• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for Silicon Labs Si5340, Si5341, Si5342, Si5344 and Si5345
4  * Copyright (C) 2019 Topic Embedded Products
5  * Author: Mike Looijmans <mike.looijmans@topic.nl>
6  *
7  * The Si5341 has 10 outputs and 5 synthesizers.
8  * The Si5340 is a smaller version of the Si5341 with only 4 outputs.
9  * The Si5345 is similar to the Si5341, with the addition of fractional input
10  * dividers and automatic input selection.
11  * The Si5342 and Si5344 are smaller versions of the Si5345.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/clk-provider.h>
16 #include <linux/delay.h>
17 #include <linux/gcd.h>
18 #include <linux/math64.h>
19 #include <linux/i2c.h>
20 #include <linux/module.h>
21 #include <linux/regmap.h>
22 #include <linux/slab.h>
23 #include <asm/unaligned.h>
24 
25 #define SI5341_NUM_INPUTS 4
26 
27 #define SI5340_MAX_NUM_OUTPUTS 4
28 #define SI5341_MAX_NUM_OUTPUTS 10
29 #define SI5342_MAX_NUM_OUTPUTS 2
30 #define SI5344_MAX_NUM_OUTPUTS 4
31 #define SI5345_MAX_NUM_OUTPUTS 10
32 
33 #define SI5340_NUM_SYNTH 4
34 #define SI5341_NUM_SYNTH 5
35 #define SI5342_NUM_SYNTH 2
36 #define SI5344_NUM_SYNTH 4
37 #define SI5345_NUM_SYNTH 5
38 
39 /* Range of the synthesizer fractional divider */
40 #define SI5341_SYNTH_N_MIN	10
41 #define SI5341_SYNTH_N_MAX	4095
42 
43 /* The chip can get its input clock from 3 input pins or an XTAL */
44 
45 /* There is one PLL running at 13500–14256 MHz */
46 #define SI5341_PLL_VCO_MIN 13500000000ull
47 #define SI5341_PLL_VCO_MAX 14256000000ull
48 
49 /* The 5 frequency synthesizers obtain their input from the PLL */
50 struct clk_si5341_synth {
51 	struct clk_hw hw;
52 	struct clk_si5341 *data;
53 	u8 index;
54 };
55 #define to_clk_si5341_synth(_hw) \
56 	container_of(_hw, struct clk_si5341_synth, hw)
57 
58 /* The output stages can be connected to any synth (full mux) */
59 struct clk_si5341_output {
60 	struct clk_hw hw;
61 	struct clk_si5341 *data;
62 	u8 index;
63 };
64 #define to_clk_si5341_output(_hw) \
65 	container_of(_hw, struct clk_si5341_output, hw)
66 
67 struct clk_si5341 {
68 	struct clk_hw hw;
69 	struct regmap *regmap;
70 	struct i2c_client *i2c_client;
71 	struct clk_si5341_synth synth[SI5341_NUM_SYNTH];
72 	struct clk_si5341_output clk[SI5341_MAX_NUM_OUTPUTS];
73 	struct clk *input_clk[SI5341_NUM_INPUTS];
74 	const char *input_clk_name[SI5341_NUM_INPUTS];
75 	const u16 *reg_output_offset;
76 	const u16 *reg_rdiv_offset;
77 	u64 freq_vco; /* 13500–14256 MHz */
78 	u8 num_outputs;
79 	u8 num_synth;
80 	u16 chip_id;
81 };
82 #define to_clk_si5341(_hw)	container_of(_hw, struct clk_si5341, hw)
83 
84 struct clk_si5341_output_config {
85 	u8 out_format_drv_bits;
86 	u8 out_cm_ampl_bits;
87 	bool synth_master;
88 	bool always_on;
89 };
90 
91 #define SI5341_PAGE		0x0001
92 #define SI5341_PN_BASE		0x0002
93 #define SI5341_DEVICE_REV	0x0005
94 #define SI5341_STATUS		0x000C
95 #define SI5341_LOS		0x000D
96 #define SI5341_STATUS_STICKY	0x0011
97 #define SI5341_LOS_STICKY	0x0012
98 #define SI5341_SOFT_RST		0x001C
99 #define SI5341_IN_SEL		0x0021
100 #define SI5341_DEVICE_READY	0x00FE
101 #define SI5341_XAXB_CFG		0x090E
102 #define SI5341_IN_EN		0x0949
103 #define SI5341_INX_TO_PFD_EN	0x094A
104 
105 /* Status bits */
106 #define SI5341_STATUS_SYSINCAL	BIT(0)
107 #define SI5341_STATUS_LOSXAXB	BIT(1)
108 #define SI5341_STATUS_LOSREF	BIT(2)
109 #define SI5341_STATUS_LOL	BIT(3)
110 
111 /* Input selection */
112 #define SI5341_IN_SEL_MASK	0x06
113 #define SI5341_IN_SEL_SHIFT	1
114 #define SI5341_IN_SEL_REGCTRL	0x01
115 #define SI5341_INX_TO_PFD_SHIFT	4
116 
117 /* XTAL config bits */
118 #define SI5341_XAXB_CFG_EXTCLK_EN	BIT(0)
119 #define SI5341_XAXB_CFG_PDNB		BIT(1)
120 
121 /* Input dividers (48-bit) */
122 #define SI5341_IN_PDIV(x)	(0x0208 + ((x) * 10))
123 #define SI5341_IN_PSET(x)	(0x020E + ((x) * 10))
124 #define SI5341_PX_UPD		0x0230
125 
126 /* PLL configuration */
127 #define SI5341_PLL_M_NUM	0x0235
128 #define SI5341_PLL_M_DEN	0x023B
129 
130 /* Output configuration */
131 #define SI5341_OUT_CONFIG(output)	\
132 			((output)->data->reg_output_offset[(output)->index])
133 #define SI5341_OUT_FORMAT(output)	(SI5341_OUT_CONFIG(output) + 1)
134 #define SI5341_OUT_CM(output)		(SI5341_OUT_CONFIG(output) + 2)
135 #define SI5341_OUT_MUX_SEL(output)	(SI5341_OUT_CONFIG(output) + 3)
136 #define SI5341_OUT_R_REG(output)	\
137 			((output)->data->reg_rdiv_offset[(output)->index])
138 
139 /* Synthesize N divider */
140 #define SI5341_SYNTH_N_NUM(x)	(0x0302 + ((x) * 11))
141 #define SI5341_SYNTH_N_DEN(x)	(0x0308 + ((x) * 11))
142 #define SI5341_SYNTH_N_UPD(x)	(0x030C + ((x) * 11))
143 
144 /* Synthesizer output enable, phase bypass, power mode */
145 #define SI5341_SYNTH_N_CLK_TO_OUTX_EN	0x0A03
146 #define SI5341_SYNTH_N_PIBYP		0x0A04
147 #define SI5341_SYNTH_N_PDNB		0x0A05
148 #define SI5341_SYNTH_N_CLK_DIS		0x0B4A
149 
150 #define SI5341_REGISTER_MAX	0xBFF
151 
152 /* SI5341_OUT_CONFIG bits */
153 #define SI5341_OUT_CFG_PDN		BIT(0)
154 #define SI5341_OUT_CFG_OE		BIT(1)
155 #define SI5341_OUT_CFG_RDIV_FORCE2	BIT(2)
156 
157 /* Static configuration (to be moved to firmware) */
158 struct si5341_reg_default {
159 	u16 address;
160 	u8 value;
161 };
162 
163 static const char * const si5341_input_clock_names[] = {
164 	"in0", "in1", "in2", "xtal"
165 };
166 
167 /* Output configuration registers 0..9 are not quite logically organized */
168 /* Also for si5345 */
169 static const u16 si5341_reg_output_offset[] = {
170 	0x0108,
171 	0x010D,
172 	0x0112,
173 	0x0117,
174 	0x011C,
175 	0x0121,
176 	0x0126,
177 	0x012B,
178 	0x0130,
179 	0x013A,
180 };
181 
182 /* for si5340, si5342 and si5344 */
183 static const u16 si5340_reg_output_offset[] = {
184 	0x0112,
185 	0x0117,
186 	0x0126,
187 	0x012B,
188 };
189 
190 /* The location of the R divider registers */
191 static const u16 si5341_reg_rdiv_offset[] = {
192 	0x024A,
193 	0x024D,
194 	0x0250,
195 	0x0253,
196 	0x0256,
197 	0x0259,
198 	0x025C,
199 	0x025F,
200 	0x0262,
201 	0x0268,
202 };
203 static const u16 si5340_reg_rdiv_offset[] = {
204 	0x0250,
205 	0x0253,
206 	0x025C,
207 	0x025F,
208 };
209 
210 /*
211  * Programming sequence from ClockBuilder, settings to initialize the system
212  * using only the XTAL input, without pre-divider.
213  * This also contains settings that aren't mentioned anywhere in the datasheet.
214  * The "known" settings like synth and output configuration are done later.
215  */
216 static const struct si5341_reg_default si5341_reg_defaults[] = {
217 	{ 0x0017, 0x3A }, /* INT mask (disable interrupts) */
218 	{ 0x0018, 0xFF }, /* INT mask */
219 	{ 0x0021, 0x0F }, /* Select XTAL as input */
220 	{ 0x0022, 0x00 }, /* Not in datasheet */
221 	{ 0x002B, 0x02 }, /* SPI config */
222 	{ 0x002C, 0x20 }, /* LOS enable for XTAL */
223 	{ 0x002D, 0x00 }, /* LOS timing */
224 	{ 0x002E, 0x00 },
225 	{ 0x002F, 0x00 },
226 	{ 0x0030, 0x00 },
227 	{ 0x0031, 0x00 },
228 	{ 0x0032, 0x00 },
229 	{ 0x0033, 0x00 },
230 	{ 0x0034, 0x00 },
231 	{ 0x0035, 0x00 },
232 	{ 0x0036, 0x00 },
233 	{ 0x0037, 0x00 },
234 	{ 0x0038, 0x00 }, /* LOS setting (thresholds) */
235 	{ 0x0039, 0x00 },
236 	{ 0x003A, 0x00 },
237 	{ 0x003B, 0x00 },
238 	{ 0x003C, 0x00 },
239 	{ 0x003D, 0x00 }, /* LOS setting (thresholds) end */
240 	{ 0x0041, 0x00 }, /* LOS0_DIV_SEL */
241 	{ 0x0042, 0x00 }, /* LOS1_DIV_SEL */
242 	{ 0x0043, 0x00 }, /* LOS2_DIV_SEL */
243 	{ 0x0044, 0x00 }, /* LOS3_DIV_SEL */
244 	{ 0x009E, 0x00 }, /* Not in datasheet */
245 	{ 0x0102, 0x01 }, /* Enable outputs */
246 	{ 0x013F, 0x00 }, /* Not in datasheet */
247 	{ 0x0140, 0x00 }, /* Not in datasheet */
248 	{ 0x0141, 0x40 }, /* OUT LOS */
249 	{ 0x0202, 0x00 }, /* XAXB_FREQ_OFFSET (=0)*/
250 	{ 0x0203, 0x00 },
251 	{ 0x0204, 0x00 },
252 	{ 0x0205, 0x00 },
253 	{ 0x0206, 0x00 }, /* PXAXB (2^x) */
254 	{ 0x0208, 0x00 }, /* Px divider setting (usually 0) */
255 	{ 0x0209, 0x00 },
256 	{ 0x020A, 0x00 },
257 	{ 0x020B, 0x00 },
258 	{ 0x020C, 0x00 },
259 	{ 0x020D, 0x00 },
260 	{ 0x020E, 0x00 },
261 	{ 0x020F, 0x00 },
262 	{ 0x0210, 0x00 },
263 	{ 0x0211, 0x00 },
264 	{ 0x0212, 0x00 },
265 	{ 0x0213, 0x00 },
266 	{ 0x0214, 0x00 },
267 	{ 0x0215, 0x00 },
268 	{ 0x0216, 0x00 },
269 	{ 0x0217, 0x00 },
270 	{ 0x0218, 0x00 },
271 	{ 0x0219, 0x00 },
272 	{ 0x021A, 0x00 },
273 	{ 0x021B, 0x00 },
274 	{ 0x021C, 0x00 },
275 	{ 0x021D, 0x00 },
276 	{ 0x021E, 0x00 },
277 	{ 0x021F, 0x00 },
278 	{ 0x0220, 0x00 },
279 	{ 0x0221, 0x00 },
280 	{ 0x0222, 0x00 },
281 	{ 0x0223, 0x00 },
282 	{ 0x0224, 0x00 },
283 	{ 0x0225, 0x00 },
284 	{ 0x0226, 0x00 },
285 	{ 0x0227, 0x00 },
286 	{ 0x0228, 0x00 },
287 	{ 0x0229, 0x00 },
288 	{ 0x022A, 0x00 },
289 	{ 0x022B, 0x00 },
290 	{ 0x022C, 0x00 },
291 	{ 0x022D, 0x00 },
292 	{ 0x022E, 0x00 },
293 	{ 0x022F, 0x00 }, /* Px divider setting (usually 0) end */
294 	{ 0x026B, 0x00 }, /* DESIGN_ID (ASCII string) */
295 	{ 0x026C, 0x00 },
296 	{ 0x026D, 0x00 },
297 	{ 0x026E, 0x00 },
298 	{ 0x026F, 0x00 },
299 	{ 0x0270, 0x00 },
300 	{ 0x0271, 0x00 },
301 	{ 0x0272, 0x00 }, /* DESIGN_ID (ASCII string) end */
302 	{ 0x0339, 0x1F }, /* N_FSTEP_MSK */
303 	{ 0x033B, 0x00 }, /* Nx_FSTEPW (Frequency step) */
304 	{ 0x033C, 0x00 },
305 	{ 0x033D, 0x00 },
306 	{ 0x033E, 0x00 },
307 	{ 0x033F, 0x00 },
308 	{ 0x0340, 0x00 },
309 	{ 0x0341, 0x00 },
310 	{ 0x0342, 0x00 },
311 	{ 0x0343, 0x00 },
312 	{ 0x0344, 0x00 },
313 	{ 0x0345, 0x00 },
314 	{ 0x0346, 0x00 },
315 	{ 0x0347, 0x00 },
316 	{ 0x0348, 0x00 },
317 	{ 0x0349, 0x00 },
318 	{ 0x034A, 0x00 },
319 	{ 0x034B, 0x00 },
320 	{ 0x034C, 0x00 },
321 	{ 0x034D, 0x00 },
322 	{ 0x034E, 0x00 },
323 	{ 0x034F, 0x00 },
324 	{ 0x0350, 0x00 },
325 	{ 0x0351, 0x00 },
326 	{ 0x0352, 0x00 },
327 	{ 0x0353, 0x00 },
328 	{ 0x0354, 0x00 },
329 	{ 0x0355, 0x00 },
330 	{ 0x0356, 0x00 },
331 	{ 0x0357, 0x00 },
332 	{ 0x0358, 0x00 }, /* Nx_FSTEPW (Frequency step) end */
333 	{ 0x0359, 0x00 }, /* Nx_DELAY */
334 	{ 0x035A, 0x00 },
335 	{ 0x035B, 0x00 },
336 	{ 0x035C, 0x00 },
337 	{ 0x035D, 0x00 },
338 	{ 0x035E, 0x00 },
339 	{ 0x035F, 0x00 },
340 	{ 0x0360, 0x00 },
341 	{ 0x0361, 0x00 },
342 	{ 0x0362, 0x00 }, /* Nx_DELAY end */
343 	{ 0x0802, 0x00 }, /* Not in datasheet */
344 	{ 0x0803, 0x00 }, /* Not in datasheet */
345 	{ 0x0804, 0x00 }, /* Not in datasheet */
346 	{ 0x090E, 0x02 }, /* XAXB_EXTCLK_EN=0 XAXB_PDNB=1 (use XTAL) */
347 	{ 0x091C, 0x04 }, /* ZDM_EN=4 (Normal mode) */
348 	{ 0x0943, 0x00 }, /* IO_VDD_SEL=0 (0=1v8, use 1=3v3) */
349 	{ 0x0949, 0x00 }, /* IN_EN (disable input clocks) */
350 	{ 0x094A, 0x00 }, /* INx_TO_PFD_EN (disabled) */
351 	{ 0x0A02, 0x00 }, /* Not in datasheet */
352 	{ 0x0B44, 0x0F }, /* PDIV_ENB (datasheet does not mention what it is) */
353 	{ 0x0B57, 0x10 }, /* VCO_RESET_CALCODE (not described in datasheet) */
354 	{ 0x0B58, 0x05 }, /* VCO_RESET_CALCODE (not described in datasheet) */
355 };
356 
357 /* Read and interpret a 44-bit followed by a 32-bit value in the regmap */
si5341_decode_44_32(struct regmap * regmap,unsigned int reg,u64 * val1,u32 * val2)358 static int si5341_decode_44_32(struct regmap *regmap, unsigned int reg,
359 	u64 *val1, u32 *val2)
360 {
361 	int err;
362 	u8 r[10];
363 
364 	err = regmap_bulk_read(regmap, reg, r, 10);
365 	if (err < 0)
366 		return err;
367 
368 	*val1 = ((u64)((r[5] & 0x0f) << 8 | r[4]) << 32) |
369 		 (get_unaligned_le32(r));
370 	*val2 = get_unaligned_le32(&r[6]);
371 
372 	return 0;
373 }
374 
si5341_encode_44_32(struct regmap * regmap,unsigned int reg,u64 n_num,u32 n_den)375 static int si5341_encode_44_32(struct regmap *regmap, unsigned int reg,
376 	u64 n_num, u32 n_den)
377 {
378 	u8 r[10];
379 
380 	/* Shift left as far as possible without overflowing */
381 	while (!(n_num & BIT_ULL(43)) && !(n_den & BIT(31))) {
382 		n_num <<= 1;
383 		n_den <<= 1;
384 	}
385 
386 	/* 44 bits (6 bytes) numerator */
387 	put_unaligned_le32(n_num, r);
388 	r[4] = (n_num >> 32) & 0xff;
389 	r[5] = (n_num >> 40) & 0x0f;
390 	/* 32 bits denominator */
391 	put_unaligned_le32(n_den, &r[6]);
392 
393 	/* Program the fraction */
394 	return regmap_bulk_write(regmap, reg, r, sizeof(r));
395 }
396 
397 /* VCO, we assume it runs at a constant frequency */
si5341_clk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)398 static unsigned long si5341_clk_recalc_rate(struct clk_hw *hw,
399 		unsigned long parent_rate)
400 {
401 	struct clk_si5341 *data = to_clk_si5341(hw);
402 	int err;
403 	u64 res;
404 	u64 m_num;
405 	u32 m_den;
406 	unsigned int shift;
407 
408 	/* Assume that PDIV is not being used, just read the PLL setting */
409 	err = si5341_decode_44_32(data->regmap, SI5341_PLL_M_NUM,
410 				&m_num, &m_den);
411 	if (err < 0)
412 		return 0;
413 
414 	if (!m_num || !m_den)
415 		return 0;
416 
417 	/*
418 	 * Though m_num is 64-bit, only the upper bits are actually used. While
419 	 * calculating m_num and m_den, they are shifted as far as possible to
420 	 * the left. To avoid 96-bit division here, we just shift them back so
421 	 * we can do with just 64 bits.
422 	 */
423 	shift = 0;
424 	res = m_num;
425 	while (res & 0xffff00000000ULL) {
426 		++shift;
427 		res >>= 1;
428 	}
429 	res *= parent_rate;
430 	do_div(res, (m_den >> shift));
431 
432 	/* We cannot return the actual frequency in 32 bit, store it locally */
433 	data->freq_vco = res;
434 
435 	/* Report kHz since the value is out of range */
436 	do_div(res, 1000);
437 
438 	return (unsigned long)res;
439 }
440 
si5341_clk_get_selected_input(struct clk_si5341 * data)441 static int si5341_clk_get_selected_input(struct clk_si5341 *data)
442 {
443 	int err;
444 	u32 val;
445 
446 	err = regmap_read(data->regmap, SI5341_IN_SEL, &val);
447 	if (err < 0)
448 		return err;
449 
450 	return (val & SI5341_IN_SEL_MASK) >> SI5341_IN_SEL_SHIFT;
451 }
452 
si5341_clk_get_parent(struct clk_hw * hw)453 static u8 si5341_clk_get_parent(struct clk_hw *hw)
454 {
455 	struct clk_si5341 *data = to_clk_si5341(hw);
456 	int res = si5341_clk_get_selected_input(data);
457 
458 	if (res < 0)
459 		return 0; /* Apparently we cannot report errors */
460 
461 	return res;
462 }
463 
si5341_clk_reparent(struct clk_si5341 * data,u8 index)464 static int si5341_clk_reparent(struct clk_si5341 *data, u8 index)
465 {
466 	int err;
467 	u8 val;
468 
469 	val = (index << SI5341_IN_SEL_SHIFT) & SI5341_IN_SEL_MASK;
470 	/* Enable register-based input selection */
471 	val |= SI5341_IN_SEL_REGCTRL;
472 
473 	err = regmap_update_bits(data->regmap,
474 		SI5341_IN_SEL, SI5341_IN_SEL_REGCTRL | SI5341_IN_SEL_MASK, val);
475 	if (err < 0)
476 		return err;
477 
478 	if (index < 3) {
479 		/* Enable input buffer for selected input */
480 		err = regmap_update_bits(data->regmap,
481 				SI5341_IN_EN, 0x07, BIT(index));
482 		if (err < 0)
483 			return err;
484 
485 		/* Enables the input to phase detector */
486 		err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN,
487 				0x7 << SI5341_INX_TO_PFD_SHIFT,
488 				BIT(index + SI5341_INX_TO_PFD_SHIFT));
489 		if (err < 0)
490 			return err;
491 
492 		/* Power down XTAL oscillator and buffer */
493 		err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG,
494 				SI5341_XAXB_CFG_PDNB, 0);
495 		if (err < 0)
496 			return err;
497 
498 		/*
499 		 * Set the P divider to "1". There's no explanation in the
500 		 * datasheet of these registers, but the clockbuilder software
501 		 * programs a "1" when the input is being used.
502 		 */
503 		err = regmap_write(data->regmap, SI5341_IN_PDIV(index), 1);
504 		if (err < 0)
505 			return err;
506 
507 		err = regmap_write(data->regmap, SI5341_IN_PSET(index), 1);
508 		if (err < 0)
509 			return err;
510 
511 		/* Set update PDIV bit */
512 		err = regmap_write(data->regmap, SI5341_PX_UPD, BIT(index));
513 		if (err < 0)
514 			return err;
515 	} else {
516 		/* Disable all input buffers */
517 		err = regmap_update_bits(data->regmap, SI5341_IN_EN, 0x07, 0);
518 		if (err < 0)
519 			return err;
520 
521 		/* Disable input to phase detector */
522 		err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN,
523 				0x7 << SI5341_INX_TO_PFD_SHIFT, 0);
524 		if (err < 0)
525 			return err;
526 
527 		/* Power up XTAL oscillator and buffer */
528 		err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG,
529 				SI5341_XAXB_CFG_PDNB, SI5341_XAXB_CFG_PDNB);
530 		if (err < 0)
531 			return err;
532 	}
533 
534 	return 0;
535 }
536 
si5341_clk_set_parent(struct clk_hw * hw,u8 index)537 static int si5341_clk_set_parent(struct clk_hw *hw, u8 index)
538 {
539 	struct clk_si5341 *data = to_clk_si5341(hw);
540 
541 	return si5341_clk_reparent(data, index);
542 }
543 
544 static const struct clk_ops si5341_clk_ops = {
545 	.set_parent = si5341_clk_set_parent,
546 	.get_parent = si5341_clk_get_parent,
547 	.recalc_rate = si5341_clk_recalc_rate,
548 };
549 
550 /* Synthesizers, there are 5 synthesizers that connect to any of the outputs */
551 
552 /* The synthesizer is on if all power and enable bits are set */
si5341_synth_clk_is_on(struct clk_hw * hw)553 static int si5341_synth_clk_is_on(struct clk_hw *hw)
554 {
555 	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
556 	int err;
557 	u32 val;
558 	u8 index = synth->index;
559 
560 	err = regmap_read(synth->data->regmap,
561 			SI5341_SYNTH_N_CLK_TO_OUTX_EN, &val);
562 	if (err < 0)
563 		return 0;
564 
565 	if (!(val & BIT(index)))
566 		return 0;
567 
568 	err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_PDNB, &val);
569 	if (err < 0)
570 		return 0;
571 
572 	if (!(val & BIT(index)))
573 		return 0;
574 
575 	/* This bit must be 0 for the synthesizer to receive clock input */
576 	err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_CLK_DIS, &val);
577 	if (err < 0)
578 		return 0;
579 
580 	return !(val & BIT(index));
581 }
582 
si5341_synth_clk_unprepare(struct clk_hw * hw)583 static void si5341_synth_clk_unprepare(struct clk_hw *hw)
584 {
585 	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
586 	u8 index = synth->index; /* In range 0..5 */
587 	u8 mask = BIT(index);
588 
589 	/* Disable output */
590 	regmap_update_bits(synth->data->regmap,
591 		SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, 0);
592 	/* Power down */
593 	regmap_update_bits(synth->data->regmap,
594 		SI5341_SYNTH_N_PDNB, mask, 0);
595 	/* Disable clock input to synth (set to 1 to disable) */
596 	regmap_update_bits(synth->data->regmap,
597 		SI5341_SYNTH_N_CLK_DIS, mask, mask);
598 }
599 
si5341_synth_clk_prepare(struct clk_hw * hw)600 static int si5341_synth_clk_prepare(struct clk_hw *hw)
601 {
602 	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
603 	int err;
604 	u8 index = synth->index;
605 	u8 mask = BIT(index);
606 
607 	/* Power up */
608 	err = regmap_update_bits(synth->data->regmap,
609 		SI5341_SYNTH_N_PDNB, mask, mask);
610 	if (err < 0)
611 		return err;
612 
613 	/* Enable clock input to synth (set bit to 0 to enable) */
614 	err = regmap_update_bits(synth->data->regmap,
615 		SI5341_SYNTH_N_CLK_DIS, mask, 0);
616 	if (err < 0)
617 		return err;
618 
619 	/* Enable output */
620 	return regmap_update_bits(synth->data->regmap,
621 		SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, mask);
622 }
623 
624 /* Synth clock frequency: Fvco * n_den / n_den, with Fvco in 13500-14256 MHz */
si5341_synth_clk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)625 static unsigned long si5341_synth_clk_recalc_rate(struct clk_hw *hw,
626 		unsigned long parent_rate)
627 {
628 	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
629 	u64 f;
630 	u64 n_num;
631 	u32 n_den;
632 	int err;
633 
634 	err = si5341_decode_44_32(synth->data->regmap,
635 			SI5341_SYNTH_N_NUM(synth->index), &n_num, &n_den);
636 	if (err < 0)
637 		return err;
638 	/* Check for bogus/uninitialized settings */
639 	if (!n_num || !n_den)
640 		return 0;
641 
642 	/*
643 	 * n_num and n_den are shifted left as much as possible, so to prevent
644 	 * overflow in 64-bit math, we shift n_den 4 bits to the right
645 	 */
646 	f = synth->data->freq_vco;
647 	f *= n_den >> 4;
648 
649 	/* Now we need to to 64-bit division: f/n_num */
650 	/* And compensate for the 4 bits we dropped */
651 	f = div64_u64(f, (n_num >> 4));
652 
653 	return f;
654 }
655 
si5341_synth_clk_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)656 static long si5341_synth_clk_round_rate(struct clk_hw *hw, unsigned long rate,
657 		unsigned long *parent_rate)
658 {
659 	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
660 	u64 f;
661 
662 	/* The synthesizer accuracy is such that anything in range will work */
663 	f = synth->data->freq_vco;
664 	do_div(f, SI5341_SYNTH_N_MAX);
665 	if (rate < f)
666 		return f;
667 
668 	f = synth->data->freq_vco;
669 	do_div(f, SI5341_SYNTH_N_MIN);
670 	if (rate > f)
671 		return f;
672 
673 	return rate;
674 }
675 
si5341_synth_program(struct clk_si5341_synth * synth,u64 n_num,u32 n_den,bool is_integer)676 static int si5341_synth_program(struct clk_si5341_synth *synth,
677 	u64 n_num, u32 n_den, bool is_integer)
678 {
679 	int err;
680 	u8 index = synth->index;
681 
682 	err = si5341_encode_44_32(synth->data->regmap,
683 			SI5341_SYNTH_N_NUM(index), n_num, n_den);
684 
685 	err = regmap_update_bits(synth->data->regmap,
686 		SI5341_SYNTH_N_PIBYP, BIT(index), is_integer ? BIT(index) : 0);
687 	if (err < 0)
688 		return err;
689 
690 	return regmap_write(synth->data->regmap,
691 		SI5341_SYNTH_N_UPD(index), 0x01);
692 }
693 
694 
si5341_synth_clk_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)695 static int si5341_synth_clk_set_rate(struct clk_hw *hw, unsigned long rate,
696 		unsigned long parent_rate)
697 {
698 	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
699 	u64 n_num;
700 	u32 n_den;
701 	u32 r;
702 	u32 g;
703 	bool is_integer;
704 
705 	n_num = synth->data->freq_vco;
706 
707 	/* see if there's an integer solution */
708 	r = do_div(n_num, rate);
709 	is_integer = (r == 0);
710 	if (is_integer) {
711 		/* Integer divider equal to n_num */
712 		n_den = 1;
713 	} else {
714 		/* Calculate a fractional solution */
715 		g = gcd(r, rate);
716 		n_den = rate / g;
717 		n_num *= n_den;
718 		n_num += r / g;
719 	}
720 
721 	dev_dbg(&synth->data->i2c_client->dev,
722 			"%s(%u): n=0x%llx d=0x%x %s\n", __func__,
723 				synth->index, n_num, n_den,
724 				is_integer ? "int" : "frac");
725 
726 	return si5341_synth_program(synth, n_num, n_den, is_integer);
727 }
728 
729 static const struct clk_ops si5341_synth_clk_ops = {
730 	.is_prepared = si5341_synth_clk_is_on,
731 	.prepare = si5341_synth_clk_prepare,
732 	.unprepare = si5341_synth_clk_unprepare,
733 	.recalc_rate = si5341_synth_clk_recalc_rate,
734 	.round_rate = si5341_synth_clk_round_rate,
735 	.set_rate = si5341_synth_clk_set_rate,
736 };
737 
si5341_output_clk_is_on(struct clk_hw * hw)738 static int si5341_output_clk_is_on(struct clk_hw *hw)
739 {
740 	struct clk_si5341_output *output = to_clk_si5341_output(hw);
741 	int err;
742 	u32 val;
743 
744 	err = regmap_read(output->data->regmap,
745 			SI5341_OUT_CONFIG(output), &val);
746 	if (err < 0)
747 		return err;
748 
749 	/* Bit 0=PDN, 1=OE so only a value of 0x2 enables the output */
750 	return (val & 0x03) == SI5341_OUT_CFG_OE;
751 }
752 
753 /* Disables and then powers down the output */
si5341_output_clk_unprepare(struct clk_hw * hw)754 static void si5341_output_clk_unprepare(struct clk_hw *hw)
755 {
756 	struct clk_si5341_output *output = to_clk_si5341_output(hw);
757 
758 	regmap_update_bits(output->data->regmap,
759 			SI5341_OUT_CONFIG(output),
760 			SI5341_OUT_CFG_OE, 0);
761 	regmap_update_bits(output->data->regmap,
762 			SI5341_OUT_CONFIG(output),
763 			SI5341_OUT_CFG_PDN, SI5341_OUT_CFG_PDN);
764 }
765 
766 /* Powers up and then enables the output */
si5341_output_clk_prepare(struct clk_hw * hw)767 static int si5341_output_clk_prepare(struct clk_hw *hw)
768 {
769 	struct clk_si5341_output *output = to_clk_si5341_output(hw);
770 	int err;
771 
772 	err = regmap_update_bits(output->data->regmap,
773 			SI5341_OUT_CONFIG(output),
774 			SI5341_OUT_CFG_PDN, 0);
775 	if (err < 0)
776 		return err;
777 
778 	return regmap_update_bits(output->data->regmap,
779 			SI5341_OUT_CONFIG(output),
780 			SI5341_OUT_CFG_OE, SI5341_OUT_CFG_OE);
781 }
782 
si5341_output_clk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)783 static unsigned long si5341_output_clk_recalc_rate(struct clk_hw *hw,
784 		unsigned long parent_rate)
785 {
786 	struct clk_si5341_output *output = to_clk_si5341_output(hw);
787 	int err;
788 	u32 val;
789 	u32 r_divider;
790 	u8 r[3];
791 
792 	err = regmap_bulk_read(output->data->regmap,
793 			SI5341_OUT_R_REG(output), r, 3);
794 	if (err < 0)
795 		return err;
796 
797 	/* Calculate value as 24-bit integer*/
798 	r_divider = r[2] << 16 | r[1] << 8 | r[0];
799 
800 	/* If Rx_REG is zero, the divider is disabled, so return a "0" rate */
801 	if (!r_divider)
802 		return 0;
803 
804 	/* Divider is 2*(Rx_REG+1) */
805 	r_divider += 1;
806 	r_divider <<= 1;
807 
808 	err = regmap_read(output->data->regmap,
809 			SI5341_OUT_CONFIG(output), &val);
810 	if (err < 0)
811 		return err;
812 
813 	if (val & SI5341_OUT_CFG_RDIV_FORCE2)
814 		r_divider = 2;
815 
816 	return parent_rate / r_divider;
817 }
818 
si5341_output_clk_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)819 static long si5341_output_clk_round_rate(struct clk_hw *hw, unsigned long rate,
820 		unsigned long *parent_rate)
821 {
822 	unsigned long r;
823 
824 	if (!rate)
825 		return 0;
826 
827 	r = *parent_rate >> 1;
828 
829 	/* If rate is an even divisor, no changes to parent required */
830 	if (r && !(r % rate))
831 		return (long)rate;
832 
833 	if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) {
834 		if (rate > 200000000) {
835 			/* minimum r-divider is 2 */
836 			r = 2;
837 		} else {
838 			/* Take a parent frequency near 400 MHz */
839 			r = (400000000u / rate) & ~1;
840 		}
841 		*parent_rate = r * rate;
842 	} else {
843 		/* We cannot change our parent's rate, report what we can do */
844 		r /= rate;
845 		rate = *parent_rate / (r << 1);
846 	}
847 
848 	return rate;
849 }
850 
si5341_output_clk_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)851 static int si5341_output_clk_set_rate(struct clk_hw *hw, unsigned long rate,
852 		unsigned long parent_rate)
853 {
854 	struct clk_si5341_output *output = to_clk_si5341_output(hw);
855 	u32 r_div;
856 	int err;
857 	u8 r[3];
858 
859 	if (!rate)
860 		return -EINVAL;
861 
862 	/* Frequency divider is (r_div + 1) * 2 */
863 	r_div = (parent_rate / rate) >> 1;
864 
865 	if (r_div <= 1)
866 		r_div = 0;
867 	else if (r_div >= BIT(24))
868 		r_div = BIT(24) - 1;
869 	else
870 		--r_div;
871 
872 	/* For a value of "2", we set the "OUT0_RDIV_FORCE2" bit */
873 	err = regmap_update_bits(output->data->regmap,
874 			SI5341_OUT_CONFIG(output),
875 			SI5341_OUT_CFG_RDIV_FORCE2,
876 			(r_div == 0) ? SI5341_OUT_CFG_RDIV_FORCE2 : 0);
877 	if (err < 0)
878 		return err;
879 
880 	/* Always write Rx_REG, because a zero value disables the divider */
881 	r[0] = r_div ? (r_div & 0xff) : 1;
882 	r[1] = (r_div >> 8) & 0xff;
883 	r[2] = (r_div >> 16) & 0xff;
884 	err = regmap_bulk_write(output->data->regmap,
885 			SI5341_OUT_R_REG(output), r, 3);
886 
887 	return 0;
888 }
889 
si5341_output_reparent(struct clk_si5341_output * output,u8 index)890 static int si5341_output_reparent(struct clk_si5341_output *output, u8 index)
891 {
892 	return regmap_update_bits(output->data->regmap,
893 		SI5341_OUT_MUX_SEL(output), 0x07, index);
894 }
895 
si5341_output_set_parent(struct clk_hw * hw,u8 index)896 static int si5341_output_set_parent(struct clk_hw *hw, u8 index)
897 {
898 	struct clk_si5341_output *output = to_clk_si5341_output(hw);
899 
900 	if (index >= output->data->num_synth)
901 		return -EINVAL;
902 
903 	return si5341_output_reparent(output, index);
904 }
905 
si5341_output_get_parent(struct clk_hw * hw)906 static u8 si5341_output_get_parent(struct clk_hw *hw)
907 {
908 	struct clk_si5341_output *output = to_clk_si5341_output(hw);
909 	u32 val;
910 
911 	regmap_read(output->data->regmap, SI5341_OUT_MUX_SEL(output), &val);
912 
913 	return val & 0x7;
914 }
915 
916 static const struct clk_ops si5341_output_clk_ops = {
917 	.is_prepared = si5341_output_clk_is_on,
918 	.prepare = si5341_output_clk_prepare,
919 	.unprepare = si5341_output_clk_unprepare,
920 	.recalc_rate = si5341_output_clk_recalc_rate,
921 	.round_rate = si5341_output_clk_round_rate,
922 	.set_rate = si5341_output_clk_set_rate,
923 	.set_parent = si5341_output_set_parent,
924 	.get_parent = si5341_output_get_parent,
925 };
926 
927 /*
928  * The chip can be bought in a pre-programmed version, or one can program the
929  * NVM in the chip to boot up in a preset mode. This routine tries to determine
930  * if that's the case, or if we need to reset and program everything from
931  * scratch. Returns negative error, or true/false.
932  */
si5341_is_programmed_already(struct clk_si5341 * data)933 static int si5341_is_programmed_already(struct clk_si5341 *data)
934 {
935 	int err;
936 	u8 r[4];
937 
938 	/* Read the PLL divider value, it must have a non-zero value */
939 	err = regmap_bulk_read(data->regmap, SI5341_PLL_M_DEN,
940 			r, ARRAY_SIZE(r));
941 	if (err < 0)
942 		return err;
943 
944 	return !!get_unaligned_le32(r);
945 }
946 
947 static struct clk_hw *
of_clk_si5341_get(struct of_phandle_args * clkspec,void * _data)948 of_clk_si5341_get(struct of_phandle_args *clkspec, void *_data)
949 {
950 	struct clk_si5341 *data = _data;
951 	unsigned int idx = clkspec->args[1];
952 	unsigned int group = clkspec->args[0];
953 
954 	switch (group) {
955 	case 0:
956 		if (idx >= data->num_outputs) {
957 			dev_err(&data->i2c_client->dev,
958 				"invalid output index %u\n", idx);
959 			return ERR_PTR(-EINVAL);
960 		}
961 		return &data->clk[idx].hw;
962 	case 1:
963 		if (idx >= data->num_synth) {
964 			dev_err(&data->i2c_client->dev,
965 				"invalid synthesizer index %u\n", idx);
966 			return ERR_PTR(-EINVAL);
967 		}
968 		return &data->synth[idx].hw;
969 	case 2:
970 		if (idx > 0) {
971 			dev_err(&data->i2c_client->dev,
972 				"invalid PLL index %u\n", idx);
973 			return ERR_PTR(-EINVAL);
974 		}
975 		return &data->hw;
976 	default:
977 		dev_err(&data->i2c_client->dev, "invalid group %u\n", group);
978 		return ERR_PTR(-EINVAL);
979 	}
980 }
981 
si5341_probe_chip_id(struct clk_si5341 * data)982 static int si5341_probe_chip_id(struct clk_si5341 *data)
983 {
984 	int err;
985 	u8 reg[4];
986 	u16 model;
987 
988 	err = regmap_bulk_read(data->regmap, SI5341_PN_BASE, reg,
989 				ARRAY_SIZE(reg));
990 	if (err < 0) {
991 		dev_err(&data->i2c_client->dev, "Failed to read chip ID\n");
992 		return err;
993 	}
994 
995 	model = get_unaligned_le16(reg);
996 
997 	dev_info(&data->i2c_client->dev, "Chip: %x Grade: %u Rev: %u\n",
998 		 model, reg[2], reg[3]);
999 
1000 	switch (model) {
1001 	case 0x5340:
1002 		data->num_outputs = SI5340_MAX_NUM_OUTPUTS;
1003 		data->num_synth = SI5340_NUM_SYNTH;
1004 		data->reg_output_offset = si5340_reg_output_offset;
1005 		data->reg_rdiv_offset = si5340_reg_rdiv_offset;
1006 		break;
1007 	case 0x5341:
1008 		data->num_outputs = SI5341_MAX_NUM_OUTPUTS;
1009 		data->num_synth = SI5341_NUM_SYNTH;
1010 		data->reg_output_offset = si5341_reg_output_offset;
1011 		data->reg_rdiv_offset = si5341_reg_rdiv_offset;
1012 		break;
1013 	case 0x5342:
1014 		data->num_outputs = SI5342_MAX_NUM_OUTPUTS;
1015 		data->num_synth = SI5342_NUM_SYNTH;
1016 		data->reg_output_offset = si5340_reg_output_offset;
1017 		data->reg_rdiv_offset = si5340_reg_rdiv_offset;
1018 		break;
1019 	case 0x5344:
1020 		data->num_outputs = SI5344_MAX_NUM_OUTPUTS;
1021 		data->num_synth = SI5344_NUM_SYNTH;
1022 		data->reg_output_offset = si5340_reg_output_offset;
1023 		data->reg_rdiv_offset = si5340_reg_rdiv_offset;
1024 		break;
1025 	case 0x5345:
1026 		data->num_outputs = SI5345_MAX_NUM_OUTPUTS;
1027 		data->num_synth = SI5345_NUM_SYNTH;
1028 		data->reg_output_offset = si5341_reg_output_offset;
1029 		data->reg_rdiv_offset = si5341_reg_rdiv_offset;
1030 		break;
1031 	default:
1032 		dev_err(&data->i2c_client->dev, "Model '%x' not supported\n",
1033 			model);
1034 		return -EINVAL;
1035 	}
1036 
1037 	data->chip_id = model;
1038 
1039 	return 0;
1040 }
1041 
1042 /* Read active settings into the regmap cache for later reference */
si5341_read_settings(struct clk_si5341 * data)1043 static int si5341_read_settings(struct clk_si5341 *data)
1044 {
1045 	int err;
1046 	u8 i;
1047 	u8 r[10];
1048 
1049 	err = regmap_bulk_read(data->regmap, SI5341_PLL_M_NUM, r, 10);
1050 	if (err < 0)
1051 		return err;
1052 
1053 	err = regmap_bulk_read(data->regmap,
1054 				SI5341_SYNTH_N_CLK_TO_OUTX_EN, r, 3);
1055 	if (err < 0)
1056 		return err;
1057 
1058 	err = regmap_bulk_read(data->regmap,
1059 				SI5341_SYNTH_N_CLK_DIS, r, 1);
1060 	if (err < 0)
1061 		return err;
1062 
1063 	for (i = 0; i < data->num_synth; ++i) {
1064 		err = regmap_bulk_read(data->regmap,
1065 					SI5341_SYNTH_N_NUM(i), r, 10);
1066 		if (err < 0)
1067 			return err;
1068 	}
1069 
1070 	for (i = 0; i < data->num_outputs; ++i) {
1071 		err = regmap_bulk_read(data->regmap,
1072 					data->reg_output_offset[i], r, 4);
1073 		if (err < 0)
1074 			return err;
1075 
1076 		err = regmap_bulk_read(data->regmap,
1077 					data->reg_rdiv_offset[i], r, 3);
1078 		if (err < 0)
1079 			return err;
1080 	}
1081 
1082 	return 0;
1083 }
1084 
si5341_write_multiple(struct clk_si5341 * data,const struct si5341_reg_default * values,unsigned int num_values)1085 static int si5341_write_multiple(struct clk_si5341 *data,
1086 	const struct si5341_reg_default *values, unsigned int num_values)
1087 {
1088 	unsigned int i;
1089 	int res;
1090 
1091 	for (i = 0; i < num_values; ++i) {
1092 		res = regmap_write(data->regmap,
1093 			values[i].address, values[i].value);
1094 		if (res < 0) {
1095 			dev_err(&data->i2c_client->dev,
1096 				"Failed to write %#x:%#x\n",
1097 				values[i].address, values[i].value);
1098 			return res;
1099 		}
1100 	}
1101 
1102 	return 0;
1103 }
1104 
1105 static const struct si5341_reg_default si5341_preamble[] = {
1106 	{ 0x0B25, 0x00 },
1107 	{ 0x0502, 0x01 },
1108 	{ 0x0505, 0x03 },
1109 	{ 0x0957, 0x17 },
1110 	{ 0x0B4E, 0x1A },
1111 };
1112 
1113 static const struct si5341_reg_default si5345_preamble[] = {
1114 	{ 0x0B25, 0x00 },
1115 	{ 0x0540, 0x01 },
1116 };
1117 
si5341_send_preamble(struct clk_si5341 * data)1118 static int si5341_send_preamble(struct clk_si5341 *data)
1119 {
1120 	int res;
1121 	u32 revision;
1122 
1123 	/* For revision 2 and up, the values are slightly different */
1124 	res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
1125 	if (res < 0)
1126 		return res;
1127 
1128 	/* Write "preamble" as specified by datasheet */
1129 	res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xD8 : 0xC0);
1130 	if (res < 0)
1131 		return res;
1132 
1133 	/* The si5342..si5345 require a different preamble */
1134 	if (data->chip_id > 0x5341)
1135 		res = si5341_write_multiple(data,
1136 			si5345_preamble, ARRAY_SIZE(si5345_preamble));
1137 	else
1138 		res = si5341_write_multiple(data,
1139 			si5341_preamble, ARRAY_SIZE(si5341_preamble));
1140 	if (res < 0)
1141 		return res;
1142 
1143 	/* Datasheet specifies a 300ms wait after sending the preamble */
1144 	msleep(300);
1145 
1146 	return 0;
1147 }
1148 
1149 /* Perform a soft reset and write post-amble */
si5341_finalize_defaults(struct clk_si5341 * data)1150 static int si5341_finalize_defaults(struct clk_si5341 *data)
1151 {
1152 	int res;
1153 	u32 revision;
1154 
1155 	res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
1156 	if (res < 0)
1157 		return res;
1158 
1159 	dev_dbg(&data->i2c_client->dev, "%s rev=%u\n", __func__, revision);
1160 
1161 	res = regmap_write(data->regmap, SI5341_SOFT_RST, 0x01);
1162 	if (res < 0)
1163 		return res;
1164 
1165 	/* The si5342..si5345 have an additional post-amble */
1166 	if (data->chip_id > 0x5341) {
1167 		res = regmap_write(data->regmap, 0x540, 0x0);
1168 		if (res < 0)
1169 			return res;
1170 	}
1171 
1172 	/* Datasheet does not explain these nameless registers */
1173 	res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xDB : 0xC3);
1174 	if (res < 0)
1175 		return res;
1176 	res = regmap_write(data->regmap, 0x0B25, 0x02);
1177 	if (res < 0)
1178 		return res;
1179 
1180 	return 0;
1181 }
1182 
1183 
1184 static const struct regmap_range si5341_regmap_volatile_range[] = {
1185 	regmap_reg_range(0x000C, 0x0012), /* Status */
1186 	regmap_reg_range(0x001C, 0x001E), /* reset, finc/fdec */
1187 	regmap_reg_range(0x00E2, 0x00FE), /* NVM, interrupts, device ready */
1188 	/* Update bits for P divider and synth config */
1189 	regmap_reg_range(SI5341_PX_UPD, SI5341_PX_UPD),
1190 	regmap_reg_range(SI5341_SYNTH_N_UPD(0), SI5341_SYNTH_N_UPD(0)),
1191 	regmap_reg_range(SI5341_SYNTH_N_UPD(1), SI5341_SYNTH_N_UPD(1)),
1192 	regmap_reg_range(SI5341_SYNTH_N_UPD(2), SI5341_SYNTH_N_UPD(2)),
1193 	regmap_reg_range(SI5341_SYNTH_N_UPD(3), SI5341_SYNTH_N_UPD(3)),
1194 	regmap_reg_range(SI5341_SYNTH_N_UPD(4), SI5341_SYNTH_N_UPD(4)),
1195 };
1196 
1197 static const struct regmap_access_table si5341_regmap_volatile = {
1198 	.yes_ranges = si5341_regmap_volatile_range,
1199 	.n_yes_ranges = ARRAY_SIZE(si5341_regmap_volatile_range),
1200 };
1201 
1202 /* Pages 0, 1, 2, 3, 9, A, B are valid, so there are 12 pages */
1203 static const struct regmap_range_cfg si5341_regmap_ranges[] = {
1204 	{
1205 		.range_min = 0,
1206 		.range_max = SI5341_REGISTER_MAX,
1207 		.selector_reg = SI5341_PAGE,
1208 		.selector_mask = 0xff,
1209 		.selector_shift = 0,
1210 		.window_start = 0,
1211 		.window_len = 256,
1212 	},
1213 };
1214 
si5341_wait_device_ready(struct i2c_client * client)1215 static int si5341_wait_device_ready(struct i2c_client *client)
1216 {
1217 	int count;
1218 
1219 	/* Datasheet warns: Any attempt to read or write any register other
1220 	 * than DEVICE_READY before DEVICE_READY reads as 0x0F may corrupt the
1221 	 * NVM programming and may corrupt the register contents, as they are
1222 	 * read from NVM. Note that this includes accesses to the PAGE register.
1223 	 * Also: DEVICE_READY is available on every register page, so no page
1224 	 * change is needed to read it.
1225 	 * Do this outside regmap to avoid automatic PAGE register access.
1226 	 * May take up to 300ms to complete.
1227 	 */
1228 	for (count = 0; count < 15; ++count) {
1229 		s32 result = i2c_smbus_read_byte_data(client,
1230 						      SI5341_DEVICE_READY);
1231 		if (result < 0)
1232 			return result;
1233 		if (result == 0x0F)
1234 			return 0;
1235 		msleep(20);
1236 	}
1237 	dev_err(&client->dev, "timeout waiting for DEVICE_READY\n");
1238 	return -EIO;
1239 }
1240 
1241 static const struct regmap_config si5341_regmap_config = {
1242 	.reg_bits = 8,
1243 	.val_bits = 8,
1244 	.cache_type = REGCACHE_RBTREE,
1245 	.ranges = si5341_regmap_ranges,
1246 	.num_ranges = ARRAY_SIZE(si5341_regmap_ranges),
1247 	.max_register = SI5341_REGISTER_MAX,
1248 	.volatile_table = &si5341_regmap_volatile,
1249 };
1250 
si5341_dt_parse_dt(struct i2c_client * client,struct clk_si5341_output_config * config)1251 static int si5341_dt_parse_dt(struct i2c_client *client,
1252 	struct clk_si5341_output_config *config)
1253 {
1254 	struct device_node *child;
1255 	struct device_node *np = client->dev.of_node;
1256 	u32 num;
1257 	u32 val;
1258 
1259 	memset(config, 0, sizeof(struct clk_si5341_output_config) *
1260 				SI5341_MAX_NUM_OUTPUTS);
1261 
1262 	for_each_child_of_node(np, child) {
1263 		if (of_property_read_u32(child, "reg", &num)) {
1264 			dev_err(&client->dev, "missing reg property of %s\n",
1265 				child->name);
1266 			goto put_child;
1267 		}
1268 
1269 		if (num >= SI5341_MAX_NUM_OUTPUTS) {
1270 			dev_err(&client->dev, "invalid clkout %d\n", num);
1271 			goto put_child;
1272 		}
1273 
1274 		if (!of_property_read_u32(child, "silabs,format", &val)) {
1275 			/* Set cm and ampl conservatively to 3v3 settings */
1276 			switch (val) {
1277 			case 1: /* normal differential */
1278 				config[num].out_cm_ampl_bits = 0x33;
1279 				break;
1280 			case 2: /* low-power differential */
1281 				config[num].out_cm_ampl_bits = 0x13;
1282 				break;
1283 			case 4: /* LVCMOS */
1284 				config[num].out_cm_ampl_bits = 0x33;
1285 				/* Set SI recommended impedance for LVCMOS */
1286 				config[num].out_format_drv_bits |= 0xc0;
1287 				break;
1288 			default:
1289 				dev_err(&client->dev,
1290 					"invalid silabs,format %u for %u\n",
1291 					val, num);
1292 				goto put_child;
1293 			}
1294 			config[num].out_format_drv_bits &= ~0x07;
1295 			config[num].out_format_drv_bits |= val & 0x07;
1296 			/* Always enable the SYNC feature */
1297 			config[num].out_format_drv_bits |= 0x08;
1298 		}
1299 
1300 		if (!of_property_read_u32(child, "silabs,common-mode", &val)) {
1301 			if (val > 0xf) {
1302 				dev_err(&client->dev,
1303 					"invalid silabs,common-mode %u\n",
1304 					val);
1305 				goto put_child;
1306 			}
1307 			config[num].out_cm_ampl_bits &= 0xf0;
1308 			config[num].out_cm_ampl_bits |= val & 0x0f;
1309 		}
1310 
1311 		if (!of_property_read_u32(child, "silabs,amplitude", &val)) {
1312 			if (val > 0xf) {
1313 				dev_err(&client->dev,
1314 					"invalid silabs,amplitude %u\n",
1315 					val);
1316 				goto put_child;
1317 			}
1318 			config[num].out_cm_ampl_bits &= 0x0f;
1319 			config[num].out_cm_ampl_bits |= (val << 4) & 0xf0;
1320 		}
1321 
1322 		if (of_property_read_bool(child, "silabs,disable-high"))
1323 			config[num].out_format_drv_bits |= 0x10;
1324 
1325 		config[num].synth_master =
1326 			of_property_read_bool(child, "silabs,synth-master");
1327 
1328 		config[num].always_on =
1329 			of_property_read_bool(child, "always-on");
1330 	}
1331 
1332 	return 0;
1333 
1334 put_child:
1335 	of_node_put(child);
1336 	return -EINVAL;
1337 }
1338 
1339 /*
1340  * If not pre-configured, calculate and set the PLL configuration manually.
1341  * For low-jitter performance, the PLL should be set such that the synthesizers
1342  * only need integer division.
1343  * Without any user guidance, we'll set the PLL to 14GHz, which still allows
1344  * the chip to generate any frequency on its outputs, but jitter performance
1345  * may be sub-optimal.
1346  */
si5341_initialize_pll(struct clk_si5341 * data)1347 static int si5341_initialize_pll(struct clk_si5341 *data)
1348 {
1349 	struct device_node *np = data->i2c_client->dev.of_node;
1350 	u32 m_num = 0;
1351 	u32 m_den = 0;
1352 	int sel;
1353 
1354 	if (of_property_read_u32(np, "silabs,pll-m-num", &m_num)) {
1355 		dev_err(&data->i2c_client->dev,
1356 			"PLL configuration requires silabs,pll-m-num\n");
1357 	}
1358 	if (of_property_read_u32(np, "silabs,pll-m-den", &m_den)) {
1359 		dev_err(&data->i2c_client->dev,
1360 			"PLL configuration requires silabs,pll-m-den\n");
1361 	}
1362 
1363 	if (!m_num || !m_den) {
1364 		dev_err(&data->i2c_client->dev,
1365 			"PLL configuration invalid, assume 14GHz\n");
1366 		sel = si5341_clk_get_selected_input(data);
1367 		if (sel < 0)
1368 			return sel;
1369 
1370 		m_den = clk_get_rate(data->input_clk[sel]) / 10;
1371 		m_num = 1400000000;
1372 	}
1373 
1374 	return si5341_encode_44_32(data->regmap,
1375 			SI5341_PLL_M_NUM, m_num, m_den);
1376 }
1377 
si5341_clk_select_active_input(struct clk_si5341 * data)1378 static int si5341_clk_select_active_input(struct clk_si5341 *data)
1379 {
1380 	int res;
1381 	int err;
1382 	int i;
1383 
1384 	res = si5341_clk_get_selected_input(data);
1385 	if (res < 0)
1386 		return res;
1387 
1388 	/* If the current register setting is invalid, pick the first input */
1389 	if (!data->input_clk[res]) {
1390 		dev_dbg(&data->i2c_client->dev,
1391 			"Input %d not connected, rerouting\n", res);
1392 		res = -ENODEV;
1393 		for (i = 0; i < SI5341_NUM_INPUTS; ++i) {
1394 			if (data->input_clk[i]) {
1395 				res = i;
1396 				break;
1397 			}
1398 		}
1399 		if (res < 0) {
1400 			dev_err(&data->i2c_client->dev,
1401 				"No clock input available\n");
1402 			return res;
1403 		}
1404 	}
1405 
1406 	/* Make sure the selected clock is also enabled and routed */
1407 	err = si5341_clk_reparent(data, res);
1408 	if (err < 0)
1409 		return err;
1410 
1411 	err = clk_prepare_enable(data->input_clk[res]);
1412 	if (err < 0)
1413 		return err;
1414 
1415 	return res;
1416 }
1417 
si5341_probe(struct i2c_client * client,const struct i2c_device_id * id)1418 static int si5341_probe(struct i2c_client *client,
1419 		const struct i2c_device_id *id)
1420 {
1421 	struct clk_si5341 *data;
1422 	struct clk_init_data init;
1423 	struct clk *input;
1424 	const char *root_clock_name;
1425 	const char *synth_clock_names[SI5341_NUM_SYNTH];
1426 	int err;
1427 	unsigned int i;
1428 	struct clk_si5341_output_config config[SI5341_MAX_NUM_OUTPUTS];
1429 	bool initialization_required;
1430 	u32 status;
1431 
1432 	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
1433 	if (!data)
1434 		return -ENOMEM;
1435 
1436 	data->i2c_client = client;
1437 
1438 	/* Must be done before otherwise touching hardware */
1439 	err = si5341_wait_device_ready(client);
1440 	if (err)
1441 		return err;
1442 
1443 	for (i = 0; i < SI5341_NUM_INPUTS; ++i) {
1444 		input = devm_clk_get(&client->dev, si5341_input_clock_names[i]);
1445 		if (IS_ERR(input)) {
1446 			if (PTR_ERR(input) == -EPROBE_DEFER)
1447 				return -EPROBE_DEFER;
1448 			data->input_clk_name[i] = si5341_input_clock_names[i];
1449 		} else {
1450 			data->input_clk[i] = input;
1451 			data->input_clk_name[i] = __clk_get_name(input);
1452 		}
1453 	}
1454 
1455 	err = si5341_dt_parse_dt(client, config);
1456 	if (err)
1457 		return err;
1458 
1459 	if (of_property_read_string(client->dev.of_node, "clock-output-names",
1460 			&init.name))
1461 		init.name = client->dev.of_node->name;
1462 	root_clock_name = init.name;
1463 
1464 	data->regmap = devm_regmap_init_i2c(client, &si5341_regmap_config);
1465 	if (IS_ERR(data->regmap))
1466 		return PTR_ERR(data->regmap);
1467 
1468 	i2c_set_clientdata(client, data);
1469 
1470 	err = si5341_probe_chip_id(data);
1471 	if (err < 0)
1472 		return err;
1473 
1474 	if (of_property_read_bool(client->dev.of_node, "silabs,reprogram")) {
1475 		initialization_required = true;
1476 	} else {
1477 		err = si5341_is_programmed_already(data);
1478 		if (err < 0)
1479 			return err;
1480 
1481 		initialization_required = !err;
1482 	}
1483 
1484 	if (initialization_required) {
1485 		/* Populate the regmap cache in preparation for "cache only" */
1486 		err = si5341_read_settings(data);
1487 		if (err < 0)
1488 			return err;
1489 
1490 		err = si5341_send_preamble(data);
1491 		if (err < 0)
1492 			return err;
1493 
1494 		/*
1495 		 * We intend to send all 'final' register values in a single
1496 		 * transaction. So cache all register writes until we're done
1497 		 * configuring.
1498 		 */
1499 		regcache_cache_only(data->regmap, true);
1500 
1501 		/* Write the configuration pairs from the firmware blob */
1502 		err = si5341_write_multiple(data, si5341_reg_defaults,
1503 					ARRAY_SIZE(si5341_reg_defaults));
1504 		if (err < 0)
1505 			return err;
1506 	}
1507 
1508 	/* Input must be up and running at this point */
1509 	err = si5341_clk_select_active_input(data);
1510 	if (err < 0)
1511 		return err;
1512 
1513 	if (initialization_required) {
1514 		/* PLL configuration is required */
1515 		err = si5341_initialize_pll(data);
1516 		if (err < 0)
1517 			return err;
1518 	}
1519 
1520 	/* Register the PLL */
1521 	init.parent_names = data->input_clk_name;
1522 	init.num_parents = SI5341_NUM_INPUTS;
1523 	init.ops = &si5341_clk_ops;
1524 	init.flags = 0;
1525 	data->hw.init = &init;
1526 
1527 	err = devm_clk_hw_register(&client->dev, &data->hw);
1528 	if (err) {
1529 		dev_err(&client->dev, "clock registration failed\n");
1530 		return err;
1531 	}
1532 
1533 	init.num_parents = 1;
1534 	init.parent_names = &root_clock_name;
1535 	init.ops = &si5341_synth_clk_ops;
1536 	for (i = 0; i < data->num_synth; ++i) {
1537 		synth_clock_names[i] = devm_kasprintf(&client->dev, GFP_KERNEL,
1538 				"%s.N%u", client->dev.of_node->name, i);
1539 		init.name = synth_clock_names[i];
1540 		data->synth[i].index = i;
1541 		data->synth[i].data = data;
1542 		data->synth[i].hw.init = &init;
1543 		err = devm_clk_hw_register(&client->dev, &data->synth[i].hw);
1544 		if (err) {
1545 			dev_err(&client->dev,
1546 				"synth N%u registration failed\n", i);
1547 		}
1548 	}
1549 
1550 	init.num_parents = data->num_synth;
1551 	init.parent_names = synth_clock_names;
1552 	init.ops = &si5341_output_clk_ops;
1553 	for (i = 0; i < data->num_outputs; ++i) {
1554 		init.name = kasprintf(GFP_KERNEL, "%s.%d",
1555 			client->dev.of_node->name, i);
1556 		init.flags = config[i].synth_master ? CLK_SET_RATE_PARENT : 0;
1557 		data->clk[i].index = i;
1558 		data->clk[i].data = data;
1559 		data->clk[i].hw.init = &init;
1560 		if (config[i].out_format_drv_bits & 0x07) {
1561 			regmap_write(data->regmap,
1562 				SI5341_OUT_FORMAT(&data->clk[i]),
1563 				config[i].out_format_drv_bits);
1564 			regmap_write(data->regmap,
1565 				SI5341_OUT_CM(&data->clk[i]),
1566 				config[i].out_cm_ampl_bits);
1567 		}
1568 		err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
1569 		kfree(init.name); /* clock framework made a copy of the name */
1570 		if (err) {
1571 			dev_err(&client->dev,
1572 				"output %u registration failed\n", i);
1573 			return err;
1574 		}
1575 		if (config[i].always_on)
1576 			clk_prepare(data->clk[i].hw.clk);
1577 	}
1578 
1579 	err = devm_of_clk_add_hw_provider(&client->dev, of_clk_si5341_get,
1580 			data);
1581 	if (err) {
1582 		dev_err(&client->dev, "unable to add clk provider\n");
1583 		return err;
1584 	}
1585 
1586 	if (initialization_required) {
1587 		/* Synchronize */
1588 		regcache_cache_only(data->regmap, false);
1589 		err = regcache_sync(data->regmap);
1590 		if (err < 0)
1591 			return err;
1592 
1593 		err = si5341_finalize_defaults(data);
1594 		if (err < 0)
1595 			return err;
1596 	}
1597 
1598 	/* wait for device to report input clock present and PLL lock */
1599 	err = regmap_read_poll_timeout(data->regmap, SI5341_STATUS, status,
1600 		!(status & (SI5341_STATUS_LOSREF | SI5341_STATUS_LOL)),
1601 	       10000, 250000);
1602 	if (err) {
1603 		dev_err(&client->dev, "Error waiting for input clock or PLL lock\n");
1604 		return err;
1605 	}
1606 
1607 	/* clear sticky alarm bits from initialization */
1608 	err = regmap_write(data->regmap, SI5341_STATUS_STICKY, 0);
1609 	if (err) {
1610 		dev_err(&client->dev, "unable to clear sticky status\n");
1611 		return err;
1612 	}
1613 
1614 	/* Free the names, clk framework makes copies */
1615 	for (i = 0; i < data->num_synth; ++i)
1616 		 devm_kfree(&client->dev, (void *)synth_clock_names[i]);
1617 
1618 	return 0;
1619 }
1620 
1621 static const struct i2c_device_id si5341_id[] = {
1622 	{ "si5340", 0 },
1623 	{ "si5341", 1 },
1624 	{ "si5342", 2 },
1625 	{ "si5344", 4 },
1626 	{ "si5345", 5 },
1627 	{ }
1628 };
1629 MODULE_DEVICE_TABLE(i2c, si5341_id);
1630 
1631 static const struct of_device_id clk_si5341_of_match[] = {
1632 	{ .compatible = "silabs,si5340" },
1633 	{ .compatible = "silabs,si5341" },
1634 	{ .compatible = "silabs,si5342" },
1635 	{ .compatible = "silabs,si5344" },
1636 	{ .compatible = "silabs,si5345" },
1637 	{ }
1638 };
1639 MODULE_DEVICE_TABLE(of, clk_si5341_of_match);
1640 
1641 static struct i2c_driver si5341_driver = {
1642 	.driver = {
1643 		.name = "si5341",
1644 		.of_match_table = clk_si5341_of_match,
1645 	},
1646 	.probe		= si5341_probe,
1647 	.id_table	= si5341_id,
1648 };
1649 module_i2c_driver(si5341_driver);
1650 
1651 MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
1652 MODULE_DESCRIPTION("Si5341 driver");
1653 MODULE_LICENSE("GPL");
1654