• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH Timer Support - CMT
4  *
5  *  Copyright (C) 2008 Magnus Damm
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ioport.h>
17 #include <linux/irq.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_domain.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_timer.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 
28 #ifdef CONFIG_SUPERH
29 #include <asm/platform_early.h>
30 #endif
31 
32 struct sh_cmt_device;
33 
34 /*
35  * The CMT comes in 5 different identified flavours, depending not only on the
36  * SoC but also on the particular instance. The following table lists the main
37  * characteristics of those flavours.
38  *
39  *			16B	32B	32B-F	48B	R-Car Gen2
40  * -----------------------------------------------------------------------------
41  * Channels		2	1/4	1	6	2/8
42  * Control Width	16	16	16	16	32
43  * Counter Width	16	32	32	32/48	32/48
44  * Shared Start/Stop	Y	Y	Y	Y	N
45  *
46  * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47  * located in the channel registers block. All other versions have a shared
48  * start/stop register located in the global space.
49  *
50  * Channels are indexed from 0 to N-1 in the documentation. The channel index
51  * infers the start/stop bit position in the control register and the channel
52  * registers block address. Some CMT instances have a subset of channels
53  * available, in which case the index in the documentation doesn't match the
54  * "real" index as implemented in hardware. This is for instance the case with
55  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56  * in the documentation but using start/stop bit 5 and having its registers
57  * block at 0x60.
58  *
59  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
60  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
61  */
62 
63 enum sh_cmt_model {
64 	SH_CMT_16BIT,
65 	SH_CMT_32BIT,
66 	SH_CMT_48BIT,
67 	SH_CMT0_RCAR_GEN2,
68 	SH_CMT1_RCAR_GEN2,
69 };
70 
71 struct sh_cmt_info {
72 	enum sh_cmt_model model;
73 
74 	unsigned int channels_mask;
75 
76 	unsigned long width; /* 16 or 32 bit version of hardware block */
77 	u32 overflow_bit;
78 	u32 clear_bits;
79 
80 	/* callbacks for CMSTR and CMCSR access */
81 	u32 (*read_control)(void __iomem *base, unsigned long offs);
82 	void (*write_control)(void __iomem *base, unsigned long offs,
83 			      u32 value);
84 
85 	/* callbacks for CMCNT and CMCOR access */
86 	u32 (*read_count)(void __iomem *base, unsigned long offs);
87 	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
88 };
89 
90 struct sh_cmt_channel {
91 	struct sh_cmt_device *cmt;
92 
93 	unsigned int index;	/* Index in the documentation */
94 	unsigned int hwidx;	/* Real hardware index */
95 
96 	void __iomem *iostart;
97 	void __iomem *ioctrl;
98 
99 	unsigned int timer_bit;
100 	unsigned long flags;
101 	u32 match_value;
102 	u32 next_match_value;
103 	u32 max_match_value;
104 	raw_spinlock_t lock;
105 	struct clock_event_device ced;
106 	struct clocksource cs;
107 	u64 total_cycles;
108 	bool cs_enabled;
109 };
110 
111 struct sh_cmt_device {
112 	struct platform_device *pdev;
113 
114 	const struct sh_cmt_info *info;
115 
116 	void __iomem *mapbase;
117 	struct clk *clk;
118 	unsigned long rate;
119 
120 	raw_spinlock_t lock; /* Protect the shared start/stop register */
121 
122 	struct sh_cmt_channel *channels;
123 	unsigned int num_channels;
124 	unsigned int hw_channels;
125 
126 	bool has_clockevent;
127 	bool has_clocksource;
128 };
129 
130 #define SH_CMT16_CMCSR_CMF		(1 << 7)
131 #define SH_CMT16_CMCSR_CMIE		(1 << 6)
132 #define SH_CMT16_CMCSR_CKS8		(0 << 0)
133 #define SH_CMT16_CMCSR_CKS32		(1 << 0)
134 #define SH_CMT16_CMCSR_CKS128		(2 << 0)
135 #define SH_CMT16_CMCSR_CKS512		(3 << 0)
136 #define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
137 
138 #define SH_CMT32_CMCSR_CMF		(1 << 15)
139 #define SH_CMT32_CMCSR_OVF		(1 << 14)
140 #define SH_CMT32_CMCSR_WRFLG		(1 << 13)
141 #define SH_CMT32_CMCSR_STTF		(1 << 12)
142 #define SH_CMT32_CMCSR_STPF		(1 << 11)
143 #define SH_CMT32_CMCSR_SSIE		(1 << 10)
144 #define SH_CMT32_CMCSR_CMS		(1 << 9)
145 #define SH_CMT32_CMCSR_CMM		(1 << 8)
146 #define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
147 #define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
148 #define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
149 #define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
150 #define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
151 #define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
152 #define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
153 #define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
154 #define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
156 #define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
157 
sh_cmt_read16(void __iomem * base,unsigned long offs)158 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
159 {
160 	return ioread16(base + (offs << 1));
161 }
162 
sh_cmt_read32(void __iomem * base,unsigned long offs)163 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
164 {
165 	return ioread32(base + (offs << 2));
166 }
167 
sh_cmt_write16(void __iomem * base,unsigned long offs,u32 value)168 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
169 {
170 	iowrite16(value, base + (offs << 1));
171 }
172 
sh_cmt_write32(void __iomem * base,unsigned long offs,u32 value)173 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
174 {
175 	iowrite32(value, base + (offs << 2));
176 }
177 
178 static const struct sh_cmt_info sh_cmt_info[] = {
179 	[SH_CMT_16BIT] = {
180 		.model = SH_CMT_16BIT,
181 		.width = 16,
182 		.overflow_bit = SH_CMT16_CMCSR_CMF,
183 		.clear_bits = ~SH_CMT16_CMCSR_CMF,
184 		.read_control = sh_cmt_read16,
185 		.write_control = sh_cmt_write16,
186 		.read_count = sh_cmt_read16,
187 		.write_count = sh_cmt_write16,
188 	},
189 	[SH_CMT_32BIT] = {
190 		.model = SH_CMT_32BIT,
191 		.width = 32,
192 		.overflow_bit = SH_CMT32_CMCSR_CMF,
193 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
194 		.read_control = sh_cmt_read16,
195 		.write_control = sh_cmt_write16,
196 		.read_count = sh_cmt_read32,
197 		.write_count = sh_cmt_write32,
198 	},
199 	[SH_CMT_48BIT] = {
200 		.model = SH_CMT_48BIT,
201 		.channels_mask = 0x3f,
202 		.width = 32,
203 		.overflow_bit = SH_CMT32_CMCSR_CMF,
204 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
205 		.read_control = sh_cmt_read32,
206 		.write_control = sh_cmt_write32,
207 		.read_count = sh_cmt_read32,
208 		.write_count = sh_cmt_write32,
209 	},
210 	[SH_CMT0_RCAR_GEN2] = {
211 		.model = SH_CMT0_RCAR_GEN2,
212 		.channels_mask = 0x60,
213 		.width = 32,
214 		.overflow_bit = SH_CMT32_CMCSR_CMF,
215 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
216 		.read_control = sh_cmt_read32,
217 		.write_control = sh_cmt_write32,
218 		.read_count = sh_cmt_read32,
219 		.write_count = sh_cmt_write32,
220 	},
221 	[SH_CMT1_RCAR_GEN2] = {
222 		.model = SH_CMT1_RCAR_GEN2,
223 		.channels_mask = 0xff,
224 		.width = 32,
225 		.overflow_bit = SH_CMT32_CMCSR_CMF,
226 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
227 		.read_control = sh_cmt_read32,
228 		.write_control = sh_cmt_write32,
229 		.read_count = sh_cmt_read32,
230 		.write_count = sh_cmt_write32,
231 	},
232 };
233 
234 #define CMCSR 0 /* channel register */
235 #define CMCNT 1 /* channel register */
236 #define CMCOR 2 /* channel register */
237 
sh_cmt_read_cmstr(struct sh_cmt_channel * ch)238 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
239 {
240 	if (ch->iostart)
241 		return ch->cmt->info->read_control(ch->iostart, 0);
242 	else
243 		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
244 }
245 
sh_cmt_write_cmstr(struct sh_cmt_channel * ch,u32 value)246 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
247 {
248 	if (ch->iostart)
249 		ch->cmt->info->write_control(ch->iostart, 0, value);
250 	else
251 		ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
252 }
253 
sh_cmt_read_cmcsr(struct sh_cmt_channel * ch)254 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
255 {
256 	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
257 }
258 
sh_cmt_write_cmcsr(struct sh_cmt_channel * ch,u32 value)259 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
260 {
261 	ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
262 }
263 
sh_cmt_read_cmcnt(struct sh_cmt_channel * ch)264 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
265 {
266 	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
267 }
268 
sh_cmt_write_cmcnt(struct sh_cmt_channel * ch,u32 value)269 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
270 {
271 	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
272 }
273 
sh_cmt_write_cmcor(struct sh_cmt_channel * ch,u32 value)274 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
275 {
276 	ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
277 }
278 
sh_cmt_get_counter(struct sh_cmt_channel * ch,u32 * has_wrapped)279 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
280 {
281 	u32 v1, v2, v3;
282 	u32 o1, o2;
283 
284 	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
285 
286 	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
287 	do {
288 		o2 = o1;
289 		v1 = sh_cmt_read_cmcnt(ch);
290 		v2 = sh_cmt_read_cmcnt(ch);
291 		v3 = sh_cmt_read_cmcnt(ch);
292 		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
293 	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
294 			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
295 
296 	*has_wrapped = o1;
297 	return v2;
298 }
299 
sh_cmt_start_stop_ch(struct sh_cmt_channel * ch,int start)300 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
301 {
302 	unsigned long flags;
303 	u32 value;
304 
305 	/* start stop register shared by multiple timer channels */
306 	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
307 	value = sh_cmt_read_cmstr(ch);
308 
309 	if (start)
310 		value |= 1 << ch->timer_bit;
311 	else
312 		value &= ~(1 << ch->timer_bit);
313 
314 	sh_cmt_write_cmstr(ch, value);
315 	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
316 }
317 
sh_cmt_enable(struct sh_cmt_channel * ch)318 static int sh_cmt_enable(struct sh_cmt_channel *ch)
319 {
320 	int k, ret;
321 
322 	pm_runtime_get_sync(&ch->cmt->pdev->dev);
323 	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
324 
325 	/* enable clock */
326 	ret = clk_enable(ch->cmt->clk);
327 	if (ret) {
328 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
329 			ch->index);
330 		goto err0;
331 	}
332 
333 	/* make sure channel is disabled */
334 	sh_cmt_start_stop_ch(ch, 0);
335 
336 	/* configure channel, periodic mode and maximum timeout */
337 	if (ch->cmt->info->width == 16) {
338 		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
339 				   SH_CMT16_CMCSR_CKS512);
340 	} else {
341 		sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
342 				   SH_CMT32_CMCSR_CMTOUT_IE |
343 				   SH_CMT32_CMCSR_CMR_IRQ |
344 				   SH_CMT32_CMCSR_CKS_RCLK8);
345 	}
346 
347 	sh_cmt_write_cmcor(ch, 0xffffffff);
348 	sh_cmt_write_cmcnt(ch, 0);
349 
350 	/*
351 	 * According to the sh73a0 user's manual, as CMCNT can be operated
352 	 * only by the RCLK (Pseudo 32 kHz), there's one restriction on
353 	 * modifying CMCNT register; two RCLK cycles are necessary before
354 	 * this register is either read or any modification of the value
355 	 * it holds is reflected in the LSI's actual operation.
356 	 *
357 	 * While at it, we're supposed to clear out the CMCNT as of this
358 	 * moment, so make sure it's processed properly here.  This will
359 	 * take RCLKx2 at maximum.
360 	 */
361 	for (k = 0; k < 100; k++) {
362 		if (!sh_cmt_read_cmcnt(ch))
363 			break;
364 		udelay(1);
365 	}
366 
367 	if (sh_cmt_read_cmcnt(ch)) {
368 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
369 			ch->index);
370 		ret = -ETIMEDOUT;
371 		goto err1;
372 	}
373 
374 	/* enable channel */
375 	sh_cmt_start_stop_ch(ch, 1);
376 	return 0;
377  err1:
378 	/* stop clock */
379 	clk_disable(ch->cmt->clk);
380 
381  err0:
382 	return ret;
383 }
384 
sh_cmt_disable(struct sh_cmt_channel * ch)385 static void sh_cmt_disable(struct sh_cmt_channel *ch)
386 {
387 	/* disable channel */
388 	sh_cmt_start_stop_ch(ch, 0);
389 
390 	/* disable interrupts in CMT block */
391 	sh_cmt_write_cmcsr(ch, 0);
392 
393 	/* stop clock */
394 	clk_disable(ch->cmt->clk);
395 
396 	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
397 	pm_runtime_put(&ch->cmt->pdev->dev);
398 }
399 
400 /* private flags */
401 #define FLAG_CLOCKEVENT (1 << 0)
402 #define FLAG_CLOCKSOURCE (1 << 1)
403 #define FLAG_REPROGRAM (1 << 2)
404 #define FLAG_SKIPEVENT (1 << 3)
405 #define FLAG_IRQCONTEXT (1 << 4)
406 
sh_cmt_clock_event_program_verify(struct sh_cmt_channel * ch,int absolute)407 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
408 					      int absolute)
409 {
410 	u32 value = ch->next_match_value;
411 	u32 new_match;
412 	u32 delay = 0;
413 	u32 now = 0;
414 	u32 has_wrapped;
415 
416 	now = sh_cmt_get_counter(ch, &has_wrapped);
417 	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
418 
419 	if (has_wrapped) {
420 		/* we're competing with the interrupt handler.
421 		 *  -> let the interrupt handler reprogram the timer.
422 		 *  -> interrupt number two handles the event.
423 		 */
424 		ch->flags |= FLAG_SKIPEVENT;
425 		return;
426 	}
427 
428 	if (absolute)
429 		now = 0;
430 
431 	do {
432 		/* reprogram the timer hardware,
433 		 * but don't save the new match value yet.
434 		 */
435 		new_match = now + value + delay;
436 		if (new_match > ch->max_match_value)
437 			new_match = ch->max_match_value;
438 
439 		sh_cmt_write_cmcor(ch, new_match);
440 
441 		now = sh_cmt_get_counter(ch, &has_wrapped);
442 		if (has_wrapped && (new_match > ch->match_value)) {
443 			/* we are changing to a greater match value,
444 			 * so this wrap must be caused by the counter
445 			 * matching the old value.
446 			 * -> first interrupt reprograms the timer.
447 			 * -> interrupt number two handles the event.
448 			 */
449 			ch->flags |= FLAG_SKIPEVENT;
450 			break;
451 		}
452 
453 		if (has_wrapped) {
454 			/* we are changing to a smaller match value,
455 			 * so the wrap must be caused by the counter
456 			 * matching the new value.
457 			 * -> save programmed match value.
458 			 * -> let isr handle the event.
459 			 */
460 			ch->match_value = new_match;
461 			break;
462 		}
463 
464 		/* be safe: verify hardware settings */
465 		if (now < new_match) {
466 			/* timer value is below match value, all good.
467 			 * this makes sure we won't miss any match events.
468 			 * -> save programmed match value.
469 			 * -> let isr handle the event.
470 			 */
471 			ch->match_value = new_match;
472 			break;
473 		}
474 
475 		/* the counter has reached a value greater
476 		 * than our new match value. and since the
477 		 * has_wrapped flag isn't set we must have
478 		 * programmed a too close event.
479 		 * -> increase delay and retry.
480 		 */
481 		if (delay)
482 			delay <<= 1;
483 		else
484 			delay = 1;
485 
486 		if (!delay)
487 			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
488 				 ch->index);
489 
490 	} while (delay);
491 }
492 
__sh_cmt_set_next(struct sh_cmt_channel * ch,unsigned long delta)493 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
494 {
495 	if (delta > ch->max_match_value)
496 		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
497 			 ch->index);
498 
499 	ch->next_match_value = delta;
500 	sh_cmt_clock_event_program_verify(ch, 0);
501 }
502 
sh_cmt_set_next(struct sh_cmt_channel * ch,unsigned long delta)503 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
504 {
505 	unsigned long flags;
506 
507 	raw_spin_lock_irqsave(&ch->lock, flags);
508 	__sh_cmt_set_next(ch, delta);
509 	raw_spin_unlock_irqrestore(&ch->lock, flags);
510 }
511 
sh_cmt_interrupt(int irq,void * dev_id)512 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
513 {
514 	struct sh_cmt_channel *ch = dev_id;
515 
516 	/* clear flags */
517 	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
518 			   ch->cmt->info->clear_bits);
519 
520 	/* update clock source counter to begin with if enabled
521 	 * the wrap flag should be cleared by the timer specific
522 	 * isr before we end up here.
523 	 */
524 	if (ch->flags & FLAG_CLOCKSOURCE)
525 		ch->total_cycles += ch->match_value + 1;
526 
527 	if (!(ch->flags & FLAG_REPROGRAM))
528 		ch->next_match_value = ch->max_match_value;
529 
530 	ch->flags |= FLAG_IRQCONTEXT;
531 
532 	if (ch->flags & FLAG_CLOCKEVENT) {
533 		if (!(ch->flags & FLAG_SKIPEVENT)) {
534 			if (clockevent_state_oneshot(&ch->ced)) {
535 				ch->next_match_value = ch->max_match_value;
536 				ch->flags |= FLAG_REPROGRAM;
537 			}
538 
539 			ch->ced.event_handler(&ch->ced);
540 		}
541 	}
542 
543 	ch->flags &= ~FLAG_SKIPEVENT;
544 
545 	if (ch->flags & FLAG_REPROGRAM) {
546 		ch->flags &= ~FLAG_REPROGRAM;
547 		sh_cmt_clock_event_program_verify(ch, 1);
548 
549 		if (ch->flags & FLAG_CLOCKEVENT)
550 			if ((clockevent_state_shutdown(&ch->ced))
551 			    || (ch->match_value == ch->next_match_value))
552 				ch->flags &= ~FLAG_REPROGRAM;
553 	}
554 
555 	ch->flags &= ~FLAG_IRQCONTEXT;
556 
557 	return IRQ_HANDLED;
558 }
559 
sh_cmt_start(struct sh_cmt_channel * ch,unsigned long flag)560 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
561 {
562 	int ret = 0;
563 	unsigned long flags;
564 
565 	raw_spin_lock_irqsave(&ch->lock, flags);
566 
567 	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
568 		ret = sh_cmt_enable(ch);
569 
570 	if (ret)
571 		goto out;
572 	ch->flags |= flag;
573 
574 	/* setup timeout if no clockevent */
575 	if (ch->cmt->num_channels == 1 &&
576 	    flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
577 		__sh_cmt_set_next(ch, ch->max_match_value);
578  out:
579 	raw_spin_unlock_irqrestore(&ch->lock, flags);
580 
581 	return ret;
582 }
583 
sh_cmt_stop(struct sh_cmt_channel * ch,unsigned long flag)584 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
585 {
586 	unsigned long flags;
587 	unsigned long f;
588 
589 	raw_spin_lock_irqsave(&ch->lock, flags);
590 
591 	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
592 	ch->flags &= ~flag;
593 
594 	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
595 		sh_cmt_disable(ch);
596 
597 	/* adjust the timeout to maximum if only clocksource left */
598 	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
599 		__sh_cmt_set_next(ch, ch->max_match_value);
600 
601 	raw_spin_unlock_irqrestore(&ch->lock, flags);
602 }
603 
cs_to_sh_cmt(struct clocksource * cs)604 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
605 {
606 	return container_of(cs, struct sh_cmt_channel, cs);
607 }
608 
sh_cmt_clocksource_read(struct clocksource * cs)609 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
610 {
611 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
612 	u32 has_wrapped;
613 
614 	if (ch->cmt->num_channels == 1) {
615 		unsigned long flags;
616 		u64 value;
617 		u32 raw;
618 
619 		raw_spin_lock_irqsave(&ch->lock, flags);
620 		value = ch->total_cycles;
621 		raw = sh_cmt_get_counter(ch, &has_wrapped);
622 
623 		if (unlikely(has_wrapped))
624 			raw += ch->match_value + 1;
625 		raw_spin_unlock_irqrestore(&ch->lock, flags);
626 
627 		return value + raw;
628 	}
629 
630 	return sh_cmt_get_counter(ch, &has_wrapped);
631 }
632 
sh_cmt_clocksource_enable(struct clocksource * cs)633 static int sh_cmt_clocksource_enable(struct clocksource *cs)
634 {
635 	int ret;
636 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
637 
638 	WARN_ON(ch->cs_enabled);
639 
640 	ch->total_cycles = 0;
641 
642 	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
643 	if (!ret)
644 		ch->cs_enabled = true;
645 
646 	return ret;
647 }
648 
sh_cmt_clocksource_disable(struct clocksource * cs)649 static void sh_cmt_clocksource_disable(struct clocksource *cs)
650 {
651 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
652 
653 	WARN_ON(!ch->cs_enabled);
654 
655 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
656 	ch->cs_enabled = false;
657 }
658 
sh_cmt_clocksource_suspend(struct clocksource * cs)659 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
660 {
661 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
662 
663 	if (!ch->cs_enabled)
664 		return;
665 
666 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
667 	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
668 }
669 
sh_cmt_clocksource_resume(struct clocksource * cs)670 static void sh_cmt_clocksource_resume(struct clocksource *cs)
671 {
672 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
673 
674 	if (!ch->cs_enabled)
675 		return;
676 
677 	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
678 	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
679 }
680 
sh_cmt_register_clocksource(struct sh_cmt_channel * ch,const char * name)681 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
682 				       const char *name)
683 {
684 	struct clocksource *cs = &ch->cs;
685 
686 	cs->name = name;
687 	cs->rating = 125;
688 	cs->read = sh_cmt_clocksource_read;
689 	cs->enable = sh_cmt_clocksource_enable;
690 	cs->disable = sh_cmt_clocksource_disable;
691 	cs->suspend = sh_cmt_clocksource_suspend;
692 	cs->resume = sh_cmt_clocksource_resume;
693 	cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
694 	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
695 
696 	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
697 		 ch->index);
698 
699 	clocksource_register_hz(cs, ch->cmt->rate);
700 	return 0;
701 }
702 
ced_to_sh_cmt(struct clock_event_device * ced)703 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
704 {
705 	return container_of(ced, struct sh_cmt_channel, ced);
706 }
707 
sh_cmt_clock_event_start(struct sh_cmt_channel * ch,int periodic)708 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
709 {
710 	sh_cmt_start(ch, FLAG_CLOCKEVENT);
711 
712 	if (periodic)
713 		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
714 	else
715 		sh_cmt_set_next(ch, ch->max_match_value);
716 }
717 
sh_cmt_clock_event_shutdown(struct clock_event_device * ced)718 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
719 {
720 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
721 
722 	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
723 	return 0;
724 }
725 
sh_cmt_clock_event_set_state(struct clock_event_device * ced,int periodic)726 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
727 					int periodic)
728 {
729 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
730 
731 	/* deal with old setting first */
732 	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
733 		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
734 
735 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
736 		 ch->index, periodic ? "periodic" : "oneshot");
737 	sh_cmt_clock_event_start(ch, periodic);
738 	return 0;
739 }
740 
sh_cmt_clock_event_set_oneshot(struct clock_event_device * ced)741 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
742 {
743 	return sh_cmt_clock_event_set_state(ced, 0);
744 }
745 
sh_cmt_clock_event_set_periodic(struct clock_event_device * ced)746 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
747 {
748 	return sh_cmt_clock_event_set_state(ced, 1);
749 }
750 
sh_cmt_clock_event_next(unsigned long delta,struct clock_event_device * ced)751 static int sh_cmt_clock_event_next(unsigned long delta,
752 				   struct clock_event_device *ced)
753 {
754 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
755 
756 	BUG_ON(!clockevent_state_oneshot(ced));
757 	if (likely(ch->flags & FLAG_IRQCONTEXT))
758 		ch->next_match_value = delta - 1;
759 	else
760 		sh_cmt_set_next(ch, delta - 1);
761 
762 	return 0;
763 }
764 
sh_cmt_clock_event_suspend(struct clock_event_device * ced)765 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
766 {
767 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
768 
769 	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
770 	clk_unprepare(ch->cmt->clk);
771 }
772 
sh_cmt_clock_event_resume(struct clock_event_device * ced)773 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
774 {
775 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
776 
777 	clk_prepare(ch->cmt->clk);
778 	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
779 }
780 
sh_cmt_register_clockevent(struct sh_cmt_channel * ch,const char * name)781 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
782 				      const char *name)
783 {
784 	struct clock_event_device *ced = &ch->ced;
785 	int irq;
786 	int ret;
787 
788 	irq = platform_get_irq(ch->cmt->pdev, ch->index);
789 	if (irq < 0)
790 		return irq;
791 
792 	ret = request_irq(irq, sh_cmt_interrupt,
793 			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
794 			  dev_name(&ch->cmt->pdev->dev), ch);
795 	if (ret) {
796 		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
797 			ch->index, irq);
798 		return ret;
799 	}
800 
801 	ced->name = name;
802 	ced->features = CLOCK_EVT_FEAT_PERIODIC;
803 	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
804 	ced->rating = 125;
805 	ced->cpumask = cpu_possible_mask;
806 	ced->set_next_event = sh_cmt_clock_event_next;
807 	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
808 	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
809 	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
810 	ced->suspend = sh_cmt_clock_event_suspend;
811 	ced->resume = sh_cmt_clock_event_resume;
812 
813 	/* TODO: calculate good shift from rate and counter bit width */
814 	ced->shift = 32;
815 	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
816 	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
817 	ced->max_delta_ticks = ch->max_match_value;
818 	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
819 	ced->min_delta_ticks = 0x1f;
820 
821 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
822 		 ch->index);
823 	clockevents_register_device(ced);
824 
825 	return 0;
826 }
827 
sh_cmt_register(struct sh_cmt_channel * ch,const char * name,bool clockevent,bool clocksource)828 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
829 			   bool clockevent, bool clocksource)
830 {
831 	int ret;
832 
833 	if (clockevent) {
834 		ch->cmt->has_clockevent = true;
835 		ret = sh_cmt_register_clockevent(ch, name);
836 		if (ret < 0)
837 			return ret;
838 	}
839 
840 	if (clocksource) {
841 		ch->cmt->has_clocksource = true;
842 		sh_cmt_register_clocksource(ch, name);
843 	}
844 
845 	return 0;
846 }
847 
sh_cmt_setup_channel(struct sh_cmt_channel * ch,unsigned int index,unsigned int hwidx,bool clockevent,bool clocksource,struct sh_cmt_device * cmt)848 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
849 				unsigned int hwidx, bool clockevent,
850 				bool clocksource, struct sh_cmt_device *cmt)
851 {
852 	int ret;
853 
854 	/* Skip unused channels. */
855 	if (!clockevent && !clocksource)
856 		return 0;
857 
858 	ch->cmt = cmt;
859 	ch->index = index;
860 	ch->hwidx = hwidx;
861 	ch->timer_bit = hwidx;
862 
863 	/*
864 	 * Compute the address of the channel control register block. For the
865 	 * timers with a per-channel start/stop register, compute its address
866 	 * as well.
867 	 */
868 	switch (cmt->info->model) {
869 	case SH_CMT_16BIT:
870 		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
871 		break;
872 	case SH_CMT_32BIT:
873 	case SH_CMT_48BIT:
874 		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
875 		break;
876 	case SH_CMT0_RCAR_GEN2:
877 	case SH_CMT1_RCAR_GEN2:
878 		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
879 		ch->ioctrl = ch->iostart + 0x10;
880 		ch->timer_bit = 0;
881 		break;
882 	}
883 
884 	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
885 		ch->max_match_value = ~0;
886 	else
887 		ch->max_match_value = (1 << cmt->info->width) - 1;
888 
889 	ch->match_value = ch->max_match_value;
890 	raw_spin_lock_init(&ch->lock);
891 
892 	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
893 			      clockevent, clocksource);
894 	if (ret) {
895 		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
896 			ch->index);
897 		return ret;
898 	}
899 	ch->cs_enabled = false;
900 
901 	return 0;
902 }
903 
sh_cmt_map_memory(struct sh_cmt_device * cmt)904 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
905 {
906 	struct resource *mem;
907 
908 	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
909 	if (!mem) {
910 		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
911 		return -ENXIO;
912 	}
913 
914 	cmt->mapbase = ioremap(mem->start, resource_size(mem));
915 	if (cmt->mapbase == NULL) {
916 		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
917 		return -ENXIO;
918 	}
919 
920 	return 0;
921 }
922 
923 static const struct platform_device_id sh_cmt_id_table[] = {
924 	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
925 	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
926 	{ }
927 };
928 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
929 
930 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
931 	{
932 		/* deprecated, preserved for backward compatibility */
933 		.compatible = "renesas,cmt-48",
934 		.data = &sh_cmt_info[SH_CMT_48BIT]
935 	},
936 	{
937 		/* deprecated, preserved for backward compatibility */
938 		.compatible = "renesas,cmt-48-gen2",
939 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
940 	},
941 	{
942 		.compatible = "renesas,r8a7740-cmt1",
943 		.data = &sh_cmt_info[SH_CMT_48BIT]
944 	},
945 	{
946 		.compatible = "renesas,sh73a0-cmt1",
947 		.data = &sh_cmt_info[SH_CMT_48BIT]
948 	},
949 	{
950 		.compatible = "renesas,rcar-gen2-cmt0",
951 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
952 	},
953 	{
954 		.compatible = "renesas,rcar-gen2-cmt1",
955 		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
956 	},
957 	{
958 		.compatible = "renesas,rcar-gen3-cmt0",
959 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
960 	},
961 	{
962 		.compatible = "renesas,rcar-gen3-cmt1",
963 		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
964 	},
965 	{ }
966 };
967 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
968 
sh_cmt_setup(struct sh_cmt_device * cmt,struct platform_device * pdev)969 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
970 {
971 	unsigned int mask;
972 	unsigned int i;
973 	int ret;
974 
975 	cmt->pdev = pdev;
976 	raw_spin_lock_init(&cmt->lock);
977 
978 	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
979 		cmt->info = of_device_get_match_data(&pdev->dev);
980 		cmt->hw_channels = cmt->info->channels_mask;
981 	} else if (pdev->dev.platform_data) {
982 		struct sh_timer_config *cfg = pdev->dev.platform_data;
983 		const struct platform_device_id *id = pdev->id_entry;
984 
985 		cmt->info = (const struct sh_cmt_info *)id->driver_data;
986 		cmt->hw_channels = cfg->channels_mask;
987 	} else {
988 		dev_err(&cmt->pdev->dev, "missing platform data\n");
989 		return -ENXIO;
990 	}
991 
992 	/* Get hold of clock. */
993 	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
994 	if (IS_ERR(cmt->clk)) {
995 		dev_err(&cmt->pdev->dev, "cannot get clock\n");
996 		return PTR_ERR(cmt->clk);
997 	}
998 
999 	ret = clk_prepare(cmt->clk);
1000 	if (ret < 0)
1001 		goto err_clk_put;
1002 
1003 	/* Determine clock rate. */
1004 	ret = clk_enable(cmt->clk);
1005 	if (ret < 0)
1006 		goto err_clk_unprepare;
1007 
1008 	if (cmt->info->width == 16)
1009 		cmt->rate = clk_get_rate(cmt->clk) / 512;
1010 	else
1011 		cmt->rate = clk_get_rate(cmt->clk) / 8;
1012 
1013 	clk_disable(cmt->clk);
1014 
1015 	/* Map the memory resource(s). */
1016 	ret = sh_cmt_map_memory(cmt);
1017 	if (ret < 0)
1018 		goto err_clk_unprepare;
1019 
1020 	/* Allocate and setup the channels. */
1021 	cmt->num_channels = hweight8(cmt->hw_channels);
1022 	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1023 				GFP_KERNEL);
1024 	if (cmt->channels == NULL) {
1025 		ret = -ENOMEM;
1026 		goto err_unmap;
1027 	}
1028 
1029 	/*
1030 	 * Use the first channel as a clock event device and the second channel
1031 	 * as a clock source. If only one channel is available use it for both.
1032 	 */
1033 	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1034 		unsigned int hwidx = ffs(mask) - 1;
1035 		bool clocksource = i == 1 || cmt->num_channels == 1;
1036 		bool clockevent = i == 0;
1037 
1038 		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1039 					   clockevent, clocksource, cmt);
1040 		if (ret < 0)
1041 			goto err_unmap;
1042 
1043 		mask &= ~(1 << hwidx);
1044 	}
1045 
1046 	platform_set_drvdata(pdev, cmt);
1047 
1048 	return 0;
1049 
1050 err_unmap:
1051 	kfree(cmt->channels);
1052 	iounmap(cmt->mapbase);
1053 err_clk_unprepare:
1054 	clk_unprepare(cmt->clk);
1055 err_clk_put:
1056 	clk_put(cmt->clk);
1057 	return ret;
1058 }
1059 
sh_cmt_probe(struct platform_device * pdev)1060 static int sh_cmt_probe(struct platform_device *pdev)
1061 {
1062 	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1063 	int ret;
1064 
1065 	if (!is_sh_early_platform_device(pdev)) {
1066 		pm_runtime_set_active(&pdev->dev);
1067 		pm_runtime_enable(&pdev->dev);
1068 	}
1069 
1070 	if (cmt) {
1071 		dev_info(&pdev->dev, "kept as earlytimer\n");
1072 		goto out;
1073 	}
1074 
1075 	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1076 	if (cmt == NULL)
1077 		return -ENOMEM;
1078 
1079 	ret = sh_cmt_setup(cmt, pdev);
1080 	if (ret) {
1081 		kfree(cmt);
1082 		pm_runtime_idle(&pdev->dev);
1083 		return ret;
1084 	}
1085 	if (is_sh_early_platform_device(pdev))
1086 		return 0;
1087 
1088  out:
1089 	if (cmt->has_clockevent || cmt->has_clocksource)
1090 		pm_runtime_irq_safe(&pdev->dev);
1091 	else
1092 		pm_runtime_idle(&pdev->dev);
1093 
1094 	return 0;
1095 }
1096 
sh_cmt_remove(struct platform_device * pdev)1097 static int sh_cmt_remove(struct platform_device *pdev)
1098 {
1099 	return -EBUSY; /* cannot unregister clockevent and clocksource */
1100 }
1101 
1102 static struct platform_driver sh_cmt_device_driver = {
1103 	.probe		= sh_cmt_probe,
1104 	.remove		= sh_cmt_remove,
1105 	.driver		= {
1106 		.name	= "sh_cmt",
1107 		.of_match_table = of_match_ptr(sh_cmt_of_table),
1108 	},
1109 	.id_table	= sh_cmt_id_table,
1110 };
1111 
sh_cmt_init(void)1112 static int __init sh_cmt_init(void)
1113 {
1114 	return platform_driver_register(&sh_cmt_device_driver);
1115 }
1116 
sh_cmt_exit(void)1117 static void __exit sh_cmt_exit(void)
1118 {
1119 	platform_driver_unregister(&sh_cmt_device_driver);
1120 }
1121 
1122 #ifdef CONFIG_SUPERH
1123 sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1124 #endif
1125 
1126 subsys_initcall(sh_cmt_init);
1127 module_exit(sh_cmt_exit);
1128 
1129 MODULE_AUTHOR("Magnus Damm");
1130 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1131 MODULE_LICENSE("GPL v2");
1132