kfree(qca->qca_memdump);
1119 			qca->qca_memdump = NULL;
1120 			qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1121 			clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1122 		}
1123 
1124 		mutex_unlock(&qca->hci_memdump_lock);
1125 	}
1126 
1127 }
1128 
qca_controller_memdump_event(struct hci_dev * hdev,struct sk_buff * skb)1129 static int qca_controller_memdump_event(struct hci_dev *hdev,
1130 					struct sk_buff *skb)
1131 {
1132 	struct hci_uart *hu = hci_get_drvdata(hdev);
1133 	struct qca_data *qca = hu->priv;
1134 
1135 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1136 	skb_queue_tail(&qca->rx_memdump_q, skb);
1137 	queue_work(qca->workqueue, &qca->ctrl_memdump_evt);
1138 
1139 	return 0;
1140 }
1141 
qca_recv_event(struct hci_dev * hdev,struct sk_buff * skb)1142 static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
1143 {
1144 	struct hci_uart *hu = hci_get_drvdata(hdev);
1145 	struct qca_data *qca = hu->priv;
1146 
1147 	if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) {
1148 		struct hci_event_hdr *hdr = (void *)skb->data;
1149 
1150 		/* For the WCN3990 the vendor command for a baudrate change
1151 		 * isn't sent as synchronous HCI command, because the
1152 		 * controller sends the corresponding vendor event with the
1153 		 * new baudrate. The event is received and properly decoded
1154 		 * after changing the baudrate of the host port. It needs to
1155 		 * be dropped, otherwise it can be misinterpreted as
1156 		 * response to a later firmware download command (also a
1157 		 * vendor command).
1158 		 */
1159 
1160 		if (hdr->evt == HCI_EV_VENDOR)
1161 			complete(&qca->drop_ev_comp);
1162 
1163 		kfree_skb(skb);
1164 
1165 		return 0;
1166 	}
1167 	/* We receive chip memory dump as an event packet, With a dedicated
1168 	 * handler followed by a hardware error event. When this event is
1169 	 * received we store dump into a file before closing hci. This
1170 	 * dump will help in triaging the issues.
1171 	 */
1172 	if ((skb->data[0] == HCI_VENDOR_PKT) &&
1173 	    (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE))
1174 		return qca_controller_memdump_event(hdev, skb);
1175 
1176 	return hci_recv_frame(hdev, skb);
1177 }
1178 
1179 #define QCA_IBS_SLEEP_IND_EVENT \
1180 	.type = HCI_IBS_SLEEP_IND, \
1181 	.hlen = 0, \
1182 	.loff = 0, \
1183 	.lsize = 0, \
1184 	.maxlen = HCI_MAX_IBS_SIZE
1185 
1186 #define QCA_IBS_WAKE_IND_EVENT \
1187 	.type = HCI_IBS_WAKE_IND, \
1188 	.hlen = 0, \
1189 	.loff = 0, \
1190 	.lsize = 0, \
1191 	.maxlen = HCI_MAX_IBS_SIZE
1192 
1193 #define QCA_IBS_WAKE_ACK_EVENT \
1194 	.type = HCI_IBS_WAKE_ACK, \
1195 	.hlen = 0, \
1196 	.loff = 0, \
1197 	.lsize = 0, \
1198 	.maxlen = HCI_MAX_IBS_SIZE
1199 
1200 static const struct h4_recv_pkt qca_recv_pkts[] = {
1201 	{ H4_RECV_ACL,             .recv = qca_recv_acl_data },
1202 	{ H4_RECV_SCO,             .recv = hci_recv_frame    },
1203 	{ H4_RECV_EVENT,           .recv = qca_recv_event    },
1204 	{ QCA_IBS_WAKE_IND_EVENT,  .recv = qca_ibs_wake_ind  },
1205 	{ QCA_IBS_WAKE_ACK_EVENT,  .recv = qca_ibs_wake_ack  },
1206 	{ QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
1207 };
1208 
qca_recv(struct hci_uart * hu,const void * data,int count)1209 static int qca_recv(struct hci_uart *hu, const void *data, int count)
1210 {
1211 	struct qca_data *qca = hu->priv;
1212 
1213 	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1214 		return -EUNATCH;
1215 
1216 	qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
1217 				  qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
1218 	if (IS_ERR(qca->rx_skb)) {
1219 		int err = PTR_ERR(qca->rx_skb);
1220 		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1221 		qca->rx_skb = NULL;
1222 		return err;
1223 	}
1224 
1225 	return count;
1226 }
1227 
qca_dequeue(struct hci_uart * hu)1228 static struct sk_buff *qca_dequeue(struct hci_uart *hu)
1229 {
1230 	struct qca_data *qca = hu->priv;
1231 
1232 	return skb_dequeue(&qca->txq);
1233 }
1234 
qca_get_baudrate_value(int speed)1235 static uint8_t qca_get_baudrate_value(int speed)
1236 {
1237 	switch (speed) {
1238 	case 9600:
1239 		return QCA_BAUDRATE_9600;
1240 	case 19200:
1241 		return QCA_BAUDRATE_19200;
1242 	case 38400:
1243 		return QCA_BAUDRATE_38400;
1244 	case 57600:
1245 		return QCA_BAUDRATE_57600;
1246 	case 115200:
1247 		return QCA_BAUDRATE_115200;
1248 	case 230400:
1249 		return QCA_BAUDRATE_230400;
1250 	case 460800:
1251 		return QCA_BAUDRATE_460800;
1252 	case 500000:
1253 		return QCA_BAUDRATE_500000;
1254 	case 921600:
1255 		return QCA_BAUDRATE_921600;
1256 	case 1000000:
1257 		return QCA_BAUDRATE_1000000;
1258 	case 2000000:
1259 		return QCA_BAUDRATE_2000000;
1260 	case 3000000:
1261 		return QCA_BAUDRATE_3000000;
1262 	case 3200000:
1263 		return QCA_BAUDRATE_3200000;
1264 	case 3500000:
1265 		return QCA_BAUDRATE_3500000;
1266 	default:
1267 		return QCA_BAUDRATE_115200;
1268 	}
1269 }
1270 
qca_set_baudrate(struct hci_dev * hdev,uint8_t baudrate)1271 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
1272 {
1273 	struct hci_uart *hu = hci_get_drvdata(hdev);
1274 	struct qca_data *qca = hu->priv;
1275 	struct sk_buff *skb;
1276 	u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
1277 
1278 	if (baudrate > QCA_BAUDRATE_3200000)
1279 		return -EINVAL;
1280 
1281 	cmd[4] = baudrate;
1282 
1283 	skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
1284 	if (!skb) {
1285 		bt_dev_err(hdev, "Failed to allocate baudrate packet");
1286 		return -ENOMEM;
1287 	}
1288 
1289 	/* Assign commands to change baudrate and packet type. */
1290 	skb_put_data(skb, cmd, sizeof(cmd));
1291 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1292 
1293 	skb_queue_tail(&qca->txq, skb);
1294 	hci_uart_tx_wakeup(hu);
1295 
1296 	/* Wait for the baudrate change request to be sent */
1297 
1298 	while (!skb_queue_empty(&qca->txq))
1299 		usleep_range(100, 200);
1300 
1301 	if (hu->serdev)
1302 		serdev_device_wait_until_sent(hu->serdev,
1303 		      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
1304 
1305 	/* Give the controller time to process the request */
1306 	if (qca_is_wcn399x(qca_soc_type(hu)))
1307 		msleep(10);
1308 	else
1309 		msleep(300);
1310 
1311 	return 0;
1312 }
1313 
host_set_baudrate(struct hci_uart * hu,unsigned int speed)1314 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
1315 {
1316 	if (hu->serdev)
1317 		serdev_device_set_baudrate(hu->serdev, speed);
1318 	else
1319 		hci_uart_set_baudrate(hu, speed);
1320 }
1321 
qca_send_power_pulse(struct hci_uart * hu,bool on)1322 static int qca_send_power_pulse(struct hci_uart *hu, bool on)
1323 {
1324 	int ret;
1325 	int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
1326 	u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE;
1327 
1328 	/* These power pulses are single byte command which are sent
1329 	 * at required baudrate to wcn3990. On wcn3990, we have an external
1330 	 * circuit at Tx pin which decodes the pulse sent at specific baudrate.
1331 	 * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
1332 	 * and also we use the same power inputs to turn on and off for
1333 	 * Wi-Fi/BT. Powering up the power sources will not enable BT, until
1334 	 * we send a power on pulse at 115200 bps. This algorithm will help to
1335 	 * save power. Disabling hardware flow control is mandatory while
1336 	 * sending power pulses to SoC.
1337 	 */
1338 	bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd);
1339 
1340 	serdev_device_write_flush(hu->serdev);
1341 	hci_uart_set_flow_control(hu, true);
1342 	ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
1343 	if (ret < 0) {
1344 		bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd);
1345 		return ret;
1346 	}
1347 
1348 	serdev_device_wait_until_sent(hu->serdev, timeout);
1349 	hci_uart_set_flow_control(hu, false);
1350 
1351 	/* Give to controller time to boot/shutdown */
1352 	if (on)
1353 		msleep(100);
1354 	else
1355 		msleep(10);
1356 
1357 	return 0;
1358 }
1359 
qca_get_speed(struct hci_uart * hu,enum qca_speed_type speed_type)1360 static unsigned int qca_get_speed(struct hci_uart *hu,
1361 				  enum qca_speed_type speed_type)
1362 {
1363 	unsigned int speed = 0;
1364 
1365 	if (speed_type == QCA_INIT_SPEED) {
1366 		if (hu->init_speed)
1367 			speed = hu->init_speed;
1368 		else if (hu->proto->init_speed)
1369 			speed = hu->proto->init_speed;
1370 	} else {
1371 		if (hu->oper_speed)
1372 			speed = hu->oper_speed;
1373 		else if (hu->proto->oper_speed)
1374 			speed = hu->proto->oper_speed;
1375 	}
1376 
1377 	return speed;
1378 }
1379 
qca_check_speeds(struct hci_uart * hu)1380 static int qca_check_speeds(struct hci_uart *hu)
1381 {
1382 	if (qca_is_wcn399x(qca_soc_type(hu))) {
1383 		if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
1384 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1385 			return -EINVAL;
1386 	} else {
1387 		if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
1388 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1389 			return -EINVAL;
1390 	}
1391 
1392 	return 0;
1393 }
1394 
qca_set_speed(struct hci_uart * hu,enum qca_speed_type speed_type)1395 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
1396 {
1397 	unsigned int speed, qca_baudrate;
1398 	struct qca_data *qca = hu->priv;
1399 	int ret = 0;
1400 
1401 	if (speed_type == QCA_INIT_SPEED) {
1402 		speed = qca_get_speed(hu, QCA_INIT_SPEED);
1403 		if (speed)
1404 			host_set_baudrate(hu, speed);
1405 	} else {
1406 		enum qca_btsoc_type soc_type = qca_soc_type(hu);
1407 
1408 		speed = qca_get_speed(hu, QCA_OPER_SPEED);
1409 		if (!speed)
1410 			return 0;
1411 
1412 		/* Disable flow control for wcn3990 to deassert RTS while
1413 		 * changing the baudrate of chip and host.
1414 		 */
1415 		if (qca_is_wcn399x(soc_type))
1416 			hci_uart_set_flow_control(hu, true);
1417 
1418 		if (soc_type == QCA_WCN3990) {
1419 			reinit_completion(&qca->drop_ev_comp);
1420 			set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1421 		}
1422 
1423 		qca_baudrate = qca_get_baudrate_value(speed);
1424 		bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
1425 		ret = qca_set_baudrate(hu->hdev, qca_baudrate);
1426 		if (ret)
1427 			goto error;
1428 
1429 		host_set_baudrate(hu, speed);
1430 
1431 error:
1432 		if (qca_is_wcn399x(soc_type))
1433 			hci_uart_set_flow_control(hu, false);
1434 
1435 		if (soc_type == QCA_WCN3990) {
1436 			/* Wait for the controller to send the vendor event
1437 			 * for the baudrate change command.
1438 			 */
1439 			if (!wait_for_completion_timeout(&qca->drop_ev_comp,
1440 						 msecs_to_jiffies(100))) {
1441 				bt_dev_err(hu->hdev,
1442 					   "Failed to change controller baudrate\n");
1443 				ret = -ETIMEDOUT;
1444 			}
1445 
1446 			clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1447 		}
1448 	}
1449 
1450 	return ret;
1451 }
1452 
qca_send_crashbuffer(struct hci_uart * hu)1453 static int qca_send_crashbuffer(struct hci_uart *hu)
1454 {
1455 	struct qca_data *qca = hu->priv;
1456 	struct sk_buff *skb;
1457 
1458 	skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL);
1459 	if (!skb) {
1460 		bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet");
1461 		return -ENOMEM;
1462 	}
1463 
1464 	/* We forcefully crash the controller, by sending 0xfb byte for
1465 	 * 1024 times. We also might have chance of losing data, To be
1466 	 * on safer side we send 1096 bytes to the SoC.
1467 	 */
1468 	memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE,
1469 	       QCA_CRASHBYTE_PACKET_LEN);
1470 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1471 	bt_dev_info(hu->hdev, "crash the soc to collect controller dump");
1472 	skb_queue_tail(&qca->txq, skb);
1473 	hci_uart_tx_wakeup(hu);
1474 
1475 	return 0;
1476 }
1477 
qca_wait_for_dump_collection(struct hci_dev * hdev)1478 static void qca_wait_for_dump_collection(struct hci_dev *hdev)
1479 {
1480 	struct hci_uart *hu = hci_get_drvdata(hdev);
1481 	struct qca_data *qca = hu->priv;
1482 
1483 	wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION,
1484 			    TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS);
1485 
1486 	clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1487 }
1488 
qca_hw_error(struct hci_dev * hdev,u8 code)1489 static void qca_hw_error(struct hci_dev *hdev, u8 code)
1490 {
1491 	struct hci_uart *hu = hci_get_drvdata(hdev);
1492 	struct qca_data *qca = hu->priv;
1493 
1494 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1495 	set_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1496 	bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state);
1497 
1498 	if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1499 		/* If hardware error event received for other than QCA
1500 		 * soc memory dump event, then we need to crash the SOC
1501 		 * and wait here for 8 seconds to get the dump packets.
1502 		 * This will block main thread to be on hold until we
1503 		 * collect dump.
1504 		 */
1505 		set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1506 		qca_send_crashbuffer(hu);
1507 		qca_wait_for_dump_collection(hdev);
1508 	} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1509 		/* Let us wait here until memory dump collected or
1510 		 * memory dump timer expired.
1511 		 */
1512 		bt_dev_info(hdev, "waiting for dump to complete");
1513 		qca_wait_for_dump_collection(hdev);
1514 	}
1515 
1516 	mutex_lock(&qca->hci_memdump_lock);
1517 	if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1518 		bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout");
1519 		if (qca->qca_memdump) {
1520 			vfree(qca->qca_memdump->memdump_buf_head);
1521 			kfree(qca->qca_memdump);
1522 			qca->qca_memdump = NULL;
1523 		}
1524 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1525 		cancel_delayed_work(&qca->ctrl_memdump_timeout);
1526 	}
1527 	mutex_unlock(&qca->hci_memdump_lock);
1528 
1529 	if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1530 	    qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1531 		cancel_work_sync(&qca->ctrl_memdump_evt);
1532 		skb_queue_purge(&qca->rx_memdump_q);
1533 	}
1534 
1535 	clear_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1536 }
1537 
qca_cmd_timeout(struct hci_dev * hdev)1538 static void qca_cmd_timeout(struct hci_dev *hdev)
1539 {
1540 	struct hci_uart *hu = hci_get_drvdata(hdev);
1541 	struct qca_data *qca = hu->priv;
1542 
1543 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1544 	if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1545 		set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1546 		qca_send_crashbuffer(hu);
1547 		qca_wait_for_dump_collection(hdev);
1548 	} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1549 		/* Let us wait here until memory dump collected or
1550 		 * memory dump timer expired.
1551 		 */
1552 		bt_dev_info(hdev, "waiting for dump to complete");
1553 		qca_wait_for_dump_collection(hdev);
1554 	}
1555 
1556 	mutex_lock(&qca->hci_memdump_lock);
1557 	if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1558 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1559 		if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
1560 			/* Inject hw error event to reset the device
1561 			 * and driver.
1562 			 */
1563 			hci_reset_dev(hu->hdev);
1564 		}
1565 	}
1566 	mutex_unlock(&qca->hci_memdump_lock);
1567 }
1568 
qca_wcn3990_init(struct hci_uart * hu)1569 static int qca_wcn3990_init(struct hci_uart *hu)
1570 {
1571 	struct qca_serdev *qcadev;
1572 	int ret;
1573 
1574 	/* Check for vregs status, may be hci down has turned
1575 	 * off the voltage regulator.
1576 	 */
1577 	qcadev = serdev_device_get_drvdata(hu->serdev);
1578 	if (!qcadev->bt_power->vregs_on) {
1579 		serdev_device_close(hu->serdev);
1580 		ret = qca_regulator_enable(qcadev);
1581 		if (ret)
1582 			return ret;
1583 
1584 		ret = serdev_device_open(hu->serdev);
1585 		if (ret) {
1586 			bt_dev_err(hu->hdev, "failed to open port");
1587 			return ret;
1588 		}
1589 	}
1590 
1591 	/* Forcefully enable wcn3990 to enter in to boot mode. */
1592 	host_set_baudrate(hu, 2400);
1593 	ret = qca_send_power_pulse(hu, false);
1594 	if (ret)
1595 		return ret;
1596 
1597 	qca_set_speed(hu, QCA_INIT_SPEED);
1598 	ret = qca_send_power_pulse(hu, true);
1599 	if (ret)
1600 		return ret;
1601 
1602 	/* Now the device is in ready state to communicate with host.
1603 	 * To sync host with device we need to reopen port.
1604 	 * Without this, we will have RTS and CTS synchronization
1605 	 * issues.
1606 	 */
1607 	serdev_device_close(hu->serdev);
1608 	ret = serdev_device_open(hu->serdev);
1609 	if (ret) {
1610 		bt_dev_err(hu->hdev, "failed to open port");
1611 		return ret;
1612 	}
1613 
1614 	hci_uart_set_flow_control(hu, false);
1615 
1616 	return 0;
1617 }
1618 
qca_power_on(struct hci_dev * hdev)1619 static int qca_power_on(struct hci_dev *hdev)
1620 {
1621 	struct hci_uart *hu = hci_get_drvdata(hdev);
1622 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1623 	struct qca_serdev *qcadev;
1624 	int ret = 0;
1625 
1626 	/* Non-serdev device usually is powered by external power
1627 	 * and don't need additional action in driver for power on
1628 	 */
1629 	if (!hu->serdev)
1630 		return 0;
1631 
1632 	if (qca_is_wcn399x(soc_type)) {
1633 		ret = qca_wcn3990_init(hu);
1634 	} else {
1635 		qcadev = serdev_device_get_drvdata(hu->serdev);
1636 		if (qcadev->bt_en) {
1637 			gpiod_set_value_cansleep(qcadev->bt_en, 1);
1638 			/* Controller needs time to bootup. */
1639 			msleep(150);
1640 		}
1641 	}
1642 
1643 	return ret;
1644 }
1645 
qca_setup(struct hci_uart * hu)1646 static int qca_setup(struct hci_uart *hu)
1647 {
1648 	struct hci_dev *hdev = hu->hdev;
1649 	struct qca_data *qca = hu->priv;
1650 	unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
1651 	unsigned int retries = 0;
1652 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1653 	const char *firmware_name = qca_get_firmware_name(hu);
1654 	int ret;
1655 	int soc_ver = 0;
1656 
1657 	ret = qca_check_speeds(hu);
1658 	if (ret)
1659 		return ret;
1660 
1661 	/* Patch downloading has to be done without IBS mode */
1662 	clear_bit(QCA_IBS_ENABLED, &qca->flags);
1663 
1664 	/* Enable controller to do both LE scan and BR/EDR inquiry
1665 	 * simultaneously.
1666 	 */
1667 	set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
1668 
1669 	bt_dev_info(hdev, "setting up %s",
1670 		qca_is_wcn399x(soc_type) ? "wcn399x" : "ROME/QCA6390");
1671 
1672 	qca->memdump_state = QCA_MEMDUMP_IDLE;
1673 
1674 retry:
1675 	ret = qca_power_on(hdev);
1676 	if (ret)
1677 		return ret;
1678 
1679 	clear_bit(QCA_SSR_TRIGGERED, &qca->flags);
1680 
1681 	if (qca_is_wcn399x(soc_type)) {
1682 		set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
1683 
1684 		ret = qca_read_soc_version(hdev, &soc_ver, soc_type);
1685 		if (ret)
1686 			return ret;
1687 	} else {
1688 		qca_set_speed(hu, QCA_INIT_SPEED);
1689 	}
1690 
1691 	/* Setup user speed if needed */
1692 	speed = qca_get_speed(hu, QCA_OPER_SPEED);
1693 	if (speed) {
1694 		ret = qca_set_speed(hu, QCA_OPER_SPEED);
1695 		if (ret)
1696 			return ret;
1697 
1698 		qca_baudrate = qca_get_baudrate_value(speed);
1699 	}
1700 
1701 	if (!qca_is_wcn399x(soc_type)) {
1702 		/* Get QCA version information */
1703 		ret = qca_read_soc_version(hdev, &soc_ver, soc_type);
1704 		if (ret)
1705 			return ret;
1706 	}
1707 
1708 	bt_dev_info(hdev, "QCA controller version 0x%08x", soc_ver);
1709 	/* Setup patch / NVM configurations */
1710 	ret = qca_uart_setup(hdev, qca_baudrate, soc_type, soc_ver,
1711 			firmware_name);
1712 	if (!ret) {
1713 		set_bit(QCA_IBS_ENABLED, &qca->flags);
1714 		qca_debugfs_init(hdev);
1715 		hu->hdev->hw_error = qca_hw_error;
1716 		hu->hdev->cmd_timeout = qca_cmd_timeout;
1717 	} else if (ret == -ENOENT) {
1718 		/* No patch/nvm-config found, run with original fw/config */
1719 		ret = 0;
1720 	} else if (ret == -EAGAIN) {
1721 		/*
1722 		 * Userspace firmware loader will return -EAGAIN in case no
1723 		 * patch/nvm-config is found, so run with original fw/config.
1724 		 */
1725 		ret = 0;
1726 	} else {
1727 		if (retries < MAX_INIT_RETRIES) {
1728 			qca_power_shutdown(hu);
1729 			if (hu->serdev) {
1730 				serdev_device_close(hu->serdev);
1731 				ret = serdev_device_open(hu->serdev);
1732 				if (ret) {
1733 					bt_dev_err(hdev, "failed to open port");
1734 					return ret;
1735 				}
1736 			}
1737 			retries++;
1738 			goto retry;
1739 		}
1740 	}
1741 
1742 	/* Setup bdaddr */
1743 	if (soc_type == QCA_ROME)
1744 		hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
1745 	else
1746 		hu->hdev->set_bdaddr = qca_set_bdaddr;
1747 
1748 	return ret;
1749 }
1750 
1751 static const struct hci_uart_proto qca_proto = {
1752 	.id		= HCI_UART_QCA,
1753 	.name		= "QCA",
1754 	.manufacturer	= 29,
1755 	.init_speed	= 115200,
1756 	.oper_speed	= 3000000,
1757 	.open		= qca_open,
1758 	.close		= qca_close,
1759 	.flush		= qca_flush,
1760 	.setup		= qca_setup,
1761 	.recv		= qca_recv,
1762 	.enqueue	= qca_enqueue,
1763 	.dequeue	= qca_dequeue,
1764 };
1765 
1766 static const struct qca_device_data qca_soc_data_wcn3990 = {
1767 	.soc_type = QCA_WCN3990,
1768 	.vregs = (struct qca_vreg []) {
1769 		{ "vddio", 15000  },
1770 		{ "vddxo", 80000  },
1771 		{ "vddrf", 300000 },
1772 		{ "vddch0", 450000 },
1773 	},
1774 	.num_vregs = 4,
1775 };
1776 
1777 static const struct qca_device_data qca_soc_data_wcn3991 = {
1778 	.soc_type = QCA_WCN3991,
1779 	.vregs = (struct qca_vreg []) {
1780 		{ "vddio", 15000  },
1781 		{ "vddxo", 80000  },
1782 		{ "vddrf", 300000 },
1783 		{ "vddch0", 450000 },
1784 	},
1785 	.num_vregs = 4,
1786 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
1787 };
1788 
1789 static const struct qca_device_data qca_soc_data_wcn3998 = {
1790 	.soc_type = QCA_WCN3998,
1791 	.vregs = (struct qca_vreg []) {
1792 		{ "vddio", 10000  },
1793 		{ "vddxo", 80000  },
1794 		{ "vddrf", 300000 },
1795 		{ "vddch0", 450000 },
1796 	},
1797 	.num_vregs = 4,
1798 };
1799 
1800 static const struct qca_device_data qca_soc_data_qca6390 = {
1801 	.soc_type = QCA_QCA6390,
1802 	.num_vregs = 0,
1803 };
1804 
qca_power_shutdown(struct hci_uart * hu)1805 static void qca_power_shutdown(struct hci_uart *hu)
1806 {
1807 	struct qca_serdev *qcadev;
1808 	struct qca_data *qca = hu->priv;
1809 	unsigned long flags;
1810 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1811 
1812 	/* From this point we go into power off state. But serial port is
1813 	 * still open, stop queueing the IBS data and flush all the buffered
1814 	 * data in skb's.
1815 	 */
1816 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
1817 	clear_bit(QCA_IBS_ENABLED, &qca->flags);
1818 	qca_flush(hu);
1819 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
1820 
1821 	/* Non-serdev device usually is powered by external power
1822 	 * and don't need additional action in driver for power down
1823 	 */
1824 	if (!hu->serdev)
1825 		return;
1826 
1827 	qcadev = serdev_device_get_drvdata(hu->serdev);
1828 
1829 	if (qca_is_wcn399x(soc_type)) {
1830 		host_set_baudrate(hu, 2400);
1831 		qca_send_power_pulse(hu, false);
1832 		qca_regulator_disable(qcadev);
1833 	} else if (qcadev->bt_en) {
1834 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
1835 	}
1836 }
1837 
qca_power_off(struct hci_dev * hdev)1838 static int qca_power_off(struct hci_dev *hdev)
1839 {
1840 	struct hci_uart *hu = hci_get_drvdata(hdev);
1841 	struct qca_data *qca = hu->priv;
1842 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1843 
1844 	hu->hdev->hw_error = NULL;
1845 	hu->hdev->cmd_timeout = NULL;
1846 
1847 	del_timer_sync(&qca->wake_retrans_timer);
1848 	del_timer_sync(&qca->tx_idle_timer);
1849 
1850 	/* Stop sending shutdown command if soc crashes. */
1851 	if (soc_type != QCA_ROME
1852 		&& qca->memdump_state == QCA_MEMDUMP_IDLE) {
1853 		qca_send_pre_shutdown_cmd(hdev);
1854 		usleep_range(8000, 10000);
1855 	}
1856 
1857 	qca_power_shutdown(hu);
1858 	return 0;
1859 }
1860 
qca_regulator_enable(struct qca_serdev * qcadev)1861 static int qca_regulator_enable(struct qca_serdev *qcadev)
1862 {
1863 	struct qca_power *power = qcadev->bt_power;
1864 	int ret;
1865 
1866 	/* Already enabled */
1867 	if (power->vregs_on)
1868 		return 0;
1869 
1870 	BT_DBG("enabling %d regulators)", power->num_vregs);
1871 
1872 	ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);
1873 	if (ret)
1874 		return ret;
1875 
1876 	power->vregs_on = true;
1877 
1878 	ret = clk_prepare_enable(qcadev->susclk);
1879 	if (ret)
1880 		qca_regulator_disable(qcadev);
1881 
1882 	return ret;
1883 }
1884 
qca_regulator_disable(struct qca_serdev * qcadev)1885 static void qca_regulator_disable(struct qca_serdev *qcadev)
1886 {
1887 	struct qca_power *power;
1888 
1889 	if (!qcadev)
1890 		return;
1891 
1892 	power = qcadev->bt_power;
1893 
1894 	/* Already disabled? */
1895 	if (!power->vregs_on)
1896 		return;
1897 
1898 	regulator_bulk_disable(power->num_vregs, power->vreg_bulk);
1899 	power->vregs_on = false;
1900 
1901 	clk_disable_unprepare(qcadev->susclk);
1902 }
1903 
qca_init_regulators(struct qca_power * qca,const struct qca_vreg * vregs,size_t num_vregs)1904 static int qca_init_regulators(struct qca_power *qca,
1905 				const struct qca_vreg *vregs, size_t num_vregs)
1906 {
1907 	struct regulator_bulk_data *bulk;
1908 	int ret;
1909 	int i;
1910 
1911 	bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL);
1912 	if (!bulk)
1913 		return -ENOMEM;
1914 
1915 	for (i = 0; i < num_vregs; i++)
1916 		bulk[i].supply = vregs[i].name;
1917 
1918 	ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk);
1919 	if (ret < 0)
1920 		return ret;
1921 
1922 	for (i = 0; i < num_vregs; i++) {
1923 		ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA);
1924 		if (ret)
1925 			return ret;
1926 	}
1927 
1928 	qca->vreg_bulk = bulk;
1929 	qca->num_vregs = num_vregs;
1930 
1931 	return 0;
1932 }
1933 
qca_serdev_probe(struct serdev_device * serdev)1934 static int qca_serdev_probe(struct serdev_device *serdev)
1935 {
1936 	struct qca_serdev *qcadev;
1937 	struct hci_dev *hdev;
1938 	const struct qca_device_data *data;
1939 	int err;
1940 	bool power_ctrl_enabled = true;
1941 
1942 	qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
1943 	if (!qcadev)
1944 		return -ENOMEM;
1945 
1946 	qcadev->serdev_hu.serdev = serdev;
1947 	data = device_get_match_data(&serdev->dev);
1948 	serdev_device_set_drvdata(serdev, qcadev);
1949 	device_property_read_string(&serdev->dev, "firmware-name",
1950 					 &qcadev->firmware_name);
1951 	device_property_read_u32(&serdev->dev, "max-speed",
1952 				 &qcadev->oper_speed);
1953 	if (!qcadev->oper_speed)
1954 		BT_DBG("UART will pick default operating speed");
1955 
1956 	if (data && qca_is_wcn399x(data->soc_type)) {
1957 		qcadev->btsoc_type = data->soc_type;
1958 		qcadev->bt_power = devm_kzalloc(&serdev->dev,
1959 						sizeof(struct qca_power),
1960 						GFP_KERNEL);
1961 		if (!qcadev->bt_power)
1962 			return -ENOMEM;
1963 
1964 		qcadev->bt_power->dev = &serdev->dev;
1965 		err = qca_init_regulators(qcadev->bt_power, data->vregs,
1966 					  data->num_vregs);
1967 		if (err) {
1968 			BT_ERR("Failed to init regulators:%d", err);
1969 			return err;
1970 		}
1971 
1972 		qcadev->bt_power->vregs_on = false;
1973 
1974 		qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
1975 		if (IS_ERR(qcadev->susclk)) {
1976 			dev_err(&serdev->dev, "failed to acquire clk\n");
1977 			return PTR_ERR(qcadev->susclk);
1978 		}
1979 
1980 		err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
1981 		if (err) {
1982 			BT_ERR("wcn3990 serdev registration failed");
1983 			return err;
1984 		}
1985 	} else {
1986 		if (data)
1987 			qcadev->btsoc_type = data->soc_type;
1988 		else
1989 			qcadev->btsoc_type = QCA_ROME;
1990 
1991 		qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
1992 					       GPIOD_OUT_LOW);
1993 		if (IS_ERR_OR_NULL(qcadev->bt_en)) {
1994 			dev_warn(&serdev->dev, "failed to acquire enable gpio\n");
1995 			power_ctrl_enabled = false;
1996 		}
1997 
1998 		qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
1999 		if (IS_ERR(qcadev->susclk)) {
2000 			dev_warn(&serdev->dev, "failed to acquire clk\n");
2001 			return PTR_ERR(qcadev->susclk);
2002 		}
2003 		err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ);
2004 		if (err)
2005 			return err;
2006 
2007 		err = clk_prepare_enable(qcadev->susclk);
2008 		if (err)
2009 			return err;
2010 
2011 		err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2012 		if (err) {
2013 			BT_ERR("Rome serdev registration failed");
2014 			clk_disable_unprepare(qcadev->susclk);
2015 			return err;
2016 		}
2017 	}
2018 
2019 	hdev = qcadev->serdev_hu.hdev;
2020 
2021 	if (power_ctrl_enabled) {
2022 		set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
2023 		hdev->shutdown = qca_power_off;
2024 	}
2025 
2026 	if (data) {
2027 		/* Wideband speech support must be set per driver since it can't
2028 		 * be queried via hci. Same with the valid le states quirk.
2029 		 */
2030 		if (data->capabilities & QCA_CAP_WIDEBAND_SPEECH)
2031 			set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2032 				&hdev->quirks);
2033 
2034 		if (data->capabilities & QCA_CAP_VALID_LE_STATES)
2035 			set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
2036 	}
2037 
2038 	return 0;
2039 }
2040 
qca_serdev_remove(struct serdev_device * serdev)2041 static void qca_serdev_remove(struct serdev_device *serdev)
2042 {
2043 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2044 	struct qca_power *power = qcadev->bt_power;
2045 
2046 	if (qca_is_wcn399x(qcadev->btsoc_type) && power->vregs_on)
2047 		qca_power_shutdown(&qcadev->serdev_hu);
2048 	else if (qcadev->susclk)
2049 		clk_disable_unprepare(qcadev->susclk);
2050 
2051 	hci_uart_unregister_device(&qcadev->serdev_hu);
2052 }
2053 
qca_serdev_shutdown(struct device * dev)2054 static void qca_serdev_shutdown(struct device *dev)
2055 {
2056 	int ret;
2057 	int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
2058 	struct serdev_device *serdev = to_serdev_device(dev);
2059 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2060 	const u8 ibs_wake_cmd[] = { 0xFD };
2061 	const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 };
2062 
2063 	if (qcadev->btsoc_type == QCA_QCA6390) {
2064 		serdev_device_write_flush(serdev);
2065 		ret = serdev_device_write_buf(serdev, ibs_wake_cmd,
2066 					      sizeof(ibs_wake_cmd));
2067 		if (ret < 0) {
2068 			BT_ERR("QCA send IBS_WAKE_IND error: %d", ret);
2069 			return;
2070 		}
2071 		serdev_device_wait_until_sent(serdev, timeout);
2072 		usleep_range(8000, 10000);
2073 
2074 		serdev_device_write_flush(serdev);
2075 		ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd,
2076 					      sizeof(edl_reset_soc_cmd));
2077 		if (ret < 0) {
2078 			BT_ERR("QCA send EDL_RESET_REQ error: %d", ret);
2079 			return;
2080 		}
2081 		serdev_device_wait_until_sent(serdev, timeout);
2082 		usleep_range(8000, 10000);
2083 	}
2084 }
2085 
qca_suspend(struct device * dev)2086 static int __maybe_unused qca_suspend(struct device *dev)
2087 {
2088 	struct serdev_device *serdev = to_serdev_device(dev);
2089 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2090 	struct hci_uart *hu = &qcadev->serdev_hu;
2091 	struct qca_data *qca = hu->priv;
2092 	unsigned long flags;
2093 	bool tx_pending = false;
2094 	int ret = 0;
2095 	u8 cmd;
2096 
2097 	set_bit(QCA_SUSPENDING, &qca->flags);
2098 
2099 	/* Device is downloading patch or doesn't support in-band sleep. */
2100 	if (!test_bit(QCA_IBS_ENABLED, &qca->flags))
2101 		return 0;
2102 
2103 	cancel_work_sync(&qca->ws_awake_device);
2104 	cancel_work_sync(&qca->ws_awake_rx);
2105 
2106 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
2107 				 flags, SINGLE_DEPTH_NESTING);
2108 
2109 	switch (qca->tx_ibs_state) {
2110 	case HCI_IBS_TX_WAKING:
2111 		del_timer(&qca->wake_retrans_timer);
2112 		fallthrough;
2113 	case HCI_IBS_TX_AWAKE:
2114 		del_timer(&qca->tx_idle_timer);
2115 
2116 		serdev_device_write_flush(hu->serdev);
2117 		cmd = HCI_IBS_SLEEP_IND;
2118 		ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
2119 
2120 		if (ret < 0) {
2121 			BT_ERR("Failed to send SLEEP to device");
2122 			break;
2123 		}
2124 
2125 		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
2126 		qca->ibs_sent_slps++;
2127 		tx_pending = true;
2128 		break;
2129 
2130 	case HCI_IBS_TX_ASLEEP:
2131 		break;
2132 
2133 	default:
2134 		BT_ERR("Spurious tx state %d", qca->tx_ibs_state);
2135 		ret = -EINVAL;
2136 		break;
2137 	}
2138 
2139 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2140 
2141 	if (ret < 0)
2142 		goto error;
2143 
2144 	if (tx_pending) {
2145 		serdev_device_wait_until_sent(hu->serdev,
2146 					      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
2147 		serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
2148 	}
2149 
2150 	/* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going
2151 	 * to sleep, so that the packet does not wake the system later.
2152 	 */
2153 	ret = wait_event_interruptible_timeout(qca->suspend_wait_q,
2154 			qca->rx_ibs_state == HCI_IBS_RX_ASLEEP,
2155 			msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS));
2156 	if (ret == 0) {
2157 		ret = -ETIMEDOUT;
2158 		goto error;
2159 	}
2160 
2161 	return 0;
2162 
2163 error:
2164 	clear_bit(QCA_SUSPENDING, &qca->flags);
2165 
2166 	return ret;
2167 }
2168 
qca_resume(struct device * dev)2169 static int __maybe_unused qca_resume(struct device *dev)
2170 {
2171 	struct serdev_device *serdev = to_serdev_device(dev);
2172 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2173 	struct hci_uart *hu = &qcadev->serdev_hu;
2174 	struct qca_data *qca = hu->priv;
2175 
2176 	clear_bit(QCA_SUSPENDING, &qca->flags);
2177 
2178 	return 0;
2179 }
2180 
2181 static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume);
2182 
2183 #ifdef CONFIG_OF
2184 static const struct of_device_id qca_bluetooth_of_match[] = {
2185 	{ .compatible = "qcom,qca6174-bt" },
2186 	{ .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390},
2187 	{ .compatible = "qcom,qca9377-bt" },
2188 	{ .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990},
2189 	{ .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991},
2190 	{ .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998},
2191 	{ /* sentinel */ }
2192 };
2193 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
2194 #endif
2195 
2196 #ifdef CONFIG_ACPI
2197 static const struct acpi_device_id qca_bluetooth_acpi_match[] = {
2198 	{ "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2199 	{ "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2200 	{ "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2201 	{ "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2202 	{ },
2203 };
2204 MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match);
2205 #endif
2206 
2207 
2208 static struct serdev_device_driver qca_serdev_driver = {
2209 	.probe = qca_serdev_probe,
2210 	.remove = qca_serdev_remove,
2211 	.driver = {
2212 		.name = "hci_uart_qca",
2213 		.of_match_table = of_match_ptr(qca_bluetooth_of_match),
2214 		.acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match),
2215 		.shutdown = qca_serdev_shutdown,
2216 		.pm = &qca_pm_ops,
2217 	},
2218 };
2219 
qca_init(void)2220 int __init qca_init(void)
2221 {
2222 	serdev_device_driver_register(&qca_serdev_driver);
2223 
2224 	return hci_uart_register_proto(&qca_proto);
2225 }
2226 
qca_deinit(void)2227 int __exit qca_deinit(void)
2228 {
2229 	serdev_device_driver_unregister(&qca_serdev_driver);
2230 
2231 	return hci_uart_unregister_proto(&qca_proto);
2232 }
2233